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Generalized coherent states under deformed quantum mechanics that exhibit intrinsic minimum length
[Phys. Rev. D 86, 064038 (2012)] and maximum momentum [Phys. Rev. D 88, 084009 (2013)] have been
well studied following the Gazeau-Klauder approach. In this paper, as an extension to the study of quantum
deformation, we investigate the famous Schrödinger cat states (SCs) under these two classes of quantum
deformation. Following the concept of generalized Gazeau-Klauder Schrödinger cat states (GKSCs) in
[J. Phys. A 45, 244006 (2012)], we construct the deformed GKSCs for both phenomenological models that
exhibit intrinsic minimum length and/or maximum momentum. All comparisons between minimum length
and maximum momentum deformations are illustrated and plots are done in even and odd cat states since
they are one of the most important classic statistical characteristics of SCs. Probability distribution and
entropies are studied. In general, deformed cat states do not possess the original even and odd state
statistical properties. Nonclassical properties of the deformed GKSCs are explored in terms of the Mandel
Q parameter, quadrature squeezing ðΔXqÞ · ðΔYqÞ, as well as Husimi quasiprobability distribution Q.
Some of these distinguishing quantum-gravitational features may possibly be realized qualitatively and
even be measured quantitatively in future experiments with the advanced development in quantum atomic
and optics technology.
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I. INTRODUCTION

After almost more than half of a century of intense
research activities to reconcile the two main pillars of
modern physics, namely, quantum mechanical theory,
which governs the subatomic world, and general relativity,
which describes physics at the cosmological scale, up to
date there is still no common consensus on the form of
new gravitational effects that may show up in quantum
systems at high energy. Nevertheless, there are a few
partially promising candidates for a quantum theory of
gravity, such as superstrings theory [1,2], loop quantum
gravity (LQG) [3,4], noncommutative geometry (NC)
[5,6], renormalization group (RG) flow/asymptotic
safety [7] approach, etc. All of these approaches predict
some important generic physical features such as the
existence of a minimal resolution length scale lmin,
probably the taken value at about the order of Planck

length Lp ¼
ffiffiffiffiffi
ℏG
c3

q
≈ 1.6 × 10−35 m [8]. Here ℏ is the

Planck constant, G is the Newton gravitational constant,
and c is the speed of light. From the phenomenological
point of view, modified quantum commutation relations
(MCRs) have been extensively studied as effective means
of encoding potential gravitational or stringy/loopy
effects; see Refs. [9–22] and the reviews [23,24] for a
complete list of references. While most of the studied
MCRs incorporate a minimum position uncertainty and
usually lead to the concept of a minimal length scale
thus consistent with quantum gravity phenomenology,
there are others that exhibit a maximum momentum;
see Refs. [25–38] as in doubly special relativity [39,40]
and the anti-Snyder model [9,33]. It has also been
suggested that the consequent deformations of quantum
mechanical spectra and relevant physics might be detectable
in future low-energy experiments [41–47]. In Ref. [38], we
investigated in detail large classes of deformed quantum
mechanics of the latter type and their implication in quantum
optical systems [48]. The current manuscript is an extension
to these previous work and inspired by [49].
On the other hand, coherent states (Cs) and squeezed

states (Ss) are very interesting quantum systems in nature
due to their ability to exhibit the “quantumness” ranging
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from almost classical1 to highly nonclassical features such
as quadrature squeezing below the Heisenberg uncertainty
principle (HUP) boundary, sub-Poisonnian statistics, anti-
bunching effects, and quasiprobability distribution; see
Refs. [50–60]. These interesting features enable both
coherent and squeezed states to be extremely useful in
quantum information processing [61,62], optical commu-
nication and measurement [63], quantum metrology [64],
quantum cryptography [65], etc. Particularly, squeezed
states have been used in LIGO to increase the sensitivity
of gravitational wave detectors since one can achieve lower
noise in spatial quadrature [66,67]. Furthermore, recently
there is an increase of interest to study the generalized
squeezed state in noncommutative and deformed space
settings [48,68–76] in order to capture the nonconventional
quantum gravitational effects [47] and also relations to
quantum nonlocality [77].
Our manuscript is organized as follows: In Sec. II, we

review the formalism of generalized Heisenberg algebra
(GHA) [78–80] in constructing the so-called Gazeau-
Klauder’s coherent states (GKCS) [51,81–83] and further
obtain their superposition as the Gazeau-Klauder
Schrödinger cat states (GKSCs)[49,72]. In Sec. III, after
reviewing the two important quantum gravity inspired
phenomenological models that exhibit minimal length
and/or maximum momentum scale, we explicitly construct
the deformed GKSCs. We study the probability distribution
and entropies of the odd and even deformed GKSCs
in Sec. IV. The nonclassical behaviors of the cat states
are further explored in terms of number and quadrature
squeezing in Sec. V, as well as Husimi’s distribution in
Sec. VI. Finally we conclude in Sec. VII.

II. GAZEAU-KLAUDER COHERENT
AND CAT STATES

Cs were first studied by Schrodinger in 1926 in harmonic
oscillator systems[84] and later by Klauder and Glauber
[50–53,81–83]. Glauber obtained these states in the study
of electromagnetic correlation function and realized the
interesting feature that these states saturate the HUP,
ΔxΔp ¼ ℏ=2. Thus, coherent states are considered as
quantum states with the closest behavior to the classical
system and have many applications in theoretical and
mathematical physics [85–87].
In the literature, there are two ways to construct the

coherent states. First is through Klauder’s approach by
using the Fock’s representation of ladder algebra and
second is the Perelomov-Gilmore’s approach [88] based
on group theoretic construction. In this paper, we follow
Klauder’s approach and use the GHA given in [78–80]. In

this version of GHA,2 the Hamiltonian J0 that is related to
the characteristic function gðxÞ of the physical system,
together with ladder operators [A† being the creation
operator and A ¼ ðA†Þ† being the annihilation operator],
play the role of the generators of the algebra,

J0A† ¼ A†gðJ0Þ;
AJ0 ¼ gðJ0ÞA;

½A†; A� ¼ J0 − gðJ0Þ: ð1Þ

We see that these operators form a closed algebra and gðJ0Þ
is the analytic function of J0, which is unique for each type
of GHA. The Casimir of this algebra is

C ¼ A†A − J0 ¼ AA† − gðJ0Þ: ð2Þ

The vacuum of the generator J0 is defined by

J0j0i ¼ α0j0i; ð3Þ

where α0 is the energy eigenvalue of the vacuum state j0i.
Also, the vacuum is annihilated by the operator A, i.e.,
Aj0i ¼ 0. Consider a general eigenket of J0, denoted by
jmi; the generators satisfy the following,

J0jmi ¼ αmjmi;
A†jmi ¼ Nmjmþ 1i;
Ajmi ¼ Nm−1jm − 1i; ð4Þ

where αm ¼ gðmÞðα0Þ is the mth iteration of α0 under g and
N2

m ¼ αmþ1 − α0. In [78], it was shown that eigenenergies
of any quantum system obey the equation

ϵ̃nþ1 ¼ gðϵ̃nÞ; ð5Þ

where ϵ̃nþ1 and ϵ̃n are the eigenenergy of successive
energy levels and gðxÞ is the characteristic function of

1Coherent states saturate the HUP in the vacuum state; hence it
is regarded as the state closest to classical physics, while
Ss showed highly nontrivial quantum randomness in their
sub-Poisson distribution and antibunching behavior.

2There are other versions of GHA. Back in the early 1950s,
E. Wigner posed an intriguing question “Do the equations
of motion determine the quantum mechanical commutation
relations?” According to Wigner, the equation of motion has a
more immediate physical significance than Heisenberg commu-
tation relation ½xi; pj� ¼ iℏδij. He found as an answer a gener-
alized quantum mechanical rule (deformation was introduced
implicitly here) for the one-dimensional harmonic oscillator
[89,90]. Wigner’s idea was further explored and it leads to
the new deformed quantum commutation relation generally
called Wigner-Heisenberg algebra (WHA). This algebra sub-
sequently found many important and interesting physical appli-
cations related to quantum chromodynamics [91], parastatistics
[92–94], anyons physics [95,96], and supersysmmetry [97]. For
recent application of WHA in the context of coherent state,
Schrodinger cat states, and quantum entanglement transfer, see
Refs. [98–101].
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the particular quantum system that satisfies the GHA. For
example, one can obtain the standard harmonic oscillator
with linear characteristic function gðxÞ ¼ xþ 1, the
q-deformed oscillator with gðxÞ ¼ qxþ 1, and free particle
in an infinite square well with gðxÞ ¼ ð ffiffiffi

x
p þ ffiffiffiffiffiffiffiffi

1=2
p Þ2. In

general, GHA may not refer to smooth deformation of
Heisenberg algebra [78–80].
Klauder’s coherent states are by construction the eigen-

states of the family of annihilation operators

AðγÞ ¼ e−iγH=ðℏωÞAeiγH=ðℏωÞ;

AðγÞjz; γi ¼ zjz; γi; ð6Þ

where H ≡ J0 is the Hamiltonian of the physical system
under consideration and J ≡ jzj2 ≥ 0 is the average energy
in the elementary quantum unit of ℏω. z is the complex
eigenvalue of the annihilation operators, whereas γ is the
real parameter associated with the classical action angle
variable [81].
The (temporally stable) Gazeau-Klauder’s GKCs are

defined as [81]

jJ; γi ¼ 1

NðJÞ
X
n≥0

Jðn=2Þe−iγϵnffiffiffiffiffi
ρn

p jni; ρn ≔
Yn
k¼1

ϵk; ð7Þ

where we have denoted ϵn ¼ ϵ̃n−ϵ̃0
ℏω and jni is the number

state. NðJÞ is a normalization constant. For consistency, we
set ρ0 ¼ 1. Note that, to ensure that both ðJ; γÞ are action
angle variables, we need the GKCs to satisfy

hJ; γjHjJ; γi ¼ ℏωJ: ð8Þ

We have the time independent of expectation value
(temporally stable) of Hamiltonian in the state with ðJ; γÞ.
The generalized coherent states (GCs) are said to be

Gazeau-Klauder’s type if they satisfy the following
conditions:

(I) Normalizability:

jhJ; γjJ; γij2 ¼ 1: ð9Þ

(II) Continuity in the label:

jJ − J0j ⇒ 0; kjJ; γi − jJ0; γik ⇒ 0: ð10Þ

(III) Completeness:

Z
ðd2zÞwðz; γÞjz; γihz; γj ¼ 1; ð11Þ

where ðd2zÞwðz; γÞ is the measure on the Hilbert
space spanned by jz; γi.

The normalization constant can be expressed as

jhJ; γjJ; γij2 ¼ 1 ⇒ NðJÞ2 ¼
X∞
n≥0

Jn

ρn
: ð12Þ

Strictly speaking, the GCs exist only if the radius of
convergence

R ¼ lim
n→∞

sup
ffiffiffiffiffi
ρnn

p ð13Þ

is nonzero [51,82,83]. In fact, different choices of ρn and
hence the characteristic function gðϵ̃nÞ give rise to many
different families of GCs. On the other hand, the temporal
stability condition of the eigenstates can be obtained by

e−iHt=ℏjz; γi ¼ jz; γ þ ωti: ð14Þ

A. GKSCs

Schrödinger cat states (SCs) jψ sci are defined as the
coherent superposition of the two coherent states jzi and
j−zi. They have been studied well and their characteristics
are summarized in the literatures [55–57]. Although SCs
are constructed by coherent state, they are generally non-
classical states where jzi and j−zi can be macroscopically
distinguished for sufficiently large jzj.
Schrödinger cat states are defined as

jψ sci ¼ Nscðjzi þ eiϕj−ziÞ; ð15Þ

where ϕ is the relative phase (can be taken on ½0; 2π�) and
Nsc is the normalization constant. For ϕ ¼ 0, we have the
so-called even cat states, which exhibit vanishing odd

number probability distribution PðoddÞ
n ¼ jhnjψ scij2 ¼ 0.

In contrast, for ϕ ¼ π, odd cat states that exhibit vanishing

even number probability distribution PðevenÞ
n ¼ 0 are

obtained. This is one of the most interesting statistical
behaviors of SCs and we examine the deformed GKSCs
with these statistical properties in the subsequent sections.
With the same token, we can construct GKSCs. By

letting z ¼ ffiffiffi
J

p
e−iγ , we have [49]

jψgksci ¼ NgkscðjJ; γi þ eiϕjJ; γ þ πiÞ; ð16Þ

where we have denoted jzi ¼ jJ; γi and j−zi ¼ jJ; γ þ πi.
We further substitute (7) and obtain [49]

jψgksci ¼ Ngksc

X∞
n≥0

�
J

n
2e−iγϵnffiffiffiffiffi
ρn

p ½1þ eiðϕ−ϵnπÞ�jni
�
; ð17Þ

where ½Ngksc�−2 ¼ 2
P∞

n≥0ðJ
n

ρn
½1þ cosðϕ − ϵnπÞ�Þ.

DEFORMED GAZEAU-KLAUDER SCHRÖDINGER CAT … PHYS. REV. D 100, 085018 (2019)

085018-3



III. GKSCS WITH MINIMUM LENGTH AND/OR
MAXIMUM MOMENTUM

Next, we introduce quantum deformation to Heisenberg
algebra. Considering one dimension, such deformation can
be generally expressed as following modified commutation
relation (MCR)

½X;P� ¼ iℏfðX;PÞ; ð18Þ

where fðX;PÞ captures the position and/or momentum
dependence deformation and hence plays the crucial role in
determining the modified dynamics. For fðX;PÞ ¼ 1, we
recover the standard quantum mechanics. Different quan-
tum deformation models are distinguished by the expres-
sion of fðX;PÞ and this operator-valued function is
essential to study different phenomenological effects of
the deformation models. There are two important phenom-
enological models of quantum deformation in the literature,
namely, the minimum length model, which is inspired by
string theory, black hole physics, and loop quantum gravity,
and the maximum momentum model, which is inspired by
doubly special relativity. For a review on the generalized
uncertainty principle induced by the modified commutation
relation, see [23,24].

A. Deformation with minimal length

In the literature, one of the most interesting and non-
trivial models to be considered is the Kempf-Mangano-
Mann (KMM) model[10], which satisfies the relations3

½X;P� ¼ iℏð1þ β̃P2Þ; X ¼ ð1þ β̃p2Þx; P ¼ p

ð19Þ

such that β̃ ¼ β
mℏωwith β being the dimensionless deformed

parameter and ½β̃� ¼ momentum−2. Here, both x and p are
standard position and momentum operators that satisfy
conventional commutation relation ½x; p� ¼ iℏ. The modi-
fied relation exhibits an intrinsic minimum length as
discussed in [102,103],

Lmin ≔ ðΔXÞjmin ≈ ℏ
ffiffiffĩ
β

q
: ð20Þ

Next, we proceed to compute the deformed GKSCs for
the case of minimum length. In order to do that, we need the
quantum state and eigenenergy spectrum of the deformed
one-dimensional simple harmonic oscillator. The perturbed
Hamiltonian HðmlÞ of the deformed harmonic oscillator in
noncommutative space is given by [69,72]

HðmlÞ ¼ P2

2m
þmω2

2
X2 −

ℏω
2

�
1þ β

2

�
: ð21Þ

With representation of physical position operator X given
in (19), the Hamiltonian (21) becomes non-Hermitian.
Following [69,103], one can perform the Dyson map
η ¼ ð1þ β̃p2Þ−1=2, whose adjoint action relates the non-
Hermitian Hamiltonian in (21) to its isospectral Hermitian
counterpart hðmlÞ,

hðmlÞ ¼ ηHðmlÞη−1

¼ p2

2m
þmω2

2
x2 þ ωβ

4ℏ
½p2x2 þ x2p2 þ 2xp2x

− 2iℏðxpþ pxÞ� − ℏω
2

�
1þ β

2

�
þOðβ2Þ: ð22Þ

The perturbed energy spectrum is given by

ϵðmlÞ
n

ℏω
¼ nþ n

2
ðnþ 1Þβ þOðβ2Þ: ð23Þ

The term Oðβ2Þ can to be truncated from the phenomeno-
logical point of view. Notice that the deformed energy
spectrum increases faster for higher n when compared to
the standard case. The perturbed Hamiltonian eigenstates
(up to first order in β) are given by the standard non-
degenerate Rayleigh-Schrödinger perturbation theory,

jniml ¼ jnð0Þi þ
X∞
k≠n

hkð0Þjh1jnð0Þi
ϵ0n − ϵ0k

jkð0Þi

¼ jnð0Þi þ β

16

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½nþ 1; 4�

p
jnð0Þ þ 4i

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½n − 3; 4�

p
jnð0Þ − 4i

�
; ð24Þ

where h1 ¼ ωβðp2x2 þ x2p2 þ 2xp2x − 2iℏðxpþ pxÞ −
ℏ2Þ=ð4ℏÞ is the perturbed Hamiltonian. We denoted
jniml and jnð0Þi as the perturbed and unperturbed Fock’s
state, respectively. Also, P½a; n�≡ ðaÞn is the Pochhammer
symbol, which is a compact way to express the factorial,

P½a; n�≡ ðaÞn ≔
ðaþ n − 1Þ!
ða − 1Þ! ; ðaÞ0 ≔ 1: ð25Þ

It is clear that up to leading order in β, the perturbed
eigenstates jniml are not normalized in the usual manner
because

mlhmjniml ¼ δmn þ
β

16
fðnþ 1Þ4δm;nþ4

− ðn − 3Þ4δm;n−4 þ termsm ↔ ng: ð26Þ
Next, following [104] we can renormalize the perturbed

Fock’s state such that hξðmlÞ
m jξðmlÞ

n i ¼ δmn by defining

3The KMM model can be regarded as the three-dimensional
realization of Snyder model [9], which was the first attempt to
study Lorentz invariant discrete space-time back in the 1940s.
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jξðmlÞ
n i ≔

ffiffiffiffiffiffiffiffiffiffi
ZðmlÞ
n

q
jniml: ð27Þ

The constant ZðmlÞ
n satisfies ZðmlÞ

n ¼ jhnð0ÞjξðmlÞ
n ij2 and thus

can be regarded as the probability for the perturbed
eigenstates to be found in the corresponding unperturbed
eigenstate. Explicitly, it can be written as

ZðmlÞ
n ≈ 1 −

X∞
k≠n

jhkð0Þjh1jnð0Þij2
ðϵ0n − ϵ0kÞ2

: ð28Þ

Following the GK approach in Sec. II A, the KMM-
deformed GKSCs are constructed as

jψ ðmlÞ
gksci ≔ NðmlÞ

gksc

X∞
n≥0

8<
:
J

n
2e−iγϵ

ðmlÞ
nffiffiffiffiffiffiffiffiffi

ρðmlÞ
n

q ½1þ eiðϕ−ϵ
ðmlÞ
n πÞ�jξðmlÞ

n i
9=
;;

ð29Þ
with

ρðmlÞ
n ≔

Yn
k≥1

ϵðmlÞ
k ¼

Yn
k≥1

�
kþ kðkþ 1Þβ

2

�

¼ 1

2n
βnn!P½2þ 2=β; n�; ð30Þ

where NðmlÞ
gksc denotes the overall normalization constant and

ρðmlÞ
n is the probability distribution. Note that for the
undeformed case β ¼ 0, we have the Poisson distribution,
ρn ¼ n!.

B. Deformation with maximum momentum

Next, we consider another modified commutation rela-
tion that exhibits an intrinsic maximum momentum and is
particularly favored by doubly special relativity [25–28]
and the anti-Snyder model [33,105]. One such model is the
Ali-Das-Vagenas (ADV) model [29,38]. In one dimension,
it is described by the following MCR,

½X;P� ¼ iℏð1 − α̃PÞ2; X ¼ x; P ¼ p
1þ α̃p

; ð31Þ

where α̃ ¼ α0
Mplc

¼ α0Lpl

ℏ , such that Mpl is the Planck

mass while Lpl is the Plank length with ½α̃2� ¼ ½β̃� ¼
momentum−2. Also, α0 is a dimensionless constant, typ-
ically assumed to be unity [29]. The above MCRmanifestly
exhibits an intrinsic maximum momentum

Pmax ≈
1

α̃
ð32Þ

and the form of (31) suggests that one recovers the
classicality around the maximum momentum [38].

The rescaled energy spectrum for the ADV deformed
harmonic oscillator is given by

ϵðmmÞ
n

ℏω
¼ 2n½4þ nα2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ α4Þ

p
− ðn − 1Þα4�

ðα2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ α4Þ

p
Þ½ð2nþ 1Þα2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ α4Þ

p
�2

¼ n −
3n
2
ðnþ 1Þα2 þOðα4Þ; ð33Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffi
mℏω

p
α̃ is the dimensionless deformation

parameter. Comparing (33) to the KMM model (23), the
ADV-deformed bound state energy spectrum has a negative
energy correction. This is the essential difference between
these two models and it should be generic to all quantum
mechanical bounded systems.
The (un-normalized) perturbed ADV-deformed Hami-

ltonian eigenstates (up to first order in α) are given by

jnimm ¼ jnð0Þi − iα

3
ffiffiffi
8

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P½nþ 1; 3�
p

jnð0Þ þ 3i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½n − 2; 3�

p
jnð0Þ − 3i

− 9ððnþ 1Þ3=2jnð0Þ þ 1i þ n3=2jnð0Þ − 1iÞ
�

ð34Þ

and we can obtain the renormalized perturbed state as

hξðmmÞ
m jξðmmÞ

n i ¼ δmn through the definition jξðmmÞ
n i ≔ffiffiffiffiffiffiffiffiffiffiffiffi

ZðmmÞ
n

q
jnimm. It follows that the ADV-deformed GKSCs

can be constructed as

jψ ðmmÞ
gksc i ≔ NðmmÞ

gksc

X∞
n≥0

8<
:
J

n
2e−iγϵ

ðmmÞ
nffiffiffiffiffiffiffiffiffiffiffi

ρðmmÞ
n

q ½1þ eiðϕ−ϵ
ðmmÞ
n πÞ�jξðmmÞ

n i
9=
;

ð35Þ
with

ρðmmÞ
n ≔

Yn
k≥1

ϵðmmÞ
k ¼ n!ð2μ − 1ÞnP½2ðμþ 1Þ; n�

ð2α2Þnð2μþ 1ÞnðP½μþ 3
2
; n�Þ2 ; ð36Þ

where we denote μ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

α4

q
and NðmmÞ

gksc is the overall

normalization constant. Also, note that for ρðmmÞ
n jα→0 ¼ n!

we recover the Poisson distribution.

IV. PROBABILITY DISTRIBUTION AND
ENTROPY OF THE DEFORMED GKSCS

A. Normalization constant

To ensure the orthonormality condition

jhψ ðmlÞ
gkscjψ ðmlÞ

gkscij2 ¼ 1 ¼ jhψ ðmmÞ
gksc jψ ðmmÞ

gksc ij2 of the deformed
GKSCs (29) and (35) the normalization constant NðJÞ is
fixed as follows. The normalization constant for KMM
model is given by
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NðmlÞ
gkscðJ; β;ϕÞ

¼
�
2
X∞
n¼0

2nJn

βnn!P½2þ 2=β; n� ½1þ cosðϕ − ϵðmlÞ
n πÞ�

�−1=2

ð37Þ

and for the ADV model is

NðmmÞ
gksc ðJ;α;ϕÞ

¼
�
2
X∞
n¼0

2nJnP½μþ3=2;n�
n!α2nP½2ðμþ1Þ;n�½1þcosðϕ−ϵðmmÞ

n πÞ�
�−1=2

:

ð38Þ

In Fig. 1, we plot both NðmlÞ
gksc and N

ðmmÞ
gksc for even GKSCs

(ϕ ¼ 0) as the function of average energy J for different
values of deformation parameter β and α. As an approxi-
mation, we truncate the summation at n ¼ 100 for KMM
models and n ¼ 120 for the ADV model. In both cases, we
recover the undeformed normalization constant
NgkscðJ;ϕÞ ¼ ð2ðeJ þ e−J cosϕÞÞ−1=2 as ðβ; αÞ → 0. In

the KMM model, it is observed that NðmlÞ
gksc tends to increase

with increasing β. In contrast, NðmmÞ
gksc in the ADV model

tends to decrease with increasing α. Note that from the
phenomenological point of view, the physically acceptable
range of deformed parameter should be very small,
jβj; jαj ≪ 1.

B. Probability distribution

It is well known that SCs have very specific statistical
characteristics. In standard quantum optics, the even SCs

(ϕ ¼ 0) have vanishing probability of detecting an odd
number of photons while the odd SCs (ϕ ¼ π) have
vanishing probability of detecting an even number of
photons. It is interesting to find out whether the deformed
GKSCs still possess these important statistical features. The
probability distribution is defined as

PnðJ;ϕÞ ≔ jhnjψ scij2: ð39Þ

For the KMM model, the probability distribution is
given by

PðmlÞ
n ðJ;ϕ; βÞ
¼ jhξðmlÞ

n jψ ðmlÞ
gkscij2

¼ 2ðNðmlÞ
gkscÞ2

ð2JÞn
βnn!P½2þ 2=β; n� ½1þ cosðϕ − ϵðmlÞ

n πÞ�

ð40Þ

and we plot the probability distribution function as a
function of J and n, respectively. For the even (odd) states,
we set ϕ ¼ 0 (ϕ ¼ π).
From Figs. 2(a) and 3(a), we observed that KMM-

deformed GKSCs do not possess the statistical character-
istics of even (odd) SCs anymore. In Fig. 2(a), by setting
J ¼ 20, we notice that the even deformed GKSCs now
possess nonvanishing odd probability distribution.
Similarly, in Fig. 3(a), the odd deformed GKSCs possess
nonvanishing even probability distribution. Consider the
even deformed GKSCs; when the deformation parameter β
increases, the probability of observing even n numbers of
photons decreases and the peak is shifted towards smaller
effective n. In contrast, the probability of observing odd n

10 20 30 40

0.1

0.2

0.3

0.4

0.5

(a)

2 4 6 8 10 12 14

(b)

Ngkcs
ml Ngkcs

mm

J

0.1

0.2

0.3

0.4

0.5

J

FIG. 1. The normalization constant Ngksc for both deformation cases with ϕ ¼ 0 (even cat states). The blue line corresponds to the

undeformed case. (a) NðmlÞ
gksc for the minimum length (KMM) model corresponding to different values of deformed parameter β. Purple,

gold and green lines are the deformed cases with β ¼ ð0.1; 0.3; 0.7Þ respectively. (b) NðmmÞ
gksc for the maximum momentum (ADV) model

corresponding to different values of deformed parameter α. Purple, gold and green lines are the deformed cases with α ¼ ð0.1; 0.3; 0.5Þ
respectively.
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numbers of photon, which is supposedly 0 in standard SCs,
increases due to the deformation. A similar conclusion can
be drawn on the odd deformed GKSC in Fig. 3(a). As a
result, for a nonzero deformation β, it induces a mixture of
two probability distributions to detect odd and even
GKSCs, respectively. Effectively, this behavior shows up
in a Kerr-type oscillator in nonlinear medium [49].
Next, we set the photon number n ¼ 20 (even) and

illustrate the probability distribution of even/odd KMM-
deformed GKSCs in Figs. 2(b) and 3(b), respectively,
corresponding to different values of β. It is observed that
in Figs. 2(b) and 3(b), as the deformation increases, the
probability decreases (increases) and spreads with the peak
moving towards larger J. This can be understood from (23),

such that the deformed energy spectrum increases with
increasing deformation. We expect the average energy to
increase and thus the peak of probability distribution shifts
towards larger n.
For the ADV model with maximum momentum, we

compute the probability distribution to be

PðmmÞ
n ðJ;ϕ; αÞ
¼ jhξðmmÞ

n jψ ðmmÞ
gksc ij2

¼ 2ðNðmmÞ
gksc Þ2

½2Jα2ð2μþ 1Þ�nðP½μþ 3=2; n�Þ2
n!ð2μ − 1ÞnP½2ðμþ 1Þ; n�

× ½1þ cosðϕ − ϵðmmÞ
n πÞ�: ð41Þ

(a) (b)
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J

FIG. 2. The probability distribution PðmlÞ
n ðJ;ϕ; βÞ for the minimum length (KMM) model with ϕ ¼ 0 corresponding to different values

of deformation parameter β. (a) PðmlÞ
n ðJ; 0; βÞ as function of n for J ¼ 20. Black dot is the undeformed case while red and green dots are

the deformed cases with β ¼ ð0.001; 0.002Þ respectively. (b) PðmlÞ
n ðJ; 0; βÞ as function of J for n ¼ 20. Black line is the undeformed case

while red, green and orange lines are the deformed cases with β ¼ ð0.001; 0.002; 0.003Þ respectively.
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FIG. 3. The probability distribution PðmlÞ
n ðJ;ϕ; βÞ for the minimum length (KMM) model with ϕ ¼ π corresponding to different

values of deformation parameter β. (a) PðmlÞ
n ðJ; π; βÞ as function of n for J ¼ 20. Black dot is the undeformed case while red and green

dots are the deformed cases with β ¼ ð0.001; 0.002Þ respectively. (b) PðmlÞ
n ðJ; π; βÞ as function of J for n ¼ 20. Black line is the

undeformed case while red, green and orange lines are the deformed cases with β ¼ ð0.001; 0.002; 0.003Þ respectively.
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Similar to the KMM model, we plot the probability
distribution function as a function of n and J in the
following graphs for even (ϕ ¼ 0) and odd (ϕ ¼ π) states
separately.
From Figs. 4(a) and 5(a), we also observe that the ADV-

deformed GKSCs do not possess even and odd statis
tical characteristics. Similar to the KMM model, the even
ADV-deformed GKSCs now possess relatively small but
nonvanishing odd probability distribution while the odd
ADV-deformed GKSCs possess small, nonvanishing even
probability distribution. By setting the photon number to be
n ¼ 20, we illustrate the probability distribution of the even
and odd ADV-deformed GKSCs as a function of energy J

in Figs. 4(b) and 5(b) respectively. It is observed that in
Fig. 4(b) as the deformation increases, the probability
decreases and spreads with the peak moving towards
smaller J. Figure 5(b) for the odd states shows contrasting
trends. From (33), we see that the deformed energy
spectrum decreases with increasing deformation. We
expect the average energy to decrease and thus the peak
of probability distribution to shift towards smaller n. This is
the crucial difference between the KMM model and the
ADV model as pointed out in [38].
In conclusion, we see that both KMM and ADV-

deformed GKSCs generally do not possess the specific
statistical features of standard SCs. However, some new

(a) (b)

10 20 30 40

0.05

0.10
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FIG. 4. The probability distribution PðmmÞ
n ðJ;ϕ; αÞ for the intrinsic maximum momentum (ADV) model with ϕ ¼ 0 corresponding to

different values of deformed parameter α. (a) PðmmÞ
n ðJ; 0; αÞ as function of n for J ¼ 20. Black dot is the undeformed case while red and

green dots are the deformed cases with α ¼ ð0.01; 0.02Þ respectively. (b) PðmmÞ
n ðJ; 0; αÞ as function of J for n ¼ 20. Black line is the

undeformed case while red, green and orange lines are the deformed cases with α ¼ ð0.02; 0.03; 0.07Þ respectively.
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FIG. 5. The probability distribution PðmmÞ
n ðJ;ϕ; αÞ for the intrinsic maximum momentum (ADV) case with ϕ ¼ π corresponding to

different values of deformed parameter α. (a) PðmmÞ
n ðJ; π; αÞ as function of n for J ¼ 20. Black dot is the undeformed case while red and

green dots are the deformed cases with α ¼ ð0.01; 0.02Þ respectively. (b) PðmmÞ
n ðJ; π; αÞ as function of J for n ¼ 20. Black line is the

undeformed case while red, green and orange lines are the deformed cases with α ¼ ð0.02; 0.03; 0.07Þ respectively.
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statistical features may appear in the deformed GKSCs.
Although in general the probability distribution is non-
vanishing for deformed GKSCs, we see that from (40) and
(41) it is possible for the term ½1þ cosðϕ − ϵnπÞ� to vanish
for a certain state n and certain value of deformation
parameter if ϕ − ϵnπ ¼ ð2κ þ 1Þπ where k ∈ Z. This new
feature can be useful in the study of the deviation in the
photon’s full counting statistics and Fanos noise factor that
is induced by different classes of MCR. In principle, these
two important classes of MCR can be distinguished by
quantum optical experiment in the laboratory setting.

C. Entropy of KMM-/ADV-deformed GKSCs

Following [106], we define the Gibbs entropy of the
system (canonical ensemble) as the standard logarithmic
measure of the density of states in the phase space given by

SðJ;ϕÞ ≔ −kB
X∞
n¼0

PnðJ;ϕÞ lnPnðJ;ϕÞ; ð42Þ

where kB is the Boltzmanns constant. This allows us to
define the entropy of KMM-/ADV-deformed GKSCs in a
similar way.
We plot the entropy of both KMMmodel SðmlÞ and ADV

model SðmmÞ for even GKSCs as the function of the average
energy J in Figs. 6(a) and 6(b), respectively. We observe
that in both models with small deformation parameters
(phenomenologically preferred), the entropy of deformed
GKSCs is generally increased when compared to the
undeformed SCs. The difference in entropy between the
two deformations is not significant for small deformation

parameters and short range average energy J. Similar
results can be obtained for the odd-GKSCs case.

V. NONCLASSICAL PROPERTIES OF THE
DEFORMED GKSCS

A. Photon statistics and number squeezing of GKSCs

In quantum optics, the measure of deviation from the
standard Poissonian distribution is given by the famous
Mandel parameter defined by

Q ≔
hJ; γjðΔNÞ2jJ; γi
hJ; γjNjJ; γi − 1

¼
P∞

n¼0 n
2Pn − ðP∞

n¼0 nPnÞ2P∞
n¼0 nPn

− 1: ð43Þ

The value of the Q number defines the characteristics
of the quantum statistical distribution. Q ¼ 0 corresponds
to the standard Poissonian (classical) distribution, e.g.,
coherent light. For Q > 0, it refers to the super-Poissonian,
which corresponds to photon bunching statistics, e.g.,
thermal light. For Q < 0, it refers to the sub-Poissonian,
which corresponds to photon antibunching statistics, e.g.,
squeezed coherent light. For standard SCs, it is a well-
known fact that even (odd) cat states exhibit photon number
bunching (antibunching), respectively. Subsequently we
examine the deviation induced by the quantum deformation
on this unique characteristic of the cat states. For both of
our deformed KMM and ADV models, we define

QqðJ;ϕ; qÞ ¼
P∞

n¼0 n
2Pq

n − ðP∞
n¼0 nP

q
nÞ2P∞

n¼0 nP
q
n

− 1; ð44Þ
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FIG. 6. Gibb’s entropy for even GKSCs. (a) The entropy SðmlÞ for the KMM model with ϕ ¼ 0 corresponding to different values of
deformed parameter β. Black line is the undeformed case while red, green and orange lines are the deformed cases with β ¼
ð0.01; 0.05; 0.1Þ respectively. (b) The entropy SðmmÞ for the ADV model with ϕ ¼ 0 corresponding to different values of deformed
parameter α. Black line is the undeformed case while red, green and orange lines are the deformed cases with α ¼ ð0.01; 0.05; 0.1Þ
respectively.
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where q ¼ ðβ; αÞ refers to the classes of deformation, either
KMM or ADV models, whereby the probability distribu-
tions are described by (40) and (41).
To obtain numerical plots, we perform suitable trunca-

tion up to n ¼ 400 in the calculation of Qβ and Qα,
respectively.
In Figs. 7(a) and 7(b), we plot Mandel’s parameterQβ as

a function of J for KMM even (odd) states, respectively.
The illustrations show that the photon statistics of
even (odd) KMM GKSCs can be super-/sub-Poissonian
(positive/negative Q value) for small J, similar to the
undeformed standard SCs. However, both even and odd
cat states tend to become more nonclassical sub-Poissonian
(negative Q value) as J increases. Note that the different
amount of deformation β only affects the oscillatory
behavior of Qβ but the Q values are always bounded to
be negative for increasing J. Thus, in the KMM model,

all the GKSCs get more nonclassical in the higher
energy sector. Interestingly, the photon number distribu-
tion of the deformed even cat states experienced more
squeezing compared to standard SCs, in which the latter is
always photon-bunchedQ > 0. However, for certain values
of β and relatively small J, super-Poissionian is still
possible.
In Figs. 8(a) and 8(b), we plot Mandel’s parameterQα as

a function of J for ADV GKSCs even (odd) states,
respectively. For small J, both even (odd) states remained
photon bunched (antibunched), similar to the undeformed
case. However, as J increases, the Qα values of even states
still remain positive and increase with J and αwhile the odd
states become super-Poissionian. Thus, all of the GKSCs
get more classical for the ADV model in the higher energy
sector. Note that from the phenomenological point of view,
larger values of J should be physically more relevant.

(a) (b)
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FIG. 7. Mandel parameter for KMM models Qβ with different values of deformation parameter β. The black line is the undeformed
case while red, green, orange, and blue lines are the deformed cases with β ¼ ð0.01; 0.05; 0.1; 0.15Þ, respectively. (a) The Mandel
parameter Qβ for the even GKSCs. (b) The Mandel parameter Qβ for the odd GKSCs.
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FIG. 8. Mandel parameter for ADVmodelsQα with different values of deformation parameter α. The black line is the undeformed case
while the red, green, and orange lines are the deformed cases with α ¼ ð0.01; 0.05; 0.08Þ, respectively. (a) The Mandel parameterQα for
the even GKSCs. (b) The Mandel parameter Qα for the odd GKSCs.
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The existence of such classicality is intimately related to the
vanishing MCR in (31) as P → Pmax ¼ 1

α̃.
In comparison between the two models, we realize that,

in principle, we can distinguish both KMM (minimal
length) and ADV (maximum momentum) MCR via
Mandel’s parameter since the former becomes more
squeezed and exhibits sub-Poissonian distribution while
the latter becomes more classical with super-Poissonian
distribution. In [69], it was shown that for the deformed GK
coherent states, the KMM model predicts gravitational
squeezing with sub-Poissonian distribution regardless of
deformation β and γ (action variable). Similar behavior is
observed in our results on both KMM-even (odd) cat states.
However,[48] showed that it is possible for ADV-deformed
GK coherent states to exhibit both types of quantum
statistics that depends on the γ factor. This generic behavior
is different to the cat states counterpart in our ADV models.

B. Quadrature squeezing of GKSCs

Besides the number squeezing effect introduced by the
deformation of the GKSCs, here we consider another
famous quantum optical effect, namely, quadrature squeez-
ing. Since the standard creation and annihilation operators
(A† and A) do not act as ladder operators in the new
deformed Fock’s space [107], we search for modified
ladder operators A†

q and Aq that act genuinely on the
perturbed Hamiltonian eigenstates jξqni. The perturbative
treatment is kept up to leading order in the deformation
parameters. First, we define

Aqjξqni ¼
ffiffiffi
n

p jξqn−1i; A†
qjξqni ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jξqnþ1i;
Nqjξqni ¼ njξqni; ð45Þ

where q ¼ ðβ; αÞ refers to the class of deformations. Also,
the modified ladder operators are required to obey the usual

relations, Nq¼A†
qAq; A†

q¼ðAqÞ†; ½Aq;A
†
q�¼1. Consider

the KMM model; by a direct calculation we have

ðAβ − AÞjξðmlÞ
n i

¼ ffiffiffi
n

p jξðmlÞ
n−1 i − AjξðmlÞ

n i

¼ β

16
fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP½n; 4�

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 4ÞP½nþ 1; 4�

p
Þjnþ 3i

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 4ÞP½n − 3; 4�

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP½n − 4; 4�

p
Þjn − 5ig

¼ −
β

4
ðA†Þ3jξðmlÞ

n i þOðβ2Þ: ð46Þ

Thus, perturbatively up to leading order in β, the KMM-
modified ladder operator is

Aβ ¼ A −
β

4
ðA†Þ3: ð47Þ

Similarly, for the ADV model we have

ðAα − AÞjξðmmÞ
n i

¼ ffiffiffi
n

p jξðmmÞ
n−1 i − AjξðmmÞ

n i

¼
�
iαffiffiffi
8

p ðA†Þ2 − 3A2 − 3ð2N þ 1Þ
�
jξðmmÞ

n i þOðα2Þ;

ð48Þ

and the perturbative expansion for the ADV-modified
ladder operator is given by

Aα ¼ Aþ iαffiffiffi
8

p ðA†Þ2 − 3A2 − 3ð2N þ 1Þ; ð49Þ

where N ¼ A†A is the usual number operator.

(a) (b)

FIG. 9. The quadrature ðΔXβÞ2 and ðΔYβÞ2 for the even GKSCs with different values of deformation parameter β. The black line is the
undeformed case while the red, green, orange, and dashed lines are the deformed cases with β ¼ ð0.05; 0.1; 0.3; 1.2Þ, respectively.
(a) Quadrature ðΔXβÞ2 for the even GKSCs. (b) Quadrature ðΔYβÞ2 for the even GKSCs.
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Next, we define the two quadrature operators as

Xq ¼
1

2
ðAq þ A†

qÞ; Yq ¼
1

2i
ðAq − A†

qÞ

⇒ X2
q ¼

1

4
ðA2

q þ ðA†
qÞ2 þ 2Nq þ 1Þ;

Y2
q ¼ −

1

4
ðA2

q þ ðA†
qÞ2 − 2Nq − 1Þ; ð50Þ

and it is clear that Xq and Yq are essentially dimensionless
position and momentum operators

X ¼
ffiffiffiffiffiffiffi
2ℏ
mω

r
Xq; P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p
Yq:

The square of the uncertainties in state jψgksciq is

ðΔXqÞ2 ¼ qhψgkscjX2
qjψgksciq − qhψgkscjXqjψgksci2q; ð51Þ

ðΔYqÞ2 ¼ qhψgkscjY2
qjψgksciq − qhψgkscjYqjψgksci2q: ð52Þ

We plot the quadrature ðΔXqÞ2 and ðΔYqÞ2 of even
GKSCs for the KMM model (with various deformation
parameters β) as a function of the average energy J in
Figs. 9(a) and 9(b), respectively. The odd GKSCs generally
produce similar trends. We see that unlike the coherent
state, uncertainties in two quadratures in deformed GKSCs
are not equal to each other. The quadrature ðΔXβÞ2 is
squeezed below the standard case, i.e., GKSCs (β ¼ 0),

whereas the quadrature ðΔYβÞ2 is expanded correspond-
ingly. This means that we can reduce the quantum noise in
the Xβ variable. The condition eventually translates to more
precise localization in position. Moreover, the total quan-
tum noise T ≔ ðΔXqÞ2 þ ðΔYqÞ2 also decreases when
compared to the standard case. In Figs. 10(a) and 10(b),
we plot the quantum noise in position ðΔXβÞ2 and the total
quantum noise T as a function of J and the deformation
parameters β. We can adjust the values of J with varying
deformation parameters β; we manage to obtain the so-
called “ideal squeezed state,” which is the minimum

(a) (b)

FIG. 10. Contour plot of the quantum noise as a function of J (horizontal axis) and deformation parameters β (vertical axis). Darker
colors refer to smaller values. (a) Quantum noise ðΔXβÞ2 for the even GKSCs as function of J and β. (b) Total quantum noise
T ¼ ðΔXβÞ2 þ ðΔYβÞ2 for the even GKSCs as function of J and β.

FIG. 11. Generalized uncertainty ðΔXβÞ2ðΔYβÞ2 for the even
GKSCs as a function of J with different values of deformation
parameter β. The black line is the undeformed case while the red,
green, orange, and dashed lines are the deformed cases with
β ¼ ð0.05; 0.1; 0.3; 1.2Þ, respectively.
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uncertainty state with smallest squeezing in ðΔXβÞ2.
Numerically, we obtain such a state with β ¼ 1.00001
and J ¼ 0.658773. It is clearly shown in Fig. 10(a).
Furthermore, interestingly we observe that for any fixed
energy J, the total quantum noise T reduces for increasing β
up to a certain threshold βT and increases when β > βT . At
the same time, the total quantum noise is kept bounded
from above by the standard (β ¼ 0) reading as clearly
shown in Fig. 10(b).
Next, we consider the generalized uncertainty of the

quadrature pairs ðΔXβÞðΔYβÞ. In Fig. 11, we see that there
are constraints on both J and deformation parameters β in
order to satisfy the inequality

ðΔXβÞ · ðΔYβÞ ≥ ðΔXβ¼0Þ · ðΔYβ¼0Þ: ð53Þ

From the form of MCR in (19), we do not expect KMM
deformed GKSCs to approach classical phase (i.e., with
vanishing GUP) and hence the inequality (53) has to be
strictly satisfied. Numerically, deformation is meaningful if
β ≤ βmax ≈ 0.23 for the range of energy J we considered.
However, in the higher energy sector that is physically
more preferred from the phenomenological point of view, it
remains possible to satisfy (53) with larger values of β.
Similar results are obtained for the GKSCs odd state.
For the ADV model, we plot the quadrature ðΔXαÞ2 and

ðΔYαÞ2 of even GKSCs as the function of the average
energy J in Figs. 12(a) and 12(b), respectively. Unlike the
KMM model, deformed quantum noise in first quadrature
ðΔXαÞ2 can be increased or decreased (depending on the
range of energy J and the amount of deformation) as
compared to the undeformed case. In contrast, ðΔXβÞ2
always decreases while ðΔYβÞ2 always increases in the
KMM model. We infer that improvement in spatial reso-
lution and thus reduction of quantum noise is not

(a) (b)

FIG. 12. The quadrature ðΔXαÞ2 and ðΔYαÞ2 for the even GKSCs with different values of deformation parameter α. The black line is
the undeformed case while the red, green, orange, and dashed lines are the deformed cases with α ¼ ð0.22; 0.35; 0.55; 1.00Þ,
respectively. (a) Quadrature ðΔXαÞ2 for the even GKSCs. (b) Quadrature ðΔYαÞ2 for the even GKSCs.

FIG. 13. Generalized uncertainty ðΔXαÞ2ðΔYαÞ2 for the even
GKSCs as a function of J with different values of deformation
parameter α. The black line is the undeformed case while the red,
green, orange, and dashed lines are the deformed cases with
α ¼ ð0.22; 0.35; 0.55; 1.00Þ, respectively.

FIG. 14. The Husimi function QðzÞ for the undeformed SCs
case with J ¼ 10, ϕ ¼ 0 ¼ γ.
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guaranteed for ADV-deformed GKSCs. Next, we consider
the generalized uncertainty principle ðΔXαÞðΔYαÞ in
Fig. 13. In contrast to the KMM model, we do not require
the quadratures in the ADV model to strictly satisfy (53).
From (31), we expect the emergence of classicality in the
ADV model when the energy scale is approaching maxi-
mum momentum P → Pmax ≈ 1

α̃. In summary, we observed
that the two classes of quantum deformation induce slight
differences in their effects on the GKSCs.

VI. HUSIMI DISTRIBUTION

It is a well-known fact that SCs are formed by a
superposition of two macroscopically distinguishable
states; this was emphasized by Schrödinger himself in
his original work. To study the superposition effect in
deformed GKSCs, we consider the phase space distribution
as a natural quantifier [49,55–57]. In the literature, there

are two important probability distributions to characterize
the phase space properties, the so-called Wigner W
distribution and Husimi Q distribution. The Husimi
distribution is given by the coherent state expectation
value of the density operator or equivalently the overlap
between the wave function and coherent state. It is strictly
non-negative by construction. Here, we choose to explore
the Husimi distribution4 for the KMM/ADV-deformed
GKSCs.
For the GKSCs, since the density of matrix is ρq ¼

jψgksciq ⊗ qhψgkscj, we define the corresponding HusimiQ
function as

FIG. 15. The Husimi function QðzÞ for the KMM-deformed GKSCs with different deformation β. (a) β ¼ 0.05. (b) β ¼ 0.8.

FIG. 16. The Husimi function QðzÞ for the ADV-deformed GKSCs with different deformation α. (a) α ¼ 0.15. (b) α ¼ 0.18.

4Note that this choice would be clearly insufficient if we were
interested in nonclassical properties indicated by the deformed
GKSCs. Nonclassicality can be well understand in a negative
value of the Wigner W function [49,108,109].
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QðzÞ ≔ 1

π
hzjρqjzi ¼

1

π
jhzjψgksciqj2: ð54Þ

This definition ensures that the Husimi function is nor-
malized

R
dz2QðzÞ ¼ 1 and bounded 0 < QðzÞ < 1=π. We

have the explicit form in Fock’s basis as

QðzÞ ¼ 1

π
e−jzj2

X
n;m

CnC�
m
zmðz�Þnffiffiffiffiffiffiffiffiffiffi
n!m!

p ; ð55Þ

where the constant Cn is

Cn ¼ Nq
gksc

Jn=2ffiffiffiffiffi
ρqn

p e−iϵ
q
nγ½1þ cosðϕ − ϵqnπÞ�: ð56Þ

By setting J ¼ 10; ϕ ¼ 0 ¼ γ, q ¼ 0, we illustrate the
Husimi distribution for even ϕ ¼ 0 standard GKSCs in the
following figures. In Fig. 14, two sharp peaks correspond-
ing to two coherent states in standard SCs are clearly shown
for the underformed case.
For the KMM model, when the deformation parameter β

increases, the well-localized catlike state gradually merges
together and the two coherent states become indistinguish-
able. This is illustrated in Figs. 15(a) and 15(b).
For the ADV model, similar results are obtained as

clearly shown in Figs. 16(a) and 16(b). Although the peaks
are clearly observed for a small value of α, as α increases,
the peaks become nonseparable. The result for odd cat
states ϕ ¼ π is essentially similar to the even cat states. We
interpret this result as some kind of gravitational
decoherence [110,111] due to minimal length/maximum
momentum. In addition, for deformed GKSCs with “peaks
merged” Husimi function, there does not seem to be an
effective method to determine which form of the deforma-
tion the system undergoes.

VII. CONCLUSION

In this paper, we have successfully constructed deformed
GKSCs under two important quantum gravity phenomeno-
logical models that exhibit minimal length scale (KMM

model) and maximum momentum scale (ADV model).
First, we review the generalized Heisenberg algebra
scheme. This allows us to define the characteristic function
and the weight function of the deformed GKCs. Formally,
we can proceed to take the linear superposition of such
states to obtain the deformed GKSCs.
We have computed the probability density and entropy

distribution function in both models (for even and odd cat
states) and subsequently studied their behavior in terms of
the deformation parameters. Under finite deformation, even
GKSCs possess small, nonvanishing odd probability dis-
tribution while odd GKSCs possess nonvanishing even
probability distribution. We interpret this deviation from
standard GKSCs as gravitational induced mixture of the
two probability distributions to detect odd and even
GKSCs, respectively. The entropy of the system increases
in the presence of deformation. These observations are
valid in both models and are insensitive to the type of
deformation model.
To study the nonclassical behavior, we have considered

number squeezing (defined in terms of Mandel’s Q
parameter) and quadrature squeezing. We realized that in
principle we can distinguish both KMM and ADV model
via Mandel’s parameter since the former becomes more
squeezed and exhibits sub-Poissonian distribution while the
latter becomes more classical with super-Poissonian dis-
tribution. Furthermore, first quadrature squeezing ΔXβ in
the KMM model always reduces with increasing deforma-
tion parameter β. This also means that KMM deformation
leads to better spatial resolution and reduction of quantum
noise. However, this desired behavior is not guaranteed in
the ADV model since ΔXα can be larger or smaller than the
undeformed case. Lastly, we observed that the quantum
coherency of deformed GKSCs is destroyed by the defor-
mations as clearly shown in the indistinguishability of the
peaks in the Husimi function QðzÞ.
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