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We study the smoothness of the black hole horizon in the Hayden-Preskill thought experiment by using
two particular toy models based on variants of Haar random unitary. The first toy model corresponds to the
case where the coarse-grained entropy of a black hole is larger than its entanglement entropy. We find that,
while the outgoing mode and the remaining black hole are entangled, the Hayden-Preskill recovery cannot
be performed. The second toy model corresponds to the case where the system consists of low energy soft
modes and high energy heavy modes. We find that the Hayden-Preskill recovery protocol can be carried out
via soft modes whereas heavy modes give rise to classical correlations between the outgoing mode and
the remaining black hole. We also point out that the procedure of constructing the interior partners of the
outgoing soft mode operators can be interpreted as the Hayden-Preskill recovery, and as such, the known
recovery protocol enables us to explicitly write down the interior operators. Hence, while the infalling
mode needs to be described jointly by the remaining black hole and the early radiation in our toy model,
adding a few extra qubits from the early radiation is sufficient to reconstruct the interior operators.
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I. INTRODUCTION

Almost forty years since its formulation, the black hole
information problem and its variants still shed new lights
on deep conceptual puzzles in quantum gravity, and also
provides useful insights to study strongly interacting
quantum many-body systems [1]. While the ultimate
solution of the problem could be obtained only by
experimental observations, progresses can be made by
utilizing thought experiments based on simple toy models
[2,3]. In the last decade, two particular thought experiments
on black hole dynamics have fascinated and puzzled
theorists; the Almheiri-Marolf-Polchinski-Sully (AMPS)
thought experiment [4] and the Hayden-Preskill thought
experiment [5]. The AMPS thought experiment suggests
that the smooth horizon in an old black hole, which is a
consequence of the equivalence principle, may be incon-
sistent with monogamy of entanglement.1 The Hayden-
Preskill thought experiment poses questions concerning the
absoluteness of the event horizon by suggesting that an
object which has fallen into a black hole may be recovered.
While there have been refined arguments and counterargu-
ments on these conclusions in more realistic physical
settings, essential features of the original works can be

reduced to very simple calculations based on Haar random
unitary operators.
The main idea of this paper centers around a tension

between the smooth horizon and the Hayden-Preskill
thought experiment. The no-firewall postulate asserts the
presence of entanglement between the infalling and out-
going Hawking pair. The recoverability in the Hayden-
Preskill thought experiment requires the outgoing Hawking
radiation to be entangled with a joint system of the early
radiation and the reference qubits of the infalling quantum
state. However, due to monogamy of entanglement, the no-
firewall postulate and the recoverability look mutually
incompatible.
Here we seek for a resolution to this tension by arguing

that the “outgoing Hawking radiation” in the Hayden-
Preskill and AMPS experiments are actually different
degrees of freedom (d.o.f.). While it would be desirable
to demonstrate such a separation of the Hilbert space of the
outgoing mode via direct calculations on actual models of
quantum gravity, our goal is more modest. In this paper,
we will study a certain refinement of Haar random unitary
dynamics. The unitary operatorU preserves the total global
Uð1Þ charge and acts as Haar random unitary operator
in each subspace with fixed charge in a block diagonal
manner. Although charges in black holes have led to
intriguing puzzles in quantum gravity [7], it is not our
primary goal to study the effect of global charges on the
AMPS and Hayden-Preskill thought experiments. Our
primary focus is on unitary dynamics which preserves
energy. We utilize the block diagonal structure of Uð1Þ-
symmetric Haar random unitary to capture ergodic
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1A related argument has appeared in [6].
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dynamics which essentially acts as Haar random unitary on
each small energy window. This is partly motivated from
recent works where Uð1Þ-symmetric local random unitary
circuits successfully capture key properties of energy con-
serving systems such as an interplay of diffusive transport
phenomena and the ballistic operator growth [8,9].
We will show that Uð1Þ-symmetric modes are respon-

sible for the Hayden-Preskill recovery whereas the non-
symmetric modes are responsible for correlations between
the infalling and the outgoing Hawking pair. With an actual
physical system with energy conservation in mind, we
interpret the symmetric and non-symmetric modes as low
energy (soft) and high energy (heavy) modes, respectively.
Namely we claim that the Hayden-Preskill thought experi-
ment can be carried out by using soft modes which are
distinct from the Hawking radiation. Such low energy
modes may be the pseudo-Goldstone mode which corre-
sponds to the ’t Hooft’s gravitational mode [10]. Or perhaps
they may correspond to soft gravitons due to spontaneous
breaking of supertranslation symmetries [11]. In our toy
model, however, the correlation between the infalling and
outgoing Hawking modes is found to be purely classical
as opposed to quantum correlations in the Hawking pair
which would be seen by an infalling observer. Namely, the
outgoing soft mode is found entangled with a joint of the
remaining black hole and the early radiation, not with
the remaining black hole itself.
We also discuss the construction of the interior partner

operators of the outgoing Hawking mode. While the
partners of the outgoing soft mode operators cannot be
found in the remaining black hole, adding a few qubits from
the early radiation to the remaining black hole is enough to
construct the interior operators. The key observation is that
the reconstruction of the interior operators can be seen as
the Hayden-Preskill thought experiment, and hence the
method from [12] can be used to explicitly write down the
interior operators. This observation enables us to show that
the black hole interior modes are robust against perturba-
tions on the early radiation due to scrambling dynamics.
From the perspective of the AMPS puzzle, our result

appears to suggest that interior soft operators need to be
reconstructed in the early radiation instead of the remaining
black hole. While this resonates with previous approaches
bundled under “A ¼ RB” or “ER ¼ EPR” [13–17], these run
into various paradoxes [18–20] (See [13,21] for summaries)
as the construction may lead to apparent nonlocal encoding
between the interior and the early radiation. Relatedly,
construction of interior operators is state-dependent, which
may suffer from a number of potential inconsistencies with
quantum mechanics. For further discussion, please see a
selection (but by all means not a complete set) of recent work
[14,17–19,22–28]. In an accompanying paper, wewill debug
these problems and present constructions of interior oper-
ators which are local (i.e., without involving the early
radiation) and state-independent (i.e., no dependence on

the initial state of the black hole) by incorporating the effect
of backreaction by the infalling observer explicitly [29].
The paper is organized as follows. In Sec. II, we warm up

by studying the case where the black hole is entangled only
through a subspace and its evolution is given by Haar
random unitary. A corresponding physical situation is that
the entanglement entropy SE of a black hole is smaller than
its coarse-grained entropy SBH. The eternal AdS black hole
corresponds to SE ¼ SBH whereas a one-sided pure state
black hole corresponds to SE ¼ 0. We will see that taking
SE < SBH generates quantum entanglement between the
outgoing mode and the remaining black hole, but the
Hayden-Preskill recovery is no longer possible, highlight-
ing their complementary nature. In Sec. III, we analyze
the case where the black hole is entangled through a
Uð1Þ-symmetric subspace and its evolution is given by
Uð1Þ-symmetric Haar random unitary. Physically this
corresponds to a black hole which is entangled with its
partner through the subspace consisting of typical energy
states at given temperature. In Sec. IV, we present concrete
recovery protocols by following [12]. In Sec. V, we
describe the procedure to construct the interior operators
of the outgoing soft mode. In Sec. VI, we conclude with
discussions.
Before delving into detailed discussions, we establish

a few notations used throughout this paper. See Fig. 1.
We will denote the Hilbert spaces for the input quantum
state as A, the original black hole as B, the remaining black
hole as C, and the late Hawking radiation as D. It is
convenient to introduce the reference Hilbert space for the
input quantum state. See [5,30] for detailed discussions on
the use of the reference system. The reference Hilbert space
is denoted by Ā. The entangled partner of B is denoted by B̄.
The unitary dynamics U of a black hole acts on AB ≃ CD.
The Hilbert space dimension of a subsystem R is denoted
by dR while the number of qubits on R is denoted by nR.
Entropies are computed as binary entropies.
The Hayden-Preskill thought experiment with Haar

random unitary with various global symmetries was studied
independently by Nakata, Wakakuwa and Koashi. They
pointed out that, for Uð1Þ symmetry with generic input

FIG. 1. The Hilbert space structure.
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states, the recovery requires collecting extensive number of
qubits. A similar conclusion is obtained in the Appendix for
nonsymmetric input states. Upon completion of this work,
we became aware of an independent work [31] which
addresses the black hole evaporation process with distinc-
tion between hard and soft modes.

A. Summary of diagrammatic techniques

In this paper, we will extensively use diagrammatic
tensor notations in order to express wave functions and
operators as well as physical processes. Here we provide a
brief tour of key properties for readers who are not familiar
with these techniques.
Wave functions and operators are represented by

ð1Þ

which can be also explicitly written as

jψi¼
X
j

Tjjji hψ j¼
X
j

T�
jhjj O¼

X
ij

Oijjiihjj: ð2Þ

By using these tensors as building blocks, one can express
various physics in a graphical manner. For instance, an
expectation value can be represented by

ð3Þ

In order to associate a physical process to an equation like
hψ jOn � � �O1jψi, one needs to read it from the right to the
left, i.e., the initial state jψi is acted by O1; O2; � � �
sequentially and then is projected onto jψi. In the dia-
grammatic notation, one needs to read the figure from the
bottom to the top, i.e., the time flows upward in the diagram.
A key (yet sometimes confusing) feature of tensor

diagrams is that the same tensor can represent different
physical processes depending on which tensor indices are
used as inputs and outputs. Let us look at a few important
examples. An identity operator, I ¼ P

j jjihjj, can be
expressed as a straight line (i.e., a trivial tensor) since its
inputs and outputs are the same:

ð4Þ

This diagram has one input leg (index) and one output leg.
One may bend the line and construct the following
diagram:

ð5Þ

which is the same trivial line, but with two output legs
instead of one in and one out. This diagram represents an
unnormalized EPR pair defined on H⊗2.
Another important example involves a transpose of an

operator:

ð6Þ

where

O ¼
X
i;j

Oijjiihjj OT ¼
X
i;j

Ojijiihjj: ð7Þ

Here the transposeOT exchanges the input and output ofO.
The original diagram with O represents a physical process
where an arbitrary input wave function jψi is acted by O
and Ojψi appears as an output. The second diagram with
OT describes a physical process which involves three
Hilbert spaces of the same size H⊗3 ¼ H1 ⊗ H2 ⊗ H3:

ð8Þ

HereH1 supports an arbitrary input wave function whereas
H2 ⊗ H3 starts with the EPR pair. Then, the transpose OT

acts on H2, and then the system is projected onto the EPR
pair on H1 ⊗ H2. The outcome on H3 is Ojψi. One may
represent this explicitly as the following equation:

ðhEPRj12 ⊗ I3ÞðI1 ⊗ OT
2 ⊗ I3Þjψi1 ⊗ jEPRi23 ∝ Ojψi3:

ð9Þ

As the above examples suggest, one may interpret an
operator as a quantum state and vice versa. To assign
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physical interpretations to the diagram, we simply read it
from the bottom to the top.

II. HAYDEN-PRESKILL WITH
CODE SUBSPACES

In this section, we revisit the Hayden-Preskill thought
experiment and the AMPS problem for quantum black
holes which are entangled through “code subspaces.”
Following the previous works, we will model a black

hole as an n-qubit quantum system with n ¼ SBH where
SBH is the coarse-grained entropy which is proportional to
the area of the black hole. We will also assume that the
dynamics of a black hole is given by a Haar random
unitary operator. Let SE be the entanglement entropy
between the black hole and all the other d.o.f. including
the early radiation. Previous discussions on the Hayden-
Preskill thought experiment and the AMPS thought
experiment concern maximally entangled black holes
with SBH ¼ SE. Here we will investigate a black hole
with SBH > SE. Black holes before the Page time satisfy
this condition. Similar situations have been previously
considered by Verlinde and Verlinde [32]. In particular,
they pointed out that taking SBH > SE enables us to
construct partner operators of the outgoing mode in the
d.o.f. of the remaining black hole. Furthermore, they
proposed a scenario to resolve the AMPS puzzle by using
this effect.
The aim of this section is to study the consequence of

taking SBH > SE in the Hayden-Preskill thought experi-
ment. We find that, if a black hole with SBH ≫ SE evolves
under Haar random unitary operator, the Hayden-Preskill
recovery cannot be performed unless one collects OðnÞ
qubits from the outgoing Hawking radiation. In fact,
we find that the Hayden-Preskill recoverability and the
smoothness of the horizon are mutually incompatible
phenomena within the applicability of toy descriptions
based on Haar random unitary operator.

A. Haar integral

The quantum state we are interested in is the following
with dĀ ≤ dA and dB̄ ≤ dB:

ð10Þ

where summations are implicit with k ¼ 1;…dĀ, l ¼
1;…; dB̄, m ¼ 1;…; dC, and o ¼ 1;…; dD. Triangles re-
present normalized isometries. For instance, the input state
in ĀA is given by

1ffiffiffiffiffi
dĀ

p XdĀ
k¼1

jkiĀjkiA: ð11Þ

Here jkiA spans only a subspace of A. The choice of jkiA is
not important as the system evolves by Haar random
unitary.
Each subsystem, ĀABB̄CD, admits the following physi-

cal interpretation in the Hayden-Preskill thought experi-
ment. A and Ā correspond to Hilbert spaces for the input
quantum state and its reference system respectively. An
input quantum information is drawn from dĀ-dimensional
subspace Ā and is encoded into dA-dimensional subspace A
before thrown into a black hole. B corresponds to the
coarse-grained Hilbert space of a black hole whereas B̄
corresponds to the subspace where the black hole is
entangled. The initial black hole satisfies SBH > SE since

SBH ¼ log dB SE ¼ logdB̄: ð12Þ

Finally, C and D corresponds to the remaining black hole
and the outgoing Hawking radiation respectively.
The Haar average formula with two Us and two U†s is

Z
dUUi1j1Ui2j2U

�
i0
1
j0
1
U�

i0
2
j0
2

¼ 1

d2 − 1

�
δi1i01δi2i02δj1j02δj2j01 þ δi1i02δi2i01δj1j01δj2j02

�
ð13Þ

−
1

dðd2 − 1Þ
�
δi1i01δi2i02δj1j02δj2j01 þ δi1i02δi2i01δj1j01δj2j02

�
ð14Þ

where d ¼ 2n. Approximating d2 − 1 ≈ d2, this lets us
compute the Haar average of Trfρ2Cg and Trfρ2B̄Dg:
Z

dU Trfρ2Cg ¼ 1

d2Ād
2
B̄

Z
dUUklmoU�

klm0oUk0l0m0o0U�
k0l0mo0

ð15Þ

Z
dUTrfρ2B̄Dg¼

1

d2Ād
2
B̄

Z
dUUklmoU�

kl0mo0Uk0l0m0o0U�
k0lm0o;

ð16Þ

and after simple calculations of delta functions, we find
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Z
dU Trfρ2Cg ¼ 1

dC
þ 1

dDdĀdB̄
−
dC
d2

−
1

ddCdĀdB̄

≈
1

dC
þ 1

dDdĀdB̄
ð17Þ

Z
dU Trfρ2B̄Dg ¼ 1

dDdB̄
þ 1

dCdĀ
−

1

ddCdĀ
−

1

ddDdĀ

≈
1

dDdB̄
þ 1

dCdĀ
ð18Þ

where terms with 1=d factors are ignored.

B. Recoverability

The Hayden-Preskill thought experiment concerns
recoverability of the input quantum state on Ā by having
an access to both the early radiation B̄ and the outgoing
mode D. As such, the recoverability of a quantum state can
be studied by asking whether one can distill EPR pairs
between Ā and DB̄. One can analyze the recoverability by
studying quantum correlations between Ā and B̄D in jΨi in
Eq. (10). Hence, as a measure of recoverability, we will use

the Rényi-2 mutual information, defined by Ið2ÞðĀ; B̄DÞ ¼
Sð2Þ
Ā

þ Sð2ÞB̄D − Sð2Þ
Ā B̄D

by following [30].2

We can compute the Rényi-2 mutual information
between Ā and B̄D:

Z
dU 2I

ð2ÞðĀ;B̄DÞ ≈ dĀ
dDdĀdB̄ þ dC
dDdB̄ þ dCdĀ

: ð19Þ

Let us look at recoverability in three regimes.
(a) (small dD) For d 1

dĀdB̄
≫ d2D, we find

dDdĀdB̄ ≪ dC; dDdB̄ ≪ dCdĀ ð20Þ

leading to

2I
ð2ÞðĀ;B̄DÞ ≈ 1; ð21Þ

implying that Ā and B̄D are not correlated.
(b) (intermediate dD) For d

dĀ
dB̄

≫ d2D ≫ d 1
dĀdB̄

, we find

dDdĀdB̄ ≫ dC; dDdB̄ ≪ dCdĀ ð22Þ

leading to

2I
ð2ÞðĀ;B̄DÞ ≈

d2DdĀdB̄
d

: ð23Þ

The mutual information increases by two as the
number of qubits in D increases by one. In order
for this regime to be present, we need d2Ā ≫ 1.

(c) (large dD) For d2D ≫ d dĀ
dB̄
, we find

dDdĀdB̄ ≫ dC; dDdB̄ ≫ dCdĀ ð24Þ

2I
ð2ÞðĀ;B̄DÞ ≈ d2Ā; ð25Þ

implying that the correlation is nearly maximal.

C. Smoothness

Next let us turn our attention to the AMPS problem. Here
we are interested in whether partners of outgoing mode
operators onD can be reconstructed on the remaining black
hole C or not. This is possible if and only if C and D retain
strong quantum correlations. Hence, as a measure of
smoothness of the horizon, we will use Ið2ÞðC;DÞ.
We compute the Haar average of the mutual information

between C and D:

Z
dU 2I

ð2ÞðC;DÞ ≈
dCd2D

dDdĀdB̄ þ dC
: ð26Þ

We also derive the mutual information between ĀB̄ and D
in order to illustrate the monogamy of entanglement.
The two mutual information are related as follows

2I
ð2ÞðĀB̄;DÞ ¼ 2S

ð2Þ
D

2I
ð2ÞðC;DÞ ≈

d2D
2I

ð2ÞðC;DÞ ð27Þ

where we approximated ρD by a maximally mixed state.
(a) (small dD) For d 1

dĀdB̄
≫ d2D, we find

2I
ð2ÞðC;DÞ ≈ d2D; 2I

ð2ÞðĀ B̄;DÞ ≈ 1 ð28Þ

implying that Ið2ÞðĀ B̄; DÞ ≈ 0 and does not increase as
dD increases.

(b) (intermediate and large dD) For d2D ≫ d 1
dĀdB̄

, we find

2I
ð2ÞðC;DÞ ≈

d
dĀdB̄

; 2I
ð2ÞðĀ B̄;DÞ ≈

d2DdĀdB̄
d

ð29Þ

implying that Ið2ÞðĀ B̄; DÞ becomes large as the
number of qubits in D increases while Ið2ÞðC;DÞ
remains unchanged.

D. Physical interpretation

Recall that the initial black hole satisfies SBH ¼ logdB
and SE ¼ log dB̄ in our toy model. For the recovery in the
Hayden-Preskill thought experiment, we need

2Strictly speaking, the Rényi-2 mutual information is not an
entanglement monotone in general. See [33] for details.
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dD ≥
ffiffiffiffiffiffiffiffiffiffi
dAdĀ

p ffiffiffiffiffiffi
dB
dB̄

s
: ð30Þ

When a black hole is maximally entangled with dB ¼ dB̄,
the above lower bound reduces to

dD ≥
ffiffiffiffiffiffiffiffiffiffi
dAdĀ

p
ð31Þ

reproducing the result in [12].
Here we are interested in cases with dB ≫ dB̄ where the

coarse-grained entropy is larger than the entanglement
entropy. Namely, if the number of qubits in B and B̄
satisfy nB − nB̄ ∼OðnÞ, then Bob needs to collect an
extensive number of qubits. As such, if dB ≫ dB̄, simple
recovery is not possible (unless one collects an extensive
number of qubits). If we take dB̄ ¼ 1, we have dD ≥
dA

ffiffiffiffiffiffi
dB

p
∼Oð ffiffiffi

d
p Þ implying that Bob needs to collect more

than a half of the total qubits for reconstruction as pointed
out by Page [2].
The failure of recovery for dB ≫ dB̄ can be understood

from the calculation of Ið2ÞðC;DÞ. When dD is small, most
of qubits in D are entangled with the remaining black hole
C and do not reveal any information about Ā B̄. Once
2I

ð2ÞðC;DÞ reaches a stationary value of d
ðdĀdB̄Þ2, entanglement

between D and Ā B̄ starts to develop. From the perspective
of the firewall puzzle, the increase of Ið2ÞðC;DÞ appears to
suggest that partner operators of the outgoing mode D can
be found on the remaining black hole C. Verlinde and
Verlinde employed this mechanism as a possible resolution
of the firewall puzzle and made an intriguing relation to
theory of quantum error-correction [32]. These observa-
tions illustrate that Hayden-Preskill and the smoothness of
the horizon are mutually complementary phenomena when
U is a Haar random unitary which thoroughly mixes the
Hilbert space AB. Namely, the presence of partner oper-
ators in C requires that D is correlated with C whereas the
recoverability of an input quantum state in the Hayden-
Preskill thought experiment requires that D is entangled
with Ā B̄. In fact, the tradeoff between the smoothness and
recoverability is strikingly sharp; once D becomes large
enough to start releasing information about Ā via increase
of Ið2ÞðĀ; B̄DÞ, the growth of Ið2ÞðC;DÞ stops.
Finally, we make a comment on the complexity of

performing recovery protocols in the Hayden-Preskill
thought experiment. For dB ¼ dB̄, a simple recovery
protocol is known to exist [12]. When applying this method
to the case with large dD, it is crucial to identify d.o.f. in D
which is not entangled with C. Under chaotic dynamics
of a black hole, it is plausible to expect that such d.o.f.
become non-local insideD and require complex operations.
Hence, performing the Hayden-Preskill recovery may be
unphysical when dB ≫ dB̄. In fact, it may be more correct
to say that D corresponds to simple d.o.f. which can be

accessed easily from the outside whereas C corresponds to
complex ones.

III. HAYDEN-PRESKILL WITH Uð1Þ SYMMETRY

In this section, we study the Hayden-Preskill thought
experiment in the presence of conserved quantities. For
simplicity of discussions, we will consider systems with
Uð1Þ global symmetry where the total spin in the
z-direction is preserved. We will find that the Hayden-
Preskill recovery is possible only if an input quantum state
is embedded into a subspace with fixed charges.

A. Uð1Þ-symmetric system

Our motivations to study Uð1Þ-symmetric systems are
two-fold. The first obvious motivation is that we want to
address the Hayden-Preskill recoverability and the AMPS
problem in the presence of symmetries. The second, less
obvious, motivation is to study the same set of questions for
quantum systems which conserve total energy.
Let us illustrate the second point. In the discussions from

the previous section, we treated qubits on B as coarse-
grained d.o.f. of a black hole with SBH ¼ log dB̄. Instead,
one might want to interpret B as physical qubits on the
boundary quantum system and the subspace B̄ as a typical
energy subspace of a black hole at finite temperature.
Namely, if we consider the entangled AdS black hole, this
amounts to assuming that SE ¼ SBH ¼ log dB̄ while logdB
qubits are placed at UV. In this interpretation, our calcu-
lation would suggest that the recovery in the Hayden-
Preskill thought experiment is not possible for a maximally
entangled black hole at finite temperature. However, this
conclusion is weird as a physical process akin to the
Hayden-Preskill recovery has been recently found [34].
It has been also argued that scrambling in a sense of decay
of out-of-time order correlator is sufficient to perform
recovery protocols even at finite temperature [12].
Hence, something must be wrong in this interpretation.
The error in the aforementioned argument can be traced

back to the approximation of the black hole dynamics by
Haar random unitary. Since Haar random unitary does not
conserve energy, it brings quantum states on the input

FIG. 2. Uð1Þ-symmetric Haar random unitary as a toy model of
energy conserving dynamics.
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Hilbert space AB to outside of the window of typical energy
states, and hence recovering quantum states becomes harder.
This observationmotivates us to consider theAMPSproblem
and the Hayden-Preskill thought experiment by considering
some version of Haar random unitary dynamics which
captures physics of energy conserving systems.
One can mimic such a situation by considering Uð1Þ-

symmetric Haar random unitary where the total Uð1Þ
charges are conserved. To be concrete, a Uð1Þ-symmetric
system can be modeled as a set of n qubits where basis
states can be expressed as an n-binary string and its total
charge is defined as the number of 1s:

ji1;…; ini m ¼
Xn
k¼1

ik ik ¼ 0; 1: ð32Þ

Wewill consider theUð1Þ-symmetric Haar random unitary:

U ¼ ⨁
n

m¼0

Um H ¼ ⨁
n

m¼0

Hm ð33Þ

where Um is independently Haar random acting on each
fixed-charge subspace Hm (see Fig. 2).
With energy conservation in mind, our goal was to

consider a toy model of scrambling dynamics which mixes
eigenstates with roughly equal energies. By viewing each
fixed-charge subspace Hm as eigenstates with roughly
equal energies, a Uð1Þ-symmetric Haar random unitary
can capture dynamics which throughly mixes quantum
states from the small typical energy window. In a realistic
quantum system, the Hilbert space structure does not
decompose into a diagonal form in an exact manner.
Here we hope to capture some salient feature of energy
conserving systems in this simplified toy model.

B. Haar integral

Let us denote the local charge on R by mR (i.e., the total
number of 1’s in R). Wewill consider the cases where A and
B have fixed charge mA and mB respectively. The quantum
state of our interest is

ð34Þ

where filled triangles represent normalized isometries
onto fixed-charge subspaces. The input quantum states

on AB can be spanned in Hin ¼ HðmAÞ
A ⊗ HðmBÞ

B where

HðmRÞ
R represents a subspace of HR with fixed charge mR.

Define dĀ ≡ dimðHðmAÞ
A Þ and dB̄ ≡ dimðHðmBÞ

B Þ. The input
state in ĀA is given by

1ffiffiffiffiffi
dĀ

p XdĀ
k¼1

jkiĀjksymiA ð35Þ

where jksymi are states with fixed charges. For instance, one
may consider j100i, j010i, j001i for nA ¼ 3 and mA ¼ 1.
After a Uð1Þ-symmetric unitary evolution, the total

charge m ¼ mA þmB is conserved. The output Hilbert
space is (assuming nC ≥ m ≥ nD)

Hout ¼ ⨁
nD

Q¼0

Hðm−QÞ
C ⊗ HðQÞ

D : ð36Þ

It is convenient to define

dðm−QÞ
C ¼ dimðHðm−QÞ

C Þ dðQÞ
D ¼ dimðHðQÞ

D Þ

d ¼ dimðHoutÞ ¼
XnD
Q¼0

dðm−QÞ
C dðQÞ

D : ð37Þ

We have dðm−QÞ
C ¼ ð nC

m−QÞ and dðQÞ
D ¼ ðnDQ Þ.

Much of the analysis resembles the one in the previous
section. The only complication is the treatment of delta
functions when the Hilbert space does not have a direct
product structure. The quantum state jΨi of the Hayden-
Preskill thought experiment can be expressed as follows

jΨi ¼ 1ffiffiffiffiffiffiffiffiffiffi
dĀdB̄

p Uklðs;tÞjkiĀjliB̄jðs; tÞiCD ð38Þ

where (s, t) indicates that summations over (s, t) should be
taken according to Eq. (36). We find

Z
dU Trfρ2Cg

¼ 1

d2Ād
2
B̄

Z
dUUklðs;tÞU�

klðs0;tÞUk0l0ðs0;t0ÞU�
k0l0ðs;t0Þ ð39Þ

and a similar equation for Trfρ2B̄Dg. In using the Haar
formula, we need to apply delta functions to (s, t). For
instance, the first term of the Haar integral in Trfρ2Cg is

1

d2Ād
2
B̄

· ðnumber of k;l; k0;l0Þ · ðnumber of ðs; tÞ and

ðs0; t0Þ with s ¼ s0Þ ð40Þ

¼ 1

d2Ād
2
B̄

· d2Ād
2
B̄ ·

XnD
Q¼0

dðm−QÞ
C ðdðQÞ

D Þ2 ¼
XnD
Q¼0

dðm−QÞ
C ðdðQÞ

D Þ2:

ð41Þ
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It is convenient to define

WC ≡XnD
Q¼0

ðdðm−QÞ
C Þ2 · dðQÞ

D WD ≡XnD
Q¼0

dðm−QÞ
C · ðdðQÞ

D Þ2:

ð42Þ

We find

Z
dU Trfρ2Cg ≈

WD

d2
þ WC

d2dĀdB̄Z
dU Trfρ2B̄Dg ≈

WC

d2dB̄
þ WD

d2dĀ
ð43Þ

after ignoring terms suppressed by 1=d.

C. Recoverability

Let us find the criteria for recovery. If nD is large enough
such that

WD

dĀ
≫

WC

dB̄
; ð44Þ

we will have

Trfρ2Āg¼
1

dĀ
Trfρ2Cg≈

WD

d2
Trfρ2B̄Dg≈

WD

d2dĀ
ð45Þ

implying Ið2ÞðĀ; B̄DÞ ≈ 2log2dĀ. Hence the recovery will
be possible. As such, we need to find the condition on nD
such that Eq. (44) holds.
Let us write WC and WD as follows:

WC ¼
XnD
Q¼0

WðQÞ
C WD ¼

XnD
Q¼0

WðQÞ
D ð46Þ

where

WðQÞ
C ≡

�
nC

m −Q

�
2
�
nD
Q

�
WðQÞ

D ≡
�

nC
m −Q

��
nD
Q

�
2

:

ð47Þ

We look for the condition for the following inequality:

WðQÞ
D

dĀ
≫

WðQÞ
C

dB̄
: ð48Þ

By writing it down explicitly, we have

ðnDQ Þ
dĀ

≫
ð nC
m−QÞ
ðnBmB

Þ : ð49Þ

When Q ≥ mA and nD ≥ nA, we have m −Q ≤ mB and
nC ≤ nB. So, the right-hand side (RHS) is smaller than
unity. Hence it suffices to take

�
nD
Q

�
≫ dĀ ð50Þ

in order to satisfy Eq. (48).
While one cannot easily satisfy Eq. (48) by taking large

nD for very small Q, contributions from such cases are
negligibly small. In fact, for large nC, we have

WðQÞ
C ≃Wð0Þ

C

�
nD
Q

�
ϵ2Q WðQÞ

D ≃Wð0Þ
D

�
nD
Q

�
2

ϵQ ð51Þ

with ϵ ¼ p
1−p. Since both WðQÞ

C and WðQÞ
D are (approxi-

mately) proportional to a binomial distribution and its
square respectively, contributions to WC and WD are
dominated by Q ∼OðnDÞ. For such Q, it suffices to take
nD ≫ nA in order for Eq. (48) to hold. Hence, we conclude
that nD ≫ nA is sufficient for the recovery to be possible.
We will present concrete recovery protocols in Sec. IV.

D. Smoothness

Next, let us compute the mutual information IðC;DÞ.
For simplicity of discussion, we focus on the case where
dA ¼ 1, i.e., with no input state. In this case, ρCD is a
maximally mixed state with charge m:

ρCD ¼ 1

ðnmÞ
XðnmÞ
k¼1

jksymihksymj: ð52Þ

This density matrix can be decomposed into a black
diagonal form:

ρCD¼
XnD
Q¼0

PrðQÞρCDðQÞ ρCD
ðQÞ ¼σðm−QÞ

C ⊗σðQÞ
D ð53Þ

where σðm−QÞ
C and σðQÞ

D represent maximally mixed states of
chargem −Q andQ respectively. The probability weight is
given by

PrðQÞ ¼ ðnDQ Þð nC
m−QÞ

ðnmÞ
: ð54Þ

For large nC, PrðQÞ can be approximated by a binomial
distribution with p ¼ m=n. The mutual information is
given by

IðA;BÞ ¼ −
XnD
Q¼0

PrðQÞ log PrðQÞ ≃ 1

2
log nD: ð55Þ
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Since the variance of the binomial distribution is ∼ ffiffiffiffiffiffi
nD

p
,

we can approximate it as a distribution over
ffiffiffiffiffiffi
nD

p
-level states

which can be encoded in ∼ 1
2
log nD bits. The above argu-

ment suggests that these “charge-bits” are strongly correlated
with those on C. However, as the block diagonal form
suggests, the correlation betweenC andD is purely classical.

E. Physical interpretation

Let us interpret the Uð1Þ-symmetric Haar random
unitary as an energy conserving dynamics. Then, the
Hilbert space B corresponds to physical qubits of a
quantum system while B̄ corresponds to the coarse-grained
Hilbert space which is also the typical energy subspace
at finite temperature. The black hole is maximally
entangled with the early radiation in this interpretation;
SBH ¼ SE ¼ log dB̄. The Hawking radiation D contains
symmetric and nonsymmetric modes which can be inter-
preted as soft and heavy modes respectively. When the
input is symmetric with fixed charge, we found that the
recovery is possible by collecting Oð1Þ qubits. However,
as shown in Appendix, when the input is nonsymmetric
with variance in charge values, we found that the recovery
requires nD to be extensive. With energy conserving
systems in mind, this implies that input quantum states
should be encoded in soft modes for recovery. We also see
that the correlation between C andD is purely classical and
results from charge conservation. With energy conserving
systems in mind, it corresponds to correlations of heavy
modes under energy conservation. Therefore, we interpret
these heavy modes as Hawking quanta whereas soft modes
are some entity responsible for the Hayden-Preskill recov-
ery and scrambling dynamics.
From the perspective of the AMPS problem, calculations

in this section motivate us to consider two different kinds of
operators on D. The off-diagonal operators are the ones
which change the local charge in D. The partners of those
off-diagonal operators can be identified in C as operators
which decrease and/or increase the total charge. This is due
to classical (diagonal) correlations between C and D. On
the other hand, the diagonal operators are the ones which
leave the total charge unchanged up to phases. Such
operators can be explicitly written as follows:

W ¼
X
n

eiθn jnihnj: ð56Þ

Unlike off-diagonal operators, the interior partners of
diagonal operators W cannot be found in C. Hence, the
nonlocality problem remains for partners of symmetric
(soft) modes.

IV. RECOVERY VIA SOFT MODE

The goal of this section is to show that the Hayden-
Preskill recovery can be performed via symmetric modes

only. While we will study Haar random dynamics, we
believe that similar conclusions hold for any “scrambling”
systems in a sense of [12] where scrambling is defined with
respect to out-of-time order correlation functions.
We have discussed the recoverability in the Hayden-

Preskill thought experiment without presenting explicit
recovery protocols. The original work by Hayden and
Preskill was essentially an existence proof of recovery
protocols when the dynamics is given by Haar random
unitary. Recently the author and Kitaev have constructed
simple recovery protocols which work for any scrambling
systems whose out-of-time order correlation functions decay
[12]. Similar recovery protocols can be applied to our Uð1Þ-
symmetric toy model. For simplicity of discussion, we will
focus on a probabilistic recovery protocol. A deterministic
protocol can be also constructed by following [12]. Since the
analysis in this section is a simple extension of the original
work, we keep the presentation brief.
Consider the following quantum state:

ð57Þ

where Bob prepared a particular quantum state on A0Ā0

which is identical to the one on AĀ, and applied the
complex conjugate U�

sym on B0 and A0. The initial quantum
state on BB0 is a maximally entangled symmetric state:
1ffiffiffiffi
dB̄

p PdB̄
l¼1 jlsymiB ⊗ jl�

symiB0 . In the diagram, the unfilled

dot with mB represents a normalized projection onto the
subspace with total charge mB. Bob has an access to B0D
(or DD0C0Ā0), and his goal is to distill EPR pairs on ĀĀ0.
Bob’s strategy is to perform a projection onto EPR pairs

on DD0. Denoting the projector by ΠðDD0Þ
EPR , the probability

of measuring EPR pairs is

ð58Þ

where the filled dots in the middle represent projectors onto
EPR pairs. Recovery is successful if Bob can distill EPR
pairs on ĀĀ0. Let us denote the fidelity of the distillation,
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conditioned on the measurement of EPR pairs on DD0, by
FEPR. The probability of measuring EPR pairs on bothDD0

and ĀĀ0 is

ð59Þ

Both PEPR and PEPRFEPR can be explicitly computed.
From the above diagrams, we notice

PEPR ¼ Trðρ2B̄DÞ
dB̄
dD

PEPRFEPR ¼ Trðρ2CÞ
dB̄

dDdĀ
: ð60Þ

For Uð1Þ-symmetric Haar random unitary, we obtain

PEPR ≃ PEPRFEPR ≃
WDdB̄
dĀdD

ð61Þ

where subleading terms are suppressed for nD ≫ nA.
Hence, upon postselection, we have FEPR ≃ 1 implying
nearly perfect recovery.
The aforementioned recovery protocol can be modified

to use only the symmetric mode. Namely, by applying a
projection onto maximally entangled symmetric states on
DD0, EPR pairs can be distilled on ĀĀ0. Let us denote the
projector onto entangled states with charge Q by ΠðDD0Þ

Q .
This projector is related to the EPR projector by

ΠðDD0Þ
EPR ¼ 1

2nD

XnD
Q¼0

�
nD
Q

�
ΠðDD0Þ

Q : ð62Þ

Let us denote the probability amplitude for measuring

ΠðDD0Þ
Q by PQ. For Uð1Þ-symmetric Haar, we find

PQ ≃ PQFEPR ≃
�

nC
m −Q

��
nD
Q

�
dB̄
d2dĀ

ð63Þ

for large nD which satisfies Eq. (49). Hence, the Hayden-
Preskill recovery can be carried out via symmetric modes.

V. CONSTRUCTION OF INTERIOR OPERATOR

Finally, we discuss the construction of partner operators
that would describe the interior mode in our toy model. The
partner of nonsymmetric (heavy) operators on D can be
easily constructed on the remaining black hole C due to the

classical correlations between C and D. As such, we will
focus on the partner of symmetric (soft) operators.
The main result of this section is the observation that

construction of interior partner operators can be interpreted
as the Hayden-Preskill recovery problem in disguise. This
observation enables us to show that the black hole interior
modes are robust against perturbations on the early radi-
ation due to scrambling dynamics. Namely, even if almost
all the qubits, except a few, in the early radiation are
damaged, interior partner operators can be still constructed.
We assume dA ¼ 1 although our construction works well

for cases with dA > 1 too.

A. Interior from Hayden-Preskill

Interestingly, reconstruction of the interior operators can
be performed by using a procedure similar to the Hayden-
Preskill recovery. Let us begin by defining what we mean
by interior partner operators. The quantum state of our
interest is as follows:

ð64Þ

where D is the outgoing mode and C is the remaining
black hole. Our task is the following; given a symmetric
(diagonal) operator OD, find the partner operator VCB̄ such
that

ðOD ⊗ ICB̄ÞjΨi ≃ ðID ⊗ VCB̄ÞjΨi: ð65Þ

Graphically the above equation reads

ð66Þ

Note that the existence of a partner operator is guaranteed.
The question concerns how to write it down.
To address this problem, it is convenient to interpret the

above quantum state jΨi as a map from D to CB̄ where
(symmetric) quantum states on D are encoded into CB̄.
To make this interpretation more concrete, let us deform the
diagrams in Eq. (66) in the following manner:
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ð67Þ

Here the original diagrams had three upward “output” legs
whereas the deformed graphs use theD-index as an “input”
by bending it downward. The new diagrammatic equation
represents a map from OT

D̄ to a partner operator VCB̄. The
map itself can be explicitly expressed as follows:

ð68Þ

This is an isometric embedding (preserving inner products)
from a smaller Hilbert space D̄ onto a larger one CB̄. It is
worth recalling that B̄ and C correspond to the early
radiation and the remaining black hole respectively. We
can associate a physical process to the deformed diagram
by reading it from the bottom to the top. Namely, it begins
with a system consisting of an arbitrary initial state on D̄
and a maximally entangled symmetric state on BB̄. Then
the system evolves by Usym, and is projected onto the EPR
pair on D̄D to obtain an output wave function on CB̄.
One can further simplify the above map (and make the

relation to the Hayden-Preskill problem more explicit)
by rotating the box of the unitary operator Usym by
180 degrees. Carefully redrawing the diagram, we obtain
the following(s):

ð69Þ

Here UT
sym represents the transpose of Usym, which results

from flipping the diagram upside down. The circle on B̄
represent a projection onto a symmetric subspace with fixed
charge. An elongated circle also represents a projection
onto a symmetric subspace with fixed charge. Note that the
projector does not factor on D ⊗ C̄. Also note that the
projector commutes with symmetric operatorOD andUT

sym.
Our task is to reconstruct a partner of OT

D on B̄C. Of
course, it is possible to find a partner operator on the early
radiation B̄ by simply time-evolvingOT

D byUT
sym. However,

the construction of a partner operator VCB̄ is not unique
since B̄C is larger than D. The nonuniqueness of the
interior partner operator is closely related to the fact that the
above quantum state jΨi can be interpreted as a quantum
error-correcting code where (symmetric) quantum states on
D are encoded into CB̄.
Here we want to find an alternative representation which

involves as few qubits on B̄ as possible. A key observation
is that, in the above diagram, the outgoing mode D can be
interpreted as an input Hilbert space for the Hayden-
Preskill thought experiment where the unitary evolution
is given by UT

sym. To be explicit, let B̄0 be some small
subsystem of the early radiation B̄ which contains nB̄0

∼
Oð1Þ qubits such that nB̄0

≫ nD. Let B̄1 be the complement
of B̄0 in B̄. The recoverability in the Hayden-Preskill
thought experiment for symmetric modes implies that there
exists a partner operator VB̄0C supported on B̄0C:

ð70Þ

While we assumed dA ¼ 1, the above procedure works for
dA > 1 cases since B̄0 can be chosen arbitrarily.
We have observed that the reconstruction of the interior

operators is essentially the Hayden-Preskill thought experi-
ment. This suggests the following result:

(i) While the partner operator of the outgoing soft mode
D cannot be found in the remaining black hole C,
adding a few extra qubits B̄0 from the early radiation
B̄ to C is enough to construct the interior operator.
Due to the scrambling nature of UT

sym, one may
choose any set of a few qubits B̄0 in order to
construct the interior operator as long as out-of-time
order correlation functions betweenD and B̄0 decay.
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B. Fault-tolerance

From the outside quantum mechanical viewpoint, the
AMPS problem (or the nonlocality problem) originates
from the fact that IðC;DÞ is small and the partner operator
of D cannot be constructed in the remaining black hole C.
The construction of interior operators via the Hayden-
Preskill recovery protocols enables us to construct a partner
operator on CB̄0 where B̄0 is a small subsystem with
jB̄0j⪆ jDj. While we still need to include a few extra qubits
from the early radiation B̄, the construction is “almost”
inside the remaining black hole C.
In fact, this observation sheds a new light on questions

concerning the robustness of the black hole interior
against perturbations on the early radiation. Some previous
works attempted to resolve the AMPS puzzle by using the
concept of quantum circuit complexity by drawing dis-
tinctions between simple and complex quantum operations
[15,35]. Namely, it has been argued that action of simple
quantum operations on the early radiation should not
disturb the black hole interior operators [15]. Heuristic
explanations for such fault-tolerant “encoding” of interior
operators have been presented by using an analogy with
quantum error-correcting code [32,36–40]. However con-
crete physical origin of robustness of the black hole interior
mode was not discussed from the outside quantum
mechanical perspective.
Our construction of interior operators suggests that robust-

ness of the black hole interior arises from scrambling
dynamics. The essential point is that the small subsystem
B̄0 in B̄ can be chosen in an arbitrary manner as long as the
out-of-time order correlation functions between B̄0 and D
decay [12,30]. In particular, let us consider a scenario where
some large perturbations are added on the early radiation B̄
which would damage all the qubits on B̄1 (n − log jB̄0j
qubits). The construction of the interior operator is immune
to such a drastic error since it does not involve any qubits
from B̄1. In this sense, our construction is naturally fault-
tolerant against perturbations on the early radiation B̄. This
unusual robustness of the encoding of interior operators
results from the very fact that they can be constructed via the
Hayden-Preskill recovery protocols.
The remaining question concerns how to write down the

interior operators explicitly. On a formal level, if the time
evolution UT

sym is a scrambling unitary with the decay of
out-of-time order correlation functions, the interior oper-
ators can be explicitly constructed by running the recovery
protocol proposed in [12]. We are currently working on
specific quantum systems and observe that the concept of
operator growth perspective plays important roles in the
construction. This will be presented elsewhere.

VI. DISCUSSIONS

In this paper, we addressed the tension between the
smoothness of the horizon and the recoverability in the

Hayden-Preskill thought experiment by using a toy model
with energy conservation. Within the validity of the toy
model, our calculation suggests that the Hawking radiation
corresponds to heavy modes whereas the Hayden-Preskill
thought experiment must concern soft modes only. The
correlation between the remaining black hole and the
outgoing radiation is found to be classical. The classical
correlation remains due to the energy conservation and due
to the fact that the black hole in our toy model is entangled
with the early radiation only through soft modes. Our toy
model suggests that the off-diagonal correlation decoheres
since the phases of heavy modes are scrambled by chaotic
dynamics in soft modes. Finally, we observed that the
procedure of reconstructing the soft part of the infalling
mode can be interpreted as the Hayden-Preskill recovery
protocol. As such, while the description of the infalling
mode may require the early radiation, only a few extra
qubits will be sufficient. In the reminder of the paper, we
present discussions on relevant topics.

A. AMPS puzzle and scrambling

Our construction of interior operators via the Hayden-
Preskill recovery phenomenon sheds a new light on the
AMPS puzzle through the lens of quantum information
scrambling. For simplicity of discussion, let us consider a
maximally entangled black hole at infinite temperature
which is represented by n copies of EPR pairs. To recap
briefly, the AMPS puzzle concerns an apparent tension
between descriptions by the infalling observer and the
outside observer. From the perspective of the outside
observer, the outgoing mode D is entangled with some
d.o.f. in the early radiation B̄. From the perspective of the
infalling observer, the same outgoing mode D must be
entangled with some interior mode, leading to violation of
the monogamy of quantum entanglement.
The intriguing lesson from our construction of interior

operators is that whoever possesses a tiny portion B̄0 of
the early radiation B̄ will be able to distill a qubit which is
entangled with the outgoing mode D. Namely, if B̄0 is
included to C as d.o.f. which the infalling observer can
touch, she can distill an EPR pair between D and B̄0C.
On the other hand, if B̄0 is left untouched by the infalling
observer, the outgoing modeD is entangled with B̄ ¼ B̄0B̄1

and the outside observer can distill an EPR pair between D
and B̄. See Fig. 3 for schematic illustration. In fact, these
statements can be made quantitative. Decay of out-of-time
order correlation functions implies that Ið2ÞðD; B̄0CÞ is
nearly maximal [30]. Since Ið2ÞðD; B̄0CÞ þ Ið2ÞðD; B̄1Þ ¼
2Sð2ÞD , this suggests that Ið2ÞðD; B̄1Þ is close to zero.
Namely, the infalling observer may reconstruct a partner
operator on B̄0C while the outside observer cannot recon-
struct it on B̄1.
It is worth emphasizing that B̄0 can be any subsystem

of B̄ as long as jB̄0j⪆ jDj. Hence, from the perspective
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of the infalling observer, it is rather easy to disentangle the
outgoing mode D from the early radiation B̄ as she needs
to touch only a few qubits in B̄. In fact, it turns out that
quite generic perturbations to the black hole by the
infalling observer will disentangle the outgoing mode
D from the early radiation B̄ without ever accessing the
early radiation B̄. In an accompanying paper, based
on this disentangling phenomena, we will propose a
possible resolution of the AMPS problem in a manner
which is free from the nonlocality problem and the state-
dependence problem [29].

B. Soft modes ≃ codewords

Our toy model crucially relies on the assumption
that there is a clear separation between heavy and soft
modes. The key insight behind this simplification is that
a few thermodynamic quantities, such as energy and
charge, determine the underlying classical geometry.
This is essentially the statement of the no hair theorem
of classical black holes. However, there are many black
hole microstates which are consistent with the given
classical geometry. The soft mode, discussed in the toy
model, aims to capture all of these extremely low energy
d.o.f. While it is unclear to us to what extent this toy
model can capture the actual physics, it is concrete
and simple enough to make theoretically verifiable
predictions.
One interesting point is that a simple toy model with

Uð1Þ symmetry can be interpreted as a energy conserving
system and naturally gives rise to heavy and soft modes.
In a more generic setting, we may imagine an approximate
decomposition of the full Hilbert space into a block
diagonal form:

H ≈ ⨁
E;Q

HE;Q ð71Þ

where E represents the energy and Q represents the
charge, angular momentum and other relevant macroscopic

quantities. Each subspace HE;Q defines a Hilbert space for
the classical geometry determined by a set of E, Q. Heavy
operators correspond to those which moves between differ-
ent subspaces whereas soft modes correspond to d.o.f.
inside HE;Q. In realistic situations, such a decomposition
into the block diagonal form will be an approximate one.
Also there are ambiguities on which d.o.f. should be treated
as soft modes. For instance, depending on the problems of
interest and energy/time scales as well as dimensionality,
matter on the bulk may be considered as either soft or hard
mode. Our toy model aims to capture the idealistic limit
where the decomposition becomes exact with sharp dis-
tinction between heavy and soft modes.
It is worth recalling that separation of soft and heavy

modes plays important roles in a number of problems in
quantum gravity. To add a more speculative comment, the
quantum error-correcting property in the AdS=CFT corre-
spondence is a manifestation of such separation of energy
scales [41,42]. In this interpretation, the geometry (E, Q)
determines the codeword subspace HE;Q while the low
energy modes correspond to different codeword states in
a quantum error-correcting code determined by (E, Q).
The “errors” in this quantum error-correcting codeHE;Q are
heavy operators which moves the system to the outside of
the codeword subspace HE;Q. In this sense, our toy model
is an attempt to apply the idea of quantum error-correction
to dynamical problems in quantum gravity. Hence, we
believe that our approach of using the Uð1Þ-symmetric toy
model, despite being very simple, is applicable to a wide
variety of interesting questions in quantum gravity.
At this moment, however, it is unclear to us how the

black hole evaporates and eventually gets entangled only
through soft modes. On one hand, if we assume that the
underlying geometry changes adiabatically during evapo-
ration, then it is reasonable to assume that the fluctuation of
energy, or more generically heavy modes, is greatly sup-
pressed. On the other hand, as is clear from the calculation
of IðC;DÞ in our toy model, the process of emitting the
Hawking radiation does introduce fluctuations whose
energy scale is much larger than soft modes by definition.
Hence, in order for our toy model to be applicable, there
needs to be some physical mechanism to suppress the
energy variance in a dynamical manner.

C. Factorization of Hilbert space

Throughout the paper we used a toy model that repre-
sents a black hole as a system of qubits. This is a drastic
simplification building on two nontrivial assumptions.
First, it is assumed that the black hole Hilbert space is
discrete. Second, it is assumed that the Hilbert space of the
black hole is factorizable. The first assumption is relatively
well justified as it stems from the finiteness of the black
hole entropy. On the other hand, the second assumption is
incorrect in a strict sense.

FIG. 3. The AMPS puzzle and scrambling. Alice, an infalling
observer, can distill an EPR pair by accessing B̄0C while Bob, an
outside observer, can distill an EPR pair by accessing B̄ ¼ B̄0B̄1.
Note that B̄0 can be any subsystem of the early radiation B̄ as long
as jB̄0j⪆ jDj due to scrambling property of U.
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Whether the Hayden-Preskill recovery (as well as
the AMPS argument) is applicable to systems with non-
factorizable Hilbert spaces is an interesting problem. We
envision that this question can be ultimately answered by
using operator algebraic approaches, defining Hilbert
spaces from operators instead of starting from a given
Hilbert space. For such an extension, we would need to
define entanglement and recoverability in operator alge-
braic languages. While providing a full-fledged answer to
this question is clearly beyond the scope of this paper, our
analysis may be viewed as a first step toward this question.
In this paper, we discussed the Hayden-Preskill recovery
problem in the presence of symmetries. A symmetric
subspace, even if it is embedded on a factorizable
Hilbert space, is known to be nonfactorizable. We studied
conditions under which the recovery is possible and saw
that distinction between symmetric and nonsymmetric
operators is crucial. This observation hints that the criteria
on recoverability may be stated purely in terms of operators
without direct use of entanglement and the structure of a
given Hilbert space.
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APPENDIX: U(1)-SYMMETRIC HAYDEN-
PRESKILL; NONSYMMETRIC INPUTS

Here we consider the Hayden-Preskill thought experi-
ment with Uð1Þ-symmetric time-evolution when an input
quantum state is nonsymmetric. To be specific, we will
consider the input states which are superpositions of the
following states with different charges:

jj̃i ¼ j1 � � � 10 � � �i j ¼ 0; � � � ; Q ðA1Þ

where the first j entries are 1’s. So we have nA ¼ Q and
nB ¼ n −Q. The quantum state of our interest is

ðA2Þ

where the red triangles on AĀ corresponds to
1ffiffiffiffiffiffiffi
Qþ1

p
PQ

j¼0 jjiĀ ⊗ jj̃iA. Let us denote the Hilbert space

with total charge mB þ a by Ha and the Haar random
unitary acting on it by Ua.
By directly computing Trfρ2Cg and Trfρ2B̄Dg, one can

show that the reconstruction does not work for some
states. To understand which states can be reconstructed,
however, we need an additional argument. We will find
that the diagonal information about the total charge j can be
reconstructed from both C and B̄D. This implies Ið2ÞðA;
B̄DÞ; Ið2ÞðA;CÞ⪆ logðQþ 1Þ. Noting that Ið2ÞðA; B̄DÞ þ
Ið2ÞðA; CÞ ¼ 2 logðQ þ 1Þ, we conclude Ið2ÞðA; B̄DÞ;
Ið2ÞðA;CÞ ≈ logðQþ 1Þ. This suggests that the off-diagonal
phase information (anything except the total charge) cannot
be reconstructed from either C or B̄D.
Below we describe how to distinguish different values

of j. Our argument works for ϵ ¼ p
1−p < 1, but we believe

that a similar conclusion applies to cases with ϵ ≃ 1.
Consider the following quantum state

ðA3Þ

For sufficiently large nD, the Haar average of TrfðρðjÞC Þ2g is
given by

Z
dUTrfðρðjÞC Þ2g≈Fj Fj¼

PnD
q¼0ð nC

mBþj−qÞðnDq Þ2
ð n
mBþjÞ2

ðA4Þ

for sufficiently large nD. Noting that ϵFj ≈ Fjþ1, the
Rényi-2 entropy in C differs by log ϵ when the total charge
differ by one. Hence, measuring the Rényi-2 entropy in C
(or DB̄) is sufficient to learn the value of j. We would
like to note that the above calculation concerns the Haar

average of TrfðρðjÞC Þ2g. In order for the value of TrfðρðjÞC Þ2g
to reliably distinguish values of j, the statistical variance

of TrfðρðjÞC Þ2g must be small. For Haar random ensemble,
the variance is suppressed by the total Hilbert space
dimension.3

3Readers might think that measurement of total charge on C
could reveal the value of j. Indeed, if the value of j differs by one,
the expectation value of the total charge on C differs by nC

n since
the charge will be uniformly distributed after the time-evolution.
However, since the variance of the charge is large, distinguishing
different values of j may require a large number of charge
measurements.
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