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We work out the consistent AdS; x S? truncations of the bosonic sectors of both the six-dimensional
N =(1,1) and NV = (2,0) supergravity theories. They result in inequivalent three-dimensional half-
maximal SO(4) gauged supergravities describing 32 propagating bosonic degrees of freedom apart from
the nonpropagating supergravity multiplet. We present the full nonlinear Kaluza-Klein reduction formulas
and illustrate them by explicitly uplifting a number of AdS; vacua.
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I. INTRODUCTION

Consistent sphere truncations have a long history in
supergravity. Within maximal supergravity, this goes back
to the seminal work of Ref. [1] on the consistent truncation of
11-dimensional supergravity on AdS, x S7 to the lowest
Kaluza-Klein multiplet, giving rise to four-dimensional
SO(8) gauged supergravity. An analogous result for
AdS; x S* was established in Ref. [2], while the proof of
the consistent truncation of IIB supergravity on AdSs x S°
was completed only recently [3]. Consistent truncations have
led to a better comprehension of the structures of the theories
of concern and the dualities they enjoy. Notably, these are not
truncations in an effective field theory sense, with the
massive Kaluza-Klein towers integrated out, yet every
solution of the lower-dimensional theory lifts to a solution
of the higher-dimensional theory. They are of particular
importance in holographic applications, ensuring the validity
of lower-dimensional supergravity computations, such as
holographic correlators and renormalization group (RG)
flows [4].

This work deals with consistent sphere compactifications
in the context of AdS; x S3, one of the central examples in
the AdS/CFT correspondence [5] in which supergravity
techniques have been successfully employed [6-11] in
order to unravel the structure of the dual two-dimensional
conformal field theories. Generic consistent S* truncations
in (super)gravity have been discussed in Refs. [12-14],
where the full nonlinear Kaluza-Klein Ansdrze were
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constructed for a higher-dimensional theory that comprises
the field content of the bosonic string. The resulting lower-
dimensional theories are SO(4) gauged (super)gravities
carrying gauge fields, a 2-form, and scalar fields, whose
potential does not admit any stationary points. In the
particular case of AdS; x S°, the higher-dimensional
theory is D =6, N' = (1,0) supergravity coupled to a
single tensor multiplet that carries an anti-self-dual 2-form.
In contrast to the higher-dimensional examples, the 2-forms
in the resulting three-dimensional theory are auxiliary and
can be integrated out, giving rise to an additional contri-
bution to the scalar potential. This amended potential turns
out to support a stable supersymmetric AdS; vacuum [15],
corresponding to the supersymmetric AdS; x S* solution
of the D = 6 theory. The nonlinear Kaluza-Klein Ansdtze
can be confirmed by direct computation.

More recently, new techniques have emerged for a more
systematic understanding of consistent truncations within
exceptional field theory (ExFT) and generalized geometry
[16-21], see also [22,23] in the context of double field
theory. Using the reformulation of D =6, N = (1,0)
supergravity as an EXFT based on the group SO(4,4)
[24], the nonlinear Kaluza-Klein Ansdtze from
Refs. [12,15] can straightforwardly be reproduced from
the generalized Scherk-Schwarz twist matrices I/ in this
framework. In this paper, we will extend the consistent S*
truncations to the full A" = (1,1) and N = (2,0) super-
gravities in six dimensions. The relevant framework is an
SO(8,4) ExFT, which, depending on the solution of
its section constraint, describes the aforementioned six-
dimensional supergravities [24]. The resulting three-
dimensional theories are SO(4) gauged supergravities
coupled to four half-maximal scalar multiplets [25,26], i.e.,
with scalar target space given by SO(8,4)/(SO(8) x SO(4)).
In the EXFT framework, the construction of the consistent
truncations simply amounts to embedding the SO(4,4)
twist matrices I/ into the SO(8,4) isometry group of the
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ungauged three-dimensional theory. Two inequivalent
embeddings give rise to inequivalent three-dimensional
gaugings, describing the truncation of the N' = (1, 1) and
the V' = (2,0) theory, respectively.

The paper is organized as follows: In Sec. II, we
introduce the relevant three-dimensional supergravities,
their gauge structure, and scalar potentials. We give an
explicit parametrization of their scalar target space
SO(8,4)/(SO(8) x SO(4)) and determine the full set of
stationary points of their scalar potentials. In Sec. III, we
review the framework of SO(8,4) ExFT. In particular, we
discuss the two inequivalent solutions of its section con-
straint and establish the full dictionary of the ExFT fields
into the six-dimensional fields of "= (1,1) and N =
(2,0) supergravity, respectively. In Secs. IV and V, we use
the explicit Scherk-Schwarz twist matrix U/ together with
the ExFT-supergravity dictionary to work out the full
nonlinear Kaluza-Klein Ansdtze for all six-dimensional
fields, defining the consistent truncation. As an illustration
and a consistency check, we use these Ansditze in Sec. VI in
order to give the explicit uplift of some of the three-
dimensional AdS; vacua into full solutions of D =6
supergravity. We close with some comments in Sec. VII.

II. THE THREE-DIMENSIONAL SUPERGRAVITY

In this section, we collect the basic formulas of the
relevant three-dimensional supergravities. In particular, we
give an explicit parametrization of their scalar target space,
which allows us to determine the full set of stationary
points of the scalar potentials.

A. 3D gauged supergravity
Three-dimensional gauged supergravity with A =8
(half-maximal) supersymmetry has been constructed in
Refs. [25,26]. The theory is based on the coset space
G/H = S0(8,4)/(SO(8) x SO(4)), (2.1)
with all couplings completely specified by the choice

of a constant symmetric embedding tensor Ok 5 of
the form

Ok Litn = Ok Lirh + 5 g0y = n5EOiim) + OnsarnL)s-
(2.2)

with antisymmetric 6k ; iy y = 0|k 1 iz v)> Symmetric O 5 =
O w) and the SO(8,4) invariant tensor 5 5. Indices
M,N,... label the vector representation of G =
SO(8,4), and are raised and lowered with 7 5. The
embedding tensor encodes the minimal coupling of vector
fields to scalars according to

DMy = 0, Mgy + 24,7 ©®p g . (TXE) (3" M .
(2.3)

with the symmetric matrix M ;5 parametrizing the coset

space [Eq. (2.1)]. By T N we denote the generators of
g = Lie G acting by left multiplication with the algebra

[Tki, TMN] — Z(nk[MTN]l_, _ l’]i[MTN]k).

The number of vector fields involved in the connection
[Eq. (2.3)] is equal to the rank of O 5 (taken as a
dim G x dim G matrix).

The complete bosonic Lagrangian of the three-
dimensional theory is given as a gravity-coupled Chern-
Simons gauged G/H coset space o-model:

1 1 o
e_lﬁ :ZR+3_29W@;4MMN811MMN+€_1£CS_V» (25)

with the three-dimensional metric g,, and e = /| detg,,|.
The Chern-Simons term is explicitly given by

1 _
Les = €A Ok Liny

X (GUA,,MN +

in terms of the embedding tensor [Eq. (2.2)], with the

SO(8,4) structure constants fMNFCr < from Eq. (2.4).
The form of the scalar potential V is determined by the
embedding tensor and may be written in the form [27]
(where we have corrected a typo in the second line)

1 L
V= 1gOkLinOpors(METMECMMEM™S

(2.7)

From the general expression of the scalar potential, we
have omitted the term carrying a totally antisymmetric
MELMNPORS which drops out upon restriction to embed-
ding tensors satisfying the additional constraint

Ok L.itn®po.rs = O (2.8)
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As pointed out in Ref. [24], consistent truncations obtained
by generalized Scherk-Schwarz reduction necessarily lead
to three-dimensional theories satisfying Eq. (2.8), and we
will in the following restrict our analysis to such theories.
For the fermionic completion of Eq. (2.5) and its full
supersymmetry transformations, we refer to Refs. [25,26].

For the following, it will be convenient to choose a
specific basis upon breaking:

SO(8.4) — GL(4) x SO(4),

XM (XA Xy, XY, (2.9)
with A =1,...,4 and a = 1, ..., 4 labeling the GL(4) and
the SO(4) vector representations, respectively. In this basis,
the GL(4) is embedded into an SO(4,4), such that the

SO(8,4) invariant tensor is of the form |

with

. 1
AB _ C C
AN =S PPAP,

- 1
TAB — _8ABCDTCD (213)

in the second case. Both embedding tensors induce a gauge
group of non-semi-simple type

Goauge = SO(4) X TS, (2.14)
with the Abelian generators {742} of T transforming in the
adjoint representation of SO(4). Chern-Simons gauge the-
ories with a gauge group of type (2.14) and the T° generators
realized as shift symmetries on scalar fields can be rewritten
as SO(4) Yang-Mills theories upon integrating out the
vectors A,,? associated with the T° generators [26,28].

B. Parametrization of the SO(8,4)/(SO(8) x SO(4))
scalar coset

In order to study the structure of the scalar potential
[Eq. (2.7)], it turns out to be useful to adopt particular
parametrizations of the scalar matrix M j; 5. To this end, we
|

Map + Al, (@) acm P (d9) pp + (Db) 45

% (¢¢)BC’"AC
LpcamP () gp + Pa

Mpyy =

0 &% 0
=18 0 0 (2.10)
0 0 =6y

Specifically, we will be interested in the theories described
by the two embedding tensors:

(A): 0a5 =405  Oapcp = —20€apcp>

(B): Oapc” = eapced™,  Oapcp = —2ae5pcp, (2.11)

with the totally antisymmetric €,50f, a free constant a.
These theories capture the S* reductions of ' = (1, 1) and

N = (2,0) supergravity, respectively. In particular, the
embedding tensors induce the gauge connections

AﬂABTBA + (A;tBA + %5ABCDA/4CD)TAB (A)
AMABTBA + (A/lBA + %gABCDAyCD)TAB (B)

: (2.12)

decompose the SO(8, 4) generators according to Eq. (2.9),
such that a coset element V € SO(8,4)/(SO(8) x SO(4))
can be parametrized in the triangular gauge as

Y = e¢ABTAB e(pAaTAaVGL(Al)’ (2 15)

with nilpotent generators 748 = T8l and a GL(4) matrix
VaL@)- Modula an SO(4) gauge freedom, this matrix
carries the 32 physical scalar degrees of freedom. In the
following, we will make use of the fact that the gauge
groups we are studying include shift symmetries acting on
the scalars ¢, 5, cf. Eq. (2.12), which we may use to adopt a
gauge in which ¢,5 — 0. As a result, the gauge group
(2.14) reduces to a standard SO(4).
Explicitly, we choose a representation such that

Va8 %¢Ay¢€y(V_I)BC ¢Ay6yﬂ
Vit"lpm0=1] 0 V1t 0
0 ¢Ca(V_I)BC 5aﬁ

(2.16)

in the basis (2.9), with V4= (Vg1 (4)),®. The symmetric
positive definite matrix M 5 = (WVV7) ;5 then takes the form

%(¢¢)AcmBC %(¢¢)ACmCD¢Dﬂ + Pap
m"B ¢CﬂmAC )

$cam®€ S8up + Pcappm®

(2.17)

with mup =V, V€, m*® denoting its inverse matrix m,cm® = 5,%, and where we have denoted (¢p¢) 15 = Pa,P5,-
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Evaluating the scalar kinetic term from Eq. (2.5) in this
parametrization yields

1
Liin = =35 Tr[D, MM~ D*MM™"|

1 1
= - ETr[Dﬂmm‘l D'mm~1] — gDﬂgbAamABD”d)Ba

1
+ a YMABmBCY”CDmDA, (218)

with

YﬂAB = Dy¢Aa¢Ba - Dy¢B(1¢Aa

and SO(4) covariant derivatives D,. The first term in
Eq. (2.18) represents a GL(4)/SO(4) ¢ model.

Let us finally evaluate the scalar potential for the two
choices of embedding tensor [Eq. (2.11)]. For the embed-
ding tensor (A), describing the N = (1, 1) reduction on $°,
the potential (2.7) depends exclusively on the block M45.
In the parametrization (2.17), the potential is thus inde-
pendent of the scalars ¢,,. Explicitly, it takes the form

(2.19)

1
Vi) = 202" 42 20 (2Pt — m*mBE), - (2.20)
where we have defined
mAB = ipABe?, (2.21)

with det m*8 = 1. This precisely agrees with the result of
Ref. [15] as required by consistency, since the additional
scalar fields ¢,, do not show up in the potential. Note that
rescaling ¢ — ¢ — log |a| turns the constant « into a global
scaling factor in front of the potential, which is thus
irrelevant for the existence of stationary points.
Depending on the sign of «, there are, however, two
different fermionic completions of the theory.

In contrast, for the embedding tensor (B) from
Eq. (2.11), describing the N = (2,0) reduction on S°,
the potential after some computation takes the form

Vi) = (etm) (2(a 5 (9)u)’
a4 5 @)as) = g masonan
=20 + % & (2ppiiag — Mapiitpp)
~ e (g)ce + 5o Bh)co
5 0)ecd)o> 2.22)

where again we use the parametrization in Eq. (2.21). We
note that for ¢, = 0, this expression coincides with the
potential (2.20) upon flipping

A8 < fyp. (2.23)
This is consistent with the fact that upon setting the ¢,,
fields to zero, both the N = (1,1) and the N = (2,0)
theories reduce to the same N = (1,0) theory in six
dimensions, which gives rise to the potential computed
in Ref. [15]. Again, the constant a can be absorbed by
shifting ¢ together with a rescaling of ¢,,. However, the
presence of a term linear in a implies that there are two
inequivalent theories depending on the sign of a which
cannot be absorbed into a field redefinition. In the follow-

ing, we will adopt the normalization |a| = 1.

C. Extrema of the scalar potential

In this section, we derive the full set of extremal points of
the scalar potentials [Eqgs. (2.20) and (2.22)]. Since
Eq. (2.20) sits within Eq. (2.22) as a truncation ¢,, = 0,
it will be sufficient to analyze the extremal points of the
latter. Below, we will then uplift some of these extremal
points to solutions of the six-dimensional supergravities.

Variation of Eq. (2.22) with respect to the scalar field ¢
yields the condition

6,V 1)=0

=0= 8a2 + e_zw(zﬁlABﬁ’lAB - ﬁ/lAAﬁlBB)

—albec — 3 PecdBpp (224

Next, let us consider the variation with respect to ¢,,, such
that 55 (PP) xp = Zua®pa + ZaPaq- Variation of the poten-
tial yields

05V ®) =2aq <—2a€4"]¢Aa + g Ppa

3 oot ) (2.25)

such that extremization leads to the eigenvector equation

) 1
0xV()=0= fmappp, = e’ <2a—2(¢¢)00> $aa-  (2.26)

Finally, variation with respect to the SL(4) scalars accord-
ing to 657iap = 2A 4 “rig)c with traceless A, ® gives rise to

5AV(B):0 = 0 = (4ﬁ/LCBﬁ1AB - 2r7LCAﬁ133

+ e?icp (Pd) ap) AsC. (2.27)

Upon reducing the last term by means of Eq. (2.26), this
equation can be solved for (¢¢),p as
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. L 1 L L 1
(pp)ap = ey (2mABmCC —4dinpcipe — §5ABmCCmDD + 5ABmCDmcn> + = 45(Pd) ccs

Z (2.28)

with y = (2a = (¢$) pp). Plugging this expression back into the eigenvector equation (2.26) eventually implies

201 = S e P T AP RN
0=e" <2mABmBCmDD —4ingpimpphicp — EmACmEEmDD + mACmDEmDE>

- . . 1 L L 1 _ 1
—e? (2mACmDD — 4y piep — §5AcmEEmDD + 5AcmDEmDE) + —fitac(Ppd) pp — 2 e?x0xc(dP) pp-

The conditions for stationary points thus boil down to
solving Eqgs. (2.24) and (2.29). The value of the potential at
an extremal point is computed by evaluating Eq. (2.22)
using Eqgs. (2.24) and (2.26):

V(B),O = —ae* <2a - % (¢¢)cc>v (2-30)

which corresponds to a three-dimensional AdS length

2 ° 2.
R :_ﬁgyw

o=
Vo -

(2.31)

with &W denoting the AdS; metric.

Let us first consider the sector ¢, =0, which is a
consistent truncation of the potential (2.22) and contains
|

0[16]

{ e — 2¢'(sgna) [8], e — 2e7"(sgna) [8]

1 (2.29)

|
the stationary points common to Egs. (2.20) and (2.22). In
this case, Eq. (2.26) is trivially satisfied. Solutions of the
remaining equations (2.24) and (2.27) are most conven-
iently found in a basis in which M is diagonal. Inspection
reveals a one-parameter family of solutions given by

mA8 = diag{e", e, e, e}, haa = 0.

(2.32)
The existence of this flat direction in the scalar potential has
already been noted in Ref. [29]. The potential for these
families remains fixed at V(g)o = —2, and the scalar
spectrum is given by

for the different potentials. These spectra are stable (in the Breitenlohner-Freedman sense, m?#? > —1 [30]) for

1 2
Eﬂﬁenﬁg\/g.

The vector spectrum is given by

me: £2[1+1], 1+

reflecting the unbroken SO(2) x SO(2) C SO(4). Finally,
the gravitino spectrum is given by

m¢: + % (2coshn + (sgna)) [4+4], (2.37)

showing that only for @ = —1, the vacuum at n =0 is
supersymmetric, preserving N = (4,4) supersymmetry.
This corresponds to the six-dimensional supersymmetric
background AdS; x S°. The a = +1 solution is not super-
symmetric, but it may correspond to a supersymmetric
solution in an AN = (1,0) theory coupled to tensor
multiplets.

2cosh(27) = 12+ 2],

m?¢%: 0[5], 8[1], 4e*1—42], 4e™21—4]2], (2.33)
completed by
otential (2.20
potential (2.20) } (2.34)
potential (2.22)
(2.35)
—1++/2cosh(2n) — 12 + 2], (2.36)

The potential (2.22) allows for additional stationary
points with ¢,, # 0. In this case, the remaining equa-
tions (2.24) and (2.29) again are most conveniently solved
in a basis in which 7,5 is diagonal, where we find four
discrete solutions. They all necessitate positive a = +1,
with the potential taking the values

-4 @)
_ 8788 (ii)
Vigro = 3125 ) 2.38
(B0 —4 (i) (238)
3 (v
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All these stationary points fully break supersymmetry and
SO(4) gauge symmetry, and they all contain unstable
scalars with masses below the Breitenlohner-Freedman
bound m?#? = —1. For later checks, let us only note the
location of solution (i):

3 V2
mAB = m§rB =~ 548, « = —=04q 2.39
2 ¢A \/g A ( )
with the scalar mass spectrum given by
2
m2>¢?: 512[9+9], 6+2[1+1], 0[6], (2.40)

. . o 4
in units of the AdS length £ = IV

III. SO(8,4) EXCEPTIONAL FIELD THEORY

In this section, we review the structure of SO(8, 4) ExFT,
constructed in Ref. [24], to which we refer for details. This
theory provides the manifestly duality covariant formu-
lation of the 6D supergravity theories relevant for our
consistent truncations. We discuss the inequivalent solution
to its section constraints and establish the dictionary of the
EXFT fields to the 6D fields of N' = (1,1) and N = (2,0)
supergravity theories.

A. Lagrangian

Similar to the three-dimensional supergravities reviewed
in Sec. II, SO(8,4) ExFT is based on the coset space
[Eq. (2.1)], which we parametrize by a symmetric positive
definite matrix M,;y. In contrast to the matrix of
Eq. (2.17), this matrix depends not only on three external
coordinates x#, but in addition on (dim SO(8,4)) coordi-
nates Y™V with the latter dependence strongly constrained
by the section conditions

Oun ® Ok =0 =" 0yy ® Oky. (3.1)

which restrict the fields to live on sections of dimension
three (at most). Depending on the choice of these sections,
the theory describes the 6D AN = (1,1) or N = (2,0)

|

supergravity, respectively. The theory is invariant under
generalized internal diffeomorphisms, acting as

EA,ZMMN — AKLaKLMMN
+ 40K M A gy — Dy AFOT 425 ) MMIE
(3.2)

on the scalar matrix. Here, the gauge parameters X,y are

subject to algebraic constraints analogous to Eq. (3.1), i.e.,
Ty ® Zgr) = 0 =1V Zyy ® Zg, (33)

as well as compatibility with the partial derivatives as
Ty ® Okr) = 0 =" Zyy @ k. (3.4)

Invariance under local internal diffeomorphisms [Eq. (3.2)]
is ensured by minimal couplings to gauge fields
(A,,M N, B”MN) via covariant external derivatives:

Dﬂ - 8ﬂ - ’CA,A,B," (35)
The full Lagrangian is given by
L = Leu + Lyin + Les — vV/—9VExrr (3.6)

each term being separately invariant under generalized
internal diffeomorphisms [Eq. (3.2)]. The modified
Einstein-Hilbert term and the scalar kinetic term have
the forms

‘CEH =V _geaﬂeby(R/wah + FMVMNeapaMNepb) = _gR’

Lyin = /798 D, M D, Mgy, (3.7)
with the covariant derivatives [Eq. (3.5)], the Yang-Mills
field strength F,,MV, and the Riemann tensor R, “
computed from the external vielbein e, with derivatives
covariantized under internal diffeomorphisms, under which
e, transforms as a scalar density (of weight 4 = 1). The
gauge fields couple with a Chern-Simons term that takes
the explicit form

2
s = V32 (F M By + 0, A DA™Y =30 AT AN Ay

2 4
+ gAﬂLNaMNAUMpaKLApPK - § A”LNGMPADMNQKLAPPK> .

(3.8)

Finally, the last term in Eq. (3.6) carries only internal derivatives 9,y and is given by

1 1 1
VExFT = —gMKPMLQaKLMMNangMN - E[‘)MKMNpﬁNLMMQMKLMPQ - ZaMNMPKaKLMQMMPLMQN

1 1
+ 20y g MNK Oy MME — 6710y g0 MMEMNE — 2 MMEMNL G20 n g0k 1.9 — ZMMKMNLaMNg#UaKLgMu-

(3.9)

Depending on the solution of the section constraints [Eq. (3.1)], the action [Eq. (3.6)] describes 6D N = (1,1) or
N = (2,0) supergravity. In the next two subsections, we review the two inequivalent solutions to the section constraints
and the associated dictionaries of the ExFT fields into the 6D supergravity fields.
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B. A'=(1,1) solution of section constraint
Consider the decomposition of SO(8,4) under its sub-

group
GL(3) x SO(1,1) x SO(4) C SO(4,4) x SO(4) C SO(8,4),
(3.10)

such that the fundamental vector of SO(8, 4) decomposes as

VMY = {V) 2 (Vi) (VO 23y (Vo) a3y (Vo) 3
(3.11)

where subscripts refer to the sum of the GL(1) c GL(3)
charge and the SO(1,1) charge, defining the grading
associated with the higher-dimensional origin of these fields.
Herei =1, 2,3 and @ = 1, ..., 4. The invariant tensor #,y
decomposes accordingly:

.

0 3

1

[

NN = (3.12)

o O O

o o o O
S = O O O
S O = O O
S O O O O

—8up

The N' = (1, 1) solution to the section constraints [Eq. (3.1)]
is given by decomposing coordinates Y™V according to
Eq. (3.11) and restricting the internal coordinate dependence
of all fields to the coordinates Y% such that the only
nonvanishing internal derivatives are

1
_aiv
N

providing a solution to Eq. (3.1). Breaking the ExFT fields

according to Eq. (3.11) then matches the field content of the
|

9, = (3.13)

£A72M00 :LAMOO —2((9k/1k)./\/100,

6D N = (1, 1) supergravity, which, in addition to the metric
and the dilaton, contains four vector fields and a (non-chiral)
2-form gauge field.

Specifically, the EXFT vector fields transform in the
adjoint representation of SO(8,4). Under Eq. (3.11), they
decompose into

-4 A C 6D metric
-3: A% C 6D vectors
40 A
Ay -2 A AY C 6D 2-formanddual
g —1 0 A C 6D dual3-form
0: A7 AW A7 c 6Ddualgraviton, etc.
+1

(3.14)

allowing us to identify the higher-dimensional origin of the
various components. The fields of positive grading do not
enter the action [Eq. (3.6)]. Similarly, one decomposes the
scalar fields, parametrizing the coset SO(8,4)/(SO(8)x
SO(4)) into

+4 1 o C 6D dual graviton
+3 1 P C 6D dual 3-form
+2 1 ¢lo.¢;; C 6D 2-formanditsdual. (3.15)
+1 1 P C 6D vectors
0 : gj.oe C 6D metric and dilaton

In order to identify their location within the scalar matrix
My, it is useful to determine the action of a generalized
diffeomorphism [Eq. (3.2)] on the various components of the
matrix MMV, In the decomposition (3.11), this gives
particularly neat expressions when acting on some specific
combinations:

Lz MO =L, MO — (9, 45) MO =ik £ M,
L (MOMIT = MO MO = L, (MOM = MO MOT) = 2(8,, 4™ ) (MO M = MO MO,

L5 (MM — MO MO = L, (MO M = MO MO 4, A% (MOMIT = MO MO =2(8,, A7) (MO M = MO A,
Las(MOM = MOIMO ) = L (MOM? ;= MO MO) 40, A% (MO M — MO MO

—|—(8,(81-—8]-5,()(MOOM“‘—MO"MO")—2(8,,,/1"1)(/\/100Mij—MOiMOj), (3.16)
where we have redefined the gauge parameters as
AO[ _ L/{z Al — Lgijkék A_O _ LE AaO _ LA“ A% — 1 Eijk/\-ka (317)
V2 V2o h V2T V2 vz

with the totally antisymmetric £"/*. Here, L, denotes the standard Lie derivative along the vector field 2*. Identifying the higher-
dimensional origin of the gauge parameters among internal 6D diffeomorphisms and gauge transformations according to the
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identification of the vector fields [Eq. (3.14)] then allows us
to read off the dictionary between the components of MMY
and the internal components of the 6D fields:

MO = gled,
MO — _%MooeijkBjk’
MO — MO = g i
MO — MO — =1 giiA
MOMi = MOMO, = g1 gk B, . + %g—lgikAkaAja‘
(3.18)

The dictionary is such that the generalized diffeomorphisms
[Eq. (3.2)] reproduce the gauge transformations,
O0A;* = 0;A%,
5B1j =208
- ~ - 1 1
(3.19)

of the 6D vector fields A;%, 2-form B;;, and its dual Bij.
Finally, using the dictionary [Eq. (3.18)], we may also
consider

Lps(MP)TIMO) = Ly ((M*)~I M%)

+ (") (M) M)
1 .. 1 ,
- z E'Ukai/\jka - 5 aiAaé‘UkBjka
(3.20)
from which we infer the identification
1 ..
(MP)TIMO = —Zellhay ™, (3.21)

with the scalars a;;;* from the dual 3-forms in six dimen-
sions. These transform as

daii* = 30;;Aj”™ + 3B;;0y A, (3.22)

under 6D gauge transformations.

C. N =(2,0) solution of section constraint

Consider the decomposition of SO(8,4) under its sub-
group GL(3) x SO(1,5), such that the fundamental
SO(8,4) vector decomposes as

{VM} = {Vi2). Vi), Vi Vi

- (3.23)

with subscripts referring to GL(1) charges. Here i = 1,2, 3

and a = 1, ..., 5. The invariant metric #,,;y decomposes as
0 & ;i 00
B &, 0 0 0 (3.24)
MNT 10 0 10 '
0 0 0 =6,

Later on, we will also decompose a — {0,a}. The N’ =
(2, 0) solution to the section constraints in Eq. (3.1) is given
by decomposing coordinates Y”V according to Eq. (3.23)
and restricting the internal coordinate dependence of all
fields to the coordinates Y;;, such that the only non-
vanishing internal derivatives are

1 .
(9i = —Eijka]k,

. (3.25)

providing a solution to Eq. (3.1). Breaking the ExFT fields
according to Eq. (3.23) then matches the field content of the
6D N = (2,0) supergravity coupled to a tensor multiplet,
which contains five self-dual and one anti-self-dual 2-form
gauge fields, together with five scalar fields parametrizing
the coset space SO(1,5)/SO(5).

Specifically, the EXFT vector fields transform in the
adjoint representation of SO(8,4). Under Eq. (3.23), they
decompose into

—4 Aﬂij C 6D metric
. a 0
AN -2 A4 A, C 6D 2-forms 7
. 0: A,/ A% AN c 6D dualgraviton, etc.
2.

(3.26)

allowing us to identify the higher-dimensional origin of the
various components. The fields of positive grading do not
enter the action [Eq. (3.6)]. Similarly, one decomposes the
scalar fields, parametrizing the coset SO(8,4)/(SO(8)x
SO(4)) into

+4 1 ¢y C 6Ddual graviton
+2 1 Pl C 6D2-forms ,

0 : mj,¢p,m;; C 6Dmetricandscalars

(3.27)

where a =0, ..., 5, and m; j and m ; parametrize the coset
spaces SL(3)/SO(3) and SO(1,5)/SO(5), respectively.
For the latter, we have the invariant tensor

_(1 ())
Mab = 0 -5, .

(3.28)

086002-8



CONSISTENT $* REDUCTIONS OF SIX-DIMENSIONAL ...

PHYS. REV. D 100, 086002 (2019)

In order to identify the precise location of scalar fields
within the scalar matrix My, it is useful to determine the
action of a generalized diffeomorphism (3.2) on the various
components of the matrix MMV, In the decomposition
(3.23), this takes the form

£/\,2Mij - L;LM,']' - 2(ak/1k)ij’
LasM® = LM — (925 M@ + 269 M8, A%,

LasMPP = L MPP 4 467F M @GP, (3.29)
with the gauge parameter relabeled as
1 k
Aijzzgijkﬂ . (330)

These let us infer the dictionary

Mab — ppab 4 2BijaBkliagikgjl — Mab +ggijM,-an5,
(3.31)

with g = det g;;, and the components B,-j‘_‘ transform under
tensor gauge transformations as 6B;;* = 20;A"}.

D. Generalized Scherk-Schwarz reduction

Consistent truncations of SO(8,4) EXFT can be defined
by a generalized Scherk-Schwarz compactification Ansatz
[17,18], in which the dependence of the EXFT fields on the
internal coordinates is carried by an SO(8, 4) twist matrix
U,," and a scalar factor p. Specifically, the EXFT fields take
the factorized form [24]

g/w(xv Y) = p(Y)_zg/w(x)v
Moy (5, ¥) = Uy ™ (V)M 5 (U (7).
AﬂMN(x’ Y) = p(Y)_luMM(Y)MNN<Y)AﬂMN(x)7
Bt (5, Y) = =3 p(V) Uy (V)0 U (V)47 ),

(3.32)

in terms of the x-dependent fields of 3D gauged supergravity
reviewed in Sec. I above. The embedding tensor [Eq. (2.2)]
of the 3D theory is given in terms of the twist matrix as

Oxpo = Op™ OpplhygU" LU U 5.
-1
— p _
Opo = 4p IUKPaKLULQ - TﬂpQUKLaKLULL
—4p™*0p pp.

-1
0 =" Uk og Uty (3.33)
and the truncation is consistent if all three objects in
Eq. (3.33) are actually Y-independent. Using the twist
matrices from Ref. [24] we will, in the following, use the
generalized Scherk-Schwarz Ansatz in order to derive the
explicit reduction formulas for the 6D consistent truncations.

IV. N =(1,1) UPLIFT FORMULAS

In this and the following section, we will review from
Ref. [24] the twist matrices inducing the embedding tensors
[Eqg. (2.11)]. Combining them with the Ansatz [Eq. (3.32)]
and the supergravity dictionaries worked out in Secs. III B
and I1I C above, we deduce the six-dimensional N = (1, 1)
and N = (2,0) reduction formulas.

A. Twist matrix

The SO(8, 4) twist matrix U/ MM describing the consistent
S* truncation of 6D N = (1,1) supergravity has been
constructed in Ref. [24]. Let us recall that the coordinates y’
relevant for 6D N = (1, 1) supergravity have been iden-
tified among the YMV via Eq. (3.13). The associated twist
matrix is given in terms of the elementary S° sphere
harmonics Y4 (satisfying YA)* = 1), the round S* metric
g; ;= 0;Y40;Y* (with determinant ¢), and the vector field

o

(:l defined by V,-é’l = 1. By &)),-jk = gl/zeijk, we denote the
associated volume form. We refer to the Appendix for
further identities among these objects. After some rewrit-
ing, the twist matrix of Ref. [24] takes the explicit form

U Upy 0
Ur Uy 0
Uy = | U U, 0
U Ui, 0
0 0 5/
92 =L 0 0
oA 2a5ﬂalyA£)ijk2k 0
= 0 5—1/23}14 0 ,
0 29,0 0
0 0 5.
(4.1)
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in a basis where the “curved index” M is decomposed
according to Eq. (3.11), and the “flat index”” M is decom-
posed in the basis (2.9), suitable for the fields of 3D
supergravity. The free parameter o can (up to sign) be
absorbed into a shift of the 6D dilaton.

B. Uplift formulas

According to the dictionary [Eq. (3.18)], the 6D dilaton
is identified within the component M® of the EXFT scalar
matrix, such that its reduction formula is obtained via
Eq. (3.32) as

e = gMOO — guOAuoBmAB — AZyAmeAB, (42)
where we have defined the warp factor
1/2
_9
A= 5173 (4.3)
9

Similarly, we identify the internal components of the 6D 2-
form as

| .
_EgljkBjk — (MOO)—IMO:
_ (MOO)—1§—1/2(22’3;3 n éijaij)yAmAB’
(4.4)
giving rise to
° ok Lou AV)B, AB
Further computation yields the 6D internal (inverse) metric
gij — g(MOOMij _ MOiMOj)
_ Az(;]ikakyA)(;]ilalyB)yCyD(mABmCD — mACmBD).
(4.6)
Identifying the SO(4) Killing vectors K p' = &ij 0;YaYVs
on the right-hand side, this result reproduces the standard
Kaluza-Klein Ansatz for the internal metric [31]. Using

sphere harmonics identities collected in the Appendix, we
may deduce the internal metric

A -2
9 = Y I)

together with a compact expression for the warp factor
[Eq. (4.3)]

8,»ycal-meCD, (47)

A = (e=0/2)(VAYBmAB)-1/4, (4.8)

where we recall the definition [Eq. (2.21)] of the 3D scalar
@. The latter may be used to simplify the reduction
formulas in Eqs. (4.2)—(4.7) as

et = A2 20,

B;j = _Zg)ijk(gk - E]klal log A),
gij = Aze(ﬂal‘ycaijﬁ’lCD. (49)
We thus obtain a compact form of the full 6D metric:

dsg=e?(A2e g, (x)dx"dx"

+A%e?0,Y°0;YP mcpdy'dy’), (4.10)

and we may also compute the internal component of the
3-form field strength:

30;Bjy = @, (2 ASYAMACICBYE — 20 AfpA),
(4.11)

We may compare these results to the reduction formulas
found in Refs. [12,15] for the A/ = (1,0) subsector and
find precise agreement upon applying the dictionary:

VA =yt

AB
m? — Tij,

e? « (detT)'/4,
A—2e—(p — AI/Z’

e s VW2, (4.12)

The present construction extends these formulas to the full
N = (1,1) theory. The additional matter is made from
N = (1,0) vector multiplets, whose reduction formulas are
extracted from Eq. (3.18) as

g—lgijAja _ 5—1§ij (8ij)yAyB (mABMCa _ mACMBa),
(4.13)

which upon combination with Eq. (4.9) and after some
computation reduces to the simple formula

A= (aiyA)ql’Aav (4-14)

showing that, in particular, the internal field strengths vanish:

Fl‘ja — 28[1AJ](1 — 0 (415)

Similarly, we extract the reduction formula for the dual
2-form B; ; upon combining Eq. (3.18) with all previously
obtained reduction formulas, and we find

~ o Ok ~ o
B” = —Zaa)l-jkC = 38[ZB]]C] = —Zawijk. (416)
Finally, we may work out the reduction formula for the
internal components of the 6D 3-form (dual to the 6D vector
fields) as

aijk“ = —cj)ijkez”’A“yAmAngBa. (417)
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Formulas (4.14) and (4.17) show that in the case of 3D
constant scalar solutions, all 6D vector field strengths vanish,
such that the embedding of the ' = (1,0) theory into the
N = (1, 1) theory remains rather trivial. This reflects the fact
that the potential [Eq. (2.20)] does not carry the additional
3D scalar fields ¢,, and thus coincides with the potential of
the truncation to the quarter-maximal theory of Refs. [12,15].
In contrast, for solutions with running scalars, such as 3D RG
flows in the potential [Eq. (2.20)], these formulas describe
nontrivial 6D gauge fields.

V. N =(2,0) UPLIFT FORMULAS

In this section, we repeat the analysis for the reduction of
the N' = (2,0) theory. As already reflected by the richer
|

structure of the 3D potential [Eq. (2.22)], in this case the
uplift formulas to six dimensions constitute a rather non-
trivial extension of the formulas [12,15] for the quarter-
maximal truncation.

A. Twist matrix

The twist matrix describing the consistent truncation of 6D
N = (2,0) supergravity has been given in Ref. [24] in terms
of the same geometrical data introduced in Sec. IV A above.
Let us recall that the coordinates y' relevant for 6D A =
(2,0) supergravity have been identified in Eq. (3.25) above.
In a basis where the “curved index” M is decomposed
according to Eq. (3.23), and the “flat index” M is decomposed
in the basis (2.9), the associated twist matrix is given by

w0 J7 G ot 20 YY) 209" P 2000 0
Ur Uy 0 0 g oy 0
Un'" = | U Uy 0 = S s =20+ @0 0 (5-1)
R 5 —HON-201-al9) 0
0 0 &, V2 V2 @) i
0 0 Sup

Again, the free parameter a can (up to sign) be absorbed into a
shift of the 6D dilaton.

B. Uplift formulas for the 3D scalar sector

1. Metric

Combining the embedding [Eq. (3.31)] of the internal
metric g;; into the scalar matrix with the twist Ansarz
[Eq. (3.32)] and the twist matrix [Eq. (5.1)], we read off

gij = A2, VA0,V m*B, (5.2)
where we have defined
g\/?
A=Axy) =T = eV (VVPmyp) ™0 (5.3)
g

The matrix mA? denotes the GL(4) matrix constituting a
4 x 4 block of the matrix My 5 [Eq. (2.17)] parametrizing
the 3D coset space [Eq. (2.1)]; the matrix m,p is its inverse.
Some algebraic manipulation [cf. Eq. (4.6) above] yields
the explicit form of the inverse metric

gij _ e4¢A2(§ikakyA)(5ila[y3)yCyD
X (mABmcD - mACmBD)' (5'4)

Comparison to Egs. (4.6), (4.8), and (4.9) above shows
precise agreement with the reduction formulas obtained for

the V' = (1, 1) theory upon redefinition [Eq. (2.23)] of the
3D fields.

2. 2-forms

In the same way, we extract the reduction formulas for
the 6D 2-forms via the dictionary [Eq. (3.31)]. With the
explicit form of the twist matrix [Eq. (5.1)], after some
computation and use of the explicit formulas [Egs. (5.2)
and (5.4)], this gives rise to the expressions

1 o o
Bij, = EA_zwijkgklaz(AzyAqua) (5.5)

for the SO(4) vector of 2-forms, and

o Ok o o
\/EBijO =-(1+a)wl + wijkgklal log A

I - o
g ad @kl O1(A* (D) s V?).

N o Ok o o
V2B,0 = —(1 - a)wul + wijkgklal log A

] o okl

- @wlykg 81(A4(¢¢)AB3}A3)B) (5-6)

for the remaining two 2-forms. For later use, it will be
interesting to explicitly compute the associated field
strengths H ;" = 30;B "
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1o -
Hijja = _EwijkA4(mBByA +map)?
\/iHijkO -
1o -
+3 w0  ASVAVEYEYEmepmp () as.

] o
-3 @i ASYVAVEYEYEmepmpp () ap.

where we have defined the rescaled A = ¢?A.

3. Scalars

Eventually, we can compute the 6D scalar fields from the
last line of Eq. (3.31) upon subtracting the B> term using
explicit expressions from Eqs. (5.5) and (5.6) above. The
five 6D scalars sit in a coset space SO(1,5)/SO(5), which
we parametrize by a symmetric positive definite matrix

M®?_ Evaluation of Eq. (3.31) yields the various compo-
nents of this matrix as

MO0 — é (4A* + 4V (pgh) \ 5 VP
+ A2+ VA (P) 45 VE)?),

MO = L (4R 22 4 B2V ()1, )")0).

»—OO

MO0 — 2 (4B 49 () 1"

+ A2 = VM) apV")?) (5.8)
for the 2 x 2 block in (0, 0) directions, and
1 -
M, = F (24 A*Q2+ Y(¢h) cpVP )V b par
My = f( 2+ A2 = Y(d) cpVP )V bras
Maﬂ = 5aﬂ =+ A4yA¢Aa¢BﬂyB (59)

for the remaining components.

C. Uplift formulas for the 3D vector sector

Building on the dictionary [Eq. (3.26)], we may also give
the uplift of the 3D vector fields. We recall from Sec. II A [in
particular, Eq. (2.12)] that the 3D Lagrangian carries 12
vector fields: six AﬂAB and the six antisymmetric combina-
tions A,,% — A, 5" Moreover, in the 3D gauge we are using
(in which scalars ¢4 5 are set to zero), the vector fields A,,A B
can be eliminated by means of their algebraic field equations
in terms of scalar currents and the field strengths » FA2.

= 1o
\/iHijko = uk (Q_EA map + A8V myemep B > ~ 1 Vijk (847 —

= 28*YPmpemepYE V) Paq,

o 1. . 1o, -
—Wj jk <05 + §A4mAA - AsyAmAcmc3y8> + Za)ijk (5AB - A4(mccyA =+ ZycmAc)yB)(¢¢>AB

A (mec Yt + 2V muc) VE) () ap

(5.7)

For the off-diagonal block of the 6D metric, we thus find

1 Oljk

. 1 .. ~
g”gjy — Egljk‘Aﬂjk — _w a yAa yBA AB __ KABZA;;AB

(5.10)

in terms of the 3D vector fields from Eq. (2.13) and the
SO(4) Killing vectors K 5" = é”ajymyg], and where we
have used the relation (AS5). This consistently reproduces
the standard Kaluza-Klein Ansatz for the vector fields [31],
such that upon combination with the result of Sec. VB 1,
the full 6D metric takes the form

dsi = A%g,, (x)dx*dx* + g;Dy'Dy’, ~ (5.11)
with
Dy' = dy' + A,y pdxt. (5.12)

Similarly, we can work out the reduction formulas for the
off-diagonal blocks of the 6D 2-forms, leading to

1
Bio = Ao = NG OV VEAAE+AA)
—2(1 + @)l YA YPAAT),
1
B;u'(_) = A;u‘(_) = 75 (a[yAyB(A”AB - AﬂAB)
—2(1 = ) O OVPANE),
= Aﬂia = aiyAAﬂA”. (513)

Note that the vector fields AﬂA“ do not appear in the
Lagrangian [Eq. (2.5)], and they can be defined on shell
and subsequently be set to zero by a suitable (tensor)
gauge transformation. The complete 6D 2-forms are then
given by

1 . )
B?l :EBijﬁDyl /\DyJ +B

1
iadx! A Dy! +2Bﬂmdx Adx”,

(5.14)
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where the first two terms have been given in Egs. (5.5),
(5.6) and Eq. (5.13), respectively, while the missing
components B,,; are most conveniently obtained directly
from the 6D tensor self-duality equations, which allow us to
express their field strengths H,, ,; in terms of the associated
Hjiz, computed in Eq. (5.7).

VI. SOME EXPLICIT UPLIFTS

In order to illustrate and check the nonlinear uplift
formulas obtained, we will now use them to uplift some
of the AdS; solutions corresponding to the stationary points
of the 3D scalar potential to full solutions of 6D supergravity.

A. 6D N =(2,0) bosonic field equations

The field equations of 6D AN = (2,0) supergravity,
coupled to a tensor multiplet, have been given, e.g., in
Refs. [32,33]. Apart from a metric, five self-dual and an
anti-self-dual 2-form, they feature five scalars sitting in a
coset space SO(1,5)/SO(5) which parametrize a symmet-

ric positive definite matrix M?%. In our notation, the field
equations read

. - 1 0 aasdan _ -
vﬁ(MaCaﬂMZ‘(_i)rldb _ _5\/6 ]gyyplarHﬁf/[)aHﬁa%b’
R —ROG = Loy o mab
a5 gﬁa——g aMapYp
1 .
+Egﬂy8ﬁMﬂ,8 Mab
1 o
+§HﬁA6“HﬁfmhMa,—,, (6.1)
together with the 6D self-duality equations
*H, = M, HP. (6.2)
We use indices i, 7, ... =0, ..., 5, to denote the curved 6D

space-time indices.

B. One-parameter deformation of AdS; x $3

As a first example, we give the 6D uplift of the non-
supersymmetric but stable one-parameter family of AdS,
solutions [Eq. (2.32)] located at

mB = diag{e", e, e, e}, Py =0,
into 6D N = (2,0) supergravity. With an explicit para-
metrization of the S sphere harmonics as

(6.3)

VA = {u®cos 0, v*sin 0}, uu® =1 = v%”,

u® = (COS 51 ’ sin 51)7 v = (COS 52’ sin 52)7 (64)
the warp factor A is given by [Eq. (5.3)]
A = (cosh 5 — cos(260) sinh ) ~1/4, (6.5)

The six-dimensional metric is then obtained from

Eq. (5.11) as a warped product of AdS; and a deformed

sphere S°:

dsg=A"2(dsygs, +d0) +e"Acos*0dET + e Asin*0dE,
(6.6)

with the two surviving U(1) isometries corresponding to

rotations along &; and &,. The full 6D curvature scalar
follows as
R = Al%in?(26)sinh?y. (6.7)

The SO(1,5) scalars are computed from Eq. (5.8) as

1 60 ;1
MO — 5(A4 + A_4) _ MOO, MO — 5(A4 _ A_4),
M“ﬁ = 5‘1/}’ MO(I = 0 = Moaa (68)

and the components of the 3-form field strengths along the
§? directions follow from Eq. (5.7) to be

\/EHijkO = _C[;)ijk(Ag +a),
\/EHijkO = _g)ijk(AS -a),
Hijka == 0 (69)

The remaining components of the 6D field strengths can
then be determined by imposing the 6D self-duality
equations (6.2), giving rise to

1

H® = —\ﬁ((Ag + a)og + (a+ Doags).
HO = (8% = @i + (a= Dinas). (6.0

and vanishing H,,. The field strengths are given in terms of

the volume forms 5)53, &)’AdS of unit-length S and AdS;,
respectively. The Bianchi identities constitute a nontrivial
consistency check of this result. Furthermore, it is straight-
forward to check that all 6D second-order field equa-
tions (6.1) are indeed satisfied for o = 1.

C. Uplift of an AdS; vacuum

As a second example, let us work out the 6D uplift of the
stationary point (i) [Eq. (2.38)] of the potential [Eq. (2.22)].
Although this solution is unstable as an AdS; vacuum, and
thus not of immediate interest, the fact that its uplift solves
all 6D field equations constitutes a nontrivial consistency
check to our uplift formulas. Recall that the location of this
solution is specified by Eq. (2.39) with m = 3/2. Using the
explicit parametrization introduced earlier in Eq. (6.4) for
the sphere harmonics, one now finds a constant warp factor
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A = m~/4 Then the six-dimensional metric is readily
obtained as

ds? = m3dszgs + m~2dsgs. (6.11)
The Ricci tensor of this metric can be conveniently given as
~ by 2 oD 09
Rﬁﬁdx"dx = - ﬁ dSAdS + 2dSS3 s
1
R = 6<m'/2 —Zm‘3/2>, (6.12)
which leads to
[ ) j gD
Ry —=R®™ gy | dxVdx

1 o) 3 o)
:3m2<W_l>dsAdS+ <W—1>dé‘53, (613)

for the Einstein tensor. The scalars are obtained from
Egs. (5.8) and (5.9) as

0 _ 1 < §> o o
MO, o m+2y_\/§y,
o _ |1 ( _é) «
M, \/2_ m 23)—0,

Maﬂ - 5aﬁ + yayﬂv
whereas the 3-form field strengths along the S* directions
computed from Eq. (5.7) are

0 _ ° 0 _
H;j” = _\/Ewijk’ H;y” =0,

V3

o
—=Ywij.

3 s
ijka 2\/5 ijk \/§

The 6D self-duality equations (6.2) can be used to determine
the full 6D field strengths as

H (6.14)

. m3. - V3.
H' =2 wp+— , H'=0, H,=—)"wg.
\/_<0)s + > wAdS) a \/Ey W3

(6.15)

The determination of the 3-form field strengths by self-
duality requirement renders the Bianchi identities dH® = 0

nontrivial, and one verifies straightforwardly that they are
satisfied. For this, it is crucial that H;,, have no compo-
nents along the AdS; directions, which is indeed the case.

Moreover, the different contributions to the energy-

momentum tensor are given by

| - o
(aﬁMaBaaMab - Egﬁf/aﬁMa[}apMab>dx”dxl’

= 6m2d;2AdS + 2d;§3,
(Hﬁ/;;;aHl;f’;’[;Ma;,)dxﬁdxi' = _3m2d§ids + 3d;§3
(6.16)

From this, it follows immediately that the Einstein equa-
tions (6.1) are verified with m?#? = 4/3.

VII. CONCLUSIONS

In this paper, we have used the framework of ExFT to
work out the consistent truncations of 6D A/ = (1, 1) and
N = (2,0) supergravity theories on AdS; x S$°. The result-
ing three-dimensional theories are SO(4) gauged super-
gravities coupled to four half-maximal scalar multiplets,
describing the 32 bosonic degrees of freedom. Employing
the Scherk-Schwarz twist matrices from Ref. [24] and
establishing the explicit dictionary between ExFT fields
and the 6D supergravity fields, it is straightforward to
derive the nonlinear Kaluza-Klein reduction Ansditze for the
various 6D fields. In the truncation to the common
N = (1,0) sector, the formulas consistently reduce to
the reduction formulas from Refs. [12,15]. The results
nicely illustrate the power of the ExFT framework as a tool
in the study of consistent truncations.

The three-dimensional scalar potentials allow for a
number of stationary points, most of which, however, turn
out to be unstable by the existence of scalar directions with
negative mass squares below the Breitenlohner-Freedman
bound. Interestingly, they admit a one-parameter family of
nonsupersymmetric but stable AdS; solutions. We have
given the explicit uplift of this family to six dimensions.
Further direct applications of our uplift formulas may
include three-dimensional solutions with nonconstant
scalars such as holographic RG flows in the scalar
potentials. On a more general note, the proof of the
consistent truncation to particular three-dimensional
gauged supergravities allows us to consistently restrict
holographic supergravity calculations such as those in
Refs. [8—11] to a closed subsector of fields.

An immediate generalization of the results reported here
is their extension to six-dimensional supergravities with
additional tensor multiplet couplings, which generically
arise from reductions from ten dimensions. In the ExFT
context, this corresponds to an embedding SO(8,4) -
SO(8,4 + n) of the exceptional field theories and the
associated twist matrices. Upon working out the extended
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dictionary between ExXFT and supergravity fields, the
corresponding uplift formulas can be extracted in analogy
to the results of this paper.

It would also be highly interesting to examine if similar
techniques could be employed to construct consistent
truncations involving higher massive Kaluza-Klein multip-
lets and leading to three-dimensional theories of the type
constructed in Ref. [34]. This might require an extension of
the present framework to more general embeddings in the
spirit of Refs. [19,21].

Finally, it would be interesting to explore to which extent
similar structures can be unveiled in the context of AdS; x
§? truncations of the five-dimensional supergravities
obtained from compactification of M-theory on Calabi-
Yau 3-manifolds.
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APPENDIX: S* HARMONICS AND IDENTITIES

Here we list some of the useful identities that we
used throughout the text. Consider a parametrization

of the unit radius S by some coordinates )* (with
A=1,...,4) as

Ay =1. (A1)
The isometries of S* can be described in terms of the SO(4)
Killing vectors

Kagi = 0:1YaV5p)- (A2)
Then the metric of the round S® can be written in the
SO(4)-covariant form as

.aij = 2K 5iKasj- (A3)
Using these and the inverse metric éij of the round §3, we
find that

éijaiyAaij — §AB _ yAyB’ (A4)

which has proven to be of great value in the simplification
of the uplift formulas throughout. The following was also
of use for the derivation of (5.10):

ékijaiyAaij = €ABCD5klalycyD- (AS5)
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