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We work out the consistent AdS3 × S3 truncations of the bosonic sectors of both the six-dimensional
N ¼ ð1; 1Þ and N ¼ ð2; 0Þ supergravity theories. They result in inequivalent three-dimensional half-
maximal SOð4Þ gauged supergravities describing 32 propagating bosonic degrees of freedom apart from
the nonpropagating supergravity multiplet. We present the full nonlinear Kaluza-Klein reduction formulas
and illustrate them by explicitly uplifting a number of AdS3 vacua.
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I. INTRODUCTION

Consistent sphere truncations have a long history in
supergravity. Within maximal supergravity, this goes back
to the seminal work of Ref. [1] on the consistent truncation of
11-dimensional supergravity on AdS4 × S7 to the lowest
Kaluza-Klein multiplet, giving rise to four-dimensional
SOð8Þ gauged supergravity. An analogous result for
AdS7 × S4 was established in Ref. [2], while the proof of
the consistent truncation of IIB supergravity on AdS5 × S5

was completed only recently [3]. Consistent truncations have
led to a better comprehension of the structures of the theories
of concern and the dualities they enjoy. Notably, these are not
truncations in an effective field theory sense, with the
massive Kaluza-Klein towers integrated out, yet every
solution of the lower-dimensional theory lifts to a solution
of the higher-dimensional theory. They are of particular
importance in holographic applications, ensuring thevalidity
of lower-dimensional supergravity computations, such as
holographic correlators and renormalization group (RG)
flows [4].
This work deals with consistent sphere compactifications

in the context of AdS3 × S3, one of the central examples in
the AdS=CFT correspondence [5] in which supergravity
techniques have been successfully employed [6–11] in
order to unravel the structure of the dual two-dimensional
conformal field theories. Generic consistent S3 truncations
in (super)gravity have been discussed in Refs. [12–14],
where the full nonlinear Kaluza-Klein Ansätze were

constructed for a higher-dimensional theory that comprises
the field content of the bosonic string. The resulting lower-
dimensional theories are SOð4Þ gauged (super)gravities
carrying gauge fields, a 2-form, and scalar fields, whose
potential does not admit any stationary points. In the
particular case of AdS3 × S3, the higher-dimensional
theory is D ¼ 6, N ¼ ð1; 0Þ supergravity coupled to a
single tensor multiplet that carries an anti-self-dual 2-form.
In contrast to the higher-dimensional examples, the 2-forms
in the resulting three-dimensional theory are auxiliary and
can be integrated out, giving rise to an additional contri-
bution to the scalar potential. This amended potential turns
out to support a stable supersymmetric AdS3 vacuum [15],
corresponding to the supersymmetric AdS3 × S3 solution
of the D ¼ 6 theory. The nonlinear Kaluza-Klein Ansätze
can be confirmed by direct computation.
More recently, new techniques have emerged for a more

systematic understanding of consistent truncations within
exceptional field theory (ExFT) and generalized geometry
[16–21], see also [22,23] in the context of double field
theory. Using the reformulation of D ¼ 6, N ¼ ð1; 0Þ
supergravity as an ExFT based on the group SOð4; 4Þ
[24], the nonlinear Kaluza-Klein Ansätze from
Refs. [12,15] can straightforwardly be reproduced from
the generalized Scherk-Schwarz twist matrices U in this
framework. In this paper, we will extend the consistent S3

truncations to the full N ¼ ð1; 1Þ and N ¼ ð2; 0Þ super-
gravities in six dimensions. The relevant framework is an
SOð8; 4Þ ExFT, which, depending on the solution of
its section constraint, describes the aforementioned six-
dimensional supergravities [24]. The resulting three-
dimensional theories are SOð4Þ gauged supergravities
coupled to four half-maximal scalar multiplets [25,26], i.e.,
with scalar target space given by SOð8; 4Þ=ðSOð8Þ × SOð4ÞÞ.
In the ExFT framework, the construction of the consistent
truncations simply amounts to embedding the SOð4; 4Þ
twist matrices U into the SOð8; 4Þ isometry group of the

*henning.samtleben@ens-lyon.fr
†sarioglu@metu.edu.tr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 086002 (2019)

2470-0010=2019=100(8)=086002(16) 086002-1 Published by the American Physical Society

https://orcid.org/0000-0002-4848-7773
https://orcid.org/0000-0003-2282-3510
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.086002&domain=pdf&date_stamp=2019-10-07
https://doi.org/10.1103/PhysRevD.100.086002
https://doi.org/10.1103/PhysRevD.100.086002
https://doi.org/10.1103/PhysRevD.100.086002
https://doi.org/10.1103/PhysRevD.100.086002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ungauged three-dimensional theory. Two inequivalent
embeddings give rise to inequivalent three-dimensional
gaugings, describing the truncation of the N ¼ ð1; 1Þ and
the N ¼ ð2; 0Þ theory, respectively.
The paper is organized as follows: In Sec. II, we

introduce the relevant three-dimensional supergravities,
their gauge structure, and scalar potentials. We give an
explicit parametrization of their scalar target space
SOð8; 4Þ=ðSOð8Þ × SOð4ÞÞ and determine the full set of
stationary points of their scalar potentials. In Sec. III, we
review the framework of SOð8; 4Þ ExFT. In particular, we
discuss the two inequivalent solutions of its section con-
straint and establish the full dictionary of the ExFT fields
into the six-dimensional fields of N ¼ ð1; 1Þ and N ¼
ð2; 0Þ supergravity, respectively. In Secs. IV and V, we use
the explicit Scherk-Schwarz twist matrix U together with
the ExFT-supergravity dictionary to work out the full
nonlinear Kaluza-Klein Ansätze for all six-dimensional
fields, defining the consistent truncation. As an illustration
and a consistency check, we use these Ansätze in Sec. VI in
order to give the explicit uplift of some of the three-
dimensional AdS3 vacua into full solutions of D ¼ 6
supergravity. We close with some comments in Sec. VII.

II. THE THREE-DIMENSIONAL SUPERGRAVITY

In this section, we collect the basic formulas of the
relevant three-dimensional supergravities. In particular, we
give an explicit parametrization of their scalar target space,
which allows us to determine the full set of stationary
points of the scalar potentials.

A. 3D gauged supergravity

Three-dimensional gauged supergravity with N ¼ 8
(half-maximal) supersymmetry has been constructed in
Refs. [25,26]. The theory is based on the coset space

G=H ¼ SOð8; 4Þ=ðSOð8Þ × SOð4ÞÞ; ð2:1Þ

with all couplings completely specified by the choice
of a constant symmetric embedding tensor ΘK̄ L̄;M̄ N̄ of
the form

ΘK̄ L̄;M̄ N̄ ¼ θK̄ L̄M̄ N̄ þ1

2
ðηM̄½K̄θL̄�N̄ −ηN̄½K̄θL̄�M̄ÞþθηM̄½K̄ηL̄�N̄ ;

ð2:2Þ

with antisymmetric θK̄ L̄ M̄ N̄ ¼ θ½K̄ L̄ M̄ N̄�, symmetric θM̄ N̄ ¼
θðM̄ N̄Þ, and the SOð8; 4Þ invariant tensor ηM̄ N̄. Indices
M̄; N̄;… label the vector representation of G ¼
SOð8; 4Þ, and are raised and lowered with ηM̄ N̄ . The
embedding tensor encodes the minimal coupling of vector
fields to scalars according to

DμMM̄ N̄ ≡ ∂μMM̄ N̄ þ 2Aμ
P̄ Q̄ΘP̄ Q̄;K̄ L̄ðTK̄ L̄ÞðM̄R̄MN̄ÞR̄;

ð2:3Þ

with the symmetric matrix MM̄ N̄ parametrizing the coset
space [Eq. (2.1)]. By TM̄ N̄, we denote the generators of
g ¼ LieG acting by left multiplication with the algebra

½TK̄ L̄; TM̄ N̄ � ¼ 2ðηK̄½M̄TN̄�L̄ − ηL̄½M̄TN̄�K̄Þ: ð2:4Þ

The number of vector fields involved in the connection
[Eq. (2.3)] is equal to the rank of ΘK̄ L̄;M̄ N̄ (taken as a
dimG × dimG matrix).
The complete bosonic Lagrangian of the three-

dimensional theory is given as a gravity-coupled Chern-
Simons gauged G=H coset space σ-model:

e−1L¼ 1

4
Rþ 1

32
gμν∂μMM̄N̄∂νMM̄N̄ þe−1LCS−V; ð2:5Þ

with the three-dimensional metric gμν and e≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gμνj
p

.
The Chern-Simons term is explicitly given by

LCS ¼
1

4
εμνρAμ

K̄ L̄ΘK̄ L̄;M̄ N̄

×

�
∂νAρ

M̄ N̄ þ 1

3
fM̄ N̄;P̄ Q̄

R̄ S̄ΘP̄ Q̄;Ū V̄Aμ
R̄ S̄Aρ

Ū V̄

�
;

ð2:6Þ

in terms of the embedding tensor [Eq. (2.2)], with the
SOð8; 4Þ structure constants fM̄ N̄;P̄ Q̄

R̄ S̄ from Eq. (2.4).
The form of the scalar potential V is determined by the
embedding tensor and may be written in the form [27]
(where we have corrected a typo in the second line)

V ¼ 1

48
θK̄ L̄ M̄ N̄θP̄ Q̄ R̄ S̄ðMK̄ P̄ML̄ Q̄MM̄ R̄MN̄ S̄

− 6MK̄ P̄ML̄ Q̄ηM̄ R̄ηN̄ S̄ þ 8MK̄ P̄ηL̄ Q̄ηM̄ R̄ηN̄ S̄

− 3ηK̄ P̄ηL̄ Q̄ηM̄ R̄ηN̄ S̄Þ

þ 1

32
θK̄ L̄θP̄ Q̄ð2MK̄ P̄ML̄ Q̄ − 2ηK̄ P̄ηL̄ Q̄

−MK̄ L̄MP̄ Q̄Þ þ θθK̄ L̄M
K̄ L̄ − 8θ2: ð2:7Þ

From the general expression of the scalar potential, we
have omitted the term carrying a totally antisymmetric
MK̄ L̄ M̄ N̄ P̄ Q̄ R̄ S̄, which drops out upon restriction to embed-
ding tensors satisfying the additional constraint

Θ½K̄ L̄;M̄ N̄ΘP̄ Q̄;R̄ S̄� ¼ 0: ð2:8Þ
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As pointed out in Ref. [24], consistent truncations obtained
by generalized Scherk-Schwarz reduction necessarily lead
to three-dimensional theories satisfying Eq. (2.8), and we
will in the following restrict our analysis to such theories.
For the fermionic completion of Eq. (2.5) and its full
supersymmetry transformations, we refer to Refs. [25,26].
For the following, it will be convenient to choose a

specific basis upon breaking:

SOð8; 4Þ → GLð4Þ × SOð4Þ;
XM̄ → fXA; XA; Xαg; ð2:9Þ

with A ¼ 1;…; 4 and α ¼ 1;…; 4 labeling the GLð4Þ and
the SOð4Þ vector representations, respectively. In this basis,
the GLð4Þ is embedded into an SOð4; 4Þ, such that the
SOð8; 4Þ invariant tensor is of the form

ηM̄ N̄ ¼

0
BB@

0 δA
B 0

δB
A 0 0

0 0 −δαβ

1
CCA: ð2:10Þ

Specifically, we will be interested in the theories described
by the two embedding tensors:

ðAÞ∶ θAB ¼ 4δAB; θABCD¼−2αεABCD;

ðBÞ∶ θABCD¼ εABCEδ
ED; θABCD ¼−2αεABCD; ð2:11Þ

with the totally antisymmetric εABCE, a free constant α.
These theories capture the S3 reductions ofN ¼ ð1; 1Þ and
N ¼ ð2; 0Þ supergravity, respectively. In particular, the
embedding tensors induce the gauge connections

−
1

4
Aμ

K̄ L̄ΘK̄ L̄;M̄ N̄T
M̄ N̄ ¼

�Aμ
ABTB

A þ ðAμB
A þ α

2
εABCDAμ

CDÞTAB ðAÞ
Ãμ

ABTB
A þ ðAμB

A þ α
2
εABCDÃμ

CDÞT̃AB ðBÞ ; ð2:12Þ

with

Ãμ
AB ¼ 1

2
εABCDAμ

CD;

T̃AB ¼ 1

2
εABCDTCD ð2:13Þ

in the second case. Both embedding tensors induce a gauge
group of non-semi-simple type

Ggauge ¼ SOð4Þ ⋉ T6; ð2:14Þ

with the Abelian generators fTABg of T6 transforming in the
adjoint representation of SOð4Þ. Chern-Simons gauge the-
ories with a gauge group of type (2.14) and the T6 generators
realized as shift symmetries on scalar fields can be rewritten
as SOð4Þ Yang-Mills theories upon integrating out the
vectors AμA

B associated with the T6 generators [26,28].

B. Parametrization of the SOð8;4Þ=ðSOð8Þ × SOð4ÞÞ
scalar coset

In order to study the structure of the scalar potential
[Eq. (2.7)], it turns out to be useful to adopt particular
parametrizations of the scalar matrixMM̄ N̄ . To this end, we

decompose the SOð8; 4Þ generators according to Eq. (2.9),
such that a coset element V ∈ SOð8; 4Þ=ðSOð8Þ × SOð4ÞÞ
can be parametrized in the triangular gauge as

V ¼ eϕABTAB
eϕAαTAα

VGLð4Þ; ð2:15Þ

with nilpotent generators TAB ¼ T ½AB� and a GLð4Þ matrix
VGLð4Þ. Modula an SOð4Þ gauge freedom, this matrix
carries the 32 physical scalar degrees of freedom. In the
following, we will make use of the fact that the gauge
groups we are studying include shift symmetries acting on
the scalars ϕAB, cf. Eq. (2.12), which we may use to adopt a
gauge in which ϕAB → 0. As a result, the gauge group
(2.14) reduces to a standard SOð4Þ.
Explicitly, we choose a representation such that

VM̄
K̄jϕAB→0 ¼

0
BB@
VA

B 1
2
ϕAγϕCγðV−1ÞBC ϕAγδ

γβ

0 ðV−1ÞBA 0

0 ϕCαðV−1ÞBC δα
β

1
CCA ð2:16Þ

in the basis (2.9), with VA
B≡ðVGLð4ÞÞAB. The symmetric

positive definitematrixMM̄N̄¼ðVVTÞM̄N̄ then takes the form

MM̄ N̄ ¼

0
BBB@

mAB þ 1
4
ðϕϕÞACmCDðϕϕÞDB þ ðϕϕÞAB 1

2
ðϕϕÞACmBC 1

2
ðϕϕÞACmCDϕDβ þ ϕAβ

1
2
ðϕϕÞBCmAC mAB ϕCβmAC

1
2
ϕCαmCDðϕϕÞBD þ ϕBα ϕCαmBC δαβ þ ϕCαϕDβmCD

1
CCCA; ð2:17Þ

with mAB ≡ VA
CVB

C, mAB denoting its inverse matrix mACmCB ¼ δA
B, and where we have denoted ðϕϕÞAB ≡ ϕAγϕBγ .
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Evaluating the scalar kinetic term from Eq. (2.5) in this
parametrization yields

Lkin ¼ −
1

32
Tr½DμMM−1DμMM−1�

¼ −
1

16
Tr½Dμmm−1Dμmm−1� − 1

8
DμϕAαmABDμϕBα

þ 1

64
YμABmBCYμ

CDmDA; ð2:18Þ

with

YμAB ¼ DμϕAαϕBα −DμϕBαϕAα ð2:19Þ
and SOð4Þ covariant derivatives Dμ. The first term in
Eq. (2.18) represents a GLð4Þ=SOð4Þ σ model.
Let us finally evaluate the scalar potential for the two

choices of embedding tensor [Eq. (2.11)]. For the embed-
ding tensor (A), describing theN ¼ ð1; 1Þ reduction on S3,
the potential (2.7) depends exclusively on the block MAB.
In the parametrization (2.17), the potential is thus inde-
pendent of the scalars ϕAα. Explicitly, it takes the form

VðAÞ ¼ 2α2e4φ þ 1

2
e2φð2m̃ABm̃AB − m̃AAm̃BBÞ; ð2:20Þ

where we have defined

mAB ¼ m̃ABeφ; ð2:21Þ

with det m̃AB ¼ 1. This precisely agrees with the result of
Ref. [15] as required by consistency, since the additional
scalar fields ϕAα do not show up in the potential. Note that
rescaling φ → φ − log jαj turns the constant α into a global
scaling factor in front of the potential, which is thus
irrelevant for the existence of stationary points.
Depending on the sign of α, there are, however, two
different fermionic completions of the theory.
In contrast, for the embedding tensor (B) from

Eq. (2.11), describing the N ¼ ð2; 0Þ reduction on S3,
the potential after some computation takes the form

VðBÞ ¼ ðdetmCDÞ
�
2
�
α −

1

4
ðϕϕÞAA

�
2

þmAB

�
mAB þ 1

2
ðϕϕÞAB

�
−
1

2
mAAmBB

�

¼ 2α2e4φ þ 1

2
e2φð2m̃ABm̃AB − m̃AAm̃BBÞ

− αe4φðϕϕÞCC þ 1

2
e3φm̃CDðϕϕÞCD

þ 1

8
e4φðϕϕÞCCðϕϕÞDD; ð2:22Þ

where again we use the parametrization in Eq. (2.21). We
note that for ϕAα ¼ 0, this expression coincides with the
potential (2.20) upon flipping

m̃AB ↔ m̃AB: ð2:23Þ

This is consistent with the fact that upon setting the ϕAα
fields to zero, both the N ¼ ð1; 1Þ and the N ¼ ð2; 0Þ
theories reduce to the same N ¼ ð1; 0Þ theory in six
dimensions, which gives rise to the potential computed
in Ref. [15]. Again, the constant α can be absorbed by
shifting φ together with a rescaling of ϕAα. However, the
presence of a term linear in α implies that there are two
inequivalent theories depending on the sign of α which
cannot be absorbed into a field redefinition. In the follow-
ing, we will adopt the normalization jαj ¼ 1.

C. Extrema of the scalar potential

In this section, we derive the full set of extremal points of
the scalar potentials [Eqs. (2.20) and (2.22)]. Since
Eq. (2.20) sits within Eq. (2.22) as a truncation ϕAα ¼ 0,
it will be sufficient to analyze the extremal points of the
latter. Below, we will then uplift some of these extremal
points to solutions of the six-dimensional supergravities.
Variation of Eq. (2.22) with respect to the scalar field φ

yields the condition

δφVðBÞ¼! 0
⇒ 0 ¼ 8α2 þ e−2φð2m̃ABm̃AB − m̃AAm̃BBÞ

− αðϕϕÞCC −
1

4
ðϕϕÞCCðϕϕÞDD: ð2:24Þ

Next, let us consider the variation with respect to ϕAα, such
that δΣðϕϕÞAB ¼ ΣAαϕBα þ ΣBαϕAα. Variation of the poten-
tial yields

δΣVðBÞ ¼ΣAα

�
−2αe4φϕAαþe3φm̃ABϕBα

þ1

2
e4φðϕϕÞDDϕAα

�
; ð2:25Þ

such that extremization leads to the eigenvector equation

δΣVðBÞ¼! 0⇒ m̃ABϕBα ¼ eφ
�
2α−

1

2
ðϕϕÞDD

�
ϕAα: ð2:26Þ

Finally, variation with respect to the SLð4Þ scalars accord-
ing to δΛm̃AB ¼ 2ΛðACm̃BÞC with traceless ΛA

B gives rise to

δΛVðBÞ¼! 0 ⇒ 0 ¼ ð4m̃CBm̃AB − 2m̃CAm̃BB

þ eφm̃CDðϕϕÞADÞΛA
C: ð2:27Þ

Upon reducing the last term by means of Eq. (2.26), this
equation can be solved for ðϕϕÞAB as
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ðϕϕÞAB ¼ e−2φχ−1
�
2m̃ABm̃CC − 4m̃ACm̃BC −

1

2
δABm̃CCm̃DD þ δABm̃CDm̃CD

�
þ 1

4
δABðϕϕÞCC; ð2:28Þ

with χ ¼ ð2α − 1
2
ðϕϕÞDDÞ. Plugging this expression back into the eigenvector equation (2.26) eventually implies

0 ¼ e−2φχ−1
�
2m̃ABm̃BCm̃DD − 4m̃ABm̃BDm̃CD −

1

2
m̃ACm̃EEm̃DD þ m̃ACm̃DEm̃DE

�

− e−φ
�
2m̃ACm̃DD − 4m̃ADm̃CD −

1

2
δACm̃EEm̃DD þ δACm̃DEm̃DE

�
þ 1

4
m̃ACðϕϕÞDD −

1

4
eφχδACðϕϕÞDD: ð2:29Þ

The conditions for stationary points thus boil down to
solving Eqs. (2.24) and (2.29). The value of the potential at
an extremal point is computed by evaluating Eq. (2.22)
using Eqs. (2.24) and (2.26):

VðBÞ;0 ¼ −αe4φ
�
2α −

1

2
ðϕϕÞCC

�
; ð2:30Þ

which corresponds to a three-dimensional AdS length

l2 ¼ 2

jV0j
; R

∘
μν ¼ −

2

l2
g
∘
μν; ð2:31Þ

with g
∘
μν denoting the AdS3 metric.

Let us first consider the sector ϕAα ¼ 0, which is a
consistent truncation of the potential (2.22) and contains

the stationary points common to Eqs. (2.20) and (2.22). In
this case, Eq. (2.26) is trivially satisfied. Solutions of the
remaining equations (2.24) and (2.27) are most conven-
iently found in a basis in which M̃AB is diagonal. Inspection
reveals a one-parameter family of solutions given by

mAB ¼ diagfeη; eη; e−η; e−ηg; ϕAα ¼ 0: ð2:32Þ

The existence of this flat direction in the scalar potential has
already been noted in Ref. [29]. The potential for these
families remains fixed at VðBÞ;0 ¼ −2, and the scalar
spectrum is given by

m2l2∶ 0 ½5�; 8 ½1�; 4e2η− 4 ½2�; 4e−2η− 4 ½2�; ð2:33Þ

completed by

�
0 ½16� ∶ potential ð2.20Þ

e2η − 2eηðsgnαÞ ½8�; e−2η − 2e−ηðsgnαÞ ½8� ∶ potential ð2.22Þ

�
ð2:34Þ

for the different potentials. These spectra are stable (in the Breitenlohner-Freedman sense, m2l2 ≥ −1 [30]) for

1

2

ffiffiffi
3

p
≤ eη ≤

2

3

ffiffiffi
3

p
: ð2:35Þ

The vector spectrum is given by

ml∶ � 2 ½1þ 1�; 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshð2ηÞ − 1

p
½2þ 2�; −1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshð2ηÞ − 1

p
½2þ 2�; ð2:36Þ

reflecting the unbroken SOð2Þ × SOð2Þ ⊂ SOð4Þ. Finally,
the gravitino spectrum is given by

ml∶ � 1

2
ð2 cosh ηþ ðsgnαÞÞ ½4þ 4�; ð2:37Þ

showing that only for α ¼ −1, the vacuum at η ¼ 0 is
supersymmetric, preserving N ¼ ð4; 4Þ supersymmetry.
This corresponds to the six-dimensional supersymmetric
background AdS3 × S3. The α ¼ þ1 solution is not super-
symmetric, but it may correspond to a supersymmetric
solution in an N ¼ ð1; 0Þ theory coupled to tensor
multiplets.

The potential (2.22) allows for additional stationary
points with ϕAα ≠ 0. In this case, the remaining equa-
tions (2.24) and (2.29) again are most conveniently solved
in a basis in which m̃AB is diagonal, where we find four
discrete solutions. They all necessitate positive α ¼ þ1,
with the potential taking the values

VðBÞ;0 ¼

8>>>>><
>>>>>:

− 27
8

ðiÞ
− 8788

3125
ðiiÞ

−4 ðiiiÞ
− 25

8
ðivÞ

: ð2:38Þ
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All these stationary points fully break supersymmetry and
SO(4) gauge symmetry, and they all contain unstable
scalars with masses below the Breitenlohner-Freedman
bound m2l2 ¼ −1. For later checks, let us only note the
location of solution (i):

mAB ¼ mδAB ¼ 3

2
δAB; ϕAα ¼

ffiffiffi
2

p
ffiffiffi
3

p δAα; ð2:39Þ

with the scalar mass spectrum given by

m2l2∶
2

3
� 2 ½9þ 9�; 6� 2 ½1þ 1�; 0 ½6�; ð2:40Þ

in units of the AdS length l ¼ 4

3
ffiffi
3

p .

III. SOð8;4Þ EXCEPTIONAL FIELD THEORY

In this section, we review the structure of SOð8; 4Þ ExFT,
constructed in Ref. [24], to which we refer for details. This
theory provides the manifestly duality covariant formu-
lation of the 6D supergravity theories relevant for our
consistent truncations. We discuss the inequivalent solution
to its section constraints and establish the dictionary of the
ExFT fields to the 6D fields of N ¼ ð1; 1Þ and N ¼ ð2; 0Þ
supergravity theories.

A. Lagrangian

Similar to the three-dimensional supergravities reviewed
in Sec. II, SOð8; 4Þ ExFT is based on the coset space
[Eq. (2.1)], which we parametrize by a symmetric positive
definite matrix MMN . In contrast to the matrix of
Eq. (2.17), this matrix depends not only on three external
coordinates xμ, but in addition on (dim SOð8; 4Þ) coordi-
nates YMN , with the latter dependence strongly constrained
by the section conditions

∂ ½MN ⊗ ∂KL� ¼ 0 ¼ ηNK∂MN ⊗ ∂KL; ð3:1Þ
which restrict the fields to live on sections of dimension
three (at most). Depending on the choice of these sections,
the theory describes the 6D N ¼ ð1; 1Þ or N ¼ ð2; 0Þ

supergravity, respectively. The theory is invariant under
generalized internal diffeomorphisms, acting as

LΛ;ΣMMN ¼ ΛKL∂KLMMN

þ 4ð∂KðMΛKL − ∂KLΛKðM þ 2ΣðM
LÞMNÞL

ð3:2Þ
on the scalar matrix. Here, the gauge parameters ΣMN are
subject to algebraic constraints analogous to Eq. (3.1), i.e.,

Σ½MN ⊗ ΣKL� ¼ 0 ¼ ηNKΣMN ⊗ ΣKL; ð3:3Þ
as well as compatibility with the partial derivatives as

Σ½MN ⊗ ∂KL� ¼ 0 ¼ ηNKΣMN ⊗ ∂KL: ð3:4Þ
Invariance under local internal diffeomorphisms [Eq. (3.2)]
is ensured by minimal couplings to gauge fields
ðAμ

MN;BμMNÞ via covariant external derivatives:

Dμ ¼ ∂μ − LAμ;Bμ
: ð3:5Þ

The full Lagrangian is given by

L ¼ LEH þ Lkin þ LCS −
ffiffiffiffiffiffi
−g

p
VExFT; ð3:6Þ

each term being separately invariant under generalized
internal diffeomorphisms [Eq. (3.2)]. The modified
Einstein-Hilbert term and the scalar kinetic term have
the forms

LEH ¼ ffiffiffiffiffiffi
−g

p
eaμebνðRμν

ab þ Fμν
MNeaρ∂MNeρbÞ≡ ffiffiffiffiffiffi

−g
p

R̂;

Lkin ¼
1

8

ffiffiffiffiffiffi
−g

p
gμνDμMMNDνMMN; ð3:7Þ

with the covariant derivatives [Eq. (3.5)], the Yang-Mills
field strength Fμν

MN , and the Riemann tensor Rμν
ab

computed from the external vielbein eμa with derivatives
covariantized under internal diffeomorphisms, under which
eμa transforms as a scalar density (of weight λ ¼ 1). The
gauge fields couple with a Chern-Simons term that takes
the explicit form

LCS ¼
ffiffiffi
2

p
εμνρ

�
Fμν

MNBρMN þ ∂μAνN
K∂KMAρ

MN −
2

3
∂MN∂KLAμ

KPAν
MNAρP

L

þ 2

3
Aμ

LN∂MNAν
M
P∂KLAρ

PK −
4

3
Aμ

LN∂MPAν
M
N∂KLAρ

PK

�
: ð3:8Þ

Finally, the last term in Eq. (3.6) carries only internal derivatives ∂MN and is given by

VExFT ≡ −
1

8
MKPMLQ∂KLMMN∂PQMMN −

1

2
∂MKMNP∂NLMMQMKLMPQ −

1

4
∂MNMPK∂KLMQMMP

LMQ
N

þ 2∂MKMNK∂NLMML − g−1∂MNg∂KLMMKMNL −
1

4
MMKMNLg−2∂MNg∂KLg −

1

4
MMKMNL∂MNgμν∂KLgμν:

ð3:9Þ
Depending on the solution of the section constraints [Eq. (3.1)], the action [Eq. (3.6)] describes 6D N ¼ ð1; 1Þ or
N ¼ ð2; 0Þ supergravity. In the next two subsections, we review the two inequivalent solutions to the section constraints
and the associated dictionaries of the ExFT fields into the 6D supergravity fields.
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B. N = ð1;1Þ solution of section constraint

Consider the decomposition of SOð8; 4Þ under its sub-
group

GLð3Þ×SOð1;1Þ×SOð4Þ⊂SOð4;4Þ×SOð4Þ⊂SOð8;4Þ;
ð3:10Þ

such that the fundamental vector of SOð8; 4Þ decomposes as

fVMg → fðViÞð−1Þ; ðViÞðþ1Þ; ðV0Þð−3Þ; ðV0Þðþ3Þ; ðVαÞð0Þg;
ð3:11Þ

where subscripts refer to the sum of the GLð1Þ ⊂ GLð3Þ
charge and the SOð1; 1Þ charge, defining the grading
associated with the higher-dimensional origin of these fields.
Here i ¼ 1, 2, 3 and α ¼ 1;…; 4. The invariant tensor ηMN
decomposes accordingly:

ηMN ¼

0
BBBBBB@

0 δi
j 0 0 0

δj
i 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 −δαβ

1
CCCCCCA
: ð3:12Þ

TheN ¼ ð1; 1Þ solution to the section constraints [Eq. (3.1)]
is given by decomposing coordinates YMN according to
Eq. (3.11) and restricting the internal coordinate dependence
of all fields to the coordinates Y0i, such that the only
nonvanishing internal derivatives are

∂i ≡ 1ffiffiffi
2

p ∂0i; ð3:13Þ

providing a solution to Eq. (3.1). Breaking the ExFT fields
according to Eq. (3.11) then matches the field content of the

6DN ¼ ð1; 1Þ supergravity, which, in addition to the metric
and the dilaton, contains four vector fields and a (non-chiral)
2-form gauge field.
Specifically, the ExFT vector fields transform in the

adjoint representation of SOð8; 4Þ. Under Eq. (3.11), they
decompose into

Aμ
MN→

8>>>>>>>>>>><
>>>>>>>>>>>:

−4 ∶ Aμ
0i ⊂ 6Dmetric

−3 ∶ Aμ
0α ⊂ 6Dvectors

−2 ∶ Aμi
0;Aμ

ij ⊂ 6D 2-formanddual

−1 ∶ Aμ
iα ⊂ 6Ddual3-form

0 ∶ Aμi
j;Aμ0

0;Aμ
αβ ⊂ 6Ddualgraviton; etc:

þ1 ∶ …

;

ð3:14Þ

allowing us to identify the higher-dimensional origin of the
various components. The fields of positive grading do not
enter the action [Eq. (3.6)]. Similarly, one decomposes the
scalar fields, parametrizing the coset SOð8;4Þ=ðSOð8Þ×
SOð4ÞÞ into
8>>>>>><
>>>>>>:

þ4 ∶ ϕ0i ⊂ 6D dual graviton

þ3 ∶ ϕα0 ⊂ 6D dual 3-form

þ2 ∶ ϕi
0;ϕij ⊂ 6D 2-form and its dual

þ1 ∶ ϕiα ⊂ 6D vectors

0 ∶ gij;φ ⊂ 6D metric and dilaton

: ð3:15Þ

In order to identify their location within the scalar matrix
MMN , it is useful to determine the action of a generalized
diffeomorphism [Eq. (3.2)] on the various components of the
matrix MMN . In the decomposition (3.11), this gives
particularly neat expressions when acting on some specific
combinations:

LΛ;ΣM00¼LλM00−2ð∂kλ
kÞM00;

LΛ;ΣM0i¼LλM0i−ð∂kλ
kÞM0i−εijk∂jξkM00;

LΛ;ΣðM00Mij−M0iM0jÞ¼LλðM00Mij−M0iM0jÞ−2ð∂mλ
mÞðM00Mij−M0iM0jÞ;

LΛ;ΣðM00Mαi−M0αM0iÞ¼LλðM00Mαi−M0αM0iÞþ∂jΛαðM00Mij−M0iM0jÞ−2ð∂mλ
mÞðM00Mαi−M0αM0iÞ;

LΛ;ΣðM00Mi
j−M0iM0

jÞ¼LλðM00Mi
j−M0iM0

jÞþ∂jΛαðM00Mαi−M0αM0iÞ
þð∂kξ̃j−∂jξ̃kÞðM00Mik−M0iM0kÞ−2ð∂mλ

mÞðM00Mi
j−M0iM0

jÞ; ð3:16Þ

where we have redefined the gauge parameters as

Λ0i ¼ 1ffiffiffi
2

p λi; Λij ¼ 1ffiffiffi
2

p εijkξk; Λi
0 ¼ 1ffiffiffi

2
p ξ̃i; Λα0 ¼ 1ffiffiffi

2
p Λα; Λαi ¼ 1

2
ffiffiffi
2

p εijkΛjk
α; ð3:17Þ

with the totally antisymmetric εijk. Here,Lλ denotes the standard Lie derivative along thevector field λk. Identifying the higher-
dimensional origin of the gauge parameters among internal 6D diffeomorphisms and gauge transformations according to the
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identification of the vector fields [Eq. (3.14)] then allows us
to read off the dictionary between the components ofMMN

and the internal components of the 6D fields:

M00 ¼ g−1eϕ;

M0i ¼ −
1

2
M00εijkBjk;

M00Mij −M0iM0j ¼ g−1gij;

M00Mαi −M0αM0i ¼ g−1gijAj
α;

M00Mi
j −M0iM0

j ¼ g−1gikB̃kj þ
1

2
g−1gikAk

αAj
α:

ð3:18Þ

The dictionary is such that the generalized diffeomorphisms
[Eq. (3.2)] reproduce the gauge transformations,

δAi
α¼∂iΛα;

δBij¼2∂ ½iξj�;

δB̃ij¼2∂ ½iξ̃j� þ∂ ½iΛαAj�α¼2∂ ½i

�
ξ̃j� þ

1

2
ΛαAj�α

�
−
1

2
ΛαFij

α;

ð3:19Þ

of the 6D vector fields Ai
α, 2-form Bij, and its dual B̃ij.

Finally, using the dictionary [Eq. (3.18)], we may also
consider

LΛ;ΣððM00Þ−1M0αÞ ¼ LλððM00Þ−1M0αÞ
þ ð∂kλ

kÞððM00Þ−1M0αÞ

−
1

2
εijk∂iΛjk

α −
1

2
∂iΛαεijkBjk;

ð3:20Þ

from which we infer the identification

ðM00Þ−1M0α ¼ −
1

6
εijkaijkα; ð3:21Þ

with the scalars aijkα from the dual 3-forms in six dimen-
sions. These transform as

δaijkα ¼ 3∂ ½iΛjk�α þ 3B½ij∂k�Λα; ð3:22Þ

under 6D gauge transformations.

C. N = ð2;0Þ solution of section constraint

Consider the decomposition of SOð8; 4Þ under its sub-
group GLð3Þ × SOð1; 5Þ, such that the fundamental
SOð8; 4Þ vector decomposes as

fVMg → fVið−2Þ; Viðþ2Þ; V0
ð0Þ; V

a
ð0Þg; ð3:23Þ

with subscripts referring to GLð1Þ charges. Here i ¼ 1, 2, 3
and a ¼ 1;…; 5. The invariant metric ηMN decomposes as

ηMN ¼

0
BBB@

0 δij 0 0

δji 0 0 0

0 0 1 0

0 0 0 −δab

1
CCCA: ð3:24Þ

Later on, we will also decompose a → f0̄; αg. The N ¼
ð2; 0Þ solution to the section constraints in Eq. (3.1) is given
by decomposing coordinates YMN according to Eq. (3.23)
and restricting the internal coordinate dependence of all
fields to the coordinates Yij, such that the only non-
vanishing internal derivatives are

∂i ≡ 1

2
εijk∂jk; ð3:25Þ

providing a solution to Eq. (3.1). Breaking the ExFT fields
according to Eq. (3.23) then matches the field content of the
6D N ¼ ð2; 0Þ supergravity coupled to a tensor multiplet,
which contains five self-dual and one anti-self-dual 2-form
gauge fields, together with five scalar fields parametrizing
the coset space SOð1; 5Þ=SOð5Þ.
Specifically, the ExFT vector fields transform in the

adjoint representation of SOð8; 4Þ. Under Eq. (3.23), they
decompose into

Aμ
MN→

8>>>>><
>>>>>:

−4 ∶ Aμij ⊂ 6Dmetric

−2 ∶ Aμi
a;Aμi

0 ⊂ 6D 2-forms

0 ∶ Aμi
j;Aμ

ab;Aμ
a0 ⊂ 6Ddualgraviton; etc:

2 ∶ …

;

ð3:26Þ

allowing us to identify the higher-dimensional origin of the
various components. The fields of positive grading do not
enter the action [Eq. (3.6)]. Similarly, one decomposes the
scalar fields, parametrizing the coset SOð8; 4Þ=ðSOð8Þ×
SOð4ÞÞ into
8>><
>>:
þ4 ∶ ϕij ⊂ 6Ddualgraviton

þ2 ∶ ϕa
i;ϕ0

i ⊂ 6D2-forms

0 ∶ mij;ϕ;māb̄ ⊂ 6Dmetricandscalars

; ð3:27Þ

where ā ¼ 0;…; 5, and mij and mā b̄ parametrize the coset
spaces SLð3Þ=SOð3Þ and SOð1; 5Þ=SOð5Þ, respectively.
For the latter, we have the invariant tensor

ηā b̄ ¼
�
1 0

0 −δab

�
: ð3:28Þ
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In order to identify the precise location of scalar fields
within the scalar matrix MMN , it is useful to determine the
action of a generalized diffeomorphism (3.2) on the various
components of the matrix MMN . In the decomposition
(3.23), this takes the form

LΛ;ΣMij ¼ LλMij − 2ð∂kλ
kÞMij;

LΛ;ΣMi
ā ¼ LλMiā − ð∂kλ

kÞMi
ā þ 2εkmnMik∂mΛā

n;

LΛ;ΣMā b̄ ¼ LλMā b̄ þ 4εijkMk
ðā∂iΛb̄Þ

j; ð3:29Þ

with the gauge parameter relabeled as

Λij ≡ 1

2
εijkλ

k: ð3:30Þ

These let us infer the dictionary

Mij ¼ g−1gij;

Mi
ā ¼ g−1gijεjklBkl

ā;

Mā b̄ ¼ Mā b̄ þ 2Bij
āBkl

b̄gikgjl ¼ Mā b̄ þ ggijMi
āMj

b̄;

ð3:31Þ

with g≡ det gij, and the components Bij
ā transform under

tensor gauge transformations as δBij
ā ¼ 2∂ ½iΛā

j�.

D. Generalized Scherk-Schwarz reduction

Consistent truncations of SOð8; 4Þ ExFT can be defined
by a generalized Scherk-Schwarz compactification Ansatz
[17,18], in which the dependence of the ExFT fields on the
internal coordinates is carried by an SOð8; 4Þ twist matrix
UM

N̄ and a scalar factor ρ. Specifically, the ExFT fields take
the factorized form [24]

gμνðx; YÞ ¼ ρðYÞ−2gμνðxÞ;
MMNðx; YÞ ¼ UM

M̄ðYÞMM̄ N̄ðxÞUN
N̄ðYÞ;

Aμ
MNðx; YÞ ¼ ρðYÞ−1UM

M̄ðYÞUN
N̄ðYÞAμ

M̄ N̄ðxÞ;

BμKLðx; YÞ ¼ −
1

4
ρðYÞ−1UMN̄ðYÞ∂KLUM

M̄ðYÞAμ
M̄ N̄ðxÞ;

ð3:32Þ

in terms of the x-dependent fields of 3D gauged supergravity
reviewed in Sec. II above. The embedding tensor [Eq. (2.2)]
of the 3D theory is given in terms of the twist matrix as

θK̄ L̄ P̄ Q̄ ¼ 6ρ−1∂LPUN½K̄UN
L̄UL

P̄UP
Q̄�;

θP̄ Q̄ ¼ 4ρ−1UK
P̄∂KLUL

Q̄ −
ρ−1

3
ηP̄ Q̄U

KL̄∂KLUL
L̄

− 4ρ−2∂P̄ Q̄ρ;

θ ¼ ρ−1

3
UKL̄∂KLUL

L̄; ð3:33Þ

and the truncation is consistent if all three objects in
Eq. (3.33) are actually Y-independent. Using the twist
matrices from Ref. [24] we will, in the following, use the
generalized Scherk-Schwarz Ansatz in order to derive the
explicit reduction formulas for the 6D consistent truncations.

IV. N = ð1;1Þ UPLIFT FORMULAS

In this and the following section, we will review from
Ref. [24] the twist matrices inducing the embedding tensors
[Eq. (2.11)]. Combining them with the Ansatz [Eq. (3.32)]
and the supergravity dictionaries worked out in Secs. III B
and III C above, we deduce the six-dimensionalN ¼ ð1; 1Þ
and N ¼ ð2; 0Þ reduction formulas.

A. Twist matrix

The SOð8; 4Þ twist matrix UM
M̄ describing the consistent

S3 truncation of 6D N ¼ ð1; 1Þ supergravity has been
constructed in Ref. [24]. Let us recall that the coordinates yi

relevant for 6D N ¼ ð1; 1Þ supergravity have been iden-
tified among the YMN via Eq. (3.13). The associated twist
matrix is given in terms of the elementary S3 sphere
harmonics YA (satisfying YAYA ¼ 1), the round S3 metric

g
∘
ij ¼ ∂iYA∂jYA (with determinant g

∘
), and the vector field

ζ
∘ i

defined by ∇∘ iζ
∘ i ¼ 1. By ω

∘
ijk ≡ g

∘1=2
εijk, we denote the

associated volume form. We refer to the Appendix for
further identities among these objects. After some rewrit-
ing, the twist matrix of Ref. [24] takes the explicit form

UM
M̄ ¼

0
BBBBBB@

U0
A U0A 0

U i
A U iA 0

U0A U0
A 0

U iA U i
A 0

0 0 δα
β

1
CCCCCCA

¼

0
BBBBBBBB@

g
∘1=2ðYA − 2ζ

∘ i∂iYAÞ 0 0

∂iYA 2αg
∘jl∂lYAω

∘
ijkζ

∘k
0

0 g
∘−1=2YA 0

0 2ζ
∘ i
YA þ g

∘ ij∂jYA 0

0 0 δα
β

1
CCCCCCCCA
;

ð4:1Þ
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in a basis where the “curved index” M is decomposed
according to Eq. (3.11), and the “flat index” M̄ is decom-
posed in the basis (2.9), suitable for the fields of 3D
supergravity. The free parameter α can (up to sign) be
absorbed into a shift of the 6D dilaton.

B. Uplift formulas

According to the dictionary [Eq. (3.18)], the 6D dilaton
is identified within the component M00 of the ExFT scalar
matrix, such that its reduction formula is obtained via
Eq. (3.32) as

eϕ ¼ gM00 ¼ gU0
AU0

BmAB ¼ Δ2YAYBmAB; ð4:2Þ
where we have defined the warp factor

Δ≡ g1=2

g
∘1=2 : ð4:3Þ

Similarly, we identify the internal components of the 6D 2-
form as

−
1

2
εijkBjk ¼ ðM00Þ−1M0i

¼ ðM00Þ−1g∘−1=2ð2ζ
∘ i
YB þ g

∘ ij∂jYBÞYAmAB;

ð4:4Þ
giving rise to

Bij ¼ −ω∘ ijk
�
2ζ
∘k þ 1

2
g
∘kl∂l log ðYAYBmABÞ

�
: ð4:5Þ

Further computation yields the 6D internal (inverse) metric

gij ¼ gðM00Mij −M0iM0jÞ
¼ Δ2ðg∘ ik∂kYAÞðg∘jl∂lYBÞYCYDðmABmCD −mACmBDÞ:

ð4:6Þ

Identifying the SOð4Þ Killing vectors KAB
i ¼ g

∘ ij∂jY½AYB�
on the right-hand side, this result reproduces the standard
Kaluza-Klein Ansatz for the internal metric [31]. Using
sphere harmonics identities collected in the Appendix, we
may deduce the internal metric

gij ¼
Δ−2

ðYAYBmABÞ ∂iYC∂jYDmCD; ð4:7Þ

together with a compact expression for the warp factor
[Eq. (4.3)]

Δ ¼ ðe−φ=2ÞðYAYBmABÞ−1=4; ð4:8Þ
where we recall the definition [Eq. (2.21)] of the 3D scalar
φ. The latter may be used to simplify the reduction
formulas in Eqs. (4.2)–(4.7) as

eϕ ¼ Δ−2e−2φ;

Bij ¼ −2ω∘ ijkðζ
∘
k − g

∘
kl∂l logΔÞ;

gij ¼ Δ2eφ∂iYC∂jYDm̃CD: ð4:9Þ
We thus obtain a compact form of the full 6D metric:

ds26¼ eφðΔ−2e−φgμνðxÞdxμdxν
þΔ2eφ∂iYC∂jYDmCDdyidyjÞ; ð4:10Þ

and we may also compute the internal component of the
3-form field strength:

3∂ ½iBjk� ¼ ω
∘
ijkð2e4φΔ8YAmACmCBYB − e2φΔ4mAAÞ:

ð4:11Þ
We may compare these results to the reduction formulas
found in Refs. [12,15] for the N ¼ ð1; 0Þ subsector and
find precise agreement upon applying the dictionary:

YA ⟷ μi;

mAB ⟷ Tij;

eφ ⟷ ðdetTÞ1=4;
Δ−2e−φ ⟷ Δ1=2;

eϕ ⟷ e−
ffiffi
2

p
φ=2: ð4:12Þ

The present construction extends these formulas to the full
N ¼ ð1; 1Þ theory. The additional matter is made from
N ¼ ð1; 0Þ vector multiplets, whose reduction formulas are
extracted from Eq. (3.18) as

g−1gijAj
α¼ g

∘−1g∘ ijð∂jYCÞYAYBðmABMCα−mACMBαÞ;
ð4:13Þ

which upon combination with Eq. (4.9) and after some
computation reduces to the simple formula

Ai
α ¼ ð∂iYAÞϕA

α; ð4:14Þ
showing that, in particular, the internal field strengths vanish:

Fij
α ¼ 2∂ ½iAj�α ¼ 0: ð4:15Þ

Similarly, we extract the reduction formula for the dual
2-form B̃ij upon combining Eq. (3.18) with all previously
obtained reduction formulas, and we find

B̃ij ¼ −2αω∘ ijkζ
∘k

⇒ 3∂ ½iB̃jk� ¼ −2αω∘ ijk: ð4:16Þ

Finally, we may work out the reduction formula for the
internal components of the 6D 3-form (dual to the 6D vector
fields) as

aijkα ¼ −ω∘ ijke2φΔ4YAmABϕB
α: ð4:17Þ
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Formulas (4.14) and (4.17) show that in the case of 3D
constant scalar solutions, all 6D vector field strengths vanish,
such that the embedding of the N ¼ ð1; 0Þ theory into the
N ¼ ð1; 1Þ theory remains rather trivial. This reflects the fact
that the potential [Eq. (2.20)] does not carry the additional
3D scalar fields ϕAα and thus coincides with the potential of
the truncation to the quarter-maximal theory of Refs. [12,15].
In contrast, for solutions with running scalars, such as 3DRG
flows in the potential [Eq. (2.20)], these formulas describe
nontrivial 6D gauge fields.

V. N = ð2;0Þ UPLIFT FORMULAS

In this section, we repeat the analysis for the reduction of
the N ¼ ð2; 0Þ theory. As already reflected by the richer

structure of the 3D potential [Eq. (2.22)], in this case the
uplift formulas to six dimensions constitute a rather non-
trivial extension of the formulas [12,15] for the quarter-
maximal truncation.

A. Twist matrix

The twist matrix describing the consistent truncation of 6D
N ¼ ð2; 0Þ supergravity has been given in Ref. [24] in terms
of the same geometrical data introduced in Sec. IVA above.
Let us recall that the coordinates yi relevant for 6D N ¼
ð2; 0Þ supergravity have been identified in Eq. (3.25) above.
In a basis where the “curved index” M is decomposed
according toEq. (3.23), and the “flat index” M̄ is decomposed
in the basis (2.9), the associated twist matrix is given by

UM
M̄ ¼

0
BBBBBB@

U iA U i
A 0

U i
A U iA 0

U0
A U0A 0

U 0̄
A U 0̄A 0

0 0 δαβ

1
CCCCCCA

¼

0
BBBBBBBBB@

g
∘1=2ðg∘ ij∂jYA þ 2ζ

∘ i
YAÞ 2αg

∘1=2ðζ
∘ i
YA − 2ζ

∘ i
ζ
∘j∂jYAÞ 0

0 g
∘−1=2∂iYA 0

1ffiffi
2

p YA 1ffiffi
2

p ðYA − 2ð1þ αÞζ
∘ i∂iYAÞ 0

1ffiffi
2

p YA − 1ffiffi
2

p ðYA − 2ð1 − αÞζ
∘ i∂iYAÞ 0

0 0 δαβ

1
CCCCCCCCCA
: ð5:1Þ

Again, the free parameter α can (up to sign) be absorbed into a
shift of the 6D dilaton.

B. Uplift formulas for the 3D scalar sector

1. Metric

Combining the embedding [Eq. (3.31)] of the internal
metric gij into the scalar matrix with the twist Ansatz
[Eq. (3.32)] and the twist matrix [Eq. (5.1)], we read off

gij ¼ Δ2∂iYA∂jYBmAB; ð5:2Þ
where we have defined

Δ ¼ Δðx; yÞ≡ g1=2

g
∘1=2 ¼ e−φðYAYBmABÞ−1=4: ð5:3Þ

The matrix mAB denotes the GLð4Þ matrix constituting a
4 × 4 block of the matrix MM̄ N̄ [Eq. (2.17)] parametrizing
the 3D coset space [Eq. (2.1)]; the matrixmAB is its inverse.
Some algebraic manipulation [cf. Eq. (4.6) above] yields
the explicit form of the inverse metric

gij ¼ e4φΔ2ðg∘ ik∂kYAÞðg∘jl∂lYBÞYCYD

× ðmABmCD −mACmBDÞ: ð5:4Þ
Comparison to Eqs. (4.6), (4.8), and (4.9) above shows
precise agreement with the reduction formulas obtained for

the N ¼ ð1; 1Þ theory upon redefinition [Eq. (2.23)] of the
3D fields.

2. 2-forms

In the same way, we extract the reduction formulas for
the 6D 2-forms via the dictionary [Eq. (3.31)]. With the
explicit form of the twist matrix [Eq. (5.1)], after some
computation and use of the explicit formulas [Eqs. (5.2)
and (5.4)], this gives rise to the expressions

Bijα ¼
1

2
Δ−2ω

∘
ijkg

∘kl∂lðΔ2YAϕAαÞ ð5:5Þ

for the SOð4Þ vector of 2-forms, and

ffiffiffi
2

p
Bij

0 ¼ −ð1þ αÞω∘ ijkζ
∘k þ ω

∘
ijkg

∘kl∂l logΔ

þ 1

8Δ4
ω
∘
ijkg

∘kl∂lðΔ4ðϕϕÞABYAYBÞ;
ffiffiffi
2

p
Bij

0̄ ¼ −ð1 − αÞω∘ ijkζ
∘k þ ω

∘
ijkg

∘kl∂l logΔ

−
1

8Δ4
ω
∘
ijkg

∘kl∂lðΔ4ðϕϕÞABYAYBÞ ð5:6Þ

for the remaining two 2-forms. For later use, it will be
interesting to explicitly compute the associated field
strengths Hijk

ā ¼ 3∂ ½iBjk�ā:
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Hijkα ¼ −
1

2
ω
∘
ijkΔ̃4ðmBBYA þmABYB − 2Δ̃4YDmDCmCBYBYAÞϕAα;

ffiffiffi
2

p
Hijk

0 ¼ −ω∘ ijk
�
αþ 1

2
Δ̃4mAA − Δ̃8YAmACmCBYB

�
þ 1

4
ω
∘
ijkðδAB − Δ̃4ðmCCYA þ 2YCmACÞYBÞðϕϕÞAB

þ 1

2
ω
∘
ijkΔ̃8YAYBYCYEmCDmDEðϕϕÞAB;

ffiffiffi
2

p
Hijk

0̄ ¼ ω
∘
ijk

�
α −

1

2
Δ̃4mAA þ Δ̃8YAmACmCBYB

�
−
1

4
ω
∘
ijkðδAB − Δ̃4ðmCCYA þ 2YCmACÞYBÞðϕϕÞAB

−
1

2
ω
∘
ijkΔ̃8YAYBYCYEmCDmDEðϕϕÞAB; ð5:7Þ

where we have defined the rescaled Δ̃≡ eφΔ.

3. Scalars

Eventually, we can compute the 6D scalar fields from the
last line of Eq. (3.31) upon subtracting the B2 term using
explicit expressions from Eqs. (5.5) and (5.6) above. The
five 6D scalars sit in a coset space SOð1; 5Þ=SOð5Þ, which
we parametrize by a symmetric positive definite matrix
Mā b̄. Evaluation of Eq. (3.31) yields the various compo-
nents of this matrix as

M00 ¼ 1

8
ð4Δ̃−4 þ 4YAðϕϕÞABYB

þ Δ̃4ð2þ YAðϕϕÞABYBÞ2Þ;

M00̄ ¼ 1

8
ð4Δ̃4 − ð2Δ̃−2 þ Δ̃2YAðϕϕÞABYBÞ2Þ;

M0̄ 0̄ ¼ 1

8
ð4Δ̃−4 þ 4YAðϕϕÞABYB

þ Δ̃4ð2 − YAðϕϕÞABYBÞ2Þ ð5:8Þ

for the 2 × 2 block in ð0; 0̄Þ directions, and

M0
α ¼

1

2
ffiffiffi
2

p ð2þ Δ̃4ð2þ YCðϕϕÞCDYDÞÞYAϕAα;

M0̄
α ¼

1

2
ffiffiffi
2

p ð−2þ Δ̃4ð2 − YCðϕϕÞCDYDÞÞYAϕAα;

Mαβ ¼ δαβ þ Δ̃4YAϕAαϕBβYB ð5:9Þ
for the remaining components.

C. Uplift formulas for the 3D vector sector

Building on the dictionary [Eq. (3.26)], we may also give
the uplift of the 3D vector fields. We recall from Sec. II A [in
particular, Eq. (2.12)] that the 3D Lagrangian carries 12
vector fields: six Aμ

AB and the six antisymmetric combina-
tions AμA

B − AμB
A. Moreover, in the 3D gauge we are using

(in which scalars ϕAB are set to zero), the vector fields Aμ
A
B

can be eliminated bymeans of their algebraic field equations
in terms of scalar currents and the field strengths ⋆FAB.

For the off-diagonal block of the 6D metric, we thus find

gijgjμ ¼
1

2
εijkAμjk ¼

1

2
ω
∘ ijk∂jYA∂kYBAμ

AB ¼ KAB
iÃμ

AB

ð5:10Þ

in terms of the 3D vector fields from Eq. (2.13) and the

SOð4Þ Killing vectors KAB
i ¼ g

∘ ij∂jY½AYB�, and where we
have used the relation (A5). This consistently reproduces
the standard Kaluza-Klein Ansatz for the vector fields [31],
such that upon combination with the result of Sec. V B 1,
the full 6D metric takes the form

ds26 ¼ Δ−2gμνðxÞdxμdxν þ gijDyiDyj; ð5:11Þ

with

Dyi ¼ dyi þ Ãμ
ABKi

ABdxμ: ð5:12Þ
Similarly, we can work out the reduction formulas for the
off-diagonal blocks of the 6D 2-forms, leading to

Bμi0 ¼ Aμi0 ¼
1ffiffiffi
2

p ð∂iYAYBðAμ
AB þ Aμ

A
BÞ

− 2ð1þ αÞζ
∘k∂iYA∂kYBAμ

ABÞ;

Bμi0̄ ¼ Aμi0̄ ¼
1ffiffiffi
2

p ð∂iYAYBðAμ
AB − Aμ

A
BÞ

− 2ð1 − αÞζ
∘k∂iYA∂kYBAμ

ABÞ;
Bμi

α ¼ Aμi
α ¼ ∂iYAAμ

Aα: ð5:13Þ
Note that the vector fields Aμ

Aα do not appear in the
Lagrangian [Eq. (2.5)], and they can be defined on shell
and subsequently be set to zero by a suitable (tensor)
gauge transformation. The complete 6D 2-forms are then
given by

Bā ¼
1

2
BijāDyi ∧DyjþBμiādxμ ∧Dyiþ1

2
Bμνādxμ ∧ dxν;

ð5:14Þ
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where the first two terms have been given in Eqs. (5.5),
(5.6) and Eq. (5.13), respectively, while the missing
components Bμνā are most conveniently obtained directly
from the 6D tensor self-duality equations, which allow us to
express their field strengthsHμνρā in terms of the associated
Hijkā, computed in Eq. (5.7).

VI. SOME EXPLICIT UPLIFTS

In order to illustrate and check the nonlinear uplift
formulas obtained, we will now use them to uplift some
of the AdS3 solutions corresponding to the stationary points
of the 3D scalar potential to full solutions of 6D supergravity.

A. 6D N = ð2;0Þ bosonic field equations

The field equations of 6D N ¼ ð2; 0Þ supergravity,
coupled to a tensor multiplet, have been given, e.g., in
Refs. [32,33]. Apart from a metric, five self-dual and an
anti-self-dual 2-form, they feature five scalars sitting in a
coset space SOð1; 5Þ=SOð5Þ which parametrize a symmet-
ric positive definite matrix Mā b̄. In our notation, the field
equations read

∇μ̂ðMā c̄∂ μ̂Mc̄ d̄Þηd̄ b̄ ¼ −
1

9

ffiffiffiffi
G

p −1εμ̂ ν̂ ρ̂ λ̂ σ̂ τ̂Hμ̂ ν̂ ρ̂
āHλ̂ σ̂ τ̂

b̄;

Rμ̂ ν̂ −
1

2
Rð6Þgμ̂ ν̂ ¼ −

1

8
∂ μ̂Mā b̄∂ ν̂Mā b̄

þ 1

16
gμ̂ ν̂∂ ρ̂Mā b̄∂ ρ̂Mā b̄

þ 1

2
Hμ̂ ρ̂ σ̂

āHν̂
ρ̂ σ̂ b̄Mā b̄; ð6:1Þ

together with the 6D self-duality equations

⋆Hā ¼ Mā b̄H
b̄: ð6:2Þ

We use indices μ̂; ν̂;… ¼ 0;…; 5, to denote the curved 6D
space-time indices.

B. One-parameter deformation of AdS3 × S3

As a first example, we give the 6D uplift of the non-
supersymmetric but stable one-parameter family of AdS3
solutions [Eq. (2.32)] located at

mAB ¼ diagfeη; eη; e−η; e−ηg; ϕAα ¼ 0; ð6:3Þ

into 6D N ¼ ð2; 0Þ supergravity. With an explicit para-
metrization of the S3 sphere harmonics as

YA ¼ fuα cos θ; vα sin θg; uαuα ¼ 1 ¼ vαvα;

uα ¼ ðcos ξ1; sin ξ1Þ; vα ¼ ðcos ξ2; sin ξ2Þ; ð6:4Þ
the warp factor Δ is given by [Eq. (5.3)]

Δ ¼ ðcosh η − cosð2θÞ sinh ηÞ−1=4: ð6:5Þ

The six-dimensional metric is then obtained from
Eq. (5.11) as a warped product of AdS3 and a deformed
sphere S3:

ds26¼Δ−2ðds2AdS3þdθ2ÞþeηΔ2cos2θdξ21þe−ηΔ2sin2θdξ22;

ð6:6Þ

with the two surviving U(1) isometries corresponding to
rotations along ξ1 and ξ2. The full 6D curvature scalar
follows as

Rð6Þ ¼ Δ10sin2ð2θÞsinh2η: ð6:7Þ

The SO(1,5) scalars are computed from Eq. (5.8) as

M00 ¼ 1

2
ðΔ4 þ Δ−4Þ ¼ M0̄ 0̄; M00̄ ¼ 1

2
ðΔ4 − Δ−4Þ;

Mαβ ¼ δαβ; M0
α ¼ 0 ¼ M0̄

α; ð6:8Þ

and the components of the 3-form field strengths along the
S3 directions follow from Eq. (5.7) to be

ffiffiffi
2

p
Hijk

0 ¼ −ω∘ ijkðΔ8 þ αÞ;ffiffiffi
2

p
Hijk

0̄ ¼ −ω∘ ijkðΔ8 − αÞ;
Hijkα ¼ 0: ð6:9Þ

The remaining components of the 6D field strengths can
then be determined by imposing the 6D self-duality
equations (6.2), giving rise to

H0 ¼ −
1ffiffiffi
2

p ððΔ8 þ αÞω∘ S3 þ ðαþ 1Þω∘ AdSÞ;

H0̄ ¼ −
1ffiffiffi
2

p ððΔ8 − αÞω∘ S3 þ ðα − 1Þω∘ AdSÞ; ð6:10Þ

and vanishing Hα. The field strengths are given in terms of

the volume forms ω
∘
S3 , ω

∘
AdS of unit-length S3 and AdS3,

respectively. The Bianchi identities constitute a nontrivial
consistency check of this result. Furthermore, it is straight-
forward to check that all 6D second-order field equa-
tions (6.1) are indeed satisfied for α2 ¼ 1.

C. Uplift of an AdS3 vacuum

As a second example, let us work out the 6D uplift of the
stationary point (i) [Eq. (2.38)] of the potential [Eq. (2.22)].
Although this solution is unstable as an AdS3 vacuum, and
thus not of immediate interest, the fact that its uplift solves
all 6D field equations constitutes a nontrivial consistency
check to our uplift formulas. Recall that the location of this
solution is specified by Eq. (2.39) withm≡ 3=2. Using the
explicit parametrization introduced earlier in Eq. (6.4) for
the sphere harmonics, one now finds a constant warp factor

CONSISTENT S3 REDUCTIONS OF SIX-DIMENSIONAL … PHYS. REV. D 100, 086002 (2019)

086002-13



Δ ¼ m−3=4. Then the six-dimensional metric is readily
obtained as

ds26 ¼ m3=2ds
∘2
AdS þm−1=2ds

∘2
S3 : ð6:11Þ

The Ricci tensor of this metric can be conveniently given as

Rμ̂ ν̂dxμ̂dxν̂ ¼ −
2

l2
ds
∘2
AdS þ 2ds

∘2
S3 ;

Rð6Þ ¼ 6

�
m1=2 −

1

l2
m−3=2

�
; ð6:12Þ

which leads to

�
Rμ̂ ν̂−

1

2
Rð6Þgμ̂ ν̂

�
dxμ̂dxν̂

¼ 3m2

�
1

3m2l2
−1

�
ds
∘2
AdSþ

�
3

m2l2
−1

�
ds
∘2
S3 ; ð6:13Þ

for the Einstein tensor. The scalars are obtained from
Eqs. (5.8) and (5.9) as

M00 ¼ 1

2

�
9

4m
þ 1þm

�
¼ 2;

M00̄ ¼ 1

2

�
m −

9

4m

�
¼ 0;

M0̄ 0̄ ¼ 1

2

�
9

4m
− 1þm

�
¼ 1;

M0
α ¼

1ffiffiffiffiffiffiffi
2m

p
�
mþ 3

2

�
Yα ¼

ffiffiffi
3

p
Yα;

M0̄
α ¼

1ffiffiffiffiffiffiffi
2m

p
�
m −

3

2

�
Yα ¼ 0;

Mαβ ¼ δαβ þ YαYβ;

whereas the 3-form field strengths along the S3 directions
computed from Eq. (5.7) are

Hijk
0 ¼ −

ffiffiffi
2

p
ω
∘
ijk; Hijk

0̄ ¼ 0;

Hijkα ¼ −
3

2
ffiffiffiffiffi
m

p Yαω
∘
ijk ¼ −

ffiffiffi
3

p
ffiffiffi
2

p Yαω
∘
ijk: ð6:14Þ

The 6D self-duality equations (6.2) can be used to determine
the full 6D field strengths as

H0¼−
ffiffiffi
2

p �
ω
∘
S3þ

m3

2
ω
∘
AdS

�
; H0̄¼0; Hα¼−

ffiffiffi
3

p
ffiffiffi
2

p Yαω
∘
S3 :

ð6:15Þ

The determination of the 3-form field strengths by self-
duality requirement renders the Bianchi identities dHā ¼ 0

nontrivial, and one verifies straightforwardly that they are
satisfied. For this, it is crucial that Hμ̂ ν̂ ρ̂ α have no compo-
nents along the AdS3 directions, which is indeed the case.
Moreover, the different contributions to the energy-

momentum tensor are given by

�
∂ μ̂Mā b̄∂ ν̂Mā b̄ −

1

2
gμ̂ ν̂∂ ρ̂Mā b̄∂ ρ̂Mā b̄

�
dxμ̂dxν̂

¼ 6m2ds
∘2
AdS þ 2ds

∘2
S3 ;

ðHμ̂ ρ̂ σ̂
āHν̂

ρ̂ σ̂ b̄Mā b̄Þdxμ̂dxν̂ ¼ −3m2ds
∘2
AdS þ 3ds

∘2
S3 :

ð6:16Þ

From this, it follows immediately that the Einstein equa-
tions (6.1) are verified with m2l2 ¼ 4=3.

VII. CONCLUSIONS

In this paper, we have used the framework of ExFT to
work out the consistent truncations of 6D N ¼ ð1; 1Þ and
N ¼ ð2; 0Þ supergravity theories on AdS3 × S3. The result-
ing three-dimensional theories are SOð4Þ gauged super-
gravities coupled to four half-maximal scalar multiplets,
describing the 32 bosonic degrees of freedom. Employing
the Scherk-Schwarz twist matrices from Ref. [24] and
establishing the explicit dictionary between ExFT fields
and the 6D supergravity fields, it is straightforward to
derive the nonlinear Kaluza-Klein reduction Ansätze for the
various 6D fields. In the truncation to the common
N ¼ ð1; 0Þ sector, the formulas consistently reduce to
the reduction formulas from Refs. [12,15]. The results
nicely illustrate the power of the ExFT framework as a tool
in the study of consistent truncations.
The three-dimensional scalar potentials allow for a

number of stationary points, most of which, however, turn
out to be unstable by the existence of scalar directions with
negative mass squares below the Breitenlohner-Freedman
bound. Interestingly, they admit a one-parameter family of
nonsupersymmetric but stable AdS3 solutions. We have
given the explicit uplift of this family to six dimensions.
Further direct applications of our uplift formulas may
include three-dimensional solutions with nonconstant
scalars such as holographic RG flows in the scalar
potentials. On a more general note, the proof of the
consistent truncation to particular three-dimensional
gauged supergravities allows us to consistently restrict
holographic supergravity calculations such as those in
Refs. [8–11] to a closed subsector of fields.
An immediate generalization of the results reported here

is their extension to six-dimensional supergravities with
additional tensor multiplet couplings, which generically
arise from reductions from ten dimensions. In the ExFT
context, this corresponds to an embedding SOð8; 4Þ ↪
SOð8; 4þ nÞ of the exceptional field theories and the
associated twist matrices. Upon working out the extended
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dictionary between ExFT and supergravity fields, the
corresponding uplift formulas can be extracted in analogy
to the results of this paper.
It would also be highly interesting to examine if similar

techniques could be employed to construct consistent
truncations involving higher massive Kaluza-Klein multip-
lets and leading to three-dimensional theories of the type
constructed in Ref. [34]. This might require an extension of
the present framework to more general embeddings in the
spirit of Refs. [19,21].
Finally, it would be interesting to explore to which extent

similar structures can be unveiled in the context of AdS3 ×
S2 truncations of the five-dimensional supergravities
obtained from compactification of M-theory on Calabi-
Yau 3-manifolds.
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APPENDIX: S3 HARMONICS AND IDENTITIES

Here we list some of the useful identities that we
used throughout the text. Consider a parametrization

of the unit radius S3 by some coordinates YA (with
A ¼ 1;…; 4) as

YAYA ¼ 1: ðA1Þ

The isometries of S3 can be described in terms of the SOð4Þ
Killing vectors

KABi ¼ ∂iY½AYB�: ðA2Þ

Then the metric of the round S3 can be written in the
SOð4Þ-covariant form as

g
∘
ij ¼ 2KABiKABj: ðA3Þ

Using these and the inverse metric g
∘ ij of the round S3, we

find that

g
∘ ij∂iYA∂jYB ¼ δAB − YAYB; ðA4Þ

which has proven to be of great value in the simplification
of the uplift formulas throughout. The following was also
of use for the derivation of (5.10):

ω
∘ kij∂iYA∂jYB ¼ εABCDg

∘kl∂lYCYD: ðA5Þ
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