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We study dynamical supersymmetry breaking in supersymmetric QCD theories for Nf < Nc. We
consider a model with a singlet chiral superfield coupled to the infrared meson chiral superfield through a
classical superpotential. We examine the vacuum structure of this model and show that in a particular limit
of the parameter space with the largeNc limit, it has a vacuum that dynamically breaks supersymmetry. The
supersymmetric vacuum, in this limit, is being pushed to infinity.
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I. INTRODUCTION

Supersymmetric quantum field theories have provided us
with some useful toy models in which one can track the
strong coupling dynamics of phenomena like quark con-
finement, chiral symmetry breaking, and the mass gap.
Moreover, they are promising candidates to replace the
standard model of particle physics. The minimal super-
symmetric standard model (MSSM) is a theory which
minimally embeds supersymmetry in the standard model.
Although the MSSM can address the hierarchy problem,

improve the flow of the running coupling constants (so that
they all meet at one high energy scale point), and provide
particle candidates for dark matter, it is not yet quite clear
how to consistently handle the problem of supersymmetry
breaking in this model. A hierarchy of energy scales can be
naturally achieved through dynamical supersymmetry
breaking. In SQCD theories, for instance, this is triggered
by the generation of nonperturbative superpotentials [1–3].
In fact, depending on the number of colors, Nc, and the
number of the flavors, Nf, one gets different nonperturba-
tive superpotentials. Therefore, in principle, it is natural to
think of models which classically have a supersymmetric
vacuum, but at the quantum level a nonperturbative super-
potential is generated resulting in a nonsupersymmetric
vacuum. Constructing a realistic model of this kind,
however, turns out to be difficult and, in fact, it is non-
generic. For Nc ¼ Nf, there are some interesting models
for which F-flatness conditions are in conflict with the

dynamical constraint on the quantum vacuum moduli
space, and hence supersymmetry is dynamically broken
[4,5]. This example, however, is noncalculable, in the sense
that the vacuum is not in the weakly coupled region.
The idea of having a long-lived metastable vacuum

instead of a nonsupersymmetric absolute minimum opened
a new avenue in constructing phenomenologically viable
models of dynamical supersymmetry breaking [6,7].
Metastable vacua are easier to construct and appear in more
generic models. In [6] Seiberg et al. proposed a SQCD
model with Nc < Nf < 3=2Nc, which, instead of having a
stable nonsupersymmetric vacuum, has a metastable vac-
uum. They showed that, by a suitable adjustment of the
parameters of the model, this vacuum can be long lived.
In this paper, we study SQCD with Nf < Nc deformed

by a singlet chiral superfield. The singlets are coupled to
the low energy meson chiral superfields through a classical
superpotential. We examine the vacuum moduli space and
observe that, apart from a supersymmetric solution, there
are also nonsupersymmetric solutions. We choose a max-
imally symmetric solution and look at the small fluctua-
tions around it to determine its stability. The analysis of the
stability simplifies in a corner of the parameter space of the
model; however, to keep the potential finite, we need to
take a simultaneous largeNc limit. We discuss the spectrum
of small fluctuations and show that there are no tachyonic
modes in this particular limit.1 Furthermore, we show that it
is also possible to keep the nonsupersymmetric vacuum in
the weakly coupled region of the field space and very far
from the supersymmetric one. In fact, the supersymmetric
vacuum will be pushed to infinity in that limit.
The organization of this paper is as follows. In the next

section, we introduce the model and discuss its vacuum
structure. We observe that the model, in addition to
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supersymmetric vacua, admits nonsupersymmetric
extrema. To discuss the classical stability, in Sec. III, we
work out the mass matrix around a maximally symmetric
solution. In Sec. IV, we look at a particular limit in the
parameter space of the model which simplifies the stability
analysis. We derive the corresponding eigenvalues and
show how this vacuum can be placed far away from the
supersymmetric one. Conclusions and an outlook are given
in Sec. V. In the Appendix, we derive the details of the
computations of the successive derivatives of the Kähler
potential.

II. THE MODEL

Supersymmetric QCD has a dynamical mass scale
Λ below which the coupling constant becomes strong
so that Nf quark chiral superfields ϕa

i and Nf antiquark
ϕ̃ai condense into the singlet meson chiral superfields
Mj

i ¼ ϕa
i ϕ̃

j
a.
2 These mesons constitute the low energy

degrees of freedom (d.o.f.) of the theory. Nonre-
normalization theorems forbid any perturbative quantum
corrections to the superpotential. However, a superpotential
is generated nonperturbatively [1]. For Nf < Nc, it reads

ðNc − NfÞ
�
Λ3Nc−Nf

detM

� 1
Nc−Nf

: ð1Þ

With no classical superpotential, the model will only have
supersymmetric runaway vacua at infinity. To modify the
vacuum structure and get some possible metastable vacua,
we introduce singlet [under the gauge group SUðNcÞ]
chiral superfields Sij which couple to the low energy meson
fields Mij through the following superpotential:

Wcl ¼ ηMijSji þ γSijSji þmijMji; ð2Þ

where η, γ, and mij are complex parameters, with
i; j;… ¼ 1; 2;…; Nf. This superpotential should be
regarded as an effective superpotential, which, in principle,
could be derived from a more fundamental theory. It can
arise, for example, from higher dimensional operators
induced from supergravity or by integrating out some
massive fields at higher energies. Given the above super-
potential, one can discuss the low energy effective descrip-
tion and especially the vacuum structure of the model. If the
mass parameters of the fields M and S are large compared
to Λ, then they can be integrated out before hitting the scale
Λ. One is then left with a pure supersymmetric gauge
theory which confines at Λ, and because of the mass gap, a
nonperturbative superpotential is generated. Upon integrat-
ing in the M fields, superpotential (1) is then obtained. On

the other hand, if the mass parameters are small compared
to Λ, those terms survive and need to be included in the low
energy effective theory. However, because of the non-
renormalization theorems, the classical superpotential is
perturbatively exact, and one only needs to add the non-
perturbative superpotential (1) to the tree-level superpo-
tential to describe the low energy effective theory [3,9].
Hence, taking the nonperturbative superpotential into
account, the superpotential for Nf < Nc becomes

W ¼ ðNc − NfÞ
�
Λ3Nc−Nf

detM

� 1
Nc−Nf

þ ηMijSji þ γSijSji þmijMji: ð3Þ
Let us now discuss the vacuum structure of this model.

First we need to compute the F-terms,

∂W
∂Mij

¼ −
�
Λ3Nc−Nf

detM

� 1
Nc−Nf

M−1
ji þ ηSji þmji; ð4Þ

and for Sij we get

∂W
∂Sij ¼ ηMji þ 2γSji: ð5Þ

If we set the F-terms to zero, we get the supersymmetric
vacuum:

−
�
Λ3Nc−Nf

detM

� 1
Nc−Nf

M−1
ij −

η2

2γ
Mij þmij ¼ 0; ð6Þ

and

Sij ¼ −
η

2γ
Mij: ð7Þ

For a maximally symmetric vacuum solution, we have

Mij ¼ λδij; Sij ¼ sδij: ð8Þ
Moreover, if we set mij ¼ mδij, the F-term equation (6) for
a supersymmetric solution reduces to

Λ
3Nc−Nf
Nc−Nf λ

Nc
Nf−Nc þ η2

2γ
λ −m ¼ 0; ð9Þ

whereas Eq. (7) becomes

s ¼ −
η

2γ
λ: ð10Þ

Next, we want to examine whether there are nonsuper-
symmetric vacua. For the potential, with a canonical Kähler
potential for Sij, we have

V ¼ K−1
ij;kl

∂W
∂Mij

∂W̄
∂M̄kl

þ
���� ∂W∂Sij

����
2

; ð11Þ
2Note that ϕa

i and ϕ̃ai transform in the fundamental and
antifundamental representations of the SUðNcÞ gauge group,
respectively.

A. IMAANPUR and M. KOOHGARD PHYS. REV. D 100, 085016 (2019)

085016-2



where K−1
ij;kl is the inverse of the metric

Kij;kl ¼
∂2K

∂Mij∂M̄kl
; ð12Þ

with K the Kähler potential

K ¼ tr
ffiffiffiffiffiffiffiffiffi
M̄M

p
¼

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii: ð13Þ

This Kähler potential is actually induced from the micro-
scopic theory simply by imposing the D-flatness condition
and expressing the canonical Kähler potential in terms of
the low energy d.o.f. Mij [3]. Therefore, this form of K is
valid only in that region of the moduli space where Mij is
large so that the microscopic theory is weakly coupled and
the use of its canonical potential is justified. In the present
model, we will see that the nonsupersymmetric solution can
be located in the weakly coupled region of field space, and
hence it makes sense to use (13) as the Kähler potential.
For the minima we derive

∂V
∂Mrs

¼ ∂K−1
ij;kl

∂Mrs

∂W
∂Mij

∂W̄
∂M̄kl

þK−1
ij;kl

�
Λ̂
�

1

Nc −Nf
M−1

rs M−1
ji þM−1

jr M
−1
si

��

× ð− ¯̂ΛM̄−1
lk þ η̄S̄lk þ m̄lkÞ þ ηðη̄M̄sr þ 2γ̄S̄srÞ ¼ 0;

ð14Þ
and

∂V
∂Srs ¼ ηK−1

sr;klð−Λ̂M̄−1
kl þ η̄S̄kl þ m̄klÞ

þ 2γðη̄M̄sr þ 2γ̄S̄srÞ ¼ 0; ð15Þ
where we have defined

Λ̂ ¼
�
Λ3Nc−Nf

detM

� 1
Nc−Nf

: ð16Þ

Now, to examine nonsupersymmetric vacua we assume
that the F-terms are nonvanishing, and hence we plug (15)
into (14) to obtain
�∂K−1

ij;kl

∂Mrs
ð−Λ̂M−1

ji þ ηSji þmjiÞ

þ K−1
ij;kl

�
Λ̂
M−1

rs M−1
ji

Nc − Nf
þ Λ̂M−1

jr M
−1
si −

η2

2γ
δjrδis

��

×
∂W̄
∂M̄kl

¼ 0: ð17Þ

As in the case of the supersymmetric vacuum, here we can
also look for a maximally symmetric extremum, whereMij

and Sij are proportional to the identity matrix as in (8). In
the Appendix, we show that with this assumption we have

K−1
ij;kl ¼ 4jλjδjkδil;

∂K−1
ij;kl

∂Mrs
¼ λ̄

jλj ðδjkδirδls þ δilδkrδsjÞ:

ð18Þ

Therefore, assuming supersymmetry is broken, Eq. (17)
requires that we set the first bracket in that equation to zero.
With (18), this implies

�
−
Λ̂
λ
þ ηsþm

�
þ 2Λ̂

ξλ
−
η2

γ
λ ¼ 0; ð19Þ

from which we get

s ¼ 1

η

��
ξ − 2

ξ

�
Λ̂
λ
þ η2λ

γ
−m

�
: ð20Þ

Plugging s into (15) we get an equation which
determines λ,

Λ̂
λ

�
2

ξ
þ
�
2

ξ
− 1

� jγj2
jηj2jλj

�
−
η2

γ

�
1þ 3jγj2

2jηj2jλj
�
λþ mjγj2

jηj2jλj ¼ 0;

ð21Þ

where we have defined

ξ ¼ Nc − Nf

Nc
; ð22Þ

so that 0 < ξ < 1.

III. CLASSICAL STABILITY

In this section we discuss the stability of nonsupersym-
metric solutions (20) and (21) by looking at the mass matrix
of small fluctuations around them. With the canonical
Kähler potential, the bosonic mass matrix reads

�
WijW̄im WiW̄ijm

W̄iWijm W̄ijWim

�
; ð23Þ

where the indices on the superpotential W indicate deriv-
atives with respect to the chiral superfields, e.g., Wi ¼ ∂W

∂ϕi,

and so on. Since here we have N2
f chiral superfields Sij and

N2
f chiral superfieldsMij of mesons in the low energy limit

of SQCD, Eq. (23) is a 2ð2N2
fÞ × 2ð2N2

fÞ mass matrix.
To obtain the mass matrix for a generic Kähler potential,

however, one has to directly expand the potential to
quadratic order. As we have chosen a maximally symmetric
vacuum, the potential of small fluctuations splits into two
parts. The first part consists of quadratic fluctuations of
symmetric (antisymmetric) matrices δMijδMij, and the

second part contains the quadratic trace terms δMi
iδM

j
j,
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∂2V
∂Mkl∂M̄rs

δMklδM̄rs ¼ ðAδkrδls þ A0δklδrsÞδMklδM̄rs

¼ AδMklδM̄kl þ N2
fA

0 δM
k
k

Nf

δM̄l
l

Nf
:

ð24Þ
Let us further decompose the symmetric part of δMij as
follows:

δMij ¼
1

Nf
δMk

kδij þ δM̂ij; ð25Þ

where δMk
k is the trace part, and δM̂ij is the traceless part.

In doing so, Eq. (26) can be decomposed into two
independent d.o.f.,

AδMklδM̄kl þ A0δMk
kδM̄l

l

¼ AδM̂klδ
¯̂Mkl þ N2

fðA0 þ A=NfÞ
δMk

k

Nf

δM̄l
l

Nf
: ð26Þ

Using the formula for the derivatives of K−1
ijkl in the

Appendix to compute the second derivative of potentials
(11) and (19), we obtain

A ¼ 1

jλj
����2ðξ − 1Þ Λ̂

ξλ
þ η2

γ
λ

����
2

þ jηj2; ð27Þ

At ≡ N2
f

�
A0 þ A

Nf

�
¼ Nfjλj

���� η
2

γ

����
2

þ Nfjηj2: ð28Þ

Similarly, for δSklδS̄rs we get

∂2V
∂Skl∂S̄rs δSklδS̄rs ¼ ðBδkrδlsÞδSklδS̄rs

¼ BδŜklδ
¯̂S
kl þ Bt

δSkk

Nf

δS̄ll
Nf

; ð29Þ

where

B ¼ 4jλjjηj2 þ 4jγj2; ð30Þ
and

Bt ¼ NfB: ð31Þ
Next, consider quadratic fluctuations of δSklδM̄rs,

∂2V
∂Skl∂M̄rs

δSklδM̄rs

¼ ðαδkrδls þ α0δklδrsÞδSklδM̄rs

¼ αδŜklδ
¯̂Mkl þ N2

fðα0 þ α=NfÞ
δSkk
Nf

δM̄l
l

Nf
; ð32Þ

where

α ¼ 2jλjη̄
�
2

�
1 −

1

ξ

�
Λ̂
λ2

þ η2

γ

�
þ 2ηγ̄; ð33Þ

αt¼N2
fðα0 þα=NfÞ¼

2ηNf

γ
ðjλjjηj2þjγj2Þ¼ η

2γ
Bt: ð34Þ

Finally, we compute the off-diagonal elements in (23).
For δSklδMrs we get

∂2V
∂Skl∂Mrs

δSklδMrs ¼ ðeδklδrsÞδSklδMrs; ð35Þ

where

e ¼ 2

�
−
2Λ̂
ξλ2

þ η2

γ

�
jλjη; ð36Þ

with

et ¼ Nfe: ð37Þ

Moreover, the coefficient of δMklδMrs reads

∂2V
∂Mkl∂Mrs

δMklδMrs

¼ ðCδkrδls þ C0δklδrsÞδMklδMrs

¼ CδM̂klδM̂
kl þ N2

fðC0 þ C=NfÞ
δMk

k

Nf

δMl
l

Nf
;

where

C ¼ 4jλj
�
2
¯̂Λ

ξλ̄2
−
η̄2

γ̄

��
Λ̂

2ξλ2
þ η2

4γ

��
λ̄

λ

�
; ð38Þ

and

Ct ¼ N2
fðC0 þ C=NfÞ

¼ 4Nfjλj
�
2
¯̂Λ

ξλ̄2
−
η̄2

γ̄

��
ð2 − ξÞ Λ̂

2ξ2λ2
þ η2

4γ

��
λ̄

λ

�
: ð39Þ

We are now ready to write down the mass matrix (23).
For the traceless part it reads

0
BBB@

A α C e

ᾱ B e 0

C̄ ē A ᾱ

ē 0 α B

1
CCCA; ð40Þ

where A, B, α, and C are derived in (27), (30), (33), and
(38), respectively. There is a similar matrix for the trace part
with components At, Bt, αt, and Ct as defined in (28), (31),
(34), and (39), respectively.
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Let us discuss the trace part, where we can identify the
Goldstino. In diagonalizing (40), we obtain the following
characteristic equation of the eigenvalues:

ðjetj2 þ jαtj2 − AtBt þ ktðAt þ BtÞ − k2t Þ2
¼ jðBt − ktÞCt − 2etαtj2: ð41Þ

For the mass matrix of fermions, on the other hand, the off-
diagonal 2 × 2 matrices of (40) are zero. Moreover, from
(28), (31), and (34) we deduce

AtBt ¼ jαtj2; ð42Þ

and so, using this in (41), we see that for fermions

k2t − ktðAt þ BtÞ ¼ 0: ð43Þ

Hence, we get a massless mode which we identify as the
Goldstino coming from the supersymmetry breaking on
solution (21).

IV. LARGE Nc LIMIT

There are certain limits in which Eq. (41) reduces to a
quadratic equation and the analysis of the stability sim-
plifies. For instance, we can take either Ct or BtCt − 2etαt
in (41) to vanish. Together with (21), this constrains the
space of parameters of the model. However, in both of these
cases we will end up with some negative eigenvalues of
(41) resulting in the instability of the solution.
Alternatively, we can go to a limit where both η and γ

vanish so that Eq. (21) and the stability analysis greatly
simplify. However, a look at the potential shows that to
have a finite value for V, we need to take a large Nf limit
simultaneously. Thus, we take the following limit:

η ¼ C1=
ffiffiffiffiffiffi
Nf

p
; γ ¼ C2=Nf; ð44Þ

with C1 and C2 two finite complex constants (with η2=γ
fixed) and largeNf. Explicitly, first note that from Eqs. (15)
and (19) we see that the extremum of the potential satisfies
the following equations:

−
Λ̂
λ
þ ηsþm ¼ −

γ̄

2jλjη̄ ðηλþ 2γsÞ ¼ −
2Λ̂
ξλ

þ η2

γ
λ: ð45Þ

So assuming that λ and s at the extremum are finite, the last
two equations of (45) imply that in the limit of (44) we have

−
2Λ̂
ξλ

þ η2

γ
λ ¼ −

C2λ

2Nfjλj
�
η

η̄

�
þOð1=N3=2

f Þ; ð46Þ

where we have used (44) to replace for γ on the right-hand
side. Now we can use (44) and (45) to see how potential
(11) scales at large Nf,

V ¼ 4Nfjλj
���� − Λ̂

λ
þ ηsþm

����
2

þ Nfjηλþ 2γsj2

¼
�
Nf

���� γη
����
2 1

jλj þ Nf

�
jηλþ 2γsj2

¼ 4jλj2
�����C2

C1

����
2 1

jλj þ Nf

����� ηγ
����
2
���� − 2Λ̂

ξλ
þ η2

γ
λ

����
2

¼ jC1λj2 þOð1=NfÞ; ð47Þ

where in the last equality we have used (46). Hence, we
observe that in the limit (44) the potential, evaluated on the
extremum, approaches a finite value.
To discuss the mass matrix in the limit (44), first note

that, assuming λ is finite, from (45) we infer

�
−
2Λ̂
ξλ2

þ η2

γ

�
∼ 1=Nf: ð48Þ

Now, looking at the elements of the trace part of the mass
matrix, At, Bt, αt, et, and Ct—as derived in Eqs. (28), (31),
(34), (37), and (39)— (48) implies that, in the large Nf

limit, they scale as

Nf; 1; N1=2
f ; N−1=2

f ; 1; ð49Þ

respectively. We can now analyze the quartic characteristic
eigenvalue equation (41). Using the explicit expressions for
the roots of this equation and keeping only the dominant
terms in the large Nf limit, we find that the eigenvalues
scale as follows3:

diagðNf; Nf; 1=Nf;−1=NfÞ: ð50Þ

Hence, in the limit Nf → ∞, the first two modes get very
heavy and decouple from the spectrum, and we are left with
two zero-mode eigenvalues. For the nontrace part, the
matrix elements, A, B, α, e, and C, in the large Nf limit
scale as

1; Nf
−1; N−1=2

f ; Nf
−3=2; N−1

f ; ð51Þ

respectively. Analyzing the quartic eigenvalue equation, we
find that the leading terms of the eigenvalues scale as
follows:

diagð1; 1; 1=Nf;−1=NfÞ; ð52Þ

so in the limit Nf → ∞ we get two extra zero modes. Note
that there is a similar expression for the modes coming from
the antisymmetric part of the quadratic fluctuations, so, in

3We have also checked the leading order terms using
Mathematica.
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sum, we get 2N2
f real massless scalars. Here we get a factor

of 2 as matrix (40) is 4 × 4, and hence the eigenvalues are
doubly degenerate. We conclude that in the large Nf limit,
there are no negative eigenvalues of the mass matrix of
small fluctuations around the nonsupersymmetric solution,
and hence no instability.
Now let us discuss what happens to solution (21) in the

limit γ=η → 0 and large Nc. SettingNc ¼ aNf, with a > 1,
and since η2=γ is held fixed and finite, solution (21) in this
limit reduces to the following equation for a nonsupersym-
metric vacuum:

�
Λ3Nc−Nf

λ2Nc−Nf

� 1
Nc−Nf ¼ η2

2γ

�
Nc − Nf

Nc

�
: ð53Þ

Note that this equation is the same as (46) in the large Nf

limit. Further, let us define

η2

2γ

�
Nc − Nf

Nc

�
≡ 1

ΛL
2Nc−Nf
Nc−Nf

; ð54Þ

where L > 1 is a finite number, and on the right-hand side,
we have included a factor of Λ for dimensions to match.
Equation (53) now implies

λ ¼ LΛ2: ð55Þ
Therefore, we observe that, by taking L ≫ 1, the non-
supersymmetric solution (55) can be located in the weakly
coupled (in terms of the microscopic d.o.f.) region of the
field space. As mentioned in Sec. II, this also justifies the
use of the Kähler potential (13) induced from the micro-
scopic theory. Further, note that Eq. (45) shows that, in the
limit of vanishing η and γ, for any finite and constant s we
have a solution. Therefore, s is a modulus, and this
coincides exactly with 2N2

f zero modes in the large Nf

limit that we obtained in (50) and (52).
Having obtained λ, we can now derive the explicit

minimum value of the potential in the large Nf limit.
From (47) and (55), we have

V ¼ jC1j2jλj2 ¼ L2jC1j2jΛj4; ð56Þ
which gives an energy scale for the nonsupersymmetric
small excitations in this vacuum, and hence a scale of
supersymmetry breaking:

M4
s ¼ L2jC1j2jΛj4: ð57Þ

So, if we take

LjC1j ≪ 1; ð58Þ
then Ms ≪ Λ, and supersymmetry breaking happens at a
scale well below Λwhich, in turn, justifies the use of meson
low energy d.o.f. to describe this region of field space.

In the end, let us examine the supersymmetric vacuum
and see how it compares with the nonsupersymmetric one
in the limit. The supersymmetric solutions (4) and (5) are

−
Λ̂
λ
þ ηsþm ¼ 0;

ηλþ 2γs ¼ 0: ð59Þ

The second equation implies ηs ¼ − η2

2γ λ and since we have

kept η2=γ fixed, ηs is finite. Plugging ηs into the first
equation, we can derive λ. However, since s ¼ − η

2γ λ, it
diverges in the limit (44). Therefore, for the supersym-
metric solution, s is located at infinity. On the other hand,
recall that the model also admits nonsupersymmetric
solutions with finite s. The moduli space of nonsupersym-
metric solutions is thus the whole complex plane with
the potential at its constant value (56) approaching zero at
the boundary (s ∼

ffiffiffiffiffiffi
Nf

p
; the supersymmetric solution).

Therefore, any nonsupersymmetric solution with finite s
is very far from the supersymmetric solution, and since the
potential along the modulus is flat, it is also stable. This can
also be seen from the Coleman bounce action [10]

SB ∼
ðΔMÞ2
Vmeta

; ð60Þ

where ΔM is the distance between the metastable and
supersymmetric vacua and Vmeta is the metastable potential.
In the large Nc limit, Vmeta is finite, whereas ΔM goes to
infinity; hence the probability of quantum tunneling
approaches zero.

V. CONCLUSIONS

Dynamical supersymmetry breaking in models with
metastable vacua have been extensively studied. These
models, in particular, serve as the hidden sector of MSSM-
like theories where supersymmetry first breaks and then is
mediated to the visible sector. In SQCD, for instance,
interesting generic models for Nc ¼ Nf and Nc < Nf <
3=2Nc have been constructed that admit metastable vacua
[4–6]. In this paper, we addressed the existence of such
vacua for Nf < Nc.
We showed that supersymmetric QCD with Nf < Nc

coupled to a singlet chiral superfield can have stable
nonsupersymmetric vacua. We observed that, apart from
a supersymmetric solution, the model also admits non-
supersymmetric solutions. We discussed the mass matrix of
small fluctuations around a maximally symmetric solution.
We noticed that there are certain limits on the space of
parameters where the quartic equation of eigenvalues
reduces to a quadratic equation, and thus the question of
stability is tractable. However, the appearance of tachyonic
modes in such cases led us to examine the potential and
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consider instead a limit of large Nf with Nfγ
2=η2 kept

fixed. We analyzed the mass matrix of small fluctuations
and showed that the spectrum, in this limit, contains no
tachyons.
In the large Nf limit, the spectrum showed some extra

zero modes. We argued that these zero modes correspond to
the pseudomoduli space of flat directions along s. The
expectationvalue of themeson field on the field space turned
out to be proportional to a finite numberL, which we took to
be large for the solution to be in theweakly coupled region of
field space. Further, as the supersymmetric solution gets
pushed to infinity in the limit, the two solutions become
infinitely far apart. The nonsupersymmetric vacuum thus
remains stable under small fluctuations.
It is very interesting to further examine the characteristic

equation and see if there are any other limits where the
spectrum of the mass matrix is free from tachyons. In this
model, we encountered a pseudomoduli space of flat
directions along s which was the characteristic of the limit
taken in the parameter space of the model. It is important to
see whether this modulus is lifted when quantum correc-
tions are included.

APPENDIX: COMPUTATION OF SUCCESSIVE
DERIVATIVES OF KÄHLER POTENTIAL

Although computing the derivative of the square root of a
matrix in terms of the derivative of the matrix itself is not
straightforward, in this appendix, we show how to derive
such derivatives calculated on the solutions of type
Mij ¼ λδij. This is done by taking the successive deriva-
tives. In each step, we compute the value of the derivative
on the solution and then use it to compute the derivative in
the next step. Let us start from the definition of the square
root of a matrix,

M̄ilMlj ¼
ffiffiffiffiffiffiffiffiffi
M̄M

p
il

ffiffiffiffiffiffiffiffiffi
M̄M

p
lj: ðA1Þ

Taking the first derivative we deduce

Msjδir ¼
∂ ffiffiffiffiffiffiffiffiffi

M̄M
p

il

∂M̄rs

ffiffiffiffiffiffiffiffiffi
M̄M

p
lj þ

ffiffiffiffiffiffiffiffiffi
M̄M

p
il
∂ ffiffiffiffiffiffiffiffiffi

M̄M
p

lj

∂M̄rs
: ðA2Þ

Multiplying the right by
ffiffiffiffiffiffiffiffiffi
M̄M

p −1 results in

Msjδir
ffiffiffiffiffiffiffiffiffi
M̄M

p −1
jk ¼ ∂ ffiffiffiffiffiffiffiffiffi

M̄M
p

ik

∂M̄rs
þ

ffiffiffiffiffiffiffiffiffi
M̄M

p
il
∂ ffiffiffiffiffiffiffiffiffi

M̄M
p

lj

∂M̄rs

ffiffiffiffiffiffiffiffiffi
M̄M

p −1
jk :

ðA3Þ
Now, summing over i and k,

2
∂ ffiffiffiffiffiffiffiffiffi

M̄M
p

ii

∂M̄rs
¼ Msj

ffiffiffiffiffiffiffiffiffi
M̄M

p −1
jr ¼ M̄−1

sj

ffiffiffiffiffiffiffiffiffi
M̄M

p
jr; ðA4Þ

and then taking the second derivative gives

2
∂2

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂Mpq∂M̄rs
¼ M̄−1

sj

∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
jr

∂Mpq
: ðA5Þ

Since we need the value of the derivatives on the
solution, let us set Mij ¼ λδij and

ffiffiffiffiffiffiffiffiffi
M̄M

p
ij ¼ jλjδij in

(A2) to obtain

∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
ij

∂M̄rs
¼ λ

2jλj δirδjs: ðA6Þ

Using this in (A5) we get

Kpq;rs ≡ ∂2K
∂Mpq∂M̄rs

¼ ∂2
ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂Mpq∂M̄rs
¼ λ2

4jλj3 δspδrq ðA7Þ

on the solution.
Taking the second derivative of (A2) we find

δspδjqδir ¼
∂2

ffiffiffiffiffiffiffiffiffi
M̄M

p
il

∂Mpq∂M̄rs

ffiffiffiffiffiffiffiffiffi
M̄M

p
lj þ

∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
il

∂Mpq

∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
lj

∂M̄rs

þ ∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
il

∂M̄rs

∂ ffiffiffiffiffiffiffiffiffi
M̄M

p
lj

∂Mpq
þ

ffiffiffiffiffiffiffiffiffi
M̄M

p
il
∂2

ffiffiffiffiffiffiffiffiffi
M̄M

p
lj

∂Mpq∂M̄rs
;

ðA8Þ
which, upon using (A6), reads

∂2
ffiffiffiffiffiffiffiffiffi
M̄M

p
ij

∂Mpq∂M̄rs
¼ 1

8jλj ð3δspδjqδir − δipδrqδjsÞ: ðA9Þ

Similarly

∂2
ffiffiffiffiffiffiffiffiffi
M̄M

p
ij

∂Mpq∂Mrs
¼ −

λ̄2

8jλj3 ðδspδjqδir þ δipδrqδjsÞ: ðA10Þ

Next, we take the derivative of (A8) and then use the
value of the first and the second derivatives on the solutions
(A6), (A9), and (A10) to get

∂Kpq;rs

∂M̄mn
¼ ∂3

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂M̄mn∂Mpq∂M̄rs

¼ −1
16λ̄jλj ðδsmδpnδrq þ δspδmqδrnÞ ðA11Þ

and

∂Kpq;rs

∂Mmn
¼ ∂3

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂Mmn∂Mpq∂M̄rs

¼ −λ̄
16jλj3 ðδpsδmqδrn þ δqrδmsδnpÞ: ðA12Þ

By iteration of the above procedure, we obtain the fourth
derivatives,
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∂2Kpq;rs

∂Mef∂M̄mn
¼ ∂4

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂Mef∂M̄mn∂Mpq∂M̄rs

¼ −1
32jλj3 ð−δsmδpnδeqδrf þ δqmδenδspδrf

− δsmδenδpfδrq þ δfmδpnδrqδse

− δfpδmqδrnδse − δspδqeδmfδrnÞ; ðA13Þ

with

∂2Kpq;rs

∂M̄ef∂M̄mn
¼ ∂4

ffiffiffiffiffiffiffiffiffi
M̄M

p
ii

∂M̄ef∂M̄mn∂Mpq∂M̄rs

¼ −1
32λ̄2jλj ð3δseδfmδpnδrq þ δseδfpδmqδrn

þ 3δsmδenδpfδrq þ δsmδpnδeqδrf

− δspδeqδmfδrn − δspδqmδenδrfÞ: ðA14Þ

Finally, we obtain

∂K−1
ij;kl

∂Mmn
¼ −K−1

ij;pq

∂Kpq;rs

∂Mmn
K−1

rs;kl; ðA15Þ

where the inverse of the metric on the solution reads

K−1
pq;rs ¼ 4jλjδqrδps: ðA16Þ

Equation (A15), together with (A12), yields

∂K−1
ij;kl

∂Mmn
¼ λ̄

jλj ðδjkδimδln þ δilδkmδnjÞ; ðA17Þ

as claimed in the text. Taking the next derivative of (A15),
and using (A13), (A14), and (A17), we derive the second
derivative of the inverse metric on the solution, which we
needed to calculate the mass spectrum.
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