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We investigate the observable consequences of Planck scale effects in the advanced gravitational-wave
detector by polymer quantizing the optical field in the arms of the interferometer. For large values of
polymer energy scale, compared to the frequency of photon field in the interferometer arms, we consider
the optical field to be a collection of infinite decoupled harmonic oscillators and construct a new set of
approximated polymer-modified creation and annihilation operators to quantize the optical field.
Employing these approximated polymer-modified operators, we obtain the fluctuations in the radiation
pressure on the end mirrors and the number of output photons. We compare our results with the standard
quantization scheme and corrections from the Generalized Uncertainty Principle.
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I. INTRODUCTION

Despite various approaches to quantum gravity, a com-
plete theory that works at Planck energies remains elusive.
There have also been complementary approaches which
attempt to build viable, self-consistent phenomenological
models that look for broad features, and with robust
experimental signatures [1–3]. They capture key ingre-
dients, such as the introduction of a new length scale,
discreteness of space-time, the Generalized Uncertainty
Principle (GUP), and violation of Lorentz invariance,
which will remain in a complete quantum theory of gravity.
Polymer quantization is one such scheme inspired by

loop quantum gravity [4–11], which captures the discreet-
ness of the space-time (a key feature of all theories of
quantum gravity) by introducing a fundamental scale.
Because of the presence of the fundamental scale (assumed
to be of the order of Planck scale), the Hilbert space in
polymer quantization is different from the one in canonical
quantization.
The key distinguishing feature between the canonical

quantization and polymer quantization is the treatment of
conjugate classical variables. In the case of canonical quan-
tization of point particles in one dimension, Heisenberg
algebra is employed; the position and momentum variables
are elevated to operators and satisfy the canonical com-
mutation relations:

½x̂; x̂� ¼ 0; ½p̂; p̂� ¼ 0 ½x̂; p̂� ¼ iℏ: ð1Þ

However, in the case of polymer quantization, the presence
of a length scale makes the Weyl algebra more suited. In
this case, the pair of unitary operators (V̂; Û) satisfy the
Weyl relations

ÛðλÞV̂ðμÞ ¼ e−iℏλμV̂ðμÞÛðλÞ;
Ûðλ1ÞÛðλ2Þ ¼ Ûðλ1 þ λ2Þ
V̂ðλ1ÞV̂ðλ2Þ ¼ V̂ðλ1 þ λ2Þ; ð2Þ

where λ and μ are c numbers [12]. The discreetness of the
space-time is introduced by assuming that the quantum
states are countable sums of plane waves, i.e.,

hxijxji ¼ δi;j: ð3Þ

Although the position operator is well defined, the dis-
creetness of geometry implies that the momentum operator
cannot be defined. This will affect various physical obser-
vables, and the question which naturally arises is whether
such signatures of Planck scale effects can be measured in
very high sensitive current and future experiments such as
gravitational-wave detectors.
In the next decade, several advanced ground-based

gravitational-wave detectors will be operational with base-
lines up to 10 km [13,14]. Specifically, the Einstein
Telescope is to be built underground to reduce the seismic
noise, and the Cosmic Explorer is to use cryogenic systems
to help cut down the noise experienced from the heat on
its electronics. At low frequency, the sensitivity of these
detectors is affected by seismic and quantum-mechanical
noises (including, for example, the radiation-pressure
noise). Thus, the advanced gravitational-wave detectors
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may provide the unique opportunity of distinguishing
between polymer quantization and canonical quantization
using the radiation-pressure noise curves.
In this work, we use the advanced LIGO configuration to

obtain the fluctuations in the radiation pressure on the end
mirrors and that in the number of output photons in the two
quantization (polymer and canonical) schemes. More
specifically, extending Caves’s calculations [15], for small
values of polymer length scale (compared to the inverse of
frequency of the photon field), we consider the field to be a
collection of infinite independent harmonic oscillators and
use polymer quantization to quantize these harmonic
oscillators of the electromagnetic field in the Michelson-
Morley interferometer arms of the advanced gravitational-
wave detector with the advanced LIGO configuration.1

The first step in the quantization of the electromagnetic
field is to write the Hamiltonian as an infinite sum of
independent harmonic oscillators. As discussed before,
since we are interested in the limit where the polymer
length scale λ → 0, it is possible to consider the optical
field as a collection of an infinite number of independent
oscillators. Hence, this procedure is identical for both the
polymer and canonical quantization schemes. However, the
difference arises in the definition of the momentum
operator in the polymer quantization. To our knowledge,
the creation and annihilation operators corresponding to the
polymer quantized harmonic oscillator has not been
obtained in the literature. In this work, for small values
of the polymer length scale (compared to the inverse of the
frequency of the photon field), we obtain approximate
creation and annihilation operators for the individual
polymer quantized harmonic oscillators. We use these
operators to obtain the fluctuations in the radiation pressure
on the end mirrors and the fluctuations in the number of
output photons.
The paper is organized as follows. In Sec. II, we briefly

review polymer quantization and its application to the
simple harmonic oscillator. In Sec. III, we construct the
approximate ladder operators corresponding to the polymer
harmonic oscillator. In Sec. IV, we briefly review the
standard analysis of radiation-pressure noise and photon-
count noise for the advanced LIGO configuration [15].
In Sec. V, we obtain the radiation-pressure noise and
photon-count noise for the case of polymer quantized
electromagnetic fields. Finally, in Sec. VI, we discuss
the implications of our results.

II. POLYMER QUANTUM MECHANICS OF
SIMPLE HARMONIC OSCILLATOR

In this section, we briefly review polymer quantization
and the polymer quantized harmonic oscillator. As men-
tioned earlier, the polymer quantization possesses a funda-
mental length scale, usually assumed to be of the order of
the Planck length. Thus, the structure of the Hilbert space in
polymer quantization is different from that in canonical
quantization. We then obtain the polymer quantized energy
eigenfunctions for the harmonic oscillator.

A. Polymer quantization

As mentioned before, the crucial difference between
the canonical and polymer quantization procedures is the
choice of Hilbert space. The polymer Hilbert space is
the space of almost periodic functions [16], in which the
wave function of a particle is expressed as the linear
combination [9]

ψðpÞ ¼
XN
j¼1

cjeip·xj=ℏ; ð4Þ

where fxjjj ¼ 1; 2;…Ng is a selection from R3. In the
polymer Hilbert space, the inner product is defined as [9]

hxijxji ¼ lim
T→∞

1

ð2TÞ3
Z

T

−T

Z
T

−T

Z
T

−T
e−ip:ðxi−xjÞ=ℏd3p

¼ δi;j: ð5Þ

Note that the plane waves are normalizable in polymer
Hilbert space.
The configuration and translation operators in the

polymer Hilbert space are [9]

x̂ ¼ iℏ∇p; Ûλ ¼ deiλp=ℏ; ð6Þ

which act as

x̂eip·xj=ℏ ¼ xjeip·xj ; Ûλeip·xj=ℏ ¼ eip·ðxjþλÞ=ℏ; ð7Þ

where λ is the fundamental (polymer) length scale. Because
of the discreteness of the geometry, the momentum operator
is not well defined [9,17], while the position operator is
well defined. However, an effective momentum operator
can be defined as [9]

P̂λ ≡ ℏ
2iλ

ðÛλ − Û†
λÞ: ð8Þ

In the limit, λ → 0, the above definition of the effective
momentum operator leads to the momentum operator in
canonical quantization. The explicit dependence of the
momentum operator on the fundamental length scale λ is
the key feature of polymer quantization, which leads to the

1Polymer quantizing the optical field, without any approxi-
mation, can modify the equation of motion, which consequently
can lead to a modification in dispersion relation. Note that we
have not taken into account the effect of this modified dispersion
relation. However, we show in Sec. VI that the effects of this
modified dispersion relation due to polymer quantization on the
interferometer noises are of the same order as the approximated
corrections calculated in this work.
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effects of polymer quantization on a given system. In other
words, the classical observables which depend on momen-
tum become λ-dependent operators in polymer quantum
mechanics. For example, the polymer Hamiltonian
operator corresponding to the classical Hamiltonian H ¼
p2=2mþ VðxÞ is

Ĥλ ¼
P̂2
λ

2m
þ Vðx̂Þ; ð9Þ

where m is the mass of the particle and VðxÞ is the external
potential. The effect of polymer quantization on the energy
eigenvalues enters through P̂λ.

B. Polymer quantized simple harmonic oscillator

The Hamiltonian corresponding to the harmonic oscil-
lator (with frequency ω) in the polymer quantization is

Ĥλ ¼
P̂2
λ

2m
þ 1

2
mω2x̂2: ð10Þ

Using (8) in the above Hamiltonian, in the momentum
basis, the energy eigenvalue equation ĤλΨðpÞ ¼ EΨðpÞ
becomes [9]

d2ΨðzÞ
dz2

þ ½α − 2q cosð2zÞ�ΨðzÞ ¼ 0; ð11Þ

where

z ¼ λp
ℏ

−
π

2
; α ¼ 2E

ℏωβ2
−

1

2β4
; ð12Þ

q ¼ 1

4β4
; β ¼ λ

ffiffiffiffiffiffiffi
mω

ℏ

r
: ð13Þ

Note that Eq. (11) is the well-known Mathieu differential
equation [18], which has periodic solutions for special
values of α, i.e.,

Ψ2nðzÞ ¼
ð2β=πÞ1=2
ðℏmωÞ1=4 Cenðq; zÞ for α ¼ AnðqÞ; ð14Þ

Ψ2nþ1ðzÞ ¼
ð2β=πÞ1=2
ðℏmωÞ1=4 Senþ1ðq; zÞ for α ¼ BnðqÞ; ð15Þ

where An and Bn are Mathieu characteristic values and Cen
and Sen are Mathieu functions. These functions are π
periodic (functions with a periodicity π) for even n and π
antiperiodic for odd n [18]. It is important to note that these
solutions are normalizable, and in the limit λ → 0, we
recover the standard quantization mode functions. We show
this explicitly in the next section [see Eqs. (17) and (18)].
The energy eigenvalues for the even and odd quantum

numbers are

E2n

ℏω
¼ 2β4AnðqÞ þ 1

4β2
;

E2nþ1

ℏω
¼ 2β4Bnþ1ðqÞ þ 1

4β2
:

ð16Þ

In the limit of β → 0 ðq → ∞Þ, the above energy eigen-
values smoothly go over to the standard harmonic oscillator
energy eigenvalues [see Eq. (24)]. Energy levels of polymer
harmonic oscillator, E2n and E2nþ1, are degenerate up to a
critical value of β. Furthermore, as β is increased, the
energy levels dip below (rise above) the β ¼ 0 value for
even (odd) n; see Fig. 1. By contrast, in the case of the GUP,
the energy levels increase monotonically above the stan-
dard energy levels, for every n [19].

III. CONSTRUCTION OF APPROXIMATED
POLYMER LADDER OPERATORS

We aim to obtain the fluctuations in the radiation
pressure on the end mirrors and that in the number of
output photons in the advanced gravitational-wave inter-
ferometers in the two quantization (canonical and polymer)
schemes.
To compare these quantum noises in the two quantiza-

tion schemes, we need to obtain the equivalent set of
approximated creation and annihilation operators in the
polymer quantization scheme. Obtaining the ladder oper-
ators for the polymer harmonic oscillator is nontrivial for
the following reasons. First, in standard quantization, a
linear combination of position (x̂) and momentum (p̂)
operators can raise or lower an energy eigenstate. In the
case of polymer quantization, as can be seen from the
momentum definition, Eq. (8), a simple linear combination
of x̂ and P̂λ does not lead to ladder operators, which can
raise or lower a given polymer energy eigenstate. Second,
from Fig. 1, it is evident that for β → 1 the polymer energy

β

FIG. 1. Plot of Em=ℏω of polymer harmonic oscillator as a
function of β as obtained in Ref. [9]. The red and black (dotted)
curves correspond to even (m ¼ 2n) and odd (m ¼ 2nþ 1)
energy levels, respectively. The energy levels are degenerate
up to a critical value of β.
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eigenvalues, Eq. (16), are degenerate [9]. Therefore, to
construct the ladder operators for the case of the polymer
harmonic oscillator, we adopt the following procedure.
We define j0i to be the ground state of the polymer
harmonic oscillator. Let α̂λ be the annihilation operator
satisfying the condition α̂λj0i ¼ 0. As mentioned earlier, it
is nontrivial to construct an exact annihilation operator α̂λ
satisfying the above condition, especially in the limit of

β → 1ðq → 1=4Þ. In the rest of this section, we construct
the approximate creation and annihilation operators
ðÂλ; Â

†
λÞ for β ≪ 1, satisfying the condition Âλj0̃i ¼ 0,

where j0̃i is the approximate ground state of the
polymer harmonic oscillator valid in the limit β ≪ 1.
For small values of β, the polymer energy eigenfunc-
tions [Eqs. (14) and (15)] can be expanded as (see the
Appendix)

Ψ2nðpÞ ¼
�

1

πℏmω

�
1=4 e−α

2=2

2n=2
ffiffiffiffiffi
n!

p
�
HnðαÞ −

β2

4

�
1

32
Hnþ4ðαÞ þ

1

4
Hnþ2ðαÞ þ

2nþ 1

2
HnðαÞ

þ nðn − 1ÞHn−2ðαÞ − 12nC4Hn−4ðαÞ
�
þOðβ4Þ

�
; ð17Þ

Ψ2nþ1ðpÞ ¼
�

1

πℏmω

�
1=4 e−α

2=2

2n=2
ffiffiffiffiffi
n!

p
�
HnðαÞ −

β2

4

�
1

32
Hnþ4ðαÞ −

1

4
Hnþ2ðαÞ −

�
2nþ 1

2
− α2

�
HnðαÞ

− nðn − 1ÞHn−2ðαÞ − 12nC4Hn−4ðαÞ
�
þOðβ4Þ

�
; ð18Þ

where α ¼ sinðλp=ℏÞ=β and Hn are the Hermite polynomials. In the leading order in β, we can approximate the polymer
harmonic oscillator energy eigenfunctions [Eqs. (14) and (15)] as

FIG. 2. The plot of the scaled polymer quantized harmonic oscillator eigenfunctions vs dimensionless momentum p̃ ¼ λp=ℏ. The
black curve in all the four plots above corresponds to the exact polymer eigenfunction ðℏmωÞ1=4Ψn¼0ðp̃Þ as in Eq. (14). The red, green,
orange, and yellow curves correspond to the approximated polymer eigenfunction ðℏmωÞ1=4Ψ̃n¼0ðp̃Þ for β ¼ 1, 0.8, 0.5, and 0.3,
respectively.
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Ψ2nðpÞ ≈ Ψ̃2nðpÞ ¼
1

ðπℏmωÞ1=4
e−α

2=2HnðαÞ
2n=2

ffiffiffiffiffi
n!

p : ð19Þ

Since, as mentioned earlier, Ψ2nðpÞ and Ψ2nþ1ðpÞ are
degenerate for β ≪ 1, considering only the even (or odd)
eigenfunctions is adequate. Figures 2 and 3 contain the
plots of the exact and approximate polymer harmonic
oscillator eigenfunctions. As can be seen from the figures,
the approximate eigenfunctions are an excellent approxi-
mation of the exact eigenfunctions for small values of β,
i.e., for β ≪ 1. Using the approximate polymer harmonic
oscillator eigenfunctions, we can now construct the
approximate annihilation operator (Âλ) in the momentum
basis.
Using the properties of Hermite polynomials, we can

rewrite the approximate eigenfunctions [Eq. (19)] as

Ψ̃nðpÞ ¼
1

ðπℏmωÞ1=4
1ffiffiffiffiffi
n!

p
�
1ffiffiffi
2

p
�
α −

d
dα

��
n
e−α

2=2: ð20Þ

As in canonical quantization, we can then write the appro-
ximate creation operator in the polymer quantization as

Â†
λ ¼

1ffiffiffi
2

p
�
α −

d
dα

�
: ð21Þ

Thus, the approximate ladder operators corresponding to
the polymer quantized harmonic oscillator energy eigen-
states are

Âλ ¼
1

ð2ℏmωÞ1=2
�
P̂λ − i

mωx̂
cosðλp=ℏÞ

�
; ð22Þ

Â†
λ ¼

1

ð2ℏmωÞ1=2
�
P̂λ þ i

mωx̂
cosðλp=ℏÞ

�
: ð23Þ

It is easy to verify that the approximate ladder operators,
corresponding to the approximate ground state of polymer
harmonic oscillator [Eq. (19)], satisfy the commutation
relation ½Âλ; Â

†
λ� ¼ 1 and Âλj0̃i ¼ 0. Expanding the energy

eigenvalues [Eq. (16)] for small values of β leads to

E2n

ℏω
≈
�
nþ 1

2

�
−
β2

16
½ð2nþ 1Þ2 þ 1� þOðβ4Þ: ð24Þ

Retaining only the leading-order term allows us to interpret
that the nth energy level jñi contains n particles, i.e.,

FIG. 3. The plot of the scaled polymer quantized harmonic oscillator eigenfunctions vs dimensionless momentum p̃ ¼ λp=ℏ. The
black curve in all the four plots above corresponds to the exact polymer eigenfunction ðℏmωÞ1=4Ψn¼2ðp̃Þ as in Eq. (14). The red, green,
orange, and yellow curves correspond to the approximated polymer eigenfunction ðℏmωÞ1=4Ψ̃n¼2ðp̃Þ for β ¼ 1, 0.8, 0.5, and 0.3,
respectively.
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Â†
λÂλjñi ¼ njñi. In the rest of this work, we will use the

approximate ladder operators and energy values to study
the implications of polymer quantization on various noises
in the advanced LIGO configuration.

IV. QUANTUM-MECHANICAL NOISES IN
ADVANCED LIGO: CANONICAL QUANTIZATION

In this section, we briefly review Caves’s analysis for the
advanced LIGO configuration [15]. As is well known, a
gravitational-wave detector is a two-arm, multireflecting,
laser-powered Michelson-Morley interferometer [15]. The
interferometer measures the spatial strain produced by
gravitational waves as a variation in lengths of its mutually
perpendicular arms, with end mirrors attached to it. The
accurate measurement of this spatial strain is limited by
two main sources of quantum-mechanical noise: fluctua-
tions in the radiation pressure on the end mirrors (radiation-
pressure noise) and fluctuations in the number of output
photons (photon-count noise).
Radiation-pressure noise is due to the transfer of

momentum, possessed by the optical field in the interfer-
ometer arms, to the end mirrors. On the other hand, the
photon-counting error is due to the uncertainty produced by
the photodetectors capturing the photons leaving the
interferometer arms. As mentioned in the Introduction, at
low frequency, the sensitivity of these detectors is affected
by seismic and radiation-pressure noise. Thus, the Einstein
Telescope will be sensitive to the radiation pressure. Thus,
the advanced gravitational-wave detectors provide a unique
opportunity to distinguish between polymer quantization
and canonical quantization using the radiation-pressure
noise curves.

A. Radiation-pressure noise

As mentioned above, the radiation-pressure noise is
due to the transfer of the radiation field’s momentum to
the end mirrors. Therefore, radiation-pressure noise is
calculated by estimating the momentum carried by the
radiation field in the arms of the interferometer. To carry
this out, one requires four modes of the electromagnetic
radiation field. Two modes, referred to as Eþ

1 and Eþ
2 , are

the in modes, and the remaining two modes (E−
1 and E−

2 )
are out modes. Among the in modes, the Eþ

1 mode
corresponds to the radiation field of frequency ω from
the input laser port, and the E−

1 mode describes radiation
field from the “unused” port.
After the in modes are scattered by the beam splitter, the

“in” and “out” modes are related by [15]

E−
1 ¼ e−iΔffiffiffi

2
p ðEþ

1 þ e−iμEþ
2 Þ; ð25Þ

E−
2 ¼ e−iΔffiffiffi

2
p ðEþ

2 − eiμEþ
1 Þ; ð26Þ

where Δ and μ are the overall phase shift and relative phase
shift, respectively. They depend on the intrinsic properties
of the beam splitter.
The creation and annihilation operators corresponding to

the input and the output modes of the interferometer are
related by

b̂1 ¼
eiΔffiffiffi
2

p ðâ1 þ eiμâ2Þ; ð27Þ

b̂2 ¼
eiΔffiffiffi
2

p ðâ2 − e−iμâ1Þ; ð28Þ

where â1 and â2 are the annihilation operators correspond-
ing to the input ports ð1þÞ and ð2þÞ and b̂1 and b̂2 denote
the annihilation operators corresponding to the output ports
ð1−Þ and ð2−Þ of the interferometer.
The difference between the momenta transferred to the

end masses is given by [15]

P̂ ≡ 2νℏω
c

ðb̂†2b̂2 − b̂†1b̂1Þ

¼ −
2νℏω
c

ðeiμâ†1â2 þ e−iμâ†2â1Þ; ð29Þ

where ν is the number of times the photon bounces in the
interferometer before it reaches the receiver. Squeezed
states are useful for the detection of the gravitational
waves, as they have a reduced uncertainty in one compo-
nent of the complex amplitude. The squeezed state of the
electromagnetic field can be expressed as [15]

jψi ¼ S2ðξÞD1ðαÞj0iξ ¼ −reiθ; ð30Þ

where D1ðαÞ≡ e−jαj2=2eαa
†
1 is the displacement operator

corresponding to the mode Eþ
1 and α is a complex number.

The squeezing operator corresponding to the mode Eþ
2 is

defined as S2ðξÞ≡expf½ξ�a22−ξða†2Þ2�=2g, with ξ ¼ −reiθ.
Note that r and α are the squeezing parameters, and θ is
referred to as the squeezing angle.
The squeezed states satisfy the following relations:

hψ jP̂jψi ¼ 0; ð31Þ

hψ jðΔPÞ2jψi ¼ ð2νℏω=cÞ2½jαj2 coshð2rÞ þ sinh2r

þ ðα2eiðθþ2μÞ þ α�2e−iðθþ2μÞÞ sinh r cosh r�:
ð32Þ

If α is real, and the squeezing angle is chosen to be
θ ¼ −2μ, then

hψ jðΔPÞ2jψi ¼ ð2νωÞ2ðα2e2r þ sinh2 rÞ: ð33Þ

Note that μ is characteristic of the beam splitter; hence, we
can always choose μ to have a particular value.
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Thus, the difference in momentum transfer on the end
mirrors, for a duration of time τ, leads to an error in the
difference in position of the two mirrors, z ¼ z2 − z1, and is
given by

ðΔzÞrp ¼
νℏωτ
mc

ðα2e2r þ sinh2 rÞ1=2; ð34Þ

where z1 and z2 are the positions of the end mirrors. Note
that the uncertainty in the radiation pressure translates to
the error in the measurement of the gravitational-wave
signal and it depends on the parameters of the radiation
field in the arms of the interferometer and the duration of
time τ.

B. Photon-count noise

Photon-count error is due to the fluctuations in number
of photons leaving the arms of the interferometer. The in
and out modes are related by

E−
1 ¼ e−iΦ½Eþ

2 cosðϕ=2Þ þ ieiμEþ
1 sinðϕ=2Þ�; ð35Þ

E−
1 ¼ e−iΦ½Eþ

1 cosðϕ=2Þ þ ie−iμEþ
2 sinðϕ=2Þ�; ð36Þ

where ϕ is the phase difference between the output light
emitted by the interferometer arms and Φ is the mean
phase. They are related to the positions of the end mirrors
and the parameters of the beam splitter by the relations [15]

ϕ ¼ 2bωz=cþ π − 2μ; ð37Þ

Φ ¼ bωðz1 þ z2Þ=cþΦ0; ð38Þ
where Φ0 is a constant.
The annihilation operators of the out modes (ĉ1 and ĉ2)

are related to the annihilation operators of the in modes (â1
and â2) by the following relations [15]:

ĉ1 ¼ eiΦ½−ie−iμâ1 sinðϕ=2Þ þ â2 cosðϕ=2Þ�; ð39Þ

ĉ2 ¼ eiΦ½â1 cosðϕ=2Þ − ieiμâ2 sinðϕ=2Þ�: ð40Þ

For the squeezed state jψi defined in Eq. (30), the expect-
ation value of the difference in the number of photons
emitted by the interference arms and its variance are

nout ≡ hψ jðĉ†2ĉ2 − ĉ†1ĉ1Þjψi
¼ cosϕ½jαj2 − sinh2r� ð41Þ

ðΔnoutÞ2 ¼ cos2ϕðjαj2 þ 2sinh2rcosh2rÞ þ sin2ϕ

× ½− sinh r cosh rðα2eiðθþ2μÞ þ α�2e−iðθþ2μÞÞ
þ jαj2 coshð2rÞ þ sinh2r�: ð42Þ

Like in the previous case, choosing the α to be real and the
squeezing angle θ to be −2μ, we have

ðΔnoutÞ2 ¼ cos2ϕðα2 þ 2sinh2rcosh2rÞ
þ sin2ϕðα2e−2r þ sinh2rÞ: ð43Þ

Thus, the difference in the output photon number changes
in z, leading to an error in the displacement of the position
of the end mirrors ½ðΔzÞpc� due to the photon-count noise, is
given by

ðΔzÞpc ¼
c

2bω
ðα2 − sinh2rÞ−1½cot2ϕðα2 þ 2cosh2rsinh2rÞ

þ α2e−2r þ sinh2r�1=2: ð44Þ
From the above, one can extract the Caves limit, i.e.,
cosϕ ¼ 0 and taking jαj ≫ j sinh rj, to obtain

ðΔzÞpc ≈ ðc=2bωÞα−1e−r; ð45Þ

although we emphasize that we will use the exact expres-
sion (44) to compare with its polymer counterpart in the
following section.
In the next section, we obtain the error in the displace-

ment of the end mirrors due to the radiation pressure and
photon count for the polymer quantization for the advanced
LIGO configuration.

V. QUANTUM-MECHANICAL NOISES IN
ADVANCED LIGO: POLYMER

QUANTIZATION

To obtain the effects of polymer quantization on fluc-
tuations in the radiation pressure on the end mirrors
(radiation-pressure noise) and fluctuations in the number
of output photons (photon-count noise), we need to
polymer quantize the electromagnetic field in the interfer-
ometer arms.
In the following subsection, we perform polymer quan-

tization of the electromagnetic field, for small values of β,
and use the approximate polymer creation and annihilation
operators to obtain the quantum-mechanical noises in the
advanced LIGO configuration.

A. Polymer quantization of electromagnetic field

Assume that the electromagnetic field is confined in a
cavity of volume V, with periodic boundary conditions.
For simplicity, we assume that the cavity is a cube of
length L. For small values of β, one can approximately
decompose the electromagnetic field in the Fourier domain,
and the Hamiltonian corresponding to a mode k can be
written as [20]

Hk ¼ 1

2

Z
dVðϵ0E2

k þ μ−10 B2
kÞ: ð46Þ

Decomposing the vector potential A into plane waves in
the Coulomb gauge, electric and magnetic fields are given
by [20]
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E ¼ 1ffiffiffiffiffiffiffiffi
ϵ0V

p
X
k

Ek½ωkqk sinðωkt − k · rÞ

− pk cosðωkt − k · rÞ�; ð47Þ

B ¼
ffiffiffiffiffi
μ0
V

r X
k

ðk̂ × EkÞ½ωkqk sinðωkt − k · rÞ

− pk cosðωkt − k · rÞ�; ð48Þ

where

qk ¼
ffiffiffiffiffiffiffiffi
ℏ

2ωk

s
ða�k þ akÞ; pk ¼

ffiffiffiffiffiffiffiffi
ℏωk

2

r
ða�k − akÞ: ð49Þ

Substituting Eqs. (47) and (48) in the Hamiltonian, i.e., in
Eq. (46), we get

Hk ¼ 1

2
ðp2

k þ ω2
kq2kÞ: ð50Þ

To proceed with the polymer quantization of electromag-
netic fields, for small values of β, we need to polymer
quantize the individual harmonic oscillators corresponding
to different frequency modes (ωk), i.e.,

HkðλÞ ¼
1

2
½ðPkðλÞÞ2 þ ω2

kq2k�; ð51Þ

where

PkðλÞ ¼
ÛkðλÞ − Û†

kðλÞ
2iλ

; ð52Þ

with ÛkðλÞ as the translation operator associated with the
harmonic oscillator corresponding to the mode k as defined
in Eq. (7).
As seen in the previous section, to obtain the expressions

for radiation-pressure and photon-count noises, we need
to define the creation and annihilation operators in the
Fock space. For the case of polymer harmonic oscillator, as
shown in Sec. III, it is possible to define these operators in
the limit β ≪ 1. In this limit, we can define an approximate
polymer harmonic oscillator state jΨ̃i in the Fock basis
[Eq. (19)]. The approximate state allows us to define
the displacement and squeezing operators in the polymer
quantization for the approximate ground state j0̃i. Though
the approximate creation/annihilation operators satisfy
½Âλ; Â

†
λ � ¼ 1, the effect of polymer quantization effectively

comes from the approximated polymer quantum state jΨ̃i.
In the rest of this section, we obtain the fluctuations in the
radiation pressure on the mirrors (radiation-pressure noise)
and fluctuations in the number of output photons (photon-
count noise) for the polymer quantized electromagnetic
field in the interferometer arms.

B. Radiation-pressure noise

Let Âλð1Þ and Âλð2Þ be the polymer annihilation operators
corresponding to the input ports (1þ) and (2þ) and B̂λð1Þ and
B̂λð2Þ be the polymer annihilation operators corresponding
to the output ports (1−) and (2−) of the interferometer.
In the polymer quantization, the difference between

momenta transferred to the end mirrors is given by

ˆ̃P ≡ ð2νℏω=cÞðB̂†
λð2ÞB̂λð2Þ − B̂†

λð2ÞB̂λð2ÞÞ; ð53Þ

¼ −ð2νℏω=cÞðeiμÂ†
λð1ÞÂλð2Þ þ e−iμÂ†

λð2ÞÂλð1ÞÞ: ð54Þ

Here, again, we consider squeezing the approximate
ground state as

jψ̃i ¼ S̃2ðξÞD̃1ðαÞj0̃i; ð55Þ

where the polymer-modified squeezing and displacement
operators are defined as

S̃ðξÞ≡ exp f½ξ�ðÂλÞ2 − ξðÂ†
λÞ2�=2g; ð56Þ

D̃ðαÞ≡ exp ðαÂ†
λ − α�ÂλÞ; ξ ¼ −reiθ: ð57Þ

For the polymer-modified squeezed state, we get

hψ̃ jP̃jψ̃i ¼ 0; ð58Þ

hψ̃ jðΔP̃Þ2jψ̃i ¼ ð2nℏω=cÞ2½jαj2 coshð2rÞ þ sinh2r

þ ðα2eiðθþ2μÞ þ α�2e−iðθþ2μÞÞ sinh r cosh r�

×
ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ; ð59Þ

where I0 is the modified Bessel function of the first kind,

β ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏω
M�c2

s
; ð60Þ

andM� is the energy scale (inverse of polymer length scale
λ) associated with the polymer quantization.
This is an important result, and we would like to stress

the following points. First, like in canonical quantization,
Eq. (58) implies that the average number of polymer
particles are same in both the interferometer arms. This
is not the case for other quantum gravity–inspired models
such as the GUP.
In the case of the GUP, it was shown that the expectation

value of the difference in momentum transfer is nonzero
[21]; however, the expectation of difference in momentum
transfer vanishes for the case of polymer quantization.
Second, fluctuations in the momentum transfer, Eq. (59), is
different from that of the canonical quantization. As in the
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case of canonical quantization, choosing the squeezing
angle to be θ ¼ −2μ, we get

hψ̃ jðΔP̃Þ2jψ̃i ¼
�
2nℏω
c

�
2

ðα2e2r þ sinh2 rÞ

×
ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ: ð61Þ

Third, the difference in momentum transfer on the end
mirrors, for a duration of time τ, leads to the following error
½ðΔz̃Þrp�:

Δz̃rp ¼
nℏωτ
mc

ðα2e2r þ sinh2rÞ1=2
� ffiffiffi

π
p
β

I0ð1=2β2Þ
e1=2β

2

�
1=2

:

ð62Þ

Let Δrp be the ratio of the radiation-pressure error in the
polymer quantization [Δz̃rp] and the same in the canonical
quantization [Δzrp], i.e.,

ΔrpðβÞ ¼
� ffiffiffi

π
p
β

e−1=2β
2

I0ð1=2β2Þ
�
1=2

: ð63Þ

Figure 4 contains a plot of ΔrpðβÞ as a function of β. It is
clear that in the limit β → 0 the ratio is unity. However,
even if β ≃ 0.1, the difference between the two quantization
schemes is on the order of 10−3.

C. Photon-count noise

Let Ĉλð1Þ and Ĉλð2Þ be the annihilation operators corre-
sponding to the out modes. The annihilation operators
corresponding to the in modes (Âλð1Þ and Âλð2Þ) are related
to that of out modes by the following relations:

Ĉλð1Þ ¼ eiΦ½Âλð2Þ cosðϕ=2Þ − ie−iμÂλð1Þ sinðϕ=2Þ�; ð64Þ

Ĉλð2Þ ¼ eiΦ½Âλð1Þ cosðϕ=2Þ − ieiμÂλð2Þ sinðϕ=2Þ�: ð65Þ

For the squeezed state jψ̃i defined in Eq. (55), the expect-
ation value of the difference in the number of polymer
photons emitted by the interferometer arms and its
variance are

ñout ≡ hψ̃ jðĈλð2Þ†Ĉλð2Þ − Ĉλð1Þ†Ĉλð1ÞÞjψ̃i

¼ cosϕðjαj2 − sinh2rÞ
ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ ð66Þ

ðΔñoutÞ2 ¼
�
cos2ϕðjαj2 þ 2sinh2rcosh2rÞ þ sin2ϕ

× ½− sinh r cosh rðα2eiðθþ2μÞ þ α�2e−iðθþ2μÞÞ
þ jαj2 coshð2rÞ þ sinh2r� þ cos2ϕsinh4r

×

�
1 −

ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ
��

×
ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ: ð67Þ

As in the case of canonical quantization, taking α to be real
and θ ¼ −2μ in Eq. (67), we get

ðΔñoutÞ2 ¼
�
cos2ϕðα2 þ 2sinh2rcosh2rÞ

þ sin2ϕðα2e−2r þ sinh2rÞ þ cos2ϕsinh4r

×

�
1 −

ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ
��

×
ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ: ð68Þ

The difference in the output photon number changes with
respect to z and hence leads to an error in the displacement
of the position of the end mirrors ½ðΔz̃Þpc�. Therefore, the
photon-count noise is given by

Δz̃pc ¼
c

2bω
ðα2 − sinh2rÞ−1

�
cos2ϕðα2 þ 2sinh2rcosh2rÞ

þ sin2ϕðα2e−2r þ sinh2rÞ þ cos2ϕsinh4r

×

�
1 −

ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ
��

1=2

×

� ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ
�
1=2

: ð69Þ

Again, similar to canonical quantization, setting cosϕ ¼ 0,
we get

FIG. 4. The plot of Δrp as a function of β.
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Δz̃pc ¼
c

2bω
ðα2 − sinh2rÞ−1ðsin2ϕðα2e−2r þ sinh2rÞÞ1=2

×

� ffiffiffi
π

p
β

e−1=2β
2

I0ð1=2β2Þ
�
1=2

: ð70Þ

This is an important result, and we would like to stress the
following points. First, the fluctuations in the number of
output photons in the two quantization schemes (canonical
and polymer) are different. Second, let us define Δpc as the
ratio of photon-count error in the polymer quantization
[Δz̃pc] and the same in the canonical quantization [Δzpc].
The ratio Δpc is plotted as

ΔpcðβÞ ¼
� ffiffiffi

π
p
β

e−1=2β
2

I0ð1=2β2Þ
�
1=2

: ð71Þ

Thus, ΔpcðβÞ is identical to ΔrpðβÞ; i.e., the functional
dependence of the quantum noises on β is identical. Third,
the effects due to polymer quantization are different from
that of the GUP [21]. As mentioned earlier, the expectation
value of the difference in momentum transfer is nonzero for
the case of the GUP [21]; however, the expectation of
difference in momentum transfer vanishes for the case of
polymer quantization. On the other hand, the GUP cor-
rections to the radiation-pressure and photon-count noises
are not the same [21]. It is also interesting to note that the
effects of polymer quantization on the radiation-pressure
and photon-count noises are strikingly different from that
of the GUP.

VI. CONCLUSIONS

We have investigated, in detail, the experimental sig-
natures of the polymer quantization on the quantum-
mechanical noises in the advanced gravitational-wave
detectors. This is feasible only if the polymer quantized
electromagnetic modes can be expressed in the Fock
space. We explicitly showed that it is possible to obtain
a set of approximate annihilation and creation operators
in the polymer quantized harmonic oscillator in the
limit β ≪ 1.
We used the advanced LIGO configuration to obtain

the fluctuations in the radiation pressure on the mirrors
and the fluctuations in the number of output photons in
the polymer quantization scheme. The photon-count error
ratio [ΔpcðβÞ) is shown to be identical to the radiation-
pressure error ratio (ΔrpðβÞ], where β depends on the
polymer scale M� and the frequency of the electromag-
netic field ω. Note that, for the case of the GUP, it was
shown that the error ratios (Δrp and Δpc) are not
identical [21].
If the polymer energy scale M� is assumed to be of the

order of the Planck scale, then, for a more realistic value of
ω, i.e., 2.82 × 1014 Hz [22,23], the parameter β is of the

order of 10−13. For small values of β, the error ratios, both
Δrp and Δpc (denoted as Δ), can be expanded as

Δ ¼ 1þ β2

8
þOðβ4Þ: ð72Þ

Hence, for realistic values of the frequency of the optical
field, the next-to-leading-order contribution is roughly 1026

times smaller than the zeroth-order contribution.
As mentioned before, we did not take into consideration

the effects of modified dispersion relation introduced by
polymer quantization. Motivated by the modified dis-
persion relation due to polymer quantization of the scalar
field in Ref. [9], it possible that the polymer quantization
of the Maxwell field can lead to a modified dispersion of
the form

ω2 ¼ jkj2½1þ δβ2 þOðβ4Þ�; ð73Þ

in the limit β ≪ 1, where δ is a constant. If δ is positive, the
dispersion relation is superluminal, and if it is negative,
then the relation is subluminal. For the above modification,
repeating the analysis in Sec. V, the error ratiosΔrp andΔpc

are given by

Δrp ¼ 1þ
�
1

8
þ δ

2

�
β2 þOðβ4Þ ð74Þ

Δpc ¼ 1þ
�
1

8
−
δ

2

�
β2 þOðβ4Þ: ð75Þ

Note that, even if jδj ¼ 1=4, either one of Δrp or Δpc will
be nonzero. Therefore, it is evident that the corrections due
to the modified dispersion relation is of the same order that
we have considered in this work.
In the case of the GUP, the expectation value of the

difference in momentum transfer is nonzero (hP̃i ≠ 0), and
the quantum noises in the interferometer are lower than
the canonical quantization [21]. However, in the case of
polymer quantization, the expectation value of the differ-
ence in momentum transfer is zero, and the quantum noises
in the interferometer are higher than the canonical quan-
tization. Since hðΔP̃Þ2i ¼ hP̃2i − hP̃i2, it is clear that the
models that lead to a zero (or nonzero) expectation value of
the difference in momentum transfer will lead to higher (or
lower) quantum noises in the interferometer than the
canonical quantization. This feature provides a robust test
to distinguish between the two broad categories of quantum
gravity phenomenological models.
The analysis in this work is done for a fixed frequency of

the electromagnetic field, assuming that the modes decou-
ple and have a linear-dispersion relation. While it is true for
canonical quantization, it is unclear whether this feature
holds for polymer quantization [24–26]. While the ladder
operators in a standard harmonic oscillator are linear
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combinations of momentum and position operators, the
approximate ladder operators for the case of approximate
energy eigenfunctions of a polymer harmonic oscillator
have a nontrivial combination of x̂ and p̂:

Âλ ¼
1

ð2ℏmωÞ1=2
�
P̂λ − i

mωx̂
cosðλp=ℏÞ

�
; ð76Þ

Â†
λ ¼

1

ð2ℏmωÞ1=2
�
P̂λ þ i

mωx̂
cosðλp=ℏÞ

�
: ð77Þ

The next step in the analysis is to investigate the quantum-
mechanical noises due to polymer quantization in the
gravitational-wave frequency band for the ground-based
and space-based detectors, i.e., 10−5 to 50 Hz. Such an
analysis will provide us the tools for testing these results.
This work is in progress.
Recently, Ref. [27] appeared, and it discusses plausible

quantum gravity signatures in future gravitational-wave
observations, such as the gravitational-wave luminosity
distance, the time dependence of the effective Planck mass,
and also the instrumental strain noise of interferometers.
The focus of this work is different from that of Ref. [27].
While the goal in Ref. [27] is to investigate possible
imprints of quantum gravity on gravitational-wave
astronomy, in this work we analyzed the effects of different
quantization schemes on the interferometer noises.
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APPENDIX: ASYMPTOTIC EXPANSION OF
POLYMER ENERGY EIGENFUNCTIONS

FOR LARGE VALUES OF q

In this Appendix, following Ref. [28], we explicitly
show the asymptotic expansion of energy eigenfunctions of
the polymer harmonic oscillator, Ψ2nðpÞ and Ψ2nþ1ðpÞ, for
large values of q.

Following Eqs. (14) and (15), the polymer energy
eigenfunctions in the momentum basis are given by

Ψ2nðzÞ ¼
ð2β=πÞ1=2
ðℏmωÞ1=4 Cenðq; zÞ; ðA1Þ

Ψ2nþ1ðzÞ ¼
ð2β=πÞ1=2
ðℏmωÞ1=4 Senþ1ðq; zÞ; ðA2Þ

where q ¼ 1=ð4β4Þ and Cen and Sen are Mathieu functions.
For large values of q, the Mathieu functions Cenðq; zÞ

and Senþ1ðq; zÞ can be written as [28]

Cenðq; zÞ ¼
ðπ=4Þ1=4q1=8ffiffiffiffiffi

n!
p U0½Z0;nðγÞ þ Z1;nðγÞ�; ðA3Þ

Senþ1ðq; zÞ ¼
ðπ=4Þ1=4q1=8ffiffiffiffiffi

n!
p V0½Z0;nðγÞ − Z1;nðγÞ� sin z;

ðA4Þ

where

γ ¼ 2q1=4 cos z; ðA5Þ

U0 ¼ 1 −
ð2nþ 1Þ
16

ffiffiffi
q

p þOð1=qÞ; ðA6Þ

V0 ¼ 1þ ð2nþ 1Þ
16

ffiffiffi
q

p þOð1=qÞ; ðA7Þ

Z0;nðγÞ ¼ Dn þ
1

4
ffiffiffi
q

p
�

n!
16ðn − 4Þ!Dn−4ðγÞ −

1

16
Dnþ4ðγÞ

�

þOð1=qÞ; ðA8Þ

Z1;nðγÞ ¼ −
1

4
ffiffiffi
q

p
�
nðn − 1Þ

4
Dn−2ðγÞ þ

1

4
Dnþ2ðγÞ

�

þOð1=qÞ; ðA9Þ

DmðγÞ≡ ð−1Þmeγ2=4 dm

dγm
e−γ

2=2 ¼ e−γ
2=4

2m=2 Hmðγ=
ffiffiffi
2

p
Þ:

ðA10Þ

Substituting Eqs. (A5)–(A10) in Eqs. (A3) and (A4), we
obtain

Cenðq; zÞ ¼
ðπ=4Þ1=4q1=8ffiffiffiffiffi

n!
p e−γ

2=4

2n=2

�
Hnðγ=

ffiffiffi
2

p
Þ − 1

8
ffiffiffi
q

p
�
1

32
Hnþ4ðγ=

ffiffiffi
2

p
Þ þ 1

4
Hnþ2ðγ=

ffiffiffi
2

p
Þ þ 2nþ 1

2
Hnðγ=

ffiffiffi
2

p
Þ

þ nðn − 1ÞHn−2ðγ=
ffiffiffi
2

p
Þ − n!

2ðn − 4Þ!Hn−4ðγ=
ffiffiffi
2

p
Þ
�
þOð1=qÞ

�
; ðA11Þ
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Senþ1ðq; zÞ ¼
ðπ=4Þ1=4q1=8ffiffiffiffiffi

n!
p e−γ

2=4

2n=2

�
Hnðγ=

ffiffiffi
2

p
Þ − 1

8
ffiffiffi
q

p
�
1

32
Hnþ4ðγ=

ffiffiffi
2

p
Þ − 1

4
Hnþ2ðγ=

ffiffiffi
2

p
Þ −

�
2nþ 1

2
− γ2

�
Hnðγ=

ffiffiffi
2

p
Þ

− nðn − 1ÞHn−2ðγ=
ffiffiffi
2

p
Þ − n!

2ðn − 4Þ!Hn−4ðγ=
ffiffiffi
2

p
Þ
�
þOð1=qÞ

�
; ðA12Þ

where Hn is the Hermite polynomial. Making use of the variables defined in Eqs. (12) and (13) and the asymptotic
expansions in Eqs. (A11) and (A12), we obtain

Ψ2nðpÞ ¼
�

1

πℏmω

�
1=4 e−α

2=2

2n=2
ffiffiffiffiffi
n!

p
�
HnðαÞ −

β2

4

�
1

32
Hnþ4ðαÞ þ

1

4
Hnþ2ðαÞ þ

2nþ 1

2
HnðαÞ

þ nðn − 1ÞHn−2ðαÞ − 12nC4Hn−4ðαÞ
�
þOðβ4Þ

�
; ðA13Þ

Ψ2nþ1ðpÞ ¼
�

1

πℏmω

�
1=4 e−α

2=2

2n=2
ffiffiffiffiffi
n!

p
�
HnðαÞ −

β2

4

�
1

32
Hnþ4ðαÞ −

1

4
Hnþ2ðαÞ −

�
2nþ 1

2
− 2α2

�
HnðαÞ

− nðn − 1ÞHn−2ðαÞ − 12nC4Hn−4ðαÞ
�
þOðβ4Þ

�
; ðA14Þ

where α ¼ sinðλp=ℏÞ=β. Note that in the limit λ → 0 one can obtain the energy eigenfunctions of the canonically quantized
simple harmonic oscillator.
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