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We study quantum mechanical models in which the dynamical degrees of freedom are real fermionic
tensors of rank 5 and higher. They are the nonrandom counterparts of the Sachdev-Ye-Kitaev (SYK)
models where the Hamiltonian couples six or more fermions. For the tensors of rank 5, there is a
unique OðNÞ5 symmetric sixth-order Hamiltonian leading to a solvable large-N limit dominated by the
melonic diagrams. We solve for the complete energy spectrum of this model when N ¼ 2 and deduce
exact expressions for all the eigenvalues. The subset of states which are gauge invariant exhibits
degeneracies related to the discrete symmetries of the gauged model. We also study quantum chaos
properties of the tensor model and compare them with those of the q ¼ 6 SYK model. For q > 6, there
is a rapidly growing number of OðNÞq−1 invariant tensor interactions. We focus on those of them that
are maximally single trace—their stranded diagrams stay connected when any set of q − 3 colors is
erased. We present a general discussion of why the tensor models with maximally single-trace
interactions have large-N limits dominated by the melonic diagrams. We solve the large-N Schwinger-
Dyson equations for the higher rank Majorana tensor models and show that they match those of the
corresponding SYK models exactly. We also study other gauge invariant operators present in the tensor
models.
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I. INTRODUCTION

In recent literature, quantum mechanical models in
which the dynamical degrees of freedom (d.o.f.) are
fermionic tensors of rank 3 and higher have attracted much
attention, starting with Refs. [1,2]. These theories can have
interesting large-N limits where the dominant “melonic”
diagrams can be simply studied and summed [3–9] (for
reviews, see Refs. [10–13]). In the OðNÞ3 symmetric
quantum mechanical model for Majorana fermions [2],
the unique nontrivial quartic term has the tetrahedral
structure

H4 ¼
gt
4
ψabcψab0c0ψa0bc0ψa0b0c; ð1:1Þ

where each of the indices ranges from 1 to N and the
repeated indices are summed over.1 In the large-N limit

where gN3=2 is held fixed, the surviving Feynman diagrams
are melonic, and they can be summed using Schwinger-
Dyson equations. These diagrams are the same as in the
Sachdev-Ye-Kitaev (SYK) model [15–20], where the
quartic interactions contain a random four-index tensor.
As a result, the large-N tensor and SYK models are closely
related, although there are also some important differences
[13]. These differences are manifest in the small N exact
diagonalizations of the Hamiltonians [21–26].
Rank-q − 1 tensor models with q > 4 have been the

subject of several studies relevant to our paper [2,27–29].
A comprehensive study of various invariant interaction
vertices for a single tensor of rank q − 1 was carried out in
Refs. [28,29]. For q ≥ 8, there is a very rapidly growing
number of “generalized tetrahedral” interaction vertices,
i.e., those that satisfy the constraint that every pair of
tensors has exactly one index contraction.2 As pointed out
in Ref. [27], their counting is a mathematical problem
isomorphic to scheduling of the round-robin tournament.
Following Ref. [28], we mostly focus on the special
subclass of such interactions which are “maximally single
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1There are also three quartic terms of “pillow” topology [9];
they are the quadratic Casimir operators of the three SOðNÞ
groups [14] and are, therefore, determined by the group repre-
sentation. In the gauged model, they vanish.

2This is to be contrasted with the Gurau-Witten model
[1,3] for q flavors of rank-q − 1 Majorana fermion tensors,
where the interaction is uniquely fixed by the OðNÞqðq−1Þ=2
symmetry.
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trace”—their stranded diagrams stay connected if any set of
q − 3 colors is erased. As we discuss in Sec. VI, this
facilitates the combinatorial analysis of the Feynman
diagrams in the large-N limit. It is conjectured that
the maximally single-trace (MST) interaction vertices,
which are known in mathematical literature as perfect
1-factorizations, exist for any even q > 2. They have been
proven to exist when either q − 1 or q=2 is prime [30,31] as
well as in some other cases, such as q ¼ 16, 28, 36, 40, 50,
126, 170, etc.
A part of our paper is devoted to a careful analysis of the

Majorana tensor theory in 0þ 1 dimension with rank-5
tensors as the dynamical d.o.f. The unique generalized
tetrahedral interaction was written down in Ref. [2], and the
Hermitian Hamiltonian is

H6 ¼ i
g
2
ðψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c2d1e3ψa3b3c1d3e2ψa3b1c3d2e3

− ψa3b1c3d2e3ψa3b3c1d3e2ψa2b3c2d1e3ψa2b2c3d3e1ψa1b2c2d2e2ψa1b1c1d1e1Þ: ð1:2Þ

We can graphically depict this interaction by representing
each fermion as a vertex of a graph and each index
contraction between pairs of fermions as an edge connect-
ing two vertices (see Fig. 1). In the large-N limit, where
λ2 ¼ g2N10 is held fixed, the melonic diagrams dominate.
The factor of i is necessary to make H6 real; it is a new
feature compared to the rank-3 Hamiltonian (1.1). The
Hamiltonian (1.2) has SOðNÞ5 symmetry as well as some
discrete symmetries. Some aspects of this tensor model are
similar to the OðNÞ3 tensor model. The energy spectra in
both models are symmetric under E → −E, since an
interchange of any two of the OðNÞ groups sends
H → −H. However, there are also some differences; for
example, in the OðNÞ5 model, the time reversal is not a
symmetry since it acts as T −1HT ¼ −H due to the factor i
present in the Hamiltonian (1.2).
The OðNÞ5 model also has some differences from the

q ¼ 6 SYK model. In particular, at small N, the structures
of the spectra are rather different. This is due to the large
number of continuous and discrete symmetries, which
makes the tensor spectrum highly degenerate. The q ¼ 6
SYK spectrum is compared with the corresponding Q-
Hermite polynomial, which is calculated in the double-
scaling limit, where NSYK → ∞, q → ∞ with q2=NSYK
held fixed [32,33]. We find very good agreement, which
suggests that the q ¼ 6 SYK model shares some spectral
properties with the double-scaled model.
The structure of the paper is as follows. In Sec. II, we

discuss the structure of the Hamiltonian (1.2) and its

symmetries and use them to explain some of the degen-
eracies that we observe in the singlet spectrum in Sec. III.
In Sec. IV, we numerically study the spectrum of the tensor
model and the q ¼ 6 SYK model and investigate the
differences between the spectral properties at finite N.
In Sec. V, we discuss some properties of higher q tensor
models. In Sec. VI, we present a simple diagrammatic
argument for the melonic dominance for the maximally
single-trace vertices. The Schwinger-Dyson equations of
the OðNÞ5 and OðNÞ7 models are computed in Sec. VII.
We show the existence of the solution of these equations in
the IR limit and that it is invariant under conformal
transformations. Additionally, we study the spectrum of
the singlet bilinear and some of the nonsinglet bilinears and
show that they are identical to the SYK model.

II. HAMILTONIAN AND ITS SYMMETRIES

The model contains a set of N5 Majorana fermions
ψabcde with the anticommutation relations:

fψabcde;ψa0b0c0d0e0g ¼ δaa
0
δbb

0
δcc

0
δdd

0
δee

0
: ð2:1Þ

We will first work at the “classical level,” where we ignore
the delta-function terms on the rhs of (2.1) and treat the
fermions as real Grassman numbers. Then, the Hamiltonian
we consider is

Hclass ¼ igψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c2d1e3ψa3b3c1d3e2ψa3b1c3d2e3 : ð2:2Þ

FIG. 1. A graphical representation of the unique generalized
tetrahedral interaction for q ¼ 6, given in (1.2). Each line
represents an index contraction, while different colors correspond
to different groups. This interaction is maximally single trace,
since erasing any set of three colors leaves the diagram connected.
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This is the unique sextic term with OðNÞ5 symmetry where any pair of fields has one index contraction [2]. The factor i is
inserted so that the Hamiltonian is Hermitian. The correct quantum Hamiltonian (1.2) is H6 ¼ Hclass þH†

class.
We can show thatHclass changes sign under permutation of twoOðNÞ groups. For example, when we permuteOðNÞc and

OðNÞd, the fermions transform as

ψabcde ↔ ψabdce: ð2:3Þ

So, Hclass → H0
class, where

H0
class ¼ igψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c1d2e3ψa3b3c3d1e2ψa3b1c2d3e3 : ð2:4Þ

Dropping the quantum delta-function terms in (2.1) and bringing it to the form so that the fields are read from right to left,
we have

H0
class ¼ −igψa3b1c2d3e3ψa3b3c3d1e2ψa2b3c1d2e3ψa2b2c3d3e1ψa1b2c2d2e2ψa1b1c1d1e1 : ð2:5Þ

We find that H0
class ¼ −Hclass; this can be seen explicitly by

relabeling the indices

a1 ↔ a3; e1 ↔ e3; b2 ↔ b3;

c2 → c1; c1 → c3; c3 → c2;

d3 → d1; d1 → d2; d2 → d3: ð2:6Þ

We examine the behavior under the other OðNÞ permu-
tations and find thatH0 ¼ −H in all cases, so the symmetry
group of the Hamiltonian includes the alternating group A5.
This is related to the fact that it is a MST operator. We
expect that the Aq−1 symmetry also holds for the MST
Hamiltonians with higher even q.
When we use the quantum anticommutation relations

(2.1), the Hamiltonian (2.2) is not Hermitian. Adding the
Hermitian conjugate, we find (1.2). It is then possible to
check that under a permutation of two indices H6 → −H6,
establishing the A5 symmetry at the quantum level. In the
second term ofH6, we may bring the variables back into the
same position as in the first term. To do this, we need to
make 15 permutations, which give rise to 15 additional
quartic terms. Indeed, we can add possible quartic terms to
the quantum Hamiltonian (1.2), but as it is shown in the
Appendix, they do not preserve the A5 symmetry men-
tioned above. The Hamiltonian (1.2) can be also obtained
via the path integral formulation of the model with real
Grassmanian variables and by calculating the correspond-
ing operator by Weyl ordering. Another way to see this is to
notice that this is the only operator up to the sixth order in
fermions that respects the A5 symmetry.
We may choose the representation where each ψabcde is a

Hermitian matrix with real entries. Thus, in a given basis,
Eq. (1.2) is a Hermitian matrix with imaginary entries;
therefore, it is antisymmetric. This means that its eigen-
values are real and come in pairs �E. This implies that the
spectrum has symmetry under E → −E, which is a desired

property. The proof is the following. Let us start with some
real matrix, H0. From H0, we can construct a Hermitian
matrix, H ¼ iðH0 −H0TÞ. All entries of this matrix are
complex, H ¼ −H�, and by definition, H† ¼ H, where H†

is the adjoint. We can therefore conclude that HT ¼ −H.
We write the characteristic equation:

detðH−λIÞ¼0⇒detðHT −λIÞ¼detðHþλIÞ¼0: ð2:7Þ

Thus, we have shown that the energy spectrum of (1.2) is
symmetric. Another way to see this is to consider the time-
reversal symmetry, which we discuss in the following
section.

A. Discrete symmetries

As in Ref. [23], we can introduce an operator that sends
H → −H. This is called the permutation operator, and it
implements an OðNÞ group pair swap. We can implement
this operation by introducing the following operator,

P45 ¼
Y

a;b;c;d¼e

ψabcde
Y

a;b;c;d>e

�
ψabcde þ ψabcedffiffiffi

2
p

�
;

P†
45ψ

abcdeP45 ¼ ψabced; ð2:8Þ

which exchanges the last two indices of each fermion in the
interaction.
For convenience, it is better to work with Dirac fermions,

which can be built in the following way,

ψabcdn ¼ ψabcdð2n−1Þ þ iψabcdð2nÞffiffiffi
2

p ;

ψ̄abcdn ¼ ψabcdð2n−1Þ − iψabcdð2nÞffiffiffi
2

p ; ð2:9Þ
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and they satisfy the usual commutation relations of the
Dirac fermions.
We notice a symmetry under the exchange of

ψabcdð2nÞ → −ψabcdð2nÞ in Hamiltonian (1.2). It corresponds
to the charge conjugation symmetry, C, ψ̄abcdn ↔ ψabcdn.
Under this exchange, each term gains a negative sign
during normal ordering, and this results in preservation of
the original Hamiltonian: CHC−1 ¼ H. We can define the
charge conjugation operator,

C ¼
Y
abcdn

ψabcdð2n−1Þ: ð2:10Þ

In the case of the q ¼ 4 tensor model [23], there is an
antiunitary time-reversal symmetry T, that acts in the
following way:

TiT−1 ¼ −i; TψabcdeT−1 ¼ ψabcde; TH4T−1 ¼H4:

In the case of the Hamiltonian (1.2), this is not a symmetry
of the theory. Indeed,

TH6T−1 ¼ −H6;

which shows that T is not a symmetry of the theory. From
this, one can see that the eigenvectors come in the pairs
ðjEi; TjEiÞ with opposite energies. In the representation
where ψabcde are real matrices and the Hamiltonian is a
pure imaginary matrix, the action of T coincides with
complex conjugation T ¼ K. Let us consider an eigenstate
jEi ¼ cijeii, where jeii is a basis that we build with the use
of the vacuum and the creation operators ψ̄abcde. Then,

KH6;ijK−1 ¼ H�
6;ij ¼ −H6;ij;

H6;ijcj ¼ Eci ⇒ H�
6;ijc

�
j ¼ Ec�i ;

H6;ijc�j ¼ −Ec�i : ð2:11Þ

From this, one can notice that if the ci are real then it
corresponds to the zero state. Indeed,

hEjHjEi ¼ ciH6;ijcj ¼ −ciH�
6;ijcj ¼ 0: ð2:12Þ

To get a symmetry of the Hamiltonian out of the time-
reversal symmetry, we can combine it with the permutation
operator P45 to get T45 ¼ TP45. This operator interchanges
two representations of the A5 group. The existence of such
a symmetry explains the six-fold degeneracy of ground
state in the numerical studies of the N ¼ 2 model. The
symmetries A5 together with T45 form the S5 symmetry
group.
With the discrete symmetries of our q ¼ 6, OðNÞ5

symmetric tensor model described above, we are now in

a position to find the corresponding random matrix model
to describe quantitative properties of the spectrum of the
model. This is typically done by mapping our model to a
random matrix theory ensemble. There are general rules for
choosing the associated ensemble based on the various
symmetries of the model [34]. The set of possible ensem-
bles we consider is known as the Andreev-Altland-Zirnbaur
(AAZ) ten-fold classification. The symmetries we will use
to classify our model are the time-reversal symmetry (TRS)
and the permutation symmetry described above, Pij. As
noted above, our Hamiltonian does not posses TRS, like the
q ¼ 6 SYKmodel [19]. In the absence of TRS, we can take
P2
ij ¼ þ1, and we can classify this Hamiltonian as belong-

ing to the AIII ensemble of the AAZ ten-fold classification
[35]. With this classification, we find that the correspond-
ing random matrix ensemble is a chiral Gaussian Unitary
Ensemble (chGUE) [36]. We may also use our knowledge
of these discrete symmetries to examine the singlet spec-
trum and its degeneracies, which is done in the following
section.

III. SPECTRUM OF EIGENSTATES
OF THE Oð2Þ5 MODEL

In this section, we will study the spectrum of the
Hamiltonian (1.2) for Ni ¼ 2. The number of different
Majorana fermions in this theory is 25, so there are 216 ¼
65536 states. In our numeric calculations, we set g ¼ 2. We
can represent each fermion by a gamma matrix of SOð32Þ.
We construct the pure real gamma matrices of SOð32Þ by
taking tensor products of Pauli spin matrices, as described
in Ref. [37]. After substituting them into the Hamiltonian
(1.2), we obtain a matrix which can be diagonalized using a
computer program.
We begin by describing the SOðNÞ5 invariant states in

our theory. They are present only when N is even, and we
restrict to this case. In order to count the number of these
states, we follow the method of Ref. [23]. We gauge the free
theory to get

SG ¼
Z

dt½ψabcde∂tψabcde þ A1
a1a2ψa1bcdeψa2bcde þ…�:

ð3:1Þ

The procedure of gauging eliminates all nonsinglet states
from the spectrum. Indeed, if we calculate the path integral
on the circle of the length β and first take the integral over
the gauge field, we get a constraint Jiab ¼ 0—the generator
of rotations must be equal to zero. After that, the integral
over fermions is easy to take, and we get

Z
½dψ �

Y5
i¼1

½dAi�eiS ¼ trsing1 ¼ Nsinglets: ð3:2Þ
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If we first calculate the path integral over fermions and
gauge the Ai to Cartan subalgebra, where Ai is a skew-
symmetric matrix, we get that

Nsinglets ¼ 215
Z Y5

i¼1

dΩi
SOðNÞ

YN
k1¼1;…;k5¼1

Y
�

cos

×

�
x1k1 � x2k2 � x3k3 � x4k4 � x5k5

2

�
: ð3:3Þ

Here, xik; k ¼ 1;…; N=2 and dΩi
SOðNÞ are coordinates and a

Haar measure of the ith group. The second product is taken
for all possible combinations of the signs. Roughly speak-
ing, the integrand is a character of SOðNÞ5, and we can
decompose it via the characters of the irreducible repre-
sentations of the group to count the number of the
representations. For the case SOð2Þ5, the integral (3.3)
gives 222 singlet states, agreeing with the numerical
results. Using the same method, we may count the number
of singlet states for models of different ranks. For instance,
the Oð2Þ4 ×Oð4Þ model has 106,096 singlets.
We can see that the degeneracy of each state of the

singlet spectrum for N ¼ 2 is a multiple of 6, see Fig. 2.
The six-fold degeneracy is explained in Sec. II A by the
discrete symmetry S5. From the precise numerical eigen-
values, we can deduce their exact analytic forms: 64

ffiffiffiffiffi
10

p
≈

202.386 and 64
ffiffiffi
2

p
≈ 90.51. Eigenvalues expressible in

terms of square roots have appeared in other tensor models
with low N [23–26].
Furthermore, from precise numerical results, we have

been able to infer the exact expressions for the full
spectrum of the Oð2Þ5 tensor model. The energies are
found to be roots of even polynomial equations up to order
6. This is presumably due to the fact that the various
symmetries ofH allow for mixing of at most six states. The

polynomials have only even powers because they must be
invariant under E → −E, which follows from the fact that
H → −H under exchange of any two colors. The results are
displayed in Fig. 1. Most of the eigenvalues may be
expressed in terms of square roots or nested square roots,
which were seen in other tensor model spectra [23–26]. The
remaining 18 energies are given by the roots of three distinct
even sixth-order polynomials. One of the equations is

E6 − 8704E4 þ 15794176E2 − 3221225472 ¼ 0: ð3:4Þ

Its six solutions are given in terms of ξ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5023þ 324i

ffiffiffiffiffiffiffiffi
533

p
3
p

as follows:

E1;2 ¼ �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
34þ 433

ξ
þ ξ

�s
≈�79.1523

E3;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8704

3
−
55424

3ξ
þ 55424iffiffiffi

3
p

ξ
−
128

3
ξ −

128iffiffiffi
3

p ξ

s

≈�46.9662;

E5;6 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8704

3
−
55424

3ξ
−
55424iffiffiffi

3
p

ξ
−
128

3
ξþ 128iffiffiffi

3
p ξ

s

≈�15.2673: ð3:5Þ
The roots of the other sixth-order polynomials may be
expressed analogously. The total number of states listed in
Table I adds up to 65; 536 ¼ 216 ¼ 2N

5=2, so it contains the
full spectrum, which is shown in Fig. 3.
Due to the Poincaré recurrence [38], one would expect

that any state could return arbitrarily close to the initial state
after a sufficient amount of time. One may wonder how to
calculate such a time. To do this, we must consider an
arbitrarily chosen initial state, which can be decomposed in
terms of the eigenstates,

FIG. 2. The spectrum of the SOð2Þ5 invariant states in the Oð2Þ5 tensor model.
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jψi¼
X
n

cnjEni; jψðtÞi¼e−iHtjψi¼
X
n

e−iEntcnjEni:

ð3:6Þ

It follows that the distance between these two states is

jjψðtÞi − jψij2 ¼
X
n

jcnj2ð1 − cosðEntÞÞ: ð3:7Þ

And, if for any ϵ > 0 there exists a time trec such that
j1 − cosðEntÞj < ϵ, the state jψðtrecÞi is arbitrarily close to
the initial state jψi. The Poincaré recurrence theorem
guarantees the existence of such a time, but one may
wonder how to find it explicitly. Fortunately, if the exact
expression for the energies En are known, the Lenstra-
Lenstra-Lovász (LLL) lattice basis reduction algorithm
[39] may be used to calculate this time. Namely, the
condition (3.7) for the trec can be rewritten in the following
form. We are looking for the number qrec, such that

max
n

jEnq − bEnqcj < ϵ: ð3:8Þ

The recurrence time in question is trec ¼ q
2π. Now, if one

constructs the lattice basis in the form

e⃗1 ¼ ð1; QE1; QE2;…; QEnÞ;
ðe⃗iÞj ¼ δi;j; ð3:9Þ

and applies the LLL algorithm, the first basis vector will
have the form

b⃗1 ¼ ðq;QðqE1 − p1Þ; QðqE2 − p2Þ;…Þ;
ðqEi − piÞ < Q− 1

nþ1; ð3:10Þ

where pi are integer numbers. Therefore, the number q
found by the LLL algorithm is the required q for the
condition (3.8).
Applying this algorithm for the spectrum of our model,

we find that the recurrence time is

trec ¼ 218516231876133437533409856498158380135794428.3096919112g−1 ≈ 2.18 � 1045g−1;				1−
				ZðtrecÞZð0Þ

				
				 < 0.5 � 10−2: ð3:11Þ

IV. COMPARISON WITH THE q= 6 SYK MODEL

In this section, we calculate the energy spectrum and the
spectral form factor of the NSYK ¼ 26, q ¼ 6 SYK model
and compare with corresponding results of theOð2Þ5 tensor
model. The q ¼ 6 SYK model Hamiltonian is

HSYK ¼ i
X

1≤i1<…<i6<NSYK

ji1…i6ψ i1ψ i2…ψ i6 ;

hji1…i6jj1…j6i ¼ J2
δi1j1…δi6j6

N5
SYK

: ð4:1Þ

TABLE I. The exact spectrum of the SOð2Þ5 tensor model. The
expressions agree with the numerical results up to 11 digits past
the decimal.

Degeneracy Energy (g)

6 �64
ffiffiffiffiffi
10

p
30 �64

ffiffiffi
2

p
32 �64

ffiffiffiffiffi
42

p
80 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18� 6

ffiffiffi
5

pp
80 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5� ffiffiffiffiffi

21
p Þ

q
160 �32

ffiffiffiffiffi
11

p
160 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9� ffiffiffiffiffi

57
p Þ

q
160 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13� ffiffiffiffiffi

73
pp

160 E6 − 8704E4 þ 15794176E2 − 3221225472 ¼ 0
160 E6 − 12800E4 þ 40960000E2 − 805306368 ¼ 0
192 E6 − 20992E4 þ 53215232E2 − 1275068416 ¼ 0
110 �128
180 �64

ffiffiffi
3

p
240 �32

ffiffiffiffiffi
10

p
320 �48
320 �16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� ffiffiffiffiffi

73
pp

480 �75
ffiffiffi
2

p
480 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
519� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
37514

pp
808 �32

ffiffiffi
6

p
860 �64
992 �32

ffiffiffi
3

p
1120 �16

ffiffiffi
2

p
1208 �32

ffiffiffi
2

p
1440 �16

ffiffiffiffiffi
10

p
1600 �16
3200 �32
31 772 0
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In this case, there are 213 ¼ 8192 states, and each fermion
is assigned to a gamma matrix of SOð26Þ.
In Fig. 3, we can see that there are large energy gaps in

the tensor model, whereas the SYK model has a much
denser spectrum and displays a near semicircular distribu-
tion of eigenvalues that is characteristic of random matri-
ces. Upon examining the energy spectrum, we can see the
E → −E symmetry in the q ¼ 6 model due to the time-
reversal symmetry, which is not present in the q ¼ 4 SYK
model. We provide a fit for the energy spectrum as shown
in Fig. 4. This fit is the spectral density that corresponds to
the Q-Hermite polynomial with Q equal to a combinatorial
factor, η, that encodes the suppression of crossing diagrams
in the Wick contractions of gamma matrices. The suppres-
sion factor is derived in Ref. [40],

η ¼
�
NSYK

q

�
−1Xq

p¼0

ð−1Þp
�
q
p

��
NSYK − q
q − p

�
: ð4:2Þ

The Q-Hermite spectral density, ρQHðEÞ, is the following
[32,40,41],

ρQHðEÞ¼A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðE=E0Þ2

q Y∞
k¼0

�
1−

�
2
E
E0

�
2 1

1þηkþη−k

�
;

ð4:3Þ

where A ≈ 104 is the normalization constant, which
imposes that the total number of states is equal to 2NSYK=2 ¼
8192, E0 ≈ −0.0032 J is the ground state energy, and
η ≈ −0.0072 is the suppression factor. The spectral density
(4.3) is calculated in the double-scaled limit, where
NSYK → ∞, q → ∞, and q2=NSYK fixed. We can see that
there is strong agreement with the Q-Hermite polynomial
and the q ¼ 6 SYK energy spectrum, which indicates that
this model is a very good approximation of the double-
scaled limit.
Additionally, we can examine and compare the spectral

form factor (SFF) for the SYK and tensor models (similar
calculations in tensor models with q ¼ 4were performed in
Refs. [21,22]). The SFF is a measure of the discreteness of
the energy spectrum and can be defined as [32,42]

gðt;βÞ ¼ jZðt;βÞj2=ZðβÞ2; where Zðt;βÞ ¼ Trðe−βH−iHtÞ:
ð4:4Þ

In Figs. 5 and 6, we display plots of the SFF for the
q ¼ 6 SYK and tensor models. For comparison, we have
also plotted the SFF of the corresponding random matrix
theory (RMT) ensemble, which is determined by the value
of NSYK mod 8 [32]. In our case, we plot for NSYK ¼ 26,
which is associated with the Gaussian unitary ensemble
(GUE). The SFF for the GUE that we have plotted is
calculated in Ref. [43], and we include the result at infinite
temperature below:

gðtÞGUE ¼ L2

�
J1ð2tÞ

t

�
2

þ L − L ×



1 − t

2L ; t < 2L

0; t > 2L:

ð4:5Þ

J1ðtÞ is the Bessel function of the first kind and contributes
to the early time oscillations of the GUE. L sets the size of
the ensemble of random Hermitian matrices and is related
to the plateau time as tp ¼ 2L.
We can see that the SFF for the SYK model has the same

features of the corresponding RMT ensemble, indicating
properties of quantum chaos; in particular, the dip-ramp-
plateau structure is present (see Fig. 5). Some of these
properties are more difficult to see in the tensor model
because the gaps in the energy spectrum are sizable for the
available value of N. However, we can notice a dip and
plateau structure in our tensor model, which suggest signs

FIG. 3. Energy spectrum of the Oð2Þ5 tensor interaction. There
are 31 772 zero energy states; not all are displayed.

FIG. 4. The energy spectrum of the q ¼ 6 SYK model with
NSYK ¼ 26, averaged over 49 samples.
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FIG. 5. Top: SFF for the GUE associated with the q ¼ 6, NSYK ¼ 26 SYK model at β ¼ 0. Middle: SFF for the q ¼ 6, NSYK ¼ 26,
β ¼ 0 SYK model averaged over 49 samples. Bottom: SFF for the q ¼ 6, NSYK ¼ 26, β ¼ 1560 J−1 SYK model averaged over 49
samples.
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FIG. 6. SFF for the Oð2Þ5 tensor model for three values of β. Top: β ¼ 0, middle: β ¼ 0.0250 g−1, and bottom: β ¼ 0.150 g−1. Note
that the fluctuations for the bottom subfigure are much smaller than the two above—this is because the SFF is calculated at a lower
temperature.

MAJORANA FERMION QUANTUM MECHANICS FOR HIGHER … PHYS. REV. D 100, 086003 (2019)

086003-9



of chaotic behavior, but there is no obvious ramp
(see Fig. 6).
Despite clear differences in the finite N behavior of the

tensor model and SYK model, we find that the large-N
solutions of the two models are identical. Before solving
the large-N models, we will discuss higher q tensor models
followed by the large-N limit and the melonic dominance
of our tensor model.

V. TENSOR MODELS WITH q > 6

We begin with a discussion of q ¼ 8, where theMajorana
fermion tensor is of rank 7 and the model has OðNÞ7
symmetry. In a generalized tetrahedral interaction vertex,
every two tensors have exactly one index in common. In
contrast to the q ¼ 6 case, there are six distinct such q ¼ 8
interactions [28,29]. However, only one of these inter-
actions has the property that it stays connected whenever
any five colors are erased. This is the MST vertex in the
terminology of Ref. [28], and we will show that in the
Majorana model it produces a Hamiltonian which is fully
antisymmetric under interchange of the OðNÞ groups. The
problem of finding the MST interactions is equivalent to
the problem of finding the perfect 1-factorization of the
complete graphs [30]. There are two classes where the
existence of the perfect 1-factorizations has been proven: for

graphs with pþ 1 vertices or 2p vertices, where p is an odd
prime number.
The q ¼ 8 MST interaction is shown in Fig. 7. This

interaction is called the canonical coloring [29]; this means
that if we erase any set of five colors we are left with an
octagon composed of alternating colors. We can show the
antisymmetry of this fermionic interaction as follows. Let
us erase all colors except for groups OðNÞa and OðNÞb
to get

H8 ¼ ψa1b1c1d1e1f1g1ψa1b2c2d2e2f2g2ψa2b1c3d3e3f3g2ψa2b3c1d4e2f4g3 ð5:1Þ

ψa3b4c3d1e4f2g3ψa3b2c4d4e1f3g4ψa4b3c2d3e4f1g4ψa4b4c4d2e3f4g1 → H2 ¼ ψa1b1ψa1b2ψa2b1ψa2b3ψa3b4ψa3b2ψa4b3ψa4b4 : ð5:2Þ

Now, let us exchange the OðNÞa and OðNÞb groups of H2 to get

H0
2 ¼ ψa1b1ψa2b1ψa1b2ψa3b2ψa4b3ψa2b3ψa3b4ψa4b4 ¼ −ψa1b1ψa1b2ψa2b1ψa2b3ψa3b4ψa3b2ψa4b3ψa4b4 ¼ −H2: ð5:3Þ

This is in contrast to the other q ¼ 8 interactions that
satisfy the constraint that one index is shared among any
two pairs of fermions, all of which are provided in Fig. 2 of
Ref. [29]. We give an example of a non-MST interaction in
Fig. 8, corresponding to Fig. 2(a) in Ref. [29]. When we
erase all but two colors, we are left with two disconnected
diagrams, which means this interaction is symmetric under
exchange of these two colors.
Let us now comment on the q ¼ 8MST interaction. Since

there is no i in this interaction, we have the time-reversal
symmetry. The E → −E symmetry comes from the
antisymmetry under the exchange of two gauge groups.

This interaction is melonic and scales as g2N
ðq−1Þðq−2Þ

2 ¼
g2N21, following the arguments in Sec. VI. In Sec. VII, we
will calculate the scaling dimensions of the bilinears of this
model and also include the result for general q tensor models.

Wewill define the group of coloring automorphisms, which
will be used in calculating the propagator. One can think
of a coloring automorphism as a permutation of the vertices
of the interaction graph in a way that preserves the colors of
the edges. Reference [29] explores these symmetries in
more detail and shows that the group of coloring auto-
morphisms is Zn

2 . Furthermore, Ref. [29] proves that for
q ¼ u2v, u odd, melonic tensor models the group of
coloring automorphisms, which we will denote as Aut,
can be at most Zv

2 for u ¼ 1 and Zv−1
2 for u > 1.

There are six distinct q ¼ 8 interactions that satisfy the
constraint that each pair of Majorana fermions has a single
index contraction. The difference between them is the order
of the coloring automorphism group, which is taken into
account in (7.1). The more symmetry our interaction has,
the larger the order of the automorphism group will be.

FIG. 7. A graphical representation of the unique maximally
single-trace tensor interaction for q ¼ 8. It stays connected when
any five out of the seven colors are erased.
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It follows that the q ¼ 8 fully symmetric diagram has the
largest group order, with Aut ¼ Z3

2 [29]. As noted in
Sec. VII, the jAutj factor cancels out in the spectra
calculation.
The number of possible generalized tetrahedral inter-

actions increases very rapidly with q [28,29]: for q ¼ 8, it is
6; for q ¼ 10, it is 396; and for q ¼ 12, it is 526 915 620.
However, at least for q ¼ 8 and 10, the maximally single-
trace vertex, or perfect 1-factorization, is unique [28].3 For
q ¼ 10, the MST vertex is shown in Fig. 9 (see also Fig. 5
of Ref. [28]).

VI. MELONIC DOMINANCE FOR MAXIMALLY
SINGLE-TRACE INTERACTIONS

In this section, we discuss the structure of Feynman
diagrams contributing at leading order in N; they are often

called the maximal diagrams. First, let us recall the tensor
model withOðNÞ3 symmetry, corresponding to q ¼ 4. This
model has single-sum interaction vertices of either the
tetrahedron type or the pillow type [2,9]. A representative
of the latter is

Hp ¼ gp
4
ψa1b1c1ψa1b1c2ψa2b2c1ψa2b2c2 ; ð6:1Þ

which is illustrated in Fig. 10(b).
Let us study the vacuum Feynman graphs of this theory

and take turns erasing the strands of a given color. For the
maximal graphs, the remaining double-line diagrams are
planar, since increasing their genus decreases the number of
loops [2,9]. If such a double-line diagram has n separate
connected components, then the Euler theorem states that
the number of index loops is given by

frb¼2nrbþvt; and frg;bg¼2nrg;bgþvtþvp; ð6:2Þ

where vt and vp are the numbers of the tetrahedral and
pillow vertices, respectively. Since the pillow vertex (6.1)
becomes disconnected when the green strands are erased,
we find that the number of separate components of the red-
blue graph satisfies

nrb ≤ 1þ vp: ð6:3Þ

On the other hand, the tetrahedral vertex stays connected
when red or blue strands are erased, so nrg ¼ nbg ¼ 1.
These numbers are independent of vt because the tetrahe-
dral vertex stays connected when any color is erased,

frb ¼ fr þ fb ≤ 2þ vt þ 2vp;

frg ¼ fr þ fg ¼ 2þ vt þ vp;

fbg ¼ fb þ fg ¼ 2þ vt þ vp: ð6:4Þ

Adding these equations, we find that the maximum total
number of closed loops is

fr þ fb þ fg ¼ 3þ 3

2
vt þ 2vp: ð6:5Þ

This means that the maximum weight of a graph is
N3λvtt λ

vp
p . Here,

FIG. 9. The graphical representation of the maximally single-
trace tensor interaction for q ¼ 10.

(a) (b)

FIG. 10. Diagrams of the tetrahedral operator (a) and one of the
pillow operators (b).

FIG. 8. The graphical representation of a q ¼ 8 tensor inter-
action which is not maximally single trace. If we erase all but the
blue and red stands, the graph becomes disconnected.

3The smallest value of q where the MST vertex is not unique is
12. We thank Fidel Schaposnik Massolo for informing us of this
and providing a reference, Ref. [31].
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λt ¼ gtN3=2; λp ¼ gpN2 ð6:6Þ

are the quantities which must be held fixed to achieve
a smooth large-N limit. These scalings apply to any
rank-3 tensor theory with OðNÞ3 symmetry and quartic
interactions [2,9,44].4

The discussion above shows that the simplest melonic
large-N limit applies to the gp ¼ 0 model, which has a
purely tetrahedral interaction. The tetrahedron vertex stays
connected when the strands of one color are erased and
becomes a connected double-line vertex, which is found in
the OðNÞ ×OðNÞ symmetric matrix model with a single-
trace interaction gttrðMMTÞ2. In the OðNÞ3 model, the
tetrahedral vertex is the unique quartic vertex which is
maximally single trace. Let us now perform a similar
analysis in the large-N limit of OðNÞq−1 symmetric tensor
models corresponding to higher even values of q. To
achieve the simplest large-N limit, we will consider only
the maximally single-trace interaction vertices [28], which
stay connected whenever any q − 3 colors are erased. The
unique such interaction vertex for q ¼ 6, Eq. (2.2), is
shown in Fig. 1, for q ¼ 8 is shown in fig. 7, and for q ¼ 10
is shown in Fig. 9. When colors i and j are left, the double-
line vertex is of the kind found in a OðNÞ ×OðNÞ
symmetric matrix model with the single-trace interaction
gtrðMMTÞq=2. Since this interaction is single trace, the two-
color graph may be drawn on a connected Riemann surface
of genus gij, and we have the constraint

fij þ v − e ¼ 2 − 2gij; ð6:7Þ

where e and v are the total numbers of the edges and the
vertices. Since the graphs may be nonorientable, the
possible values of the genera, gij, are 0; 1=2; 1;…. Using
e ¼ qv=2 and summing over all choices of remaining two
colors, we find

X
i<j

fij ¼ ðq − 1Þðq − 2Þ þ ðq − 1Þðq − 2Þ2
4

v − 2
X
i<j

gij:

ð6:8Þ

Since X
i<j

fij ¼ ðq − 2Þ
X
i

fi ¼ ðq − 2Þftotal; ð6:9Þ

we find

ftotal ¼ q − 1þ ðq − 1Þðq − 2Þ
4

v −
2

q − 2

X
i<j

gij: ð6:10Þ

The maximum possible weight of a vacuum graph with v
vertices, corresponding to all gij ¼ 0, is

Nq−1λv; ð6:11Þ

and the large-N limit needs to be taken with

λ ¼ gNðq−1Þðq−2Þ=4 ð6:12Þ

held fixed.5 We see that the large-N partition function of the
OðNÞq−1 tensor model has the structure

lim
N→∞

N1−q lnZ ¼ fðλÞ: ð6:13Þ

Now, we sketch a proof that the model with a maximally
single-trace interaction vertex possesses the melonic
dominance in the large-N limit—for such an operator,
forgetting any q − 3 indices leads to a single-trace operator
(a diagrammatic representation of this for q ¼ 6 is shown in
Fig. 11). A more rigorous proof, which is, however,
restricted to cases where q − 1 is prime, was given in
Ref. [28].
As we have shown, the graphs giving the leading

contribution in the large-N limit have gij ¼ 0; i.e., any
choice of the double-line graph is planar. In this case,
we find

ftotal ¼ q − 1þ ðq − 1Þðq − 2Þ
4

v: ð6:14Þ

Let us show that there is a loop passing through only two
vertices and use the strategy analogous to that in the q ¼ 4
case [2]. Let fr denote the number of loops passing through

FIG. 11. The vertex becomes single trace if we keep any two
colors.

4In the special case of quantum mechanics of Majorana
fermions ψabc, the pillow operators are simply the quadratic
Casimir invariants of the OðNÞ groups. It is possible to show that
their maximal values in the Hilbert space are of order N5. This
means that the energy shift for such states due to the pillow
operator is approximately gpN5 ∼ λpN3. The fact that this scales
as the number of d.o.f., N3, is a confirmation that the scaling (6.6)
is correct.

5This large-N scaling is the same as in the Gurau-Witten model
[1,3] for q flavors of rank-q − 1 tensors.
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r vertices. Since there are qðq−1Þ
2

strands meeting at every
vertex, we find the sum rules

X
fr ¼ ftotal;

X
r

rfr ¼
qðq − 1Þ

2
v: ð6:15Þ

Combining these relations, we find

X
r

�
1 − r

q − 2

2q

�
fr ¼ q − 1: ð6:16Þ

Assuming that there are no snail diagrams, so that f1 ¼ 0,
we have6

2

q
f2 ¼ q − 1þ

X
r>2

�
r
q − 2

2q
− 1

�
fr: ð6:17Þ

For q ≥ 6, the sum on the rhs of this equation is greater than
zero. This implies that there is a loop passing through
exactly two vertices. We shall call them a basis pair of
vertices. Without a loss of generality, one can assume that
these vertices can be drawn as in Fig. 12. Also, for
convenience, we will number the fields in the vertices as
in Fig. 12. We can say that this loop, passing through two
vertices, is a pair of bare propagators that connects the
outputs with numbers 1L with 1R and 2L with 2R; see
Fig. 12. Now, let us choose any other field in the left vertex,
aL, in the range from 3L to qL (for instance, we choose 3).
Let us erase all colors except for ð1L3LÞ and ð3L2LÞ. We
can make a permutation of vertices such that the output will
be between the first and second outputs (see Fig. 13).
However, the same does not hold for the right vertex; for
example, between the 1R and 2R, there could be another
number of the field ri, which must be nonzero.
Because the double-line graph constructed out of the

colors ð1L3LÞ and ð3L2LÞ should be planar, the output 3L
on the left vertex can be connected only with these ri
outputs. It cannot be connected with the other fields, and
these ri fields in the right vertex could be connected only to
this field 3L on the left (e.g., in Fig. 13, the field 3L can be
connected only to the fields 3R, 5R, 4R in order for the graph
to be planar). From this, we derive that for each field on the
left we must assign a subset of the fields on the right. These
subsets do not intersect with each other in order for the
graph to be planar for any choice of the pairs of colors.
From this, we have

Xq
a¼3

ra ¼ q − 2: ð6:18Þ

Since ra ≥ 1, this equation implies ra ¼ 1. Therefore, each
output on the left is connected to the one on the right with a
one-to-one correspondence. Thus, each ribbon graph,
which is made by removing any set of q − 3 colors, is
planar. The graph has the structure depicted in Fig. 14 for
q ¼ 6, where Gi are propagator insertions. We can connect
the ends of these structures to get four other maximal
vacuum diagrams and apply the same reasoning to them.
From this, one can see that the maximal graph must be
melonic.

FIG. 12. A basis pair of vertices that is connected by a pair of
propagators.

FIG. 13. Because we consider a maximally single-trace oper-
ator, we can erase all except two colors and have a single-trace
vertex. If they are connected to each other by two propagators,
then the most general structure could be only the one shown in
this figure. For the output 3L in this case, we assign the number
r3 ¼ 3.

6Indeed, for any snail diagram, some of the double-line
subgraphs must be nonplanar. For q ¼ 6, this can be seen in
Fig. 11 by connecting a pair of fields and checking that some of
the double-line propagators need to be twisted, thus causing
nonplanarity. For example, when connecting fields 1 and 3, the
blue-green propagator clearly contains such a twist.
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Thus, we have shown that, in order for a graph to have
the maximal large-N scaling, it must be melonic. It is also
not hard to see [28,29] that, if we take two MST interaction
vertices and connect each field from one vertex with the
corresponding field in the other, we will find the maximal
large-N scaling. This completes the argument that, for any
MST interaction vertex, a graph has the maximal large-N
scaling if and only if it is melonic.

VII. LARGE-N SCALING DIMENSIONS
OF THE FERMION BILINEARS

Due to the melonic dominance for the rank-q − 1 tensor
models with MST interactions, we can sum the Feynman
diagrams in these large-N theories. This allows us to
calculate the propagator of fermionic fields and the spec-
trum of fermion bilinear operators. We expect the large-N
solution of the MST tensor models to be similar to that of
the SYK models, which also exhibit the melonic domi-
nance. Indeed, in Ref. [27], it was shown that the four-point
function for a rank-q − 1 tensor model has the same kernel
as the SYK model four-point function with a q fermion
interaction. In this section, we present further results along
these lines.
The large-N Schwinger-Dyson equation for the tensor

model two-point function with a six-fermion interaction is
represented diagrammatically in Fig. 15. We can write the
Schwinger-Dyson equations from the diagrams in Fig. 15.
We start with an MST q-tensor interaction,

GðtÞ ¼ hTψðtÞψð0Þi ¼ ð∂t − ΣÞ−1;
Σ ¼ qjAutjg2Nðq−1Þðq−2Þ

2 Gq−1; ð7:1Þ

where jAutj is the order of the automorphism group of the
interaction (see Sec. V) and qjAutj is the number of
contributing Feynman diagrams [29]. We introduce

λ2 ¼ qjAutjg2Nðq−1Þðq−2Þ
2 , and we make the assumption that

in the IR regime the Σ will dominate the derivative. Thus,
we use the following conformal ansatz:

GðtÞ ¼ asignðtÞ
jtj2Δ ; ΣðtÞ ¼ λ2

aq−1signðtÞ
jtj2ðq−1ÞΔ : ð7:2Þ

We take the Fourier transform of (7.2) and arrive at

GðωÞ ¼ 21−2Δi
ffiffiffi
π

p Γð1 − ΔÞ
Γð1=2þ ΔÞ ajωj

2Δ−1signðωÞ;

ΣðωÞ ¼ 21−2ðq−1ÞΔi
ffiffiffi
π

p Γð1 − ðq − 1ÞΔÞ
Γð1=2þ ðq − 1ÞΔÞ

× aq−1signðωÞλ2jωj2ðq−1ÞΔ−1: ð7:3Þ

In the IR limit, we assume that we can neglect the derivative
and get G ¼ −1=Σ. From this, we arrive at

−1¼GðωÞΣðωÞ

¼−22−2qΔaqλ2π
Γð1−ΔÞΓð1−ðq−1ÞΔÞ

Γð1=2þΔÞΓð1=2þðq−1ÞΔÞjωj
2qΔ−2:

ð7:4Þ

It follows that Δ ¼ 1=q and aq ¼ Γð1
2
þΔÞΓð3

2
−ΔÞ

πλ2Γð1−ΔÞΓðΔÞ. Thus, we
have that the propagator is

GðtÞ ¼
�
Γð1

2
þ ΔÞΓð3

2
− ΔÞ

πλ2Γð1 − ΔÞΓðΔÞ
�1

q signðtÞ
jtj2Δ ; ð7:5Þ

which exactly matches that of the general q SYK model
[45]. For q ¼ 6 and q ¼ 8, we have

G6ðtÞ¼
� ffiffiffi

3
p

9πλ2

�1
6 signðtÞ
jtj1=3 ; G8ðtÞ¼

�
3

8πλ2cotðπ
8
Þ
�1

8 sgnt

jtj1=4 :

ð7:6Þ

Using this propagator, we can study the spectrum of
bilinear operators.
Let us first compare the combinatorial factors in the

ladder diagrams, shown in Fig. 16, to those in the melonic
diagrams for the two-point function, shown in Fig. 15.
As stated above, there are qjAutj Feynman diagrams that

G5

G6

G4

G3

FIG. 14. Any maximal graph for q ¼ 6must be of this form. Gi
are arbitrary propagator insertions.

FIG. 15. Melonic corrections to the propagator. These are the only diagrams that survive at large N.
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must be counted for each melon insertion. We note that the
ladder diagrams may be constructed by “cutting” one of the
internal legs of the melonic diagrams for the two-point
function. There are (q − 1) choices of which leg to cut. This
means that, for every diagram in Fig. 15, we can make
(q − 1) ladder diagrams by cutting the different internal
propagators. So, we have a combinatorial factor of qðq −
1ÞjAutj for the ladder diagram. Thus, the factors of jAutj
cancel in the operator spectra calculation, and we find that
the spectrum is identical to that of the corresponding q SYK
model. The calculation is presented in the following.

The kernel comes from one rung of the ladder in Fig. 16.
In the general q case, we get that the kernel exactly matches
that of the general q SYK model [19]:

K̂q¼Kqðt1;t2;t3;t4Þ¼−ðq−1Þλ2Gðt13ÞGq−2ðt34ÞGðt24Þ:
ð7:7Þ

For the q ¼ 6 and q ¼ 8 case, we have

K̂6 ¼ K6ðt1; t2; t3; t4Þ ¼ −5λ2Gðt13ÞG4ðt34ÞGðt24Þ; K̂8 ¼ Kðt1; t2; t3; t4Þ ¼ −7λ2Gðt13ÞG6ðt34ÞGðt24Þ: ð7:8Þ

We substitute the ansatz for the spectrum of singlet bilinears as

vi1…iq−1;j1…jq−1ðt1; t2Þ ¼ hTOð∞Þψ i1…iq−1ðt1Þψ j1…jq−1ðt2Þi ¼ δi1j1…δiq−1jq−1
signðt1 − t2Þ
jt1 − t2j2Δ−h

;

where h is the dimension of the operator OðtÞ. The spectrum of operators for the q ¼ 6 model is computed as follows:

K̂vðt1; t2Þ ¼
Z

dt3dt4Kðt1; t2; t3; t4Þvðt3; t4Þ

¼ −
5

ffiffiffi
3

p

9π

Z
dt3dt4

signðt1 − t3Þsignðt3 − t4Þsignðt4 − t2Þ
jt1 − t3j13jt3 − t4j53−hjt4 − t2j13

¼ gaðhÞvðt1; t2Þ; where

gaðhÞ ¼ −5
Γð3

2
− ΔÞΓð1 − ΔÞ

Γð1
2
þ ΔÞΓðΔÞ

ΓðΔþ h
2
ÞΓð1

2
þ Δ − h

2
Þ

Γð3
2
− Δ − h

2
ÞΓð1 − Δþ h

2
Þ ; ð7:9Þ

and Δ ¼ 1
6
. The scaling dimensions of bilinear operators

ψabcde∂2nþ1
t ψabcde are determined by the equation gaðhÞ ¼

1, and its form coincides with that for the SYK model [19],

gaðhÞ¼−ðq−1ÞΓð
3
2
−ΔÞΓð1−ΔÞ

Γð1
2
þΔÞΓðΔÞ

ΓðΔþh
2
ÞΓð1

2
þΔ−h

2
Þ

Γð3
2
−Δ−h

2
ÞΓð1−Δþh

2
Þ ;

Δ¼ 1

q
; ð7:10Þ

after setting q ¼ 6. There is a solution at h ¼ 2, which is
the mode dual to the excitation in Jackiw-Teitelboim
dilaton gravity [46–49]. One can show that the spectrum
has the following asymptotic behavior: h → 2nþ 4=3 as
n → ∞. In contrast to the SYK model, the tensor model
contains operators which are SOðNÞ symmetry generators,

such as Jaa0 ¼ ψabcdeψa0bcde. If there were no ladder
corrections to this operator, we would find that its scaling
dimension is ΔJ ¼ 2Δψ ¼ 1

3
; this would contradict the

conservation of such charges. In fact, one can verify that
there are ladder corrections to the operator which are
nonvanishing in themelonic large-N limit [14] (see Fig. 17).
Their feature is that, due to the antisymmetry in a and a0,
the relevant eigenfunctions are symmetric [14]:

vðt1; t2Þ ¼ hTOð∞Þψ Iðt1ÞψJðt2Þi ¼ δIJ
1

jt1 − t2j1=3−h
:

ð7:11Þ

Thus, we have

FIG. 16. A few of the ladder diagrams that contribute to the four-point function.
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K̂vðt1; t2Þ ¼
−

ffiffiffi
3

p

9π

Z
dt3dt4

signðt1 − t3Þsignðt4 − t2Þ
jt1 − t3j13jt3 − t4j53−hjt4 − t2j13

¼ gsðhÞvðt1; t2Þ: ð7:12Þ

In general [50],

gsðhÞ ¼ −
ΓðΔ − h

2
ÞΓðΔþ h

2
− 1

2
ÞΓð1 − ΔÞΓð3=2 − ΔÞ

Γð1
2
þ h

2
− ΔÞΓð1 − Δ − h

2
ÞΓð1

2
þ ΔÞΓðΔÞ ;

Δ ¼ 1

q
; ð7:13Þ

and here we set q ¼ 6.
The equation for the scaling dimensions in the symmetric

sector is gsðhÞ ¼ 1, plotted in Fig. 18, and one can check that
h ¼ 0 is a solution of this equation; it corresponds to a

FIG. 17. The insertion of the colored operator can suppress
some diagrams, in contrast to the insertion of the singlet
operator. For example, if one inserts the operator of the form
ψab…yz∂2nþ1

t ψab…yz0 , only one diagram contributes in the large-N
limit, compared to the (q − 1) contributions from a singlet
operator.

FIG. 18. The dimensions of bilinear operators in the OðNÞ5 model.

FIG. 19. The dimensions of bilinear operators in the OðNÞ7 model.
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conserved charge. The asymptotic behavior of the eigen-
values is h → 2nþ 1=3, corresponding to operators
ψabcde∂2n

t ψa0bcde.
In an analogous manner, we can compute the spectrum

of operators for q ¼ 8,

Z
dt3dt4Kðt1;t2;t3;t4Þvðt3;t4Þ

¼−
21

8πcotðπ
8
Þ
Z

dt3dt4
signðt1−t3Þsignðt3−t4Þsignðt2−t4Þ

jt1−t3j14jt3−t4j74−hjt2−t4j14
¼gaðhÞvðt1;t2Þ; ð7:14Þ

where gaðhÞ is given by (7.10) with q ¼ 8. The scaling
dimension is determined by the equation gaðhÞ ¼ 1.
We can verify that there are no complex modes, that
gaðhÞ ¼ gað1 − hÞ, and that there exists a solution at
h ¼ 2; see Fig. 19.
We can similarly examine the symmetric sector, where

our ansatz is now

vðt1; t2Þ ¼
1

jt1 − t2j1=4−h
: ð7:15Þ

Performing the analogous calculations, we find that

Z
dt3dt4Kðt1; t2; t3; t4Þvðt3; t4Þ

¼ −
3

8π cotðπ
8
Þ
Z

dt3dt4
signðt1 − t3Þsignðt2 − t4Þ

jt1 − t3j14jt3 − t4j74−hjt2 − t4j14
¼ gsðhÞvðt1; t2Þ; ð7:16Þ

and gsðhÞ is obtained from (7.13) by setting q ¼ 8.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. NSF
under Grant No. PHY-1620059. We thank Nathan
Benjamin, Raghu Mahajan, Vincent Rivasseau, Fidel
Schaposnik Massolo, Grigory Tarnopolsky, Guillaume
Valette, Edward Witten, and Junggi Yoon for useful
discussions. We are especially grateful to Christian
Jepsen for valuable discussions and comments on a draft
of this paper. I. R. K. is grateful to the Kavli Institute for
Theoretical Physics at University of California, Santa
Barbara, and the organizers of the program “Chaos and
order: From strongly correlated systems to black holes” for
the hospitality and stimulating atmosphere during some of
his work on this project. His research at K. I. T. P. was
supported in part by the National Science Foundation under
Grant No. NSF PH-1748958. The work of P. N. P. is
supported in part by the Dean’s Grant from Princeton
University. F. K. P. thanks the organizers of the conference
“Quantum Gravity 2019” in Paris for hospitality and useful
discussions during the final stages of this project.

APPENDIX: SOðNÞ5 INVARIANT QUARTIC
OPERATORS

In this Appendix, we classify the SOðNÞ5 invariant
quartic operators in the theory (1.2) according to their
transformational properties under the action of the discrete
symmetry S5 discussed in Sec. II A. We will show that
these operators do not transform nicely under the A5 ⊂ S5
symmetry which consists of the even permutations of the
five OðNÞ groups. In order to find the possible singlet
quartic operators, we must find all the distinct ways
the indices of the four fermions may be contracted.
We pictorially represent the quartic operators of the theory

TABLE II. Character table for quartic operators. 1 is the trivial representation, 4 is the standard representation, 6 is the exterior square
of the standard representation, and 5 is the irreducible five-dimensional representation.

Operators 1 (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2) (3 4) (1 2) (3 4 5) Irreducible Representations

15 3 0 −1 0 −1 0 4⨁6⨁5

5 3 2 1 0 1 0 1⨁4

10 4 1 0 0 2 1 1⨁4⨁5

10 2 1 0 0 −2 −1 4⨁6
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in Table II. We represent each fermion as a vertex, and the
index contractions are represented by edges connecting the
distinct vertices. We can denote the number of edges
connecting each vertex to the others by three integers ρa,
ρb, and ρc. To find the possible quartic operators in this
theory, we consider all possible combinations of integers
ρa, ρb, and ρc that satisfy the relations that the number of
edges at each vertex is 5 (ρa þ ρb þ ρc ¼ 5) and that a
fully connected quartic operator must not have more than
four strands shared between two nodes (5 > ρa ≥ ρb ≥
ρc ≥ 0). We find the following triples: (4,1,0), (3,2,0),
(3,1,1), and (2,2,1). Each triplet corresponds to the con-
struction of a quartic term displayed in Table II, and they
are of the following forms: ψa1b1c1d1e1ψa2b2c1d1e2×
ψa1b1c2d2e2ψa2b2c2d2e1 corresponding to (2,2,1) in row 1,
ψa1b1c1d1e1ψa2b2c2d2e1ψa1b1c1d1e2ψa2b2c2d2e2 corresponding to
(4,1,0) in row 2, ψa1b1c1d1e1ψa2b2c2d1e1ψa1b1c1d2e2ψa2b2c2d2e2

corresponding to (3,2,0) in row 3, and ψa1b1c1d1e1×
ψa2b2c2d1e2ψa1b1c1d2e2ψa2b2c2d2e1 corresponding to (3,1,1) in
row 4.
Now, we can find the irreducible representations of S5 of

each of the possible quartic operators and show that none
transforms nicely under A5. We use character theory to do
this. We must consider the number of fixed points (the
character) of each of the operators under the action of the
conjugacy classes of S5, which are included in the top row
of Table II. The negative values represent the exchange
of an odd number of vertices of the operator under
the conjugacy class. By calculating the inner products of
the characters of the operators with the characters of the
irreducible representation, we can find the correct group
decomposition [51]. The possible quartic operators of
OðNÞ5, their character tables, and irreducible representa-
tions of S5 are summarized in Table II.
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