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We study dynamical supersymmetry breaking in supersymmetric QCD theories for Ny < N.. We

consider a model with a singlet chiral superfield coupled to the infrared meson chiral superfield through a
classical superpotential. We examine the vacuum structure of this model and show that in a particular limit
of the parameter space with the large N, limit, it has a vacuum that dynamically breaks supersymmetry. The
supersymmetric vacuum, in this limit, is being pushed to infinity.
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I. INTRODUCTION

Supersymmetric quantum field theories have provided us
with some useful toy models in which one can track the
strong coupling dynamics of phenomena like quark con-
finement, chiral symmetry breaking, and the mass gap.
Moreover, they are promising candidates to replace the
standard model of particle physics. The minimal super-
symmetric standard model (MSSM) is a theory which
minimally embeds supersymmetry in the standard model.

Although the MSSM can address the hierarchy problem,
improve the flow of the running coupling constants (so that
they all meet at one high energy scale point), and provide
particle candidates for dark matter, it is not yet quite clear
how to consistently handle the problem of supersymmetry
breaking in this model. A hierarchy of energy scales can be
naturally achieved through dynamical supersymmetry
breaking. In SQCD theories, for instance, this is triggered
by the generation of nonperturbative superpotentials [1-3].
In fact, depending on the number of colors, N, and the
number of the flavors, N, one gets different nonperturba-
tive superpotentials. Therefore, in principle, it is natural to
think of models which classically have a supersymmetric
vacuum, but at the quantum level a nonperturbative super-
potential is generated resulting in a nonsupersymmetric
vacuum. Constructing a realistic model of this kind,
however, turns out to be difficult and, in fact, it is non-
generic. For N. = Ny, there are some interesting models
for which F-flatness conditions are in conflict with the
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dynamical constraint on the quantum vacuum moduli
space, and hence supersymmetry is dynamically broken
[4,5]. This example, however, is noncalculable, in the sense
that the vacuum is not in the weakly coupled region.

The idea of having a long-lived metastable vacuum
instead of a nonsupersymmetric absolute minimum opened
a new avenue in constructing phenomenologically viable
models of dynamical supersymmetry breaking [6,7].
Metastable vacua are easier to construct and appear in more
generic models. In [6] Seiberg et al. proposed a SQCD
model with N. < Ny <3 /2N ., which, instead of having a
stable nonsupersymmetric vacuum, has a metastable vac-
uum. They showed that, by a suitable adjustment of the
parameters of the model, this vacuum can be long lived.

In this paper, we study SQCD with Ny < N deformed
by a singlet chiral superfield. The singlets are coupled to
the low energy meson chiral superfields through a classical
superpotential. We examine the vacuum moduli space and
observe that, apart from a supersymmetric solution, there
are also nonsupersymmetric solutions. We choose a max-
imally symmetric solution and look at the small fluctua-
tions around it to determine its stability. The analysis of the
stability simplifies in a corner of the parameter space of the
model; however, to keep the potential finite, we need to
take a simultaneous large N . limit. We discuss the spectrum
of small fluctuations and show that there are no tachyonic
modes in this particular limit.! Furthermore, we show that it
is also possible to keep the nonsupersymmetric vacuum in
the weakly coupled region of the field space and very far
from the supersymmetric one. In fact, the supersymmetric
vacuum will be pushed to infinity in that limit.

The organization of this paper is as follows. In the next
section, we introduce the model and discuss its vacuum
structure. We observe that the model, in addition to

lLarge N supersymmetry breaking in lower dimensions has
been studied in [8].
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supersymmetric ~ vacua, admits nonsupersymmetric
extrema. To discuss the classical stability, in Sec. III, we
work out the mass matrix around a maximally symmetric
solution. In Sec. IV, we look at a particular limit in the
parameter space of the model which simplifies the stability
analysis. We derive the corresponding eigenvalues and
show how this vacuum can be placed far away from the
supersymmetric one. Conclusions and an outlook are given
in Sec. V. In the Appendix, we derive the details of the
computations of the successive derivatives of the Kihler
potential.

II. THE MODEL

Supersymmetric QCD has a dynamical mass scale
A below which the coupling constant becomes strong
so that N, quark chiral superfields ¢¢ and N, antiquark
¢* condense into the singlet meson chiral superfields
M{ = gb;‘&ﬁ{;.z These mesons constitute the low energy
degrees of freedom (d.o.f.) of the theory. Nonre-
normalization theorems forbid any perturbative quantum
corrections to the superpotential. However, a superpotential
is generated nonperturbatively [1]. For Ny < N, it reads

(N.—Ny) Sl
T detm '

With no classical superpotential, the model will only have
supersymmetric runaway vacua at infinity. To modify the
vacuum structure and get some possible metastable vacua,
we introduce singlet [under the gauge group SU(N.)]
chiral superfields S;; which couple to the low energy meson
fields M;; through the following superpotential:

(1)

We = nM;S" +ySyS" + myM7, (2)

where 7, y, and m;; are complex parameters, with
ij,...=12,.., Nf. This superpotential should be
regarded as an effective superpotential, which, in principle,
could be derived from a more fundamental theory. It can
arise, for example, from higher dimensional operators
induced from supergravity or by integrating out some
massive fields at higher energies. Given the above super-
potential, one can discuss the low energy effective descrip-
tion and especially the vacuum structure of the model. If the
mass parameters of the fields M and S are large compared
to A, then they can be integrated out before hitting the scale
A. One is then left with a pure supersymmetric gauge
theory which confines at A, and because of the mass gap, a
nonperturbative superpotential is generated. Upon integrat-
ing in the M fields, superpotential (1) is then obtained. On

Note that ¢¢ and ¢*" transform in the fundamental and
antifundamental representations of the SU(N,) gauge group,
respectively.

the other hand, if the mass parameters are small compared
to A, those terms survive and need to be included in the low
energy effective theory. However, because of the non-
renormalization theorems, the classical superpotential is
perturbatively exact, and one only needs to add the non-
perturbative superpotential (1) to the tree-level superpo-
tential to describe the low energy effective theory [3,9].
Hence, taking the nonperturbative superpotential into
account, the superpotential for Ny < N. becomes

W= (v, - ) (A
T T CdetM
+ M ST+ y S ST+ my MY (3)

Let us now discuss the vacuum structure of this model.
First we need to compute the F-terms,

ow <A3Nv‘Nf

N,,.lN/ 1
- M=+ nS.. (4
oM detM ) i St m - (4)

ij
and for §;; we get

ow
ij
If we set the F-terms to zero, we get the supersymmetric
vacuum:

A3N—N; W nZ
— MY—-"_M.. =0, 6
( detM ) ij oy M M (6)

and
Sij=—5-M,;. (7)

For a maximally symmetric vacuum solution, we have

i (8)

Moreover, if we set m;; = md;;, the F-term equation (6) for
a supersymmetric solution reduces to

M A0 S §6

ij — A0ij» ij —

Wy Ne g
AN Np PNp=Ne 2—/1 -m=0, <9)
Y

whereas Eq. (7) becomes

)

5k (10)

S =

Next, we want to examine whether there are nonsuper-
symmetric vacua. For the potential, with a canonical Kéhler

potential for S;;, we have
oW oW | oW |?
V=K —— , 11
ik 6Ml] 8Mkl ‘ aSU ( )
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where Ki‘jlkl is the inverse of the metric

*K

Kiiyy=——01",
ij.kl aM”aMk,

(12)

with K the Kihler potential
=trv MM: VMM”'. (13)

This Kihler potential is actually induced from the micro-
scopic theory simply by imposing the D-flatness condition
and expressing the canonical Kihler potential in terms of
the low energy d.o.f. M;; [3]. Therefore, this form of K is
valid only in that region of the moduli space where M;; is
large so that the microscopic theory is weakly coupled and
the use of its canonical potential is justified. In the present
model, we will see that the nonsupersymmetric solution can
be located in the weakly coupled region of field space, and
hence it makes sense to use (13) as the Kihler potential.
For the minima we derive

ov aK” ki ow 8W
oM, OM,; OM;; OM,

N 1
1 ~1p-1 —17-1
+ Kiiu [A<WM” M5 + M, M )]
X (—/A\Mﬁ{l + ﬁS[k + Vhlk) + 7’/(7_7Msr + 273&7) =0,
(14)

and

ov
88”, =n srkl(

+ 2y (M, + 278,,) = 0, (15)

AMkl + i’]Skl + mk,)

where we have defined

f\_ A3N~Ny N(‘+Nf 6
\detM ’ (16)

Now, to examine nonsupersymmetric vacua we assume
that the F-terms are nonvanishing, and hence we plug (15)
into (14) to obtain

OK il AM=! 4 1S
oM, (=AM +nSji 4+ mj;)
k-1 (AME M AMzI M 5 s
+ Kijw W+ oy s
ow

As in the case of the supersymmetric vacuum, here we can
also look for a maximally symmetric extremum, where M;;
and §;; are proportional to the identity matrix as in (8). In
the Appendix, we show that with this assumption we have

OK7! )
l]kl 4|/”5 kéilﬂ ikl:

oM, m (8jk0i015 + 010k,

(18)

Therefore, assuming supersymmetry is broken, Eq. (17)
requires that we set the first bracket in that equation to zero.
With (18), this implies
A 2A
- —- —/1 0, 19
( A—Q—ns—i—m)—i—@1 , (19)

from which we get

)

Plugging s into (15) we get an equation which
determines A,
/\{2 <2 >Ir2] 772< 3|7/|2> mly|?
— =+ =1 —— 1+ A+ =0,
Ale \¢& Al v 2lPlAl) " [nPlAl
(21)
where we have defined
N.— Ny
= 22
e==yr (22)

sothat 0 < & < 1.

III. CLASSICAL STABILITY

In this section we discuss the stability of nonsupersym-
metric solutions (20) and (21) by looking at the mass matrix
of small fluctuations around them. With the canonical
Kéhler potential, the bosonic mass matrix reads

Wi V_Vijm )

W, Wi
Y (23)
W, Wi

Wi Wijm

where the indices on the superpotential W indicate deriV-

atives with respect to the chiral superfields, e.g., W, = 0 ¢,,

and so on. Since here we have N % chiral superfields S,; and
N2 ¢ chiral superfields M;; of mesons in the low energy hmlt
of SQCD, Eq. (23) is a 2(2N§.) x 2(2N7) mass matrix.
To obtain the mass matrix for a generic Kihler potential,
however, one has to directly expand the potential to
quadratic order. As we have chosen a maximally symmetric
vacuum, the potential of small fluctuations splits into two
parts. The first part consists of quadratic fluctuations of
symmetric (antisymmetric) matrices 6M;;6M"/, and the
second part contains the quadratic trace terms oM iéM;
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o’V _ ]
W&MkﬁMm = (A8, 6)5 + A'5,6,,)0M 1 ;6M,
v SMk sM!
= ASM SM* + N2A'—k—1L.
N s Ny
(24)

Let us further decompose the symmetric part of 6M;; as
follows:

1 N
§M” = N_éMkkéij + 5Mij’ (25)
f

where M ¥ is the trace part, and SM ij 1s the traceless part.
In doing so, Eq. (26) can be decomposed into two
independent d.o.f.,

ASM MM + A'SM k5!

SM * 5M!
KL (26)
Ny Ny

= ASMuM" + N3 (A + A/N))

Using the formula for the derivatives of Ki‘].}d in the

Appendix to compute the second derivative of potentials
(11) and (19), we obtain

1 A 2 |2
A== g e e

&y

el
? +Nf\77|2. (28)

A
A, =N3 (A’ Jer) = Ny|A|

Similarly, for 6S,,S,, we get

oV 88168,y = (BSy,0,5)58,0S
asklasrs kIO rs — kr@ls kIO rs
PO AT LY
= B6§08" + B, 2221 (29)
Ny Ny
where
B = 4[A|In|* +4Jy|*, (30)
and
B, = N4B. (31)
Next, consider quadratic fluctuations of 8S;,6M,,,
o’V _
————6SuOM
88 oM, T
= (@815 + o 514815)58110M
. = 5Sk sM!
= 288, 3M" + N3 (ol +a/N;) LT (32)

Ny Ny’

where

1\ A >
—oulal2(1==) =+ 1) + 209, 33
a ||77<< f>/12+y>+m/ (33)

2nN n
m=N%w+WN»:—7%MMP+m%=Z&. (34)

Finally, we compute the off-diagonal elements in (23).
For 0S,,0M,, we get

v

m5sgkléMrs = (€6316,5)0S10M ., (35)

where

2A

=2\ gzt )W 36
< 7 )I n (36)

with
¢ = Nye. (37)

Moreover, the coefficient of 6M;0M ., reads

v
——F—— M ;0M
aMklaMrs kl rs
= (Coy015 + C'848,5 )M 1M 1
Ce SM M
= C6M MM + N3(C'+ C/N ;) —+—1,
ki + N3 (C'+ C/Ny) N, N,
where
2A 77 A 7>\ (2
C=4Ml=-=)l=++—)-). 38
| '(az ‘)(2542 47) \a (38)
and

C, = N3(C'+C/Ny)

B 2A i’ A 7\ (A
-G (e-0382+5) () @

We are now ready to write down the mass matrix (23).
For the traceless part it reads

A

[e>REEN

a
B e

QU

, (40)

(@
QU
R

o

e 0 «a

where A, B, a, and C are derived in (27), (30), (33), and
(38), respectively. There is a similar matrix for the trace part
with components A,, B;, a;, and C, as defined in (28), (31),
(34), and (39), respectively.
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Let us discuss the trace part, where we can identify the
Goldstino. In diagonalizing (40), we obtain the following
characteristic equation of the eigenvalues:

(le:* + la|* = A;B, + k,(A, + B,) — k7 )?
= |(Bt_kt)Ct_26tal|2' (41

~—

For the mass matrix of fermions, on the other hand, the off-
diagonal 2 x 2 matrices of (40) are zero. Moreover, from
(28), (31), and (34) we deduce

AB, = |at|2’ (42)
and so, using this in (41), we see that for fermions
k> — k,(A,+ B,) =0. (43)

Hence, we get a massless mode which we identify as the
Goldstino coming from the supersymmetry breaking on
solution (21).

IV. LARGE N, LIMIT

There are certain limits in which Eq. (41) reduces to a
quadratic equation and the analysis of the stability sim-
plifies. For instance, we can take either C, or B,C, — 2e,q,
in (41) to vanish. Together with (21), this constrains the
space of parameters of the model. However, in both of these
cases we will end up with some negative eigenvalues of
(41) resulting in the instability of the solution.

Alternatively, we can go to a limit where both 7 and y
vanish so that Eq. (21) and the stability analysis greatly
simplify. However, a look at the potential shows that to
have a finite value for V, we need to take a large N, limit
simultaneously. Thus, we take the following limit:

’7:C1/\/N__,

with C, and C, two finite complex constants (with #?/y
fixed) and large N ;. Explicitly, first note that from Eqs. (15)
and (19) we see that the extremum of the potential satisfies
the following equations:

y = Cy/Ny, (44)

~ ~

A % 2A 2
—S st m= =l (g4 2ps) = -+

- A (45

2 270 gty &)
So assuming that 4 and s at the extremum are finite, the last
two equations of (45) imply that in the limit of (44) we have

28 P CrA (77) 3/2
A=— Y v o(1/NY?), (46

where we have used (44) to replace for y on the right-hand
side. Now we can use (44) and (45) to see how potential
(11) scales at large N,

2

A
V:4Nf|/1|' —7+11s+m + NylnA + 2ys|?

(w5 i+
= | Nf|=| 7=+ Ny )|nd+2ys
Ml a7
2 1 n|? 2A e 2
:4/12<—2 —+N»>‘— -+
4 Gl A )y &y
=|C\AP? + O(1/Ny), (47)

where in the last equality we have used (46). Hence, we
observe that in the limit (44) the potential, evaluated on the
extremum, approaches a finite value.

To discuss the mass matrix in the limit (44), first note
that, assuming A is finite, from (45) we infer

(2[\ >

-t 7) ~1/N;. (48)

Now, looking at the elements of the trace part of the mass
matrix, A,, B;, a;, ¢;, and C,—as derived in Egs. (28), (31),
(34), (37), and (39)— (48) implies that, in the large N
limit, they scale as

Ny 1. NN (49)
respectively. We can now analyze the quartic characteristic
eigenvalue equation (41). Using the explicit expressions for
the roots of this equation and keeping only the dominant
terms in the large N limit, we find that the eigenvalues
scale as follows™:

Hence, in the limit Ny — oo, the first two modes get very
heavy and decouple from the spectrum, and we are left with
two zero-mode eigenvalues. For the nontrace part, the
matrix elements, A, B, a, e, and C, in the large N limit
scale as

-1 -1/2 -3/2 -1
L NoLONSE N2 N (51)
respectively. Analyzing the quartic eigenvalue equation, we

find that the leading terms of the eigenvalues scale as
follows:

diag(1,1,1/N;,=1/Ny), (52)

so in the limit Ny — oo we get two extra zero modes. Note
that there is a similar expression for the modes coming from
the antisymmetric part of the quadratic fluctuations, so, in

*We have also checked the leading order terms using
Mathematica.
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sum, we get 2N % real massless scalars. Here we get a factor
of 2 as matrix (40) is 4 x 4, and hence the eigenvalues are
doubly degenerate. We conclude that in the large N limit,
there are no negative eigenvalues of the mass matrix of
small fluctuations around the nonsupersymmetric solution,
and hence no instability.

Now let us discuss what happens to solution (21) in the
limity/n — 0 and large N... Setting N. = aN, witha > 1,
and since 5?/y is held fixed and finite, solution (21) in this
limit reduces to the following equation for a nonsupersym-
metric vacuum:

A3N—Ny l+ 2 /N . —N
e I i (53)
ANy 2y N,
Note that this equation is the same as (46) in the large N,
limit. Further, let us define

7 (Nc -~ Nf> _ 1 (54)
2]/ N - IN=Np ?
¢ ALNNr

where L > 1 is a finite number, and on the right-hand side,
we have included a factor of A for dimensions to match.
Equation (53) now implies

A =LA (55)

Therefore, we observe that, by taking L > 1, the non-
supersymmetric solution (55) can be located in the weakly
coupled (in terms of the microscopic d.o.f.) region of the
field space. As mentioned in Sec. II, this also justifies the
use of the Kihler potential (13) induced from the micro-
scopic theory. Further, note that Eq. (45) shows that, in the
limit of vanishing # and y, for any finite and constant s we
have a solution. Therefore, s is a modulus, and this
coincides exactly with ZN%r zero modes in the large N/
limit that we obtained in (50) and (52).

Having obtained A, we can now derive the explicit
minimum value of the potential in the large Ny limit.
From (47) and (55), we have

V=GPl = L2|Ci A (56)

which gives an energy scale for the nonsupersymmetric
small excitations in this vacuum, and hence a scale of
supersymmetry breaking:

M = L*|C,P|AJ% (57)
So, if we take
LIC|| <1, (58)

then M, < A, and supersymmetry breaking happens at a
scale well below A which, in turn, justifies the use of meson
low energy d.o.f. to describe this region of field space.

In the end, let us examine the supersymmetric vacuum
and see how it compares with the nonsupersymmetric one
in the limit. The supersymmetric solutions (4) and (5) are

~

A +ns+m=0
F ns +m =0,
ni+2ys = 0. (59)
The second equation implies ns = — ’27—;/1 and since we have

kept #*/y fixed, ns is finite. Plugging 5s into the first
equation, we can derive 4. However, since s = —2%/1, it
diverges in the limit (44). Therefore, for the supersym-
metric solution, s is located at infinity. On the other hand,
recall that the model also admits nonsupersymmetric
solutions with finite s. The moduli space of nonsupersym-
metric solutions is thus the whole complex plane with
the potential at its constant value (56) approaching zero at
the boundary (s~ ,/Ny; the supersymmetric solution).
Therefore, any nonsupersymmetric solution with finite s
is very far from the supersymmetric solution, and since the
potential along the modulus is flat, it is also stable. This can
also be seen from the Coleman bounce action [10]

(am)?

Vmela

5y~ EMS (60)

where AM is the distance between the metastable and
supersymmetric vacua and V., is the metastable potential.
In the large N limit, V., is finite, whereas AM goes to
infinity; hence the probability of quantum tunneling
approaches zero.

V. CONCLUSIONS

Dynamical supersymmetry breaking in models with
metastable vacua have been extensively studied. These
models, in particular, serve as the hidden sector of MSSM-
like theories where supersymmetry first breaks and then is
mediated to the visible sector. In SQCD, for instance,
interesting generic models for N. = Ny and N, < Ny <
3/2N, have been constructed that admit metastable vacua
[4-6]. In this paper, we addressed the existence of such
vacua for Ny < N,.

We showed that supersymmetric QCD with N, < N,
coupled to a singlet chiral superfield can have stable
nonsupersymmetric vacua. We observed that, apart from
a supersymmetric solution, the model also admits non-
supersymmetric solutions. We discussed the mass matrix of
small fluctuations around a maximally symmetric solution.
We noticed that there are certain limits on the space of
parameters where the quartic equation of eigenvalues
reduces to a quadratic equation, and thus the question of
stability is tractable. However, the appearance of tachyonic
modes in such cases led us to examine the potential and
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consider instead a limit of large N, with N;y*/n* kept
fixed. We analyzed the mass matrix of small fluctuations
and showed that the spectrum, in this limit, contains no
tachyons.

In the large N limit, the spectrum showed some extra
zero modes. We argued that these zero modes correspond to
the pseudomoduli space of flat directions along s. The
expectation value of the meson field on the field space turned
out to be proportional to a finite number L, which we took to
be large for the solution to be in the weakly coupled region of
field space. Further, as the supersymmetric solution gets
pushed to infinity in the limit, the two solutions become
infinitely far apart. The nonsupersymmetric vacuum thus
remains stable under small fluctuations.

It is very interesting to further examine the characteristic
equation and see if there are any other limits where the
spectrum of the mass matrix is free from tachyons. In this
model, we encountered a pseudomoduli space of flat
directions along s which was the characteristic of the limit
taken in the parameter space of the model. It is important to
see whether this modulus is lifted when quantum correc-
tions are included.

APPENDIX: COMPUTATION OF SUCCESSIVE
DERIVATIVES OF KAHLER POTENTIAL

Although computing the derivative of the square root of a
matrix in terms of the derivative of the matrix itself is not
straightforward, in this appendix, we show how to derive
such derivatives calculated on the solutions of type
M;; = 46;;. This is done by taking the successive deriva-
tives. In each step, we compute the value of the derivative
on the solution and then use it to compute the derivative in
the next step. Let us start from the definition of the square
root of a matrix,

thl] v 11 v (Al)
Taking the first derivative we deduce
VM i M VM
Msjé = ll + tl (Az)
oM, Mm
Multiplying the right by VMM~ results in

— VM 8\/
M8,V MM = ONMMic i, OV MM VM.
oM, oM,
(A3)
Now, summing over i and k,
a V MM” — _1 - —

and then taking the second derivative gives

PVMM,; - OVMM;,

MM _ - AS
oM, 0M,, oM, (A35)

Since we need the value of the derivatives on the

solution, let us set M,; = A5;; and VMM,;; = |A|5;; in
(A2) to obtain
0 ” A —6,,0; (A6)
6Mrs 2]
Using this in (A5) we get
0’K OPVMM;; ye
qu,rs = 9 o = 9 oM - = 35sp5rq (A7)
M,,0M,, OM,,0M,, 4[]
on the solution.
Taking the second derivative of (A2) we find
5 5.5 — 82\/MM,1\/— OVMM,; OV MM,
P OM ,, OM oM,, OM,,
a\/ M OVMM,; Vi 82\/MM,]
oM,  OM,, ”aM JOM .,
(A8)
which, upon using (A6), reads
VMM, 1
el Sl | SR 36,,0:,0ir — 6i,0,40i5). (A9
aMpan 8|/”( spYjq ipYrq j.S‘) ( )
Similarly
PVMM;;
: O5p0gOir + 0ip0rg0 Al10
aMpanrS 8|/1|3( sp jq + rq jS) ( )

Next, we take the derivative of (A8) and then use the
value of the first and the second derivatives on the solutions
(A6), (A9), and (A10) to get

OK pg.rs _ PVMM;,

oM,,,  OM,,,0M,,0M
1611|/1|(5 Sonbrg + 83pOngdrm)  (AlL)
and
OK pgrs _ VMM,
oM, — OM,,,0M ,,0M
BB+ o). (AL2)

16121

By iteration of the above procedure, we obtain the fourth
derivatives,
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82qu-m _ IFVMM;;
OM,;OM,,,  OM ,;0M,,0M ,,OM,,
-1
= W (_ésmapnéeqérf + 6qm66n5sp5rf
- 5sm56n6pf6rq + 6fm5pn6rq6se
- 5fp5mq6rn§se - &s‘péqeémférn)’ (Al 3)
with
a21(]7(1.}”3‘ o 84 \% MMI'['
OM ,;OM,,  OM ,;OM yOM , 0N,
-1
= m (35‘\‘65fm61m5rq + 6seafp6mq6rn

+ 35sm59n6pf5rq + 5sm6pn5eq5rf

- 5sp56q5mf5rn - 5sp5qrn5en5rf)' (A14)

Finally, we obtain

-1
aI(ij.kl . —1 aI<pq,rs K_l
rs.kl>

oM, oM,

(A15)

where the inverse of the metric on the solution reads

Kb e = 412[8,,8 5. (A16)
Equation (A15), together with (A12), yields
K7} yi
ijkl
= -— (0400 0i10kmOni)s Al7
aan |/1|( JjkYim in 1 0i1Okm nj) ( )

as claimed in the text. Taking the next derivative of (A15),
and using (A13), (Al14), and (A17), we derive the second
derivative of the inverse metric on the solution, which we
needed to calculate the mass spectrum.
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