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We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped
short-/long-range entangled (SRE/LRE) topological states. Specifically, we explore 4d time-reversal
symmetric pure YM of an SU(2) gauge group with a second-Chern-class topological term at θ ¼ π
[SUð2Þθ¼π YM], by turning on the background fields for both the time reversal (i.e., on unorientable
manifolds) and the one-form center global symmetry. We find four siblings of SUð2Þθ¼π YM with distinct
couplings to background fields, labeled by ðK1; K2Þ: K1 ¼ 0, 1 specifies Kramers singlet/doublet Wilson
line and new mixed higher ’t Hooft anomalies; K2 ¼ 0, 1 specifies the boson/fermionic Wilson line and a
new Wess-Zumino-Witten–like counterterm. Higher anomalies indicate that to realize all higher n-global
symmetries locally on n simplices, the 4d theory becomes a boundary of a 5d higher-symmetry-protected
topological state (SPTs, as an invertible topological quantum field theory (iTQFT) or a cobordism invariant
in math, or as a 5d higher-symmetric interacting topological superconductor in condensed matter). Via
Weyl’s gauge principle, by dynamically gauging the one-form symmetry, we transform 5d bulk SRE SPTs
into an LRE symmetry-enriched topologically ordered state (SETs); thus we obtain the 4d SOð3Þθ¼π YM-
5d LRE-higher-SETs coupled system with dynamical higher-form gauge fields. We further derive new
exotic anyonic statistics of extended objects such as two world sheets of strings and three world volumes of
branes, physically characterizing the 5d SETs. We discover triple and quadruple link invariants potentially
associated with the underlying 5d higher-gauge topological quantum field theories, hinting at a new
intrinsic relation between nonsupersymmetric 4d pure YM and topological links in 5d. We provide 4d-5d
lattice simplicial complex regularizations and bridge to 4d SU(2)- and SO(3)-gauged quantum spin liquids
as (3þ 1)-dimensional realizations.
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I. INTRODUCTION AND SUMMARY

The world where we reside, to our best present under-
standing, can be described by quantum theory and the
underlying long-range entanglement. Quantum field theory
(QFT) and in particular quantum gauge field theory, under
the spell of the gauge principle following the insights since

Maxwell, Hilbert, Weyl, Pauli, and others (see a historical
review [1]), embodies the quantum, special relativity, and
long-range entanglement into a systematic framework.
Yang-Mills (YM) gauge theory [2], generalizing the
U(1) gauge group of quantum electrodynamics to a non-
Abelian Lie group, has been proven to be powerful to
describe the Standard Model physics.
The Euclidean partition function of a pure YM theory

with an SU(N) gauge group on a four-dimensional (i.e., 4d)1

spacetimeM4 and a second-Chern-class topological term Sθ
labeled by θ, i.e., SUðNÞθ-YM, is
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1We denote nd for an n-dimensional spacetime. We denote
mþ 1D for an m-dimensional space and one-dimensional time.
We denote mD for an m-dimensional spatial object.
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Z4d
YM ≡

Z
½Da� expð−SSUðNÞθ ½a�Þ

≡
Z

½Da� expð−SSUðNÞθ¼0
½a�Þ expð−Sθ½a�Þ

≡
Z

½Da� exp
�
−
Z
M4

1

g2
TrFa ∧ ⋆Fa

þ
Z
M4

iθ
8π2

TrFa ∧ Fa

�
; ð1:1Þ

where a is the SUðNÞ gauge field and Fa ¼ da − ia ∧ a is
the SU(N) field strength. g is the gauge coupling constant.
See the footnote2 for further explanations of the notations.
When θ ¼ 0, the SUðNÞθ¼0 YM theory is believed to be in
the confined phase [3], to have an energy gap, and to have a
single ground state on any manifold. In particular, there is no
’t Hooft anomaly [4]. Recently, the authors of Ref. [5]
discovered that for SUðNÞθ¼π-YM with even N, there is a
subtle ’t Hooft anomaly [4] involving the time-reversal
symmetry ZT

2 and one-form center global symmetry [6]
Ze

N;½1�.
3 The ’t Hooft anomaly of a 4d theory is captured by a

5d topological term through the anomaly inflow [7] mecha-
nism. Schematically, Ref. [5] suggested a 5d topological
term linear in the time-reversal background field T and
quadratic in the Ze

N;½1� background field B,

∼T BB: ð1:2Þ

The 5d topological term characterizes the 5d short-range-
entangled (SRE) phase. See Sec. II for more rigorous
definitions of the background fields and the 5d topological
term.

Further recently, Ref. [8] suggested that there are
additional new higher ’t Hooft anomalies for some 4d
SUðNÞθ¼π theories at even N: From one perspective,
Ref. [8] suggested that when N ¼ 2, there is a mixed
anomaly captured by a 5d topological term which is cubic
in T and linear in B, which is schematically denoted as

∼T T T B: ð1:3Þ

From another perspective, Ref. [8] suggested that the
SUðNÞθ¼π YM at an even integer N ≥ 4 contains new
mixed anomalies involving ZT

2 , Z
e
N;½1�, and a zero-form

charge conjugation (i.e., a Z2 outer-automorphism) sym-
metry. For example, at N ¼ 4, another anomaly can be
captured by the 5d topological terms schematically as

∼ACT T B: ð1:4Þ

The detailed derivation will be left for the future work [9].4

Here AC is a one-form background field for the zero-form
ZC

2 charge conjugation symmetry. In the following, we will
make the above schematic 5d topological terms Eqs. (1.2),
(1.3), and (1.4) mathematically precise, following the setup
in Refs. [8,10].
The above 5d topological terms can be regarded as

semiclassical partition functions (definable on closed five
manifolds with appropriate structures) whose functional
values depend on the couplings to global symmetry-
background probe fields. These 5d topological terms are
also known as invertible topological quantum field theories
(iTQFTs) in the literature.5 In the present work, we will
further dynamically gauge the one-form symmetry Ze

N;½1�
associated with the coupled systems of 4d YM and 5d
topological terms above. After gauging, the 5d SRE
topological terms become 5d long-range entangled
(LRE) topological quantum field theories (TQFT). We
further apply the methods developed in Refs. [11–13] to
analytically compute the physical observables of the

2a is locally a one-form SU(N) connection obtained from
parallel transporting the principal-SU(N) bundle over the space-
time manifold M4. Locally a ¼ aμdxμ ¼ aαμTαdxμ with Tα is the
generator of su(N) Lie algebra, satisfying the commutator
½Tα; Tβ� ¼ ifαβγTγ where fαβγ is a fully antisymmetric structure
constant. Locally dxμ is a differential one-form. aμ ¼ aαμTα is the
Lie algebra valued gauge field. The path integral

R ½Da� is meant to
integrate over all the configurations of aðt; xÞ modding out the
SU(N) gauge transformation a → g−1ag − ig−1dg. The 1

g2 TrðFa ∧
⋆FaÞ is the Yang-Mills Lagrangian [2] [a non-Abelian generali-
zation of Maxwell U(1) gauge theory] where ⋆Fa is the Hodge
dual of Fa. Tr stands for the trace as an invariant quadratic form of
the Lie algebra su(N). The term Sθ½a� ¼ −iθ

8π2
TrFa ∧ Fa is related

to the second-Chern-class c2ðVSUðNÞÞ of the SU(N) gauge bundle
via Sθ½a� ¼ −iθc2ðVSUðNÞÞ. This path integral is sensible for
physicists, but may not be mathematically well defined. We will
also point out how to grasp the meaning of the YM path integral on
unorientable manifolds in Sec. II.

3We use the subscript ½1� to indicate that the symmetry is
one-form, and the superscript e to indicate the symmetry is
electric as opposed to magnetic (i.e., the charged line
operators are the Wilson lines rather than the ’t Hooft lines).
When we say symmetry in this article, we always mean global
symmetry unless we state otherwise.

4Note that so far for N ¼ 4, we only find a new 4d anomaly
expressible by a term

ACw1ðTMÞ2B ∼ ACT T B:

Although there is still a possibility that another 4d anomaly may
exist

A2
Cβð2;4ÞB ∼ ACACT B:

More precisely, these two 4d anomalies are captured by
5d invertible topological quantum field theories (iTQFTs)
ACw1ðTMÞ2B and A2

Cβð2;4ÞB on a 5d closed manifold.
5By iTQFT, physically it means that the absolute value of

partition function jZj ¼ 1 on any closed manifold. Thus this Z
can only be a complex phase Z ¼ eiθ, which can thus be inverted
and canceled by e−iθ as another iTQFT.
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higher-gauge 5d TQFTs. The physical observables of 5d
TQFTs include, for example, (i) the partition functions
Z½M5� on closed manifolds M5, and (ii) braiding statistics
of anyonic strings and anyonic branes whose spacetime
trajectories form two world sheets and three world vol-
umes, respectively, and link invariants of these two world
sheets and three world volumes in M5. We uncover new
spacetime braiding processes and link invariants, including
triple and quadruple linkings analogous to previous works
[11,12,14–16].6
Now let us take a step back to digest the physical

meanings of these 5d topological terms Eq. (1.2)–Eq. (1.4).
The d-dimensional ’t Hooft anomaly of ordinary zero-
form global symmetries is known to be captured by a
(dþ 1)-dimensional iTQFT. In the condensed matter
literatures, these ðdþ 1Þd iTQFTs describe symmetry-
protected topological states (SPTs)7 [29–32]. The relations

between the SPTs and the response probe field-theoretic
partition functions have been systematically studied, selec-
tively, in [21,33–38] (and references therein), and climaxed
to the hint of cobordism classification of SPTs [39,40].
Recently the iTQFTs and SPTs have been found to be
systematically classified by a powerful cobordism theory
framework of Freed-Hopkins [41], following the earlier
work of Thom-Madsen-Tillmann spectra [42,43].
Further recently, Ref. [10] generalized the Thom-Madsen-

Tillmann-Freed-Hopkins cobordism theory [41–43] to the
cases with generalized higher global symmetries [6]. The
generalized cobordism group computation [10], which
involves the bordism group of higher classifying spaces
and their fibrations, e.g., BG, can capture the d-dimensional
higher ’t Hooft anomaly of generalized global symmetries G
by (dþ 1)-dimensional bordism invariants (i.e., generalized
symmetric or higher symmetric iTQFTs). In the following,

6Here we comment on the physical and mathematical meanings of fractional statistics and non-Abelian statistics associated with the
spacetime braiding processes involving 0D anyonic particles, 1D anyonic strings, 2D anyonic branes, and other extended objects. In the
discussions below, we take a generalized definition of anyonic:

(i) In a more restricted definition, anyonic means the self-exchange statistics can go beyond bosons or fermions [17].
(ii) In our generalized definition, anyonic means that either self-exchange statistics (of identical objects) or the mutual statistics (of

multiple distinguishable objects, may involving more than two objects) can go beyond bosonic or fermionic statistics.—In 3d
(2þ 1D) spacetimeM3, braiding statistics of particles can be fractional (such as the exchange statistics of two identical particles,
or mutual statistics of two different particles) which are called anyonic particles (see an excellent historical overview [17]). As an
example, this can be understood from a 3d Chern-Simons action with one-form gauge field a integrated over M3

∼
R
M3 aIdaJ;which modifies the quantum statistics of particle world line whose open ends host the anyonic particles.—In

4d (3þ 1D) spacetime M4, braiding statistics of particles cannot be fractional as the two 1-world lines cannot be linked in 4d.
Thus there is no anyonic particle and no fractional particle statistics beyond bosons or fermions in 4d. However, the braiding
statistics of strings can be fractional, which we dub anyonic strings. As an example, the fractional statistics of strings can be
understood from a 4d TQFT with a one-form gauge field a and a two-form gauge field b, as ∼

R
M4 bda; which modifies the

mutual quantum statistics of a 0D particle from one world line W1 ¼ e
i
R
γ
a
linked with a 1D string from two world sheet

U2 ¼ ei
R
S2

b inM4. Since a particle cannot carry a fractional charge in 4d, we can interpret the above theory as the anyonic string
carrying a fractional flux in 4d. Another way to interpret the fractional statistics of anyonic strings is through the dimensional
reduction from 4d to 3d. Let M4 ¼ S1 ×M3 with the size of S1 much smaller than the size of M3 and let the closed anyonic
strings wrap around S1 [18–20]; then the anyonic strings inM4 reduce to anyonic particles inM3. From the field theory side, the
4d TQFTs ∼

R
M4 aIaJdaK , ∼

R
M4 aIaJaKaL can modify the braiding statistics of strings [11,12,21–26]. See the relations between

Dijkgraaf-Witten’s group cohomology theory [27] and these TQFTs discussed in [11,12,21]. Furthermore, there are 4d gauge
invariant topological terms with two-form gauge field b [6,12,28] ∼

R
M4 bIbJ .—In 5d (4þ 1D) spacetimeM5, for example, there

exist self- and mutual coupling types of 5d topological terms with two-form gauge fields b, bI , bJ , etc., ∼
R
M5 bdb, ∼

R
M5 bIdbJ.

The self-coupling term
R
M5 bdb leads to anyonic strings within the restricted definition, where the self-exchange statistics goes

beyond bosonic and fermionic [17]. The mutual coupling term
R
M5 bIdbJ leads to anyonic strings within the generalized

definition, where anyonic means that mutual statistics of distinguishable 1D strings can go beyond bosonic or fermionic
statistics. Both terms modify the quantum statistics of a string world sheet whose open ends host the 1D anyonic string. We can
have another Aharonov-Bohm–like topological term with local one-form gauge field a and three-form gauge field c,
∼
R
M5 cda.When the above term appears together with other topological terms such as

R
M5 aIaJaKdaL, the statistics of 2D brane

(attached to the end of three world volume) can have fractional statistics within the general definition, while the statistics of 0D

particle (attached to the end of one world line ei
R

a) remains nonanyonic. Again the anyonic brane in 5d can reduce to anyonic
particles in 3d by compactifying along T2 in M5 [18–20]. There are many other terms allowed in 5d [21]. For a general
dimension d, there exists the topological term

R
cmdcn ∼

R
cndcm, nþm ¼ d − 1, n ≤ m, where cn is a n-form gauge field. We

always take the higher-dimensional object from the cm field to have fractional statistics (the analogs of fractional flux), while we
take the lower-dimensional object from the cn field to have regular statistics (the analogs of integrally quantized charge).

7We abbreviate both symmetry-protected topological state and symmetry-protected topological states as SPTs.
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we also call the generalized symmetric iTQFTs as higher-
SPTs. The boundary of higher-SPTs has higher-anomalies.
Gauging the higher-symmetry of higher-SPTs gives rise to
higher-gauge theories. Earlier pursuits on a systematic
framework of the generalized iTQFTs through cobordism
theories and cohomology theories include, but are not
limited to, Refs. [44–53] and references therein. In this
paper, we identify the 4d anomalies of SUðNÞθ¼π YM
Eq. (1.2)–Eq. (1.4) with the mathematically precise 5d
bordism invariants,8 obtained in Refs. [8,10].
Let us rephrase the higher anomalies into a condensed

matter language on the lattice: Higher anomaly indicates that
in order to realize all higher n-global symmetries locally on
n-simplices, the theory needs to become a boundary of a one-
higher dimensional higher-symmetry-protected topological
state (higher-SPTs). If a theory has a higher anomaly, then the
theory in its own dimension has some higher n-global
symmetries acting non-locally (on n-simplices). Then there
is an obstruction to gauge such a non-local symmetry, hence
the name of higher (’t Hooft) anomaly [4]. More in Sec. 8.

A. The Outline

Here are the outlines of the present work:
(1) Section II.—We identify the 5d bordism invariants

with the ’t Hooft anomalies of 4d SUðNÞθ¼π YM
theory (where we focus on N ¼ 2), as a version of
higher-anomaly matching.

(2) Section III.—We clarify and enumerate possible
distinct classes of 4d SUð2Þθ¼π YM theories. We
take the condensed matter viewpoint, where we
regard the SUð2Þθ¼π YM theories as infrared theo-
ries emerging from high-energy ultraviolet (UV)
bosonic systems with a lattice cutoff, as opposed to
fermionic systems. We thus dub the UV system as
bosonic YM theories. These bosonic YM theories
still allow Wilson line operators as world lines of
particles being (1) either bosonic or fermionic in
quantum statistics, and (2) either Kramers doublet or
Kramers singlet under the time-reversal symmetry.
This supplements as a partial classification of 4d
SUð2Þθ¼π bosonic YM theories. We apply the tools
in Ref. [38] to understand the relation between the

gauge bundle constraint and the properties of line/
surface operators.
From Secs. II and III, we will see that there are at

least four closely related 4d SUð2Þθ¼π nonsupersym-
metric pure YM theories [which we nickname as four
siblings of 4d SUð2Þθ¼π YM theories] with bosonic
UVcompletions.Eachof themcarries either a distinct
4d ’t Hooft anomaly associated with 5d higher-SPTs
or a distinct 4d counterterm. The distinct 5d higher-
SPTs labeled by distinct 5d bordism invariants are
actually the physical analogs of the 5d (4þ 1D) one-
form-center-symmetry-protected interacting topologi-
cal superconductors in the condensedmatter language.

(3) Sections IV and V.—We dynamically gauge the
one-form center symmetry Ze

2;½1�. This turns the 4d

SUð2Þθ¼π YM/5d-higher-SPTs coupled systems in
[8] into 4d SOð3Þθ¼π YM/5d-higher-SETs coupled
systems, where SETs stand for the symmetry-
enriched topologically ordered states.9 We then ex-
plore the detailed properties of various 5d higher
SETs. The 5d higher SETs are described by 5d time-
reversal symmetric higher-TQFTs with emergent
two-form dynamical gauge fields. We mainly focus
on the four siblings of 5d higher SETs, while we also
consider other highly relevant exotic 5d higher SETs.
To characterize these 5d higher SETs, we study the
following aspects:
(a) Partition function Z½M5� without extended oper-

ator (one-line, two-surface, three-submanifold)
insertions on five-manifold M5. We compute
Z½M5� following the techniques and tools built
from [12,13]. In particular, whenM5 ¼ M4 × S1,
the partition function Z½M4 × S1� is the topologi-
cal ground state degeneracy (topological GSD)
on a spatialM4. This issue is addressed in Sec. IV.

(b) Braiding statistics involving anyonic 1D string/2D
branes and the associated link invariants of the
spacetime two world sheet/three world volume.
Here we compute the path integral Z½M5;W;U;
…� with extended-operator insertions (W;U;…),
following the techniques and tools built from
[11,12,15,16]. This issue is addressed in Sec. V.

(4) Section VI.—We provide the exemplary spacetime
braiding processes of anyonic string/brane in 5d, and
the link configurations of extended operators, which

8For the mathematical terminology, we call the following:
(i) the bordism group generators as themanifolds ormanifold

generators, which generate finite Abelian groups, e.g.,Zn.
(ii) the cobordism group generators as the topological terms

or iTQFTs, which generate Abelian groups, e.g., Zn or
Z, etc.,

(iii) the (co)bordism invariants (people call bordism invariants
as cobordism invariants with the same meaning) mean that
they are invariants under the bordism class of manifolds,
thus (co)bordism invariants mean the topological terms or
iTQFTs, which again generate Abelian groups, Zn or
Z, etc.,

9The SPTs is a short-ranged entangled quantum state that can
be defined on a lattice. Once we break the global symmetry, SPTs
can be deformed to a trivial product state under finite steps of
local unitary transformations. SETs is a long-ranged entangled
quantum state that can be defined on a lattice. (Here we only
discuss the SETs that are anomaly-free.) Even if the global
symmetry is completely broken, SETs cannot be deformed to a
trivial product state under finite steps of local unitary trans-
formations. The SETs have the same LRE nature as topologically
ordered states. See recent reviews [29–32].
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can be detected by the link invariants that we derived
in Sec. V.

(5) Section VII.—We make more comments on the 4d
SOð3Þθ¼π YM theories, which live on the boundary
of 5d higher SETs. In particular, we reexamine these
4d SOð3Þθ¼π YM-5d-higher-SETs coupled systems
in Sec. IV.

(6) Section VIII.—We construct the lattice regularization
and UV completion of some of our systems. This
includes a lattice realization of 5d higher SPTs and
higher-gaugeSETsby implementingona5dsimplicial
complex spacetime path integral and a 4þ 1D “con-
densed matter” realization on the spatial Hamiltonian
operator. We also provide a lattice regularization

TABLE I. A short summary of some results obtained in our work for the four sSiblings of 4d pure nonsupersymmetric SUð2Þθ¼π YM
theories or SO(3) YM theories, and for the 4d-5d-SPT coupled systems or 4d-5d-higher-SET coupled systems.
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of (1) higher-symmetry-extended and (2) higher-
symmetry-preserving anomalous 3þ 1D topologi-
cally ordered gapped boundaries by generalizing the
method of [54]. The higher-symmetry-extension
method was also developed in [55].

(7) Section IX.—We conclude and make connections to
physics and mathematics in other perspectives.

Before we proceed to the detailed discussions in the main
text, we first give a quick overview on more colloquial and
pedestrian summaries in terms of schematic descriptions
and Table I, in Sec. I B. Readers who are not familiar with
certain mathematical information or physical motivations
may seek for additional help from Refs. [8,10,38] (and its
Appendixes).

B. Summaries and Tables

As we mentioned, in Secs. II and III, we will see that
there are at least four closely related 4d SUð2Þθ¼π non-
supersymmetric pure YM theories [nicknamed the four
siblings of 4d SUð2Þθ¼π YM theories are labeled by
ðK1; K2Þ ∈ ðZ2;Z2Þ] with a bosonic UV completion.
They carry either distinct 4d higher ’t Hooft anomalies10

or distinct 4d counterterms. All these anomalies that we
will discuss below are the mod 2 nonperturbative global
anomalies, similar to the old and the new SU(2) anomalies
[56,57], except that instead of an ordinary global symmetry,
now we require a higher 1-form symmetry Ze

2;½1� to probe

higher anomalies. Here we advertise these results in a
colloquial and pedestrian manner.
(1) ðK1; K2Þ ¼ ð0; 0Þ. The first sibling of 4d SUð2Þθ¼π

with Kramers singlet (T2 ¼ þ1) bosonic Wilson
line has the 4d anomaly/5d bordism invariant
schematically as

∼w1ðTMÞBB; ð1:5Þ
with wjðTMÞ the jth Stiefel-Whitney (SW) class
of spacetime M’s tangent bundle TM. Here B ∈
H2ðM;Z2Þ is a degree-2 cohomology class obtained
from restricting the two-form B field via B ∼ πB andH
Σ B ¼ πZ for any closed surface Σ. More rigor-
ously, w1ðTMÞBB stands for 1

2
w̃1ðTMÞ∪PðBÞ,

explained in Sec. II.
(2) ðK1; K2Þ ¼ ð1; 0Þ. The second sibling of 4d

SUð2Þθ¼π with Kramers doublet (T2 ¼ −1) bosonic

Wilson line has the 4d anomaly/5d bordism invariant
schematically as

∼w1ðTMÞBBþ w1ðTMÞ3B: ð1:6Þ
We note that the 4d anomaly associated with the 5d
w1ðTMÞ3B term is highly related to the 2d charge
conjugation anomaly associated with the 3d cubic
A3 term for a Z2-valued one-cohomology class A.
See the relevant studies of the 2d anomaly from
the 3d cubic A3 term in [8,22,58–60] and references
therein.

(3) ðK1; K2Þ ¼ ð0; 1Þ. The third sibling of 4d SUð2Þθ¼π

with Kramers doublet (T2 ¼ −1) fermionic Wilson
line has the 4d anomaly/5d bordism invariant sche-
matically as

∼w1ðTMÞBBþ 1

2
δðw2ðTMÞBÞ: ð1:7Þ

Here δ is a coboundary operator, sending a j-cochain
in the cochain group CjðM;ZnÞ to a (jþ 1)-
coboundary in the coboundary group Bjþ1ðM;ZnÞ.
Note that there aremapsM → BOandM → B2Z2, so
w2ðTMÞB in the cohomology group H4ðBO ×
B2Z2;Z2Þ can be pulled back to another cohomology
groupH4ðM;Z2Þ, with O the orthogonal group OðdÞ
for the d manifold. In this case, the w2ðTMÞB
is a cohomology class in H4ðM;Z2Þ. Meanwhile
1
2
δðw2ðTMÞBÞ sends w2ðTMÞB to a cohomology

class in H5ðM;Z2Þ. The 1
2
δ is mathematically pre-

cisely a Steenrod square Sq1 [61].
(4) ðK1;K2Þ¼ð1;1Þ. The fourth sibling of 4d SUð2Þθ¼π

with Kramers singlet (T2 ¼ þ1) fermionic Wilson
line has the 4d anomaly/5d bordism invariant
schematically as

∼w1ðTMÞBBþ w1ðTMÞ3Bþ 1

2
δðw2ðTMÞBÞ:

ð1:8Þ
We remark that our investigations on Kramers time-
reversal properties and bosonic/fermionic statistics of line
operators (for non-Abelian gauge theories here) give rise to
a further refined classification of gauge theories somehow
beyond the previous framework of Refs. [6,62]. See
Refs. [63,64] for the case of Abelian U(1) gauge theories.
See also [38,65,66] for other examples of non-Abelian
gauge theories.
The schematic

R
M5

1
2
δðw2ðTMÞBÞ term in Eq. (1.7)

and Eq. (1.8) is written as mathematically preciselyR
M5 Sq1ðw2ðTMÞBÞ on a five manifold M5 in Sec. II.
We will see that such a term

R
M5 Sq1ðw2ðTMÞBÞ vanishes

(as the 0 mod 2), when M5 is a closed five manifold.
However, Sec. II shows that when M5 has a boundary
M4¼∂M5,

R
M5 Sq1ðw2ðTMÞBÞ transforms nontrivially

under B→Bþδλ where λ is a one-cochain. This nontrivial

10Distinct 4d higher ’t Hooft anomalies correspond to distinct
5d higher-SPTs/counterterms labeled by distinct 5d bordism
invariants: physical analogs of 5d (4þ 1D) one-form-center-
symmetry-protected interacting “topological superconductors” in
a condensed matter language. In condensed matter, topological
superconductors refer to electronic systems with time-reversal
symmetry but without U(1) electron charge conservation sym-
metry (see an overview [30,31]), for example, due to the Cooper
pairing breaking U(1) down to a discrete subgroup or down to
nothing.
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transformation is essential to cancel the noninvariance
of the 4d YM theory. This observation indicates a subtle
fact that

R
M5 Sq1ðw2ðTMÞBÞ cannot be dropped and should

be kept as a certain physical term, since we are studying
the physics on a 5d manifold with a 4d boundary. To
summarize:

(i)
R
M5 Sq1ðw2ðTMÞBÞ vanishes as 0 (mod 2) on a
closed five manifold M5. This can be interpreted in
many distinct but related ways. It describes a trivial
gapped vacuum with no SPT order, or a trivial
gapped insulator in condensed matter language, or
a trivial iTQFT on M5.

(ii) However,
R
M5 Sq1ðw2ðTMÞBÞ has essential physical

effects on a five manifold M5 with a nontrivial
boundary M4 ¼ ∂M5. Under the background gauge
transformation B → Bþ δλ, the gauge variant is
nonzero.

(iii)
R
M5 Sq1ðw2ðTMÞBÞ ¼ R

M5
1
2
δðw2ðTMÞBÞ on an

M5 with boundary M4 ¼ ∂M5 may behave asR
M4

1
2
ðw2ðTMÞBÞ—which is half of a 4d bordism

invariant w2ðTMÞB. Twice of this fractional term
∼2

R
M4

1
2
ðw2ðTMÞBÞ ∼ R

M4ðw2ðTMÞBÞ is a 4d bord-
ism invariant, and the quadruple of this fractional term
4
R
M4

1
2
ðw2ðTMÞBÞ ∼ 2

R
M4ðw2ðTMÞBÞ ¼ 0 mod 2

is a trivial 4d bordism invariant. Thus
R
M5 Sq1 ×

ðw2ðTMÞBÞ cannot be interpreted as a 4d local
counterterm. Instead, we interpret it as a nonlocal
counterterm or a fractional counterterm onM4. This is
analogous to a certain Wess-Zumino-Witten (WZW)-
like term11 with the following new features:

(i) The standard WZW term [67,68] is labeled by
an integer, but here

R
M5 Sq1ðw2ðTMÞBÞ is

labeled by a Z2 number.
(ii) The standard WZW term is written in terms of

dynamical fields, but theWZW-like term here is
written in terms of the background fields of
the time-reversal symmetry ZT

2 and a higher
symmetry Ze

2;½1�.
(iv) Similar to the standard WZW term, our WZW-

like term affects the symmetry quantum numbers
of physical observables, i.e., the statistics and
Kramers degeneracy (i.e., singlet or doublet) of
the Wilson lines.

A schematic illustration of 4d SUð2Þθ¼π YM-5d SRE
higher-SPTs coupled system is shown in Fig. 1. See
Table I for a short summary for the four siblings of 4d
SUð2Þθ¼π YM theories and their coupling to the 5d
systems, as well as their physical properties. See
Table II for a summary of the link invariants and link
configurations of 5d TQFTs.

II. 4D SUð2Þθ=π YANG-MILLS GAUGE
THEORIES COUPLED TO 5D

SHORT-RANGE ENTANGLED SPTs

A. Ordinary and higher global symmetries
of Yang-Mills theory

We discuss the global symmetries of SUðNÞθ YM theory
in Eq. (1.1).
(1) We first focus on the discrete time-reversal sym-

metry ZT
2 and its symmetry transformation T acting

on the gauge field aμ ≡ aαμTα, where the temporal
component is a0 and the spatial component is ai. T
acts on aμ as

(a) (b)

FIG. 1. (a) Schematic illustration of 4d-5d coupled system: SUð2Þθ¼π YM-5d SRE higher-SPTs coupled systems. There are four
siblings of such systems with bosonic UV completion, summarized in Table I. We use x, y, z to label the spatial coordinates of 4d
(3þ 1D) YM, and we introduce an extra coordinate w to label the additional dimension of 5d higher SPTs. (b) Schematic illustration
of 4d-5d coupled system: 4d SOð3Þθ¼π YM-5d LRE higher-SETs coupled systems via gauging one-form Ze

2;½1� center symmetry in

Fig. 1(a). There are four siblings of such 5d SET systems with bosonic UV completion, summarized in Table I. We use x, y, z to label the
spatial coordinates of 4d (3þ 1D) YM, and we introduce an extra coordinate w to label the additional dimension of 5d higher SETs. See
also Fig. 16.

11We thank Ho Tat Lam for an inspiring conversation on this
issue.
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TABLE II. Link invariants and link configurations of two world sheet and three world volume from the anyonic-1D-strings/2D-
branes’ spacetime braiding processes in 5d higher-gauge time-reversal SETs in Secs. V and VI. Readers can find other related link
invariants in 3d, 4d, and others in the tables of [11,12].

Section and link invariant

Link configuration Intersecting number configuration

Sections VA and VI B: # ðV4
X ∩ V3

UðiÞ ∩ V3
UðiiÞ Þ≡ Tlkð5Þw1BB

ðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ

Sections V B 2, V D, and VI C: # ðV4
XðiÞ ∩ V4

XðiiÞ ∩ Σ2
UÞ≡ Tlkð5Þw1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ

Sections V B 1 and VI D: # ðV4
XðiÞ ∩ V4

XðiiÞ ∩ V4
XðiiiÞ ∩ V3

UÞ≡ Qlkð5Þw1w1w1B
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ

Sections V D and VI E: # ðV3
UðiÞ ∩ Σ2

UðiiÞ Þ≡ Lkð5ÞBdBðΣ2
UðiÞ ;Σ

2
UðiiÞ Þ

Sections V C, V D, and VI F: # ðV3
U0 ∩ Σ2

UÞ≡ Lkð5Þw2dB
ðΣ2

U;Σ2
U0 Þ

Section VI G: # ðV4
XðiÞ ∩ Σ3

XðiiÞ ∩ V3
UÞ≡ Tlkð5ÞðAdAÞBðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ
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T ∶ aα0 → −aα0; aαi → aαi ; ðt; xiÞ → ð−t; xiÞ;
Tα → Tα; a0 → −a0; ai → ai: ð2:1Þ

The components of the field strength are Fij ¼ Fα
ijT

α and F0i ¼ Fα
0iT

α. Under T , Fα
ij is preserved, while Fα

0i

flips sign.

T ∶ Fα
ij ¼ ∂iaαj − ∂jaαi þ fαβγaβi a

γ
j → ∂iaαj − ∂jaαi þ fαβγaβi a

γ
j ¼ Fα

ijð−t; xiÞ;
Fα
0i ¼ ∂taαi − ∂iaα0 þ fαβγaβ0a

γ
i → −∂−taαi þ ∂iaα0 − fαβγaβ0a

γ
i ¼ −Fα

0ið−t; xiÞ: ð2:2Þ

Here fαβγ is the structure constant of the SU(N) Lie algebra which is real. The reason that this T is a good symmetry
choice in contrast to the familiar T symmetry of the U(1) gauge theory case is explained in the footnote.12 It is
obvious that the kinetic term

R
M4 TrðF ∧ ⋆FÞ is invariant under T . The θ term flips the sign under T 13:

T ∶
θ

8π2

Z
M4

TrðF ∧ FÞ → −
θ

8π2

Z
M4

TrðF ∧ FÞ:

The θ ∈ ½0; 2πÞ has a 2π periodicity, and thus the theories at θ ¼ 0 and θ ¼ π are time-reversal invariant.
(2) We can define the ZCT

2 symmetry associated with the CT transformation for an SU(N) gauge theory:

CT ∶ aα0 → −aα0; aαi → þaαi ; ðt; xiÞ → ð−t; xiÞ;
Tα → −Tα�; a0 → þa�0; ai → −a�i ;

Fα
0i → −Fα

0ið−t; xiÞ; F0i ¼ Fα
0iT

α → ð−Fα
0ið−t; xiÞÞð−Tα�Þ ¼ F�

0ið−t; xiÞ;
Fα
ij → Fα

ijð−t; xiÞ; Fij ¼ Fα
ijT

α → Fα
ijð−t; xiÞð−Tα�Þ ¼ −F�

ijð−t; xiÞ: ð2:3Þ

Here � is the complex conjugation. We also define the charge conjugation ZC
2 symmetry associated with the C

transformation for an SU(N) gauge theory:

12The familiar U(1) gauge theory sends a0 → a0 and ai → −ai. If we choose instead aα0 → aα0 and a
α
i → −aαi for SUðNÞ gauge field,

then Fα
ij and F

α
0i are not mapped back to themselves (not even up to a sign); thus this does not define any symmetry of SU(N) YM. Given

a gauge group G, the above discussion is related to the center ZðGÞ, the automorphism group AutðGÞ, the outer automorphism OutðGÞ,
and the inner automorphism Inn(G). They form short exact sequences:

1 → ZðGÞ → G → InnðGÞ → 1; and 1 → InnðGÞ → AutðGÞ → OutðGÞ → 1;

and a combined exact sequence

1 → ZðGÞ → G → AutðGÞ → OutðGÞ → 1:

If G is a simply connected compact Lie group and g is its Lie algebra (which would necessarily be semisimple), then
InnðGÞ ¼ InnðgÞ ¼ PG, AutðGÞ ¼ AutðgÞ, and OutðGÞ ¼ OutðgÞ ¼ AutðDgÞ is isomorphic to the automorphism group of the
Dynkin diagram Dg of the Lie algebra g.

(i) For G ¼ Uð1Þ, we have ZðGÞ ¼ Uð1Þ, InnðGÞ ¼ 1, AutðGÞ ¼ OutðGÞ ¼ Z2.
(ii) For G ¼ SUð2Þ, we have ZðGÞ ¼ Z2, InnðGÞ ¼ SOð3Þ, AutðGÞ ¼ PSUð2Þ ¼ SOð3Þ, and OutðGÞ ¼ 1.
(iii) ForG ¼ SUðNÞwith N ≥ 3, we have ZðGÞ ¼ ZN, InnðGÞ ¼ PSUðNÞ, and OutðGÞ ¼ Z2. We also have AutðGÞ ¼ PSUðNÞ⋊Z2

where Z2 acts on PSUðNÞ by Eq. (2.3)’s Tα → −Tα� and a → −a� with a minus sign and a complex conjugation.
The validity of the charge conjugation symmetry ZC

2 , with a C global symmetry transformation, is based on the validity of the outer
automorphism OutðGÞ that includes a Z2 as a ZC

2 .13More explicitly, under T [using Eq. (2.2)]

T ∶ϵijkFα
0iðt; xÞFα

jkðt; xÞ → −ϵijkFα
0ið−t; xÞFα

jkð−t; xÞ:

The time reversal changes the sign in the bracket of the field fðtÞ → fð−tÞ, and the integration measure maintains dt → dt.
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C∶ aα0 → aα0; aαi → aαi ; ðt; xiÞ → ðt; xiÞ;
Tα → −Tα�; a0 → −a�0; ai → −a�i ;

F0i ¼ Fα
0iT

α → −F�
0i;

Fij ¼ Fα
ijT

α → −F�
ij: ð2:4Þ

However, for N ¼ 2, the SU(2) YM does not have ZC
2 global symmetry because SU(2) does not have a Z2 outer

automorphism. The C transformation is part of the SU(2) gauge transformation. Let CSUð2Þ ¼ ei
π
2
σ2 ∈ SUð2Þ be the

matrix that provides an isomorphism between the fundamental representation of SU(2) and its conjugate, and let
USUð2Þ ¼ expði θ

2
σαÞ be the unitary SU(2) transformation on the SU(2) fundamentals, where σα, α ¼ 1, 2, 3 are Pauli

matrices. Then CSUð2ÞUSUð2ÞC−1SUð2Þ ¼ expð−i θ
2
σTαÞ ¼ expð−i θ

2
σ�αÞ ¼ U�

SUð2Þ. In other words, ZT
2 and ZCT

2 are the
same symmetry for the SU(2) YM. See more discussions in footnote 11, Sec. 2.2 of [38], and Sec. 2 of [8].

(3) Parity symmetry ZP
2 is another discrete symmetry associated with the transformation P:

P∶ aα0 → aα0; aαi → −aαi ; ðt; xiÞ → ðt;−xiÞ;
Tα → Tα; a0 → a0; ai → −ai;

Fα
ij ¼ ∂iaαj − ∂jaαi þ fαβγaβi a

γ
j → ∂−ið−aαj Þ − ∂−jð−aαi Þ þ fαβγð−aβi Þð−aγjÞ ¼ Fα

ijð−t; xiÞ;
Fα
0i ¼ ∂taαi − ∂iaα0 þ fαβγaβ0a

γ
i → ∂tð−aαi Þ þ ∂−iaα0 þ fαβγaβ0ð−aγi Þ ¼ −Fα

0iðt;−xiÞ: ð2:5Þ

P is related to CT via the CPT symmetry:

CPT ∶ aα0 → −aα0; aαi → −aαi ; ðt; xiÞ → ð−t;−xiÞ;
Tα → −Tα�; aμ → þa�μ;

Fα
0i → Fα

0ið−t;−xiÞ; F0i ¼ Fα
0iT

α → Fα
0ið−t;−xiÞð−Tα�Þ ¼ −F�

0ið−t;−xiÞ;
Fα
ij → Fα

ijð−t;−xiÞ; Fij ¼ Fα
ijT

α → Fα
ijð−t;−xiÞð−Tα�Þ ¼ −F�

ijð−t;−xiÞ: ð2:6Þ

(4) The one-form electric Ze
N;½1� center global symmetry:

The charged object of the one-form Ze
N;½1� symmetry

is a gauge-invariant Wilson line

WR
e ¼ TrR

�
P exp

�
i
I

a
��

: ð2:7Þ

The gauge field a is Lie algebra su(N) valued. The
P expði H aÞ specifies a SU(N) group element where
P is the path ordering. Tr is the trace in the
representation R of SU(N). For the SU(N) gauge
theory, R can be any possible representation. If R is
an irreducible representation and l is the number of
boxes in the Young diagram of R, then We trans-
forms under Ze

N;½1� as

Ze
N;½1�∶ WR

e → e2πil=NWR
e : ð2:8Þ

For the fundamental representation, there is only one
box in the Young diagram; hence the Wilson line
Wfund

e transformsunderZe
N;½1� asW

fund
e →e2πi=NWfund

e .
For N ¼ 2, the Wilson line in the fundamental

representation transforms under Ze
2;½1� by a sign

Wfund
e → −Wfund

e .
The charge operator (i.e., symmetry generator) of

the Ze
N;½1� symmetry is a codimension 2 (thus a 2D

operator in 4d spacetime) electric surfaceoperatorUe.
For SU(2) gauge theory, we will see that

Ue ¼ exp

�
iπ
I

Λ
�
; ð2:9Þ

where Λ ∈ H2ðM4;Z2Þ as a cohomology class.
One can couple the SU(2) theory to Ze

N;½1� back-
ground gauge field B. Following [5,6,69], we first
promote the SU(2) gauge field a to a U(2) gauge
field â,

â ¼ aþ 1

2
ÂI2; ð2:10Þ

where I2 is a two-dimensional identity matrix. The
first Chern class of the U(2) bundle is c1 ≡
c1ðVUð2ÞÞ≡ TrF̂

2π ≡ dÂ
2π where F̂ ¼ dâ − iâ ∧ â is a U

(2) field strength. Then we couple to B by requiring
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c1 ¼ Bmod 2, which can be done via introducing a
Lagrangian multiplier Λ [see Eq. (2.37)]. This
amounts to introducing the following term in the
path integral:

Z
½DΛ� � � � exp

�
iπ
Z
M4

Λ ∪ ðc1 − BÞ
�
: ð2:11Þ

The minimal coupling expðiπ R Λ ∪ BÞ implies that
the generator of Ze

N;½1� is precisely expðiπ R ΛÞ. This
explains Eq. (2.9). Notice that integrating out the
Lagrangian multiplier Λ removes the U(1) degree of
freedom; hence the gauge group is SOð3Þ ¼ PSUð2Þ
[rather than SU(2)],

Uð2Þ
Uð1Þ ¼

SUð2Þ×Uð1Þ
Z2

Uð1Þ ¼ SUð2Þ
Z2

¼ PSUð2Þ ¼ SOð3Þ;

ð2:12Þ
with thegauge bundle constraint c1¼w2ðVSOð3ÞÞ¼B.
Here the second Stiefel-Whitney class w2ðVSOð3ÞÞ ∈
H2ðM;Z2Þ is the obstruction of promoting the
SO(3) bundle to the SU(2) bundle, which we
explain in detail below. The nontrivial SU(2) gauge
bundle on amanifoldM can be constructed by finding
an open cover of M and then gluing together trivial
bundles from adjacent open patches via the SU(2)
transition functions. Suppose gij ∈ SUð2Þ is the
transition function (which plays the role of gauge
transformation) defined on the intersections of two
open covers indexed by i and j. There is a consistency
condition

gijgjkgki ¼ 1 ∈ SUð2Þ
on the triple overlapping intersections of three open
patches indexed by i, j, and k. However, the con-
sistency condition of the SO(3) bundle is weaker. Let
hij be the transition function in the SO(3) bundle, and
ĥij is the lift of hij in the SU(2) bundle. Then

hijhjkhki ¼ 1 ∈ SOð3Þ; ð2:13Þ
while

ĥijĥjkĥkl ¼ expðiπwijkðVSOð3ÞÞÞ ∈ f�1g ⊂ SUð2Þ:
ð2:14Þ

ThewijkðVSOð3ÞÞ ∈ Z2 is related tow2ðVSOð3ÞÞ evalu-
ated on the simplex ðijkÞ.14 Thus the SO(3) bundle

canbe lifted to anSU(2)bundleonlywhenw2ðVSOð3ÞÞ
is trivial, i.e., the Ze

N;½1� background field B ∈
H2ðM;Z2Þ is trivial. Namely, activating B allows
us to study the SU(2) gauge theorywith the nontrivial
SO(3)-gauge bundle. In short,

dÂ
2π

¼ c1ðVUð2ÞÞ ¼ B ¼ w2ðVPSUð2ÞÞ ¼ w2ðVSOð3ÞÞ
¼ w2ðEÞmod 2; ð2:15Þ

and we learn that the SU(2) gauge theory coupled
to a background B field can be regarded as a path
integral summing over the SO(3) gauge bundle
E subject to the gauge bundle constraint B ¼
w2ðVPSUð2ÞÞ ¼ w2ðVSOð3ÞÞ ¼ w2ðEÞmod 2. We will
soon propose a new generalization of the gauge
bundle constraint of Eq. (2.15) on unorientable or
nonspin manifolds. See Eq. (2.25) in Sec. II B.
Coupling toZe

2;½1� background fieldB allows one to

say more on various line and surface operators. First,
one can use B to construct a magnetic two-surface
Um¼ expðiπRΣw2ðVPSUð2ÞÞÞ¼ expðiπRΣBÞ.WhenΣ
is a surfacewith a boundary, aWilson lineWfund

e in the
fundamental representation (below, we will simply
use We for simplicity) can be supported on the
boundary so that WeUm is invariant under the back-
ground gauge transformation B → Bþ δλ. Second,
when the surface Σ of the electric two-surface
operator Ue, Eq. (2.9), has a boundary ∂Σ, a ’t Hooft
line Tm can be supported on ∂Σ. Since Ue is
dynamical in the SU(2) gauge theory, the ’t Hooft
line Tm is not a genuine line operator, and Tm has to
live on the boundary ofUe. Thus the ’t Hooft line Tm
as the world line of the probe background magnetic
monopole must be attached with the dynamical and
detectable open Dirac string, which is visible byWe.
The closed twoworld sheet of detectable Dirac string
forms the Ue operator. This can be seen from the
correlation function

hWeUei ¼
�
TrR

�
Pexp

�
i
I
γ1
a

��
exp

�
iπ
I
Σ2

Λ
��

¼ exp

�
i2π
N

Lkðγ1;Σ2Þ
�
; ð2:16Þ

where R stands for the fundamental representation.
Lkðγ1;Σ2Þ is the linking number between γ1 and Σ2.
From the Hamiltonian point of view, the spatial

Wilson line operator Ŵe and the spatial ’t Hooft
operator T̂m (as two canonically quantized line
operators) in the SU(N) gauge theory satisfy the
commutation relation [70]

14The patch i is dual to a zero-simplex i in the dual cell
decomposition of spacetime. The intersection of two patches i
and j is dual to a one-simplex ðijÞ in the dual cell decomposition
of M. The intersection of the patches i, j and k is dual to a two-
simplex ðijkÞ in the dual cell decomposition of M.
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Ŵeðγ1ÞT̂mðγ10 Þ ¼ exp

�
i2π
N

Lkðγ1; γ10Þ
�

× T̂mðγ10 ÞŴeðγ1Þ; ð2:17Þ

where Lkðγ1; γ10Þ is the linking number between γ1

and γ10 in the 3d space. For the SU(2) YM, Eq. (2.17)
reduces to

Ŵeðγ1ÞT̂mðγ10 Þ ¼ ð−1ÞLkðγ1;γ1 0ÞT̂mðγ10 ÞŴeðγ1Þ:
The noncommutative nature of Eq. (2.17) implies that
We and Tm are not mutually local, which is consistent
with the fact thatWe is a genuine line operator while
Tm is not a genuine line operator as discussed in the
last paragraph.

(5) The full symmetryZT
2 × Ze

2;½1�: The full symmetry of
the SU(2) YM theory relevant in our study is
ZT

2 × Ze
2;½1�.

15 The ZT
2 symmetry implies the space-

time symmetry has an orthogonal group OðdÞ via a
short exact sequence extension 1 → SOðdÞ →
OðdÞ → ZT

2 → 1 where SO(d) is the spacetime
rotation symmetry. Knowing the full relevant global
symmetry, ZT

2 × Ze
2;½1�, we can classify the ’t Hooft

anomalies based on Thom-Madsen-Tillmann-Freed-
Hopkins bordism spectra and cobordism theory
[41–43]. In terms of a bordism group ΩG

d (more
precisely, we focus on the torsion part ΩG

d;tor), the
classification of 4d ’t Hooft anomalies for 4d SU(2)
YM can be written as linear combinations of bord-
ism invariants ΩG

d ¼ ΩO
d ðB2Z2Þ for d ¼ 5 [8,10].

[We leave the details of bordism invariants for later
in Eq. (2.40) and in Sec. II C.]

B. Derivation of new higher anomalies of
SU(2) Yang-Mills theory at θ= π on

unorientable manifolds

We start with the SU(2) Yang-Mills theory with θ ¼ π,
denoted SUð2Þθ¼π . The Euclidean action SE is

SE½M4� ¼ 1

g2

Z
M4

TrðF ∧ ⋆FÞ − iθ
8π2

Z
M4

TrðF ∧ FÞ:

ð2:18Þ
Since the anomaly is a renormalization group flow invari-
ant, in the following discussion, the kinetic term that is
proportional to the running coupling constant 1=g2 will not
play a role. Hence we only consider the second term in
Eq. (2.18), which we dub the theta term. To probe the
anomaly, we turn on the background gauge field B for the
Ze

2;½1� one-form symmetry. Here B is a Z2-valued two-form

gauge field with
H
ΣB ¼ πZ for any closed surface Σ. The

two-form gauge field B is related to the two-cochain B via
B ∼ πB, and we also convert the wedge product ∧ to the
cup product ∪ when the action is written in terms of
cochains. To couple the SU(2) YM theory to the back-
ground gauge field B, we promote the SU(2) gauge field a
to a U(2) gauge field â, and the theta term at θ ¼ π reads16

θ

8π2

Z
M4

TrððF̂ − B I2Þ ∧ ðF̂ − B I2ÞÞ; ð2:19Þ

where F̂ ¼ dâ − iâ ∧ â is the U(2) field strength, and I2 is
the two-dimensional identity matrix. To restore the SU(2)
gauge field, the U(2) field strength should satisfy the gauge
bundle constraint

TrF̂
2π

¼ 2B
2π

¼ B ¼ w2ðVPSUð2ÞÞ ¼ w2ðVSOð3ÞÞ
¼ w2ðEÞmod 2: ð2:20Þ

Here w2ðVPSUð2ÞÞ¼w2ðVSOð3ÞÞ is the Stiefel-Whitney class
of the associated vector bundle of the PSUð2Þ ¼ SOð3Þ [the
principal gauge bundle E of PSUð2Þ ¼ SOð3Þ].
To activate the background field for the time-reversal

symmetry, we formulate Eq. (2.19) on an unorientable
manifold M4. On an unorientable manifold, the top differ-
ential form is not well defined, due to the lack of the
volume form whose definition needs an orientation. To
make sense of Eq. (2.19) on an unorientable manifold,
we reformulate it in terms of the Chern characteristic
classes. We denote the jth Chern class of the U(N) gauge
bundle as cjðVUðNÞÞ. For j ¼ 1, 2, we have

c1ðVUðNÞÞ ¼
TrF̂
2π

;

c2ðVUðNÞÞ ¼ −
1

8π2
TrðF̂ ∧ F̂Þ þ 1

8π2
ðTrF̂Þ ∧ ðTrF̂Þ:

ð2:21Þ
Replacing 1

8π2
TrðF̂ ∧ F̂Þ by c1∪c1

2
− c2, we rewrite

Eq. (2.19) as17

15Since ZCT
2 × Ze

2;½1� and ZT
2 × Ze

2;½1� differ by a SU(2) gauge

transformation, we only discuss ZT
2 × Ze

2;½1�.

16The topological term for the Euclidean action SE;topological in
the Euclidean partition function Z ¼ expð−SE;topologicalÞ contains
a factor of imaginary i, namely SE ¼ −ið� � �Þ in Eq. (2.18).
However, by converting expð−SEÞ ¼ expðiSÞ, we have the
following Minkowski S in Eq. (2.19).

17Some of the mathematical-oriented readers may wonder how
to rigorously define Eq. (2.19)’s π

8π2

R
M4 TrððF̂ − BI2Þ ∧ ðF̂ −

B I2ÞÞ to a term π
8π2

R
M4 TrððF̂ − πBI2Þ ∧ ðF̂ − πBI2ÞÞ with the

continuous differential form F̂ coupling to a discrete cohomology
class B ∈ H2ðM;Z2Þ. In fact, the physics way to interpret this
coupling is related to the coupling between QFT to TQFT
explained in [69]. More formally, we can also implement
mathematical methods [71] to formulate such couplings. J. W.
thanks Shing-Tung Yau for insightful conversations on this
method [71].
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π

8π2

Z
M4

ðTrðF̂ ∧ F̂Þ − 2TrðF̂Þ ∧ B þ TrðI2ÞB ∧ BÞ ¼ π

Z
M4

�
1

8π2
TrðF̂ ∧ F̂Þ − 1

2
Tr

�
F̂
2π

�
∧ B

π
þ 1

4

B
π
∧ B

π

�
: ð2:22Þ

Using Eq. (2.21), Eq. (2.22) can be reinterpreted as

π

Z
M4

�
−c2ðVUð2ÞÞ þ

c1ðVUð2ÞÞ ∪ c1ðVUð2ÞÞ
2

−
1

2
c1ðVUð2ÞÞ ∪ Bþ PðBÞ

4

�
; ð2:23Þ

where PðBÞ is the Pontryagin square18 of B.
Note that Eq. (2.23) is not well defined even on an

orientable manifold. In Sec. II D, we resolve this problem
for the torsion-free oriented manifolds M. Yet, Eq. (2.23)
is also not well defined on an unorientable manifold. In
general, if M is a d-dimensional unorientable manifold
and ω is a d cocycle, π

R
M ωmod 2π is well defined only

when ω is valued in Z2.
19 Since c2ðVUð2ÞÞ ∈ H4ðM4;ZÞ

is integer valued, the first term in Eq. (2.23) makes sense
when M4 is unorientable. However, the other terms are
fractional; hence the integral of those terms does not
make sense if M4 is unorientable. To make sense of
Eq. (2.23), we actually need to define it on both the
unorientable M4 and an unorientable M5 such that

∂M5 ¼ M4.20 To proceed, we extend the integer valued
cohomology class c1ðVUð2ÞÞ on M4 to an integer valued
cochain c̃1ðVUð2ÞÞ on M5. Note that c̃1ðVUð2ÞÞ on M5

does not have to be an element in H2ðM5;ZÞ, i.e.,
δc̃1ðVUð2ÞÞ ¼ 0 does not have to hold onto M5. The
requirement of c̃1ðVUð2ÞÞ will be imposed later by the
gauge bundle constraint. The extension means, in par-
ticular, that when restricting c̃1ðVUð2ÞÞ to M4, it reduces
to a Z-valued cohomology class c1ðVUð2ÞÞ. We further
extend the Z2-valued cohomology class B on M4 to a
Z2-valued cohomology class on M5, and for simplicity,
we use the same notation B on M5 as well. Thus we
define Eq. (2.23) as follows:

− π

Z
M4

c2ðVUð2ÞÞ þ π

Z
M5

δ

�
c1ðVUð2ÞÞ ∪ c1ðVUð2ÞÞ

2
−
1

2
c1ðVUð2ÞÞ ∪ Bþ PðBÞ

4

�

¼ −π
Z
M4

c2ðVUð2ÞÞ þ π

Z
M5

�
δðc̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞÞ

2
−
1

2
δðc̃1ðVUð2ÞÞ ∪ BÞ þ δPðBÞ

4

�
; ð2:24Þ

with the background field B properly extended to M5.
Here δ is a coboundary operator, such that we applyR
M4ð� � �Þ ¼ R

M5 δð� � �Þ from (2.23) to (2.24). To make sure
that the integral on an unorientable M5 is well defined,
and also independent of the dynamical gauge field, we
need to utilize the gauge bundle constraint, which relates
c̃1ðVUð2ÞÞ with the background gauge fields B;w1ðTMÞ
and w2ðTMÞ. Below, we will see that the five-
dimensional integral does not depend on the dynamical

gauge fields due to the gauge bundle constraints. Hence
the 5d integral is an invertible TQFT whose partition
function is a local function of the background fields. In
summary, we find that in order to make sense of the theta
term of the SU(2) YM theory with the background fields
on an unorientable manifold, one needs to treat the
SUð2Þθ¼π YM theory as a 4d–5d coupled system. This
is a manifestation of the mixed ’t Hooft anomaly between
the one-form global symmetry Ze

2;½1� and the time-reversal

symmetry ZT
2 .

On an unorientable manifold M ¼ M4, the w1ðTMÞ is
nontrivial and one can treat it as the background gauge field
for the time-reversal symmetry. This allows us to modify
the gauge bundle constraint Eq. (2.20) by an additional
term K1w1ðTMÞ2, with K1 ¼ 0; 1 ∈ Z2. Furthermore, we
are also allowed to consider the manifoldM with nontrivial
w2ðTMÞ since the underlying manifold does not necessarily
allow a spin/pin structure; hence we activate the term
K2w2ðTMÞ with K2 ¼ 0; 1 ∈ Z2. In summary, there are
four choices of gauge bundle constraints labeled by the pair
ðK1; K2Þ ∈ ðZ2;Z2Þ as

18Notice it is crucial to treat π
8π2

R
M4 TrðBI2 ∧ BI2Þ ¼ π

8

R
M4 B ∧

BðTrðI2ÞÞ ¼ 2π
8

R
M4 B ∧ B ¼ π

4

R
M4 B ∧ B ≃ π

4

R
M4 PðBÞ as the

more precise rewriting for the later purposes. The PðBÞ denotes
the Pontryagin square; e.g., see Ref. [10].

19Using the definition of the fundamental class of an unorient-
able manifold M, i.e., [M], one has

R
M ω ¼ hω; ½M�i where

hω; ½M�i is theZ2 valuedpairingbetweenω and ½M� ∈ HdðM;Z2Þ.
20Note that if M5 is orientable, then M4 must be orientable.

Conversely, if M4 is unorientable, M5 must be unorien-
table. However, if M4 is orientable, M5 can be orientable or
unorientable.
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c1ðVUð2ÞÞ ¼ Bþ K1w1ðTMÞ2 þ K2w2ðTMÞ ¼ w2ðVPSUð2ÞÞ ¼ w2ðVSOð3ÞÞ ¼ w2ðEÞmod 2; K1;2 ∈ Z2 : ð2:25Þ

This is a nontrivial constraint between the gauge bundle E, the spacetime tangent bundle TM, and the background field B.
The value of K1;2 has physical consequences: when K1 ¼ 0, 1, the SU(2) gauge charge [in the fundamental representation
of SU(2)] is a Kramers singlet (T2 ¼ þ1) or a Kramers doublet (T2 ¼ −1) under time-reversal transformation21; when
K2 ¼ 0, 1, the SU(2) gauge charge is a boson (spin statistics as an integer spin) or a fermion (spin statistics as a half-integer
spin). More details about the Wilson line properties are derived in Sec. III.
The gauge bundle constraint Eq. (2.25) is defined on M4. We would like to promote it to M5 as follows:

c̃1ðVUð2ÞÞ ¼ Bþ K1w1ðTMÞ2 þ K2w2ðTMÞmod 2; K1;2 ∈ Z2: ð2:26Þ
Equation (2.26) imposes additional constraints on c̃1ðVUð2ÞÞ. Since B;w1ðTMÞ2 and w2ðTMÞ are Z2 cohomology on M5,
c̃1ðVUð2ÞÞ is equivalent to a Z2-valued cohomology H2ðM5;Z2Þ mod 2 (although it is not a Z-valued cohomology),
i.e., δc̃1ðVUð2ÞÞ ¼ 0mod 2.
We further apply the gauge bundle constraint Eq. (2.25) to the five-dimensional integral Eq. (2.24). We should be aware

that the five manifoldM5 has a boundaryM4. Here we summarize some helpful formulas and mathematical definitions in a
footnote.22 Since c̃1ðVUð2ÞÞmod 2 is in H2ðM;Z2Þ, it makes sense to define its Steenrod square Sq1c̃1ðVUð2ÞÞ. Then the 5d
integral in Eq. (2.24) can be written as

21For an SU(2) gauge theory, one can use either T or CT as the time-reversal transformation because the charge conjugation C of
SU(2) is an inner automorphism. The Kramers doublet (T2 ¼ −1) of the Wilson line [in the SU(2) fundamental representation] means
that there is a doublet (twofold) degeneracy associated with the Wilson line. The two states of the Wilson line, say j1i and j2i forming a
two-dimensional Hilbert space, transforms as j1i → j2i and j2i → −j1i under the time-reversal transformation.

22We clarify the definitions of various fields we used in terms of cochain (Cn), cocycle (Zn), coboundary (Bn), or cohomology (Hn):

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

c1ðVUð2ÞÞ ∈ H2ðM;ZÞ;
δc1ðVUð2ÞÞ ¼ 0 ∈ B3ðM;ZÞ;
c̃1 ∈ C2ðM;ZÞ; ðc̃1 mod 2Þ ∈ H2ðM;Z2Þ;
c2ðVUð2ÞÞ ∈ H4ðM;ZÞ;
B ∈ H2ðM;Z2Þ; PðBÞ ∈ H4ðM;Z4Þ;
w1ðTMÞ ∈ H1ðM;Z2Þ;
w2ðTMÞ ∈ H2ðM;Z2Þ
λ ∈ C1ðM;Z2Þ; δλ ∈ B2ðM;Z2Þ; δ2λ ¼ 0mod 2; Sq1δλ ∈ Z3ðM;Z2Þ:

ð2:27Þ

HereCn stands for thenth cochain,Hn for the nth cohomology,Zn for thenth cocycle, andBn for the nth coboundary.When discussing the
cup products, there are subtle distinctions between (1) cohomology classes in Hn, (2) cocycles in Zn, and (3) cochains in Cn, which we
enumerate below:
(1) The cup product between two cohomology classes u ∈ HpðM;Z2Þ; v ∈ HqðM;Z2Þ are supercommutative, i.e.,

u ∪ v ¼ ð−1Þpqv ∪ u: ð2:28Þ
(2) The cup products between two cocycles are not supercommutative. If u ∈ Zp and v ∈ Zq are general pth and qth

cocycles, their commutation relation is governed by Steenrod’s relation [61]

u ∪ v − ð−1Þpqv ∪ u ¼ ð−1Þpþq−1ðδðu∪
1
vÞ − δu∪

1
v − ð−1Þpu∪

1
δvÞ ¼ ð−1Þpþq−1δðu∪

1
vÞ; ð2:29Þ

where we have used the cocycle condition δu ¼ 0mod 2, δv ¼ 0mod 2.
(3) The cup products between two cochains satisfy Steenrod’s relation [61]

δðu∪
i
vÞ ¼ ð−1Þpþq−iu ∪

i−1
vþ ð−1Þpqþpþqv ∪

i−1
uþ δu∪

i
vþ ð−1Þpu∪

i
δv; ð2:30Þ

δðu ∪ vÞ ¼ δu ∪ vþ ð−1Þpu ∪ δv; ð2:31Þ
where u ∈ Cp and v ∈ Cq are general pth and qth cochains.

In this section, all the calculations still go through if we regard the B field as a Z2 two-cocycle, because we did not use the
supercommutativity.
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Sanom ≡ π

Z
M5

δ

�
PðBÞ
4

−
1

2
c̃1ðVUð2ÞÞ ∪ Bþ c̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞ

2

�

¼ π

Z
M5

δPðBÞ
4

−
1

2
c̃1ðVUð2ÞÞ ∪ δB −

1

2
δc̃1ðVUð2ÞÞ ∪ Bþ δc̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞ

2
þ c̃1ðVUð2ÞÞ ∪ δc̃1ðVUð2ÞÞ

2

¼ π

Z
M5

BSq1Bþ Sq2Sq1B − c̃1ðVUð2ÞÞ ∪ Sq1B − Sq1c̃1ðVUð2ÞÞ ∪ Bþ Sq1c̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞ

þ c̃1ðVUð2ÞÞ ∪ Sq1c̃1ðVUð2ÞÞ

¼ π

Z
M5

BSq1Bþ Sq2Sq1B − ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞ ∪ Sq1B − ðSq1Bþ K2Sq1w2ðTMÞÞ ∪ B

þ ðSq1Bþ K2Sq1w2ðTMÞÞ ∪ ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞ
þ ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞ ∪ ðSq1Bþ K2Sq1w2ðTMÞÞ

¼ π

Z
M5

BSq1Bþ Sq2Sq1Bþ K1Sq1B ∪ w1ðTMÞ2 þ K2Sq1ðB ∪ w2ðTMÞÞ

þ K2ððK1w2
1 þ K2w2Þ ∪ Sq1w2 þ Sq1w2 ∪ ðK1w2

1 þ K2w2ÞÞ

¼ π

Z
M5

BSq1Bþ Sq2Sq1Bþ K1Sq1B ∪ w1ðTMÞ2 þ K2Sq1ðB ∪ w2ðTMÞÞ : ð2:32Þ

In the first equality, we simply stated the initial definition.
In the second equality, we plugged in the coboundary
operator δ. In the third equality, we used Eq. (2.31) and
replaced δ=2 by Sq1 which is valid for Z2-valued cocycles.
We also used the identity δPðBÞ

4
¼ BSq1Bþ Sq2Sq1B since

B is a Z2-valued two-cocycle [8].23 In the fourth equality,
we plug in the gauge bundle constraint Eq. (2.25).
Equation (2.25) also implies Sq1c1ðVUð2ÞÞ ¼ Sq1Bþ
K2Sq1w2ðTMÞ. In the fifth equality, we used Sq1ðB ∪
w1ðTMÞ2Þ ¼ ðSq1BÞ ∪ w1ðTMÞ2 þB ∪ Sq1ðw1ðTMÞ2Þ. In
the last equality, we used ððK1w2

1 þ K2w2Þ ∪ Sq1w2 þ
Sq1w2 ∪ ðK1w2

1 þ K2w2ÞÞ ¼ 0mod 2 since the Stiefel-
Whitney classes are supercommutative.
Several comments are in order:
(1) As mentioned below Eq. (2.24), Sanom is a properly

quantized integral of the background field B and the
Stiefel-Whitney class wiðTMÞ, which is independent
of the dynamical U(2) gauge field. Hence Sanom is an
invertible TQFT.

(2) In Eq. (2.24) and Eq. (2.32), the 5d unorientable
manifold M5 has a boundary M4:

(a) If M5 does not have a boundary, the term
K2Sq1ðB ∪ w2ðTMÞÞ vanishes, due to

K2ðw2ðTMÞ ∪ Sq1Bþ Sq1w2ðTMÞ ∪ BÞ
¼ K2Sq1ðw2ðTMÞ ∪ BÞ
¼ K2w1ðTMÞw2ðTMÞ ∪ B

¼ K2Sq3B ¼ K2u3B ¼ 0mod 2π:

ð2:33Þ

In the last step, we have used the Wu formula
u3 ≡ u3ðTMÞ ¼ w1ðTMÞw2ðTMÞ ¼ 0mod 2,
on a closed five manifold. Hence Eq. (2.32)
simplifies to

π

Z
M5

BSq1BþSq2Sq1BþK1w1ðTMÞ2 ∪ Sq1B:

ð2:34Þ

(b) If M5 has a boundary, K2πSq1ðw2ðTMÞ ∪ BÞ
transforms nontrivially under the background
gauge transformation B → Bþ δλ,

K2π

Z
M5

Sq1ðw2ðTMÞ ∪ BÞ

→ K2π

Z
M5

Sq1ðw2ðTMÞ ∪ BÞ

þ K2π

Z
M5

Sq1ðw2ðTMÞ ∪ δλÞ: ð2:35Þ

23For a two-cocycle B, the following equality holds:

1

4
δPðBÞ ¼ 1

4
δðB ∪ Bþ B∪

1
δBÞ

¼
�
1

2
δB

�
∪ Bþ

�
1

2
δB

�
∪
1

�
1

2
δB

�

¼ BSq1Bþ Sq1B∪
1
Sq1B ¼ BSq1Bþ Sq2Sq1B:

See Eq. (124) in [8] for further details.
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This compensates the noninvariance of the 4d
theory under B → Bþ δλ. Thus although the K2

terms vanish when M5 is a closed manifold,
when M5 has a boundary, it is crucial to keep
track of this term.

(c) We can show that the term K2

R
M5 Sq1 ×

ðw2ðTMÞ ∪ BÞ is well defined in 4d by showing
that this terms depends only on the 4d boundary
∂M5. The triviality of

R
M5 K2Sq1ðw2ðTMÞ ∪

BÞ ¼ 0 on a closed M5 implies that when the
5d manifold has a boundary, such a term does
not depend on the choice of extension; i.e.,
given two 5d extensions M5 and M̃5, we know
K2

R
M5∪M̃5 Sq1ðw2ðTMÞ ∪ BÞ ¼ 0 becauseM5 ∪

M̃5 is closed, and thus we derive K2

R
M5 Sq1×

ðw2ðTMÞ∪BÞ¼K2

R
M̃5 Sq1ðw2ðTMÞ∪BÞ. Note

that when M5 has a boundary, K2

R
M5 Sq1×

ðw2ðTMÞ∪BÞ can be nonzero. This is analogous

to the WZW term. See Sec. II E for further
discussions.

(3) The 4d–5d integral Eq. (2.24) is invariant under a
one-form gauge transformation B → Bþ δλ. We
will show this explicitly in Sec. II C.

(4) Although Sanom depends only on K1 when M5 is
closed, we still label it as the 5d anomaly polynomial
parametrized by ðK1; K2Þ, due to the subtlety that the
5d integral still depends on K2 when M5 has a
boundary.

To summarize, the partition function of the combined
4d–5d coupled system

Z4d
SUð2Þθ¼πYM

½M4;B;wjðTMÞ� · Z5d½M5;B;wjðTMÞ� ð2:36Þ

is gauge invariant under the gauge transformation of the
background field B, and it also makes sense when M4 and
M5 are unorientable, where

Z4d
SUð2Þθ¼πYM

½M4;B;wjðTMÞ� ¼
Z

½Dâ�½DΛ� exp
�
−

1

g2

Z
M4

TrððF̂ − πBI2Þ ∧ ⋆ðF̂ − πBI2ÞÞ
�

· exp

�
−iπ

Z
M4

c2ðVUð2ÞÞ
�
· exp

�
iπ
Z
M4

Λ ∪ ðc1 − B − K1w1ðTMÞ2 − K2w2ðTMÞÞ
�

ð2:37Þ

and

Z5d½M5;B;wjðTMÞ� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2 ∪ Sq1Bþ K2Sq1ðw2ðTMÞ ∪ BÞ
�
: ð2:38Þ

The combined 4d–5d system is anomaly-free. Equivalently,
to couple the background fields of both time-reversal
symmetry and the one-form global symmetry Ze

2;½1�, the
SUð2Þθ¼π YM theory cannot be placed on an unorientable
M4 only; instead, one needs to place it on the boundary of
an unorientable M5 which supports a 5d invertible TQFT.
This is the manifestation of the mixed ’t Hooft anomaly
between the one-form global symmetry Ze

2;½1� and the time-

reversal symmetry ZT
2 .

C. Anomaly matching of 5d–4d inflow and 5d
cobordism group data

In this subsection, we identify the 5d topological terms
Eq. (2.32) with the mathematically well-defined 5d bord-
ism invariants and further explicitly check the invariance of
the 4d–5d system Eq. (2.36) under B → Bþ δλ.

1. Identifying Sanom with 5d cobordism group data

We compare Sanom in Eq. (2.32) with the bordism group
data given in [8,10]. Since the global symmetries of 4d

SUð2Þθ¼π YM theory are ZT
2 × Ze

2;½1�, we compute the 5d

bordism group24,25

ΩO
5 ðB2Z2Þ ¼ Z4

2: ð2:39Þ
Hence there are four independent generators of the bordism
group ΩO

5 ðB2Z2Þ,

24In addition to [8,10], we notice that the oriented version of
the bordism group ΩSO

5 ðB2Z2Þ has been studied recently in [72]
for different purposes. Here we study instead the unoriented
version of the bordism group ΩO

5 ðB2Z2Þ, new to the literature.
See details in the Appendix.

25For an ordinary (zero-form) global symmetry, we denote G
as the zero-form global symmetry group. When gauging a zero-
form symmetry, we introduce a one-form flat gauge field with a
gauge group G, whose classifying space is BG. For an Abelian
group and for a higher symmetry: We denote G½1� as the one-form
global symmetry group. When gauging a one-form symmetry, we
introduce a two-form flat gauge field with a higher gauge group,
whose classifying space is associated with BðBGÞ ¼ B2G.
Similarly, for an Abelian n-form global symmetry group G½n�,
we have the associated classifying space Bnþ1G. See [48–50].
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8>>><
>>>:

BSq1B;

Sq2Sq1B ¼ ðw2ðTMÞ þ w1ðTMÞ2ÞSq1B ¼ ðw3ðTMÞ þ w1ðTMÞ3ÞB;
w1ðTMÞ2Sq1B ¼ w1ðTMÞ3B;
w2ðTMÞw3ðTMÞ;

ð2:40Þ

where the equalities hold only on closed five manifolds.
Clearly, Sanom in Eq. (2.32) is a bordism invariant except the
term proportional to K2. Setting K2 ¼ 0, Sanom is identified
with the sum of the first three bordism invariants in
Eq. (2.40),

exp
�
iπ
Z
M5

ðBSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ3BÞ
�
:

ð2:41Þ
As explained in Sec. II B, the fourth term in Sanom is trivial
whenM5 does not have a boundary. This is consistent with
the fact that there is not any bordism invariant ofΩO

5 ðB2Z2Þ
of the form Sq1ðw2ðTMÞ ∪ BÞ.
Notice that the last invariant in Eq. (2.40),26 i.e.,

w2ðTMÞw3ðTMÞ, does not participate in the anomaly
of SUð2Þθ¼π YM. However, it is responsible for the new
SU(2) anomaly [57]: 4d SU(2) gauge theory with an odd
number of fermion multiplets in representations of isospin
4rþ 3=2 of the gauge group is inconsistent, for a non-
negative integer r. The theory is nevertheless consistent on
certainmanifolds with spin or spinc structure. The new SU(2)
anomaly [57] is in contrast to the old SU(2) anomaly [56].
The familiar SU(2) anomaly [56] states that a 4d SU(2)
gauge theory with an odd number of fermion multiplets in
the isospin 2rþ 1=2 representation is inconsistent.

2. Anomaly matching of 4d–5d inflow

We first highlight the distinctions between the derivation
of anomalies in [5] and in our Sec. II B:

(i) Reference [5] places the SUð2Þθ¼π YM on an
orientable manifold and turns on the two-form
background field B of the one-form symmetry
Ze

2;½1� (or a two-cochain B). By performing a

time-reversal ZT
2 transformation, Ref. [5] detects

the T BB anomaly, which is linear in ZT
2 trans-

formation T and quadratic to the two-cochain B.
(ii) In Sec. II B, we have derived the anomaly by first

turning on the two-form gauge field B, and further
place the theory on an unorientable manifold. We
find that to make sense of the 4d theta term on an
unorientable manifold, we need to promote the
original 4d YM theory to a combined 4d–5d system.
The 5d theory is an invertible TQFT. In the follow-
ing, we reverse the logic:

(Step 1) We first formulate the SUð2Þ YM on an
unorientable manifold before activating B.

(Step 2) We further match the noninvariance of the 4d
SUð2Þθ¼π YM theory Eq. (2.37) under B → Bþ δλ
with the noninvariance of Sanom in Eq. (2.32).

(Step 1) We first place the SUð2Þ Yang-Mills theory on
an unorientable manifold without activating the back-
ground field B. If we limit to the case that the gauge
bundle constraint Eq. (2.25) as c1ðVUð2ÞÞ ¼ 0mod 2,
then the theta term is simplified to

−π
Z
M4

c2ðVUð2ÞÞ; ð2:42Þ

which is a well-defined 4d term. If we further change
the time-reversal property (i.e., Kramers singlet/
doublet) and the statistics (i.e., bosonic/fermionic)
of the SU(2) gauge charge by modifying the gauge
bundle constraint to c1ðVUð2ÞÞ ¼ K1w1ðTMÞ2 þ
K2w2ðTMÞmod 2, the theta term is

π

Z
M4

�
−c2ðVUð2ÞÞ þ

1

2
c1ðVUð2ÞÞ ∪ c1ðVUð2ÞÞ

�
:

ð2:43Þ
The second term does not make sense forM4 unorient-
able, and one needs to define it by promoting the integral
to a 5d unorientable manifold M5. Following the dis-
cussion around Eq. (2.26), the Z-valued cohomology
class c1ðVUð2ÞÞ is extended to a Z2 cohomology class
c̃1ðVUð2ÞÞ, along with the gauge bundle constraint,
c̃1ðVUð2ÞÞ¼K1w1ðTMÞ2þK2w2ðTMÞmod2. Then,
Eq. (2.43) shall be reinterpreted as

−π
Z
M4

c2ðVUð2ÞÞ þ π

Z
M5

1

2
δðc̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞÞ:

ð2:44Þ

26The w2ðTMÞw3ðTMÞ is a bordism invariant in ΩO
5 ðB2Z2Þ,

ΩO
5 ðptÞ,ΩSO

5 ðptÞ, andΩ
Spin×SUð2Þ

Z2
5 ; see [10]. Namely, this w2ðTMÞ ×

w3ðTMÞ is not only a topological term respecting a spacetime
OðdÞ symmetry and one-form Ze

2;½1� symmetry but also a
topological term respecting a spacetime OðdÞ or SOðdÞ symmetry
alone, or respecting an enhanced spacetime-internal locked

symmetry Spin×SUð2Þ
Z2

. Thus the 4d anomaly from Ω
Spin×SUð2Þ

Z2
5 is a

signature for the new SU(2) anomaly [57]. In fact, the
w2ðTMÞw3ðTMÞ topological term plays an important role as
the only possible anomaly of an interacting Spin(10) chiral
fermion theory—which is responsible for the anomaly-free of
the SO(10) grand unification [57,73].
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When M5 does not have a boundary, π
R
M5

1
2
δ ×

ðc̃1ðVUð2ÞÞ ∪ c̃1ðVUð2ÞÞÞ vanishes. This means that,
for a fixed M4, the second term in Eq. (2.44) does not
dependon thechoiceofM5.Hence,whenB is turnedoff,
there is no anomaly for generic ðK1; K2Þ. To summarize,
there is no pure time-reversal anomaly of SUð2Þ Yang-
Mills with θ ¼ π.

(Step 2) We further turn on the background field B.
Under the gauge transformation B → Bþ δλ where λ
is a Z2-valued one-cochain, the U(2) field strength F̂
transforms as

F̂ → F̂ þ πδλI:

Using Eq. (2.21), we determine that

c1ðVUð2ÞÞ → c1ðVUð2ÞÞ þ δλ;

c2ðVUð2ÞÞ → c2ðVUð2ÞÞ þ
1

2
c1ðVUð2ÞÞ ∪ δλþ 1

4
PðδλÞ:
ð2:45Þ

The only 4d term in Eq. (2.24) is the first term
proportional to c2ðVUð2ÞÞ. Under B → Bþ δλ,

−π
Z
M4

c2 → −π
Z
M4

�
c2 þ

1

2
c1ðVUð2ÞÞ ∪ δλþ 1

4
PðδλÞ

�

¼ −π
Z
M4

c2 − π

Z
M5

δ

�
1

2
c̃1ðVUð2ÞÞ ∪ δλþ 1

4
PðδλÞ

�

¼ −π
Z
M4

c2 − π

Z
M5

Sq1c̃1 ∪ δλþ c̃1 ∪ Sq1δλþ δλ ∪ Sq1δλþ Sq2Sq1δλ

¼ −π
Z
M4

c2 − π

Z
M5

½ðSq1Bþ K2Sq1w2ðTMÞÞδλþ ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞSq1δλ

þ δλSq1δλþ Sq2Sq1δλ�: ð2:46Þ

In the second equality, we replaced δ=2 by Sq1, which is valid for Z2-valued cocycles, and used the identity δPðδλÞ
4

¼
δλSq1δλþ Sq2Sq1δλ since δλ is a cocycle [8]. On the other hand, the variation of the bulk invertible TQFT Sanom, i.e.,
the 5d integral in Eq. (2.24), is

Sanom ≡ π

Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2 ∪ Sq1Bþ K2Sq1w2ðTMÞ ∪ Bþ K2w2ðTMÞ ∪ Sq1B

¼ π

Z
M5

1

4
δPðBÞ þ K1w1ðTMÞ2 ∪ Sq1Bþ K2Sq1w2ðTMÞ ∪ Bþ K2w2ðTMÞ ∪ Sq1B

→ Sanom þ π

Z
M5

1

4
δPðδλÞ þ 1

2
δðBδλÞ þ K1w1ðTMÞ2Sq1δλþ K2Sq1w2ðTMÞδλþ K2w2ðTMÞSq1δλ

¼ Sanom þ π

Z
M5

δλSq1δλþ Sq2Sq1δλþ Sq1Bδλþ BSq1δλ

þ K1w1ðTMÞ2Sq1δλþ K2Sq1w2ðTMÞδλþ K2w2ðTMÞSq1δλ: ð2:47Þ

In the second equality, we used the identity δPðBÞ
4

¼ BSq1Bþ Sq2Sq1B since B is a cocycle [8], and the formula
PðBþ δλÞ ¼ PðBÞ þ PðδλÞ þ 2Bδλ since B and δλ are both cocycles. In the third equality, we replaced δ=2 by Sq1,
which is valid for Z2-valued cocycles, and used the identity δPðδλÞ

4
¼ δλSq1δλþ Sq2Sq1δλ since δλ is a cocycle [8].

Comparing Eq. (2.46) and Eq. (2.47), we find that the noninvariance of the 4d terms Eq. (2.46) precisely cancels the
noninvariance of the 5d terms Eq. (2.47). Thus the combined 4d–5d coupled system −π

R
M4 c2ðVUð2ÞÞ þ Sanom is

symmetric under the background gauge transformation of B, and thus is anomaly-free under the one-form background
gauge transformation.27 Furthermore, since both the boundary theory Eq. (2.42) and the bulk invertible TQFT Sanom are
well defined on unorientable manifoldM4 andM5, respectively, the full system π

R
M4 c2ðVUð2ÞÞ þ Sanom also respects

the time-reversal symmetry. Thus we again arrive at the conclusion that the combined partition function Eq. (2.36) is
well defined and free of the ’t Hooft anomalies of both one-form symmetry, time-reversal symmetry, and their mixed
anomaly.

27On an unorientable manifold, the mixed time-reversal and one-form anomaly reduces to the one-form anomaly, since time-reversal
symmetry is “gauged” on an unorientable manifold and it is too late to break ZT

2 .
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D. Topological term on torsion-free
orientable manifolds

In the previous Secs. II B and II C, we derived the mixed
anomaly by first reformulating the theta term in terms of
characteristic classes, and then we make sense of it on
unorientable manifolds by promoting the ill-defined terms
on five manifolds. However, there is a loophole: Eq. (2.23)
is not well defined even on an oriented manifold, because
c1ðVUð2ÞÞ ∪ B and 1

2
PðBÞ, as a Z2 and a Z4 valued coho-

mology, respectively, are ill -definedwhen the coefficients are
fractional. In this subsection, we resolve this issue, for certain
manifolds, by lifting the Z2 class B to a Z class B̃, i.e.,

B ¼ B̃mod 2: ð2:48Þ
Here we restrict to the orientable manifoldsM4 with torsion-
free cohomology class H1ðM4;ZÞ [74] where the lifting
makes sense. Hence Eq. (2.23) becomes

π

Z
M4

−c2ðVUð2ÞÞ þ
c1ðVUð2ÞÞ ∪ c1ðVUð2ÞÞ

2

−
1

2
c1ðVUð2ÞÞ ∪ B̃þ B̃ ∪ B̃

4
: ð2:49Þ

To further formulate Eq. (2.49) on an unorientable
manifold, we note that every unorientable manifold M
contains nontrivial torsion in H1ðM;ZÞ, and thus the lifting
does not exist. This implies that on an unorientable manifold
M4 and M5, it is not possible to promote a Z2 cohomology
class to a Z cohomology class. However, the derivation of
the 5d anomaly polynomial Eq. (2.32) still goes through.

E. Consequences and interpretations of four
siblings of “anomalies”

In this section, we discuss the two siblings of anomalies
labeled by ðK1 ¼ 0; K2Þ and ðK1 ¼ 1; K2Þ. We also com-
pare our results with the known mixed Ze

2;½1� − ZT
2 anomaly

discussed in [5].
(1) When ðK1;K2Þ¼ð0;0Þ, the bulk anomaly polyno-

mial is

π

Z
M5

BSq1Bþ Sq2Sq1B ¼ π

2

Z
M5

w̃1ðTMÞ ∪ PðBÞ;

ð2:50Þ
which is nonvanishing only on an unorientable M5.
This equality has been explored in Ref. [8] in
relating to the 4d YM theory’s anomaly. Further-
more, we find that this equality is also explained in a
remarkable mathematical note in Ref. [75].
Below let us gain a better understanding based on

Ref. [75]: Let Zw1
be the orientation local system,

and then H1ðBOð1Þ;Zw1
Þ ¼ Z2. Indeed, this is the

group cohomologyH1ðZ2;ZσÞ, whereZσ denotesZ
with the sign action. The pullback of the nonzero

element ofH1ðBOð1Þ;Zw1
Þunder themapM → BZ2

determined by w1ðTMÞ ∈ H1ðM;Z2Þ is called the
twisted first Stiefel-Whitney class w̃1 ∈ H1ðM;Zw1

Þ.
Its mod 2 reduction is the usual first Stiefel-Whitney
class in an untwistedZ2 cohomology.We consider its
reduction w̃1 ∈ H1ðM; ðZ4Þw1

Þ in a twisted mod 4
cohomology. Here P denotes the Pontryagin square
P∶H2ðM;Z2Þ→H4ðM;Z4Þ. In Eq. (2.50), we use
cup and cap products in twisted Z4 cohomology: if
[M] denotes the fundamental class in the twisted Z4

cohomology, this means that

H1ðM; ðZ4Þw1
Þ ⊗ H4ðM;Z4Þ⟶∪

H5ðM; ðZ4Þw1
Þ

⟶
∩½M�

Z4: ð2:51Þ
However, since 2w̃1 is a twisted coboundary,
2hw̃1 ∪ PðBÞ; ½M�i ¼ 0mod 4, hw̃1 ∪ PðBÞ; ½M�i is
even, hence itmakes sense todivideby2andobtain an
element of Z2. This defines 1

2
w̃1ðTMÞ ∪ PðBÞ as a

mod 2 class in the fifth cohomology groupH5ðBO ×
B2Z2;Uð1ÞÞ which is also a bordism invariant of the
fifth bordism group ΩO

5 ðB2Z2Þ.
There are two options for the boundary M4:

orientable or unorientable.
(a) When M4 is orientable, the time reversal of the

SUð2Þθ¼π theory is not gauged. However, there is
still a way to probe the mixed Ze

2;½1�-Z
T
2 anomaly,

following the approach of [5]. We first couple the
SUð2Þθ¼π Yang-Mills to background gauge field
B, and then perform a global time-reversal trans-
formation. To determine how the theta term
changes under time reversal, we make use of
the fact that shifting θ by 2π amounts to changing
the parameter p of the counterterm by 1, where
the counterterm is 2πp

4

R
M4PðBÞ and p ∈ Z4, i.e.,

ðθ þ 2π; pÞ ↔ ðθ; pþ 1Þ: ð2:52Þ
Under time reversal, both the theta term
Eq. (2.19) and the counterterm change sign,
i.e., ZT

2∶ðπ; pÞ → ð−π;−pÞ. Using the identifi-
cation Eq. (2.52), ð−π;−pÞ ↔ ðπ;−p − 1Þ,

ZT
2∶ ðπ; pÞ → ðπ;−p − 1Þ: ð2:53Þ

Equivalently, under time reversal, the theta term is
unchanged, but there is a shift of the counterterm

δSE½M4� ¼ −
πð2pþ 1Þ

2

Z
M4

PðBÞ: ð2:54Þ

The noninvariance in Eq. (2.54) cannot be zero
by properly choosing p ∈ Z, which represents an
anomaly. The anomaly Eq. (2.54) can be canceled
by the ’t Hooft anomaly inflow Eq. (2.50).
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So it is important to emphasize that the 4d
anomaly from T BB detected by [5] (and Sec. 2 of
Ref. [8]) is precisely captured by the bordism
invariant 1

2
w̃1ðTMÞ ∪ PðBÞ in Eq. (2.50) noticed

in Ref. [8].
(b) When M4 is unorientable, the anomaly can be

detected aswell, as discussed inSecs. II Band II C.
(2) When ðK1; K2Þ¼ ð1; 0Þ, the bulk action is

π

Z
M5

BSq1Bþ Sq2Sq1Bþ w1ðTMÞ2Sq1B; ð2:55Þ

which is nonvanishing only whenM5 is unorientable.
(a) When M4 is orientable, one cannot probe K1.

This is because for
R
M5 w1ðTMÞ2Sq1B to be

nonvanishing mod 2 on M5, there should be at
least two or more orientation reversing cycles in
M5, and hence there should be at least one
orientation cycle inM4. Thus ifM4 is orientable,
even if M5 is unorientable, we still cannot detect
a particular 4d anomaly associated with the 5d
term K1w1ðTMÞ2Sq1B.

(b) When M4 is unorientable, the anomaly can be
detected, as discussed in Secs. II B and II C.

(3) When ðK1; K2Þ¼ ð0; 1Þ:
(a) If M5 is a closed 5d manifold (regardless

whether orientable or unorientable), we cannot
detect the term

R
M5 K2Sq1ðw2ðTMÞ ∪ BÞ.

(b) If M5 is a 5d manifold with a 4d boundary M4

(regardless orientable or unorientable in 5d or in
4d) and w2ðTMÞ is nontrivial on both M4 and
M5 (e.g., non-Pinþ manifolds), we can detect the
term

R
M5 K2Sq1ðw2ðTMÞ ∪ BÞ on the 4d boun-

dary via the one-form background gauge trans-
formation. On an M5 with a boundary M4, we
regard

R
M5 K2Sq1ðw2ðTMÞ ∪ BÞ schematically

as 4d fractional SPTs, which is characterized by
a 4d ill-defined term with a fractional coefficientR
M4 K2

1
2
ðw2ðTMÞ ∪ BÞ. Two copies of such

4d fractional SPTs become a well-defined
time-reversal ZT

2 and one-form Ze
2;½1� symmetric

4d SPTs/bordism invariant
R
M5ðw2ðTMÞ ∪ BÞ,

with respect to a nontrivial Z2 generator in
ΩO

4 ðB2Z2Þ ¼ Z4
2; see Ref. [8] and Appendix.

Thus, four layers of such 4d fractional SPTs
become trivial SPTs with respect to ΩO

4 ðB2Z2Þ.
The

R
M5 Sq1ðw2ðTMÞBÞ is similar to the

Wess-Zumino-Witten term [67,68] in some
way but with its own exoticness:

(i) The familiar WZW term is an integer Z class
[67,68], and here this

R
M5 Sq1ðw2ðTMÞBÞ has a

fractional discrete class. [In some sense,R
M5 Sq1ðw2ðTMÞBÞ seems to be a unit generator
in Z4 with respect to 4d trivial SPTs.]

(ii) The familiar WZW term is written as a path
integral of dynamical fields, but here

R
M5 Sq1 ×

ðw2ðTMÞBÞ depends on the background probe
fields w2ðTMÞ and B.

(iii) Both WZW and
R
M5 Sq1ðw2ðTMÞBÞ govern

the 4d physics, but they need to be written in
one extra higher dimension. It is tempting to
speculate that

R
M5 Sq1ðw2ðTMÞBÞ may be a

nonlocal counterterm on M4, which is 4d in
nature but cannot be written in 4d alone. TheR
M5 Sq1ðw2ðTMÞBÞ can access the 5d extra
bulk, but it does not depend on how M5 is
chosen as long as ∂M5 ¼ M4.

Related interpretations and facts aboutR
M5 K2Sq1 × ðw2ðTMÞ ∪ BÞ are also summa-
rized in Sec. I B.

(4) When ðK1; K2Þ¼ ð1; 1Þ, the interpretation is simply
the linear combination of ðK1; K2Þ¼ ð1; 0Þ and
ðK1; K2Þ ¼ ð0; 1Þ interpretations above.
We will further comment about the fate of the

dynamics of four siblings of SU(2) YM based on their
“anomalies” Eq. (2.38), in Sec. VIII and in Sec. IX.

F. 5d SPTs/bordism invariants whose boundary
allows 4d SUð2Þθ=π YM

1. On a closed manifold

We now give various equivalent formulas of the 5d
SPTs/bordism invariant in Eq. (2.38) on a closed five
manifold M5

closed:

Z5d
SPTðK1 ;K2Þ

½M5
closed� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1Bþ K2Sq1ðw2ðTMÞBÞ
�

¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1B
�

¼ exp

�
iπ
Z
M5

BSq1Bþ ðw2ðTMÞ þ w1ðTMÞ2ÞSq1Bþ K1w1ðTMÞ2Sq1B
�

ð2:56Þ

¼ exp

�
iπ
Z
M5

BSq1Bþ w3ðTMÞBþ ð1þ K1Þw1ðTMÞ3B
�

ð2:57Þ
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¼ exp

�
iπ
Z
M5

1

2
w̃1ðTMÞ ∪ PðBÞ þ K1w1ðTMÞ3B

�
ð2:58Þ

¼ exp

�
iπ
Z
M5

1

4
δðP2ðB2ÞÞ þ K1w1ðTMÞ3B

�
: ð2:59Þ

In the second line, we knew already from the derivation of Eq. (2.33) that expðiπ RM5 K2Sq1ðw2ðTMÞBÞÞ ¼ 1 on a closed
manifold.
In the fourth line, we used w1ðTMÞ2Sq1B ¼ Sq1ðw1ðTMÞ2BÞ ¼ w1ðTMÞðw1ðTMÞ2BÞ ¼ w1ðTMÞ3B where the second

equality uses the Wu formula on a closed manifold. We also used

u3B ¼ w1ðTMÞw2ðTMÞB ¼ Sq1ðw2ðTMÞBÞ ¼ ðSq1w2ðTMÞÞBþ w2ðTMÞSq1B
¼ ðw1ðTMÞw2ðTMÞ þ w3ðTMÞÞBþ w2ðTMÞSq1B;
⇒ w2ðTMÞSq1B ¼ w3ðTMÞBmod 2;

by the Wu formula on a closed five manifold.28

In the fifth line, Eq. (2.58) is based on Eq. (2.50) and Ref. [8,75].
In the sixth line, Eq. (2.59) is based on Eq. (124) in [8].

2. On a manifold with a boundary

We also give various equivalent formulas of the 5d SPTs/bordism invariant in Eq. (2.38) on a five manifold M5 with a
nonempty 4d boundary M4:

Z5d
SPTðK1 ;K2Þ

½M5� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1Bþ K2Sq1ðw2ðTMÞBÞ
�

¼ exp

�
iπ
Z
M5

1

2
w̃1ðTMÞ ∪ PðBÞ þ K1w1ðTMÞ2Sq1Bþ K2Sq1ðw2ðTMÞBÞ

�
ð2:61Þ

¼ exp

�
iπ
Z
M5

βð2;4ÞPðBÞ þ K1w1ðTMÞ2Sq1Bþ K2Sq1ðw2ðTMÞBÞ
�

ð2:62Þ

¼ exp

�
iπ
Z
M5

1

4
δðPðBÞÞ þ K1w1ðTMÞ2Sq1Bþ K2Sq1ðw2ðTMÞBÞ

�
: ð2:63Þ

In the third line, we followed Ref. [8] to define βðn;mÞ ≡H�ð−;ZmÞ → H�þ1ð−;ZnÞ as the Bockstein homomorphism

associated with the extension Zn !·m Znm → Zm, where ·m is the group homomorphism given by multiplication by m. We
can show that βð2;2nÞ ¼ 1

2n
δmod 2 [8]. Using the bordism group data and the identities given in Refs. [8,10], we rewrite the

4d higher anomalies and 5d higher-SPTs/bordism invariants/anomaly polynomials.

III. CLASSIFICATION OF 4d SUð2Þθ= π YANG-MILLS THEORIES AND CLASSIFICATION OF 4d TIME-
REVERSAL SYMMETRIC BOSONIC/FERMIONIC SU(2)-SPTs

In this section we explore the physical meaning of the gauge bundle constraint in Eq. (2.25), i.e.,

w2ðVSOð3ÞÞ ¼ Bþ K1w1ðTMÞ2 þ K2w2ðTMÞmod 2; K1;2 ∈ Z2;

and discuss their physical consequences.

28If we consider instead a different 5d SPTs/bordism invariant as K3w2ðTMÞSq1B, we have the following equalities on a closed five
manifold:

Z5d
SPTðK3Þ

½M5
closed� ¼ exp

�
iπ
Z
M5

K3w2ðTMÞSq1B
�

¼ exp

�
iπ
Z
M5

K3w3ðTMÞB
�
: ð2:60Þ
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A. Kramers singlet/doublet under time-reversal
and bosonic/fermionic Wilson line

Below we provide some physical interpretations of the
four siblings of 4d SU(2) YM theories in terms of the
Wilson line properties.
We introduce the standard 4d SU(2) Yang-Mills path

integral Z4d
SUð2ÞYM½B� coupled to the background two-form

gauge field B. Z4d
SUð2ÞYM½B� is obtained by replacing F with

F̂ − B in Z4d
YM in Eq. (1.1). We also need to impose the

gauge bundle constraint w2ðEÞ≡ w2ðVSOð3ÞÞ ¼ B, which
can be imposed by introducing a Lagrangian multiplier,29

Z
½DΛ�Z4d

SUð2ÞYM½B� exp
�
iπ
Z

Λ ∪ ðw2ðEÞ − BÞ
�
:

(i) Electric two-surfaceUe: Mathematically, integrating
out the Lagrange multiplier Λ sets ðw2ðEÞ − BÞ ¼
0mod 2. Physically, expðiπ R ΛÞ plays the role of an
electric two-surface Ue ¼ expðiπ R ΛÞ, which mea-
sures one-form e-symmetry Ze

2;½1�. The magnetic ’t
Hooft line lives on the boundary of an electric two-
surface Ue ¼ expðiπ R ΛÞ. Since Ue is dynamical,
the ’t Hooft line is not genuine and thus is not in the
line spectrum for the SU(2) gauge theory [6].

(ii) Magnetic two-surface Um is given by expðiπ R w2×
ðEÞÞ. The boundary of Um supports the Wilson loop
We ¼ TrðP expði H aÞÞ. Unlinking a two-surface Ue

and a Wilson loop We yields a nontrivial statistical
π-phase eiπ ¼ −1.

Following Sec. II, we enrich the gauge bundle constraint
as Eq. (2.25) by introducing two couplings labeled by
ðK1; K2Þ, and the partition function is

Z4d
SUð2ÞYMðK1 ;K2Þ

½B�≡
Z

½DΛ�Z4d
SUð2ÞYM½B� expðiπ

×
Z

Λ ∪ ðw2ðEÞ − ðBþ K1w1ðTMÞ2

þ K2w2ðTMÞÞÞÞ: ð3:1Þ

As we just deduced, the magnetic two-surface Um ∼
expðiπ R w2ðEÞÞ has its boundary as Wilson loop
We ¼ TrðP expði H aÞÞ. We will apply this relation to the
four siblings with the YM partition function Eq. (3.1) and
its constraint Eq. (2.25) and discuss the properties of the
Wilson lines.

(1) ðK1; K2Þ ¼ ð0; 0Þ: The gauge bundle constraint is
w2ðEÞ ¼ Bmod 2. The magnetic 2-surface Um ∼
expðiπ R w2ðEÞÞ has no decoration other than the
two-form background B field. Thus the one-Wilson
lineWe (which can live on the magnetic two-surface
Um’s boundary) is Kramer singlet (T2 ¼ þ1) and
bosonic.

(2) ðK1; K2Þ ¼ ð1; 0Þ: The gauge bundle constraint
becomes w2ðEÞ ¼ Bþ w1ðTMÞ2mod 2. The mag-
netic two-surface Um ∼ expðiπ R w2ðEÞÞ has a deco-
ration

R
w1ðTMÞ2 other than the two-form B field.

But
R
w1ðTMÞ2 is a topological term in a cohomol-

ogy group H2ðZT
2 ;Uð1ÞÞ also in bordism group

ΩO
2 ðptÞ, which is effectively a 1þ 1D Haldane’s

antiferromagnetic quantum spin-one chain (Haldane
chain) protected by time-reversal symmetry. It is
well known that there exists twofold degeneracy due
to Kramer doublet (T2 ¼ −1) on the boundary of the
Haldane chain. Thus due to

R
w1ðTMÞ2 decoration,

theWilson lineWe is Kramer doublet (T2 ¼ −1) and
bosonic.

(3) ðK1; K2Þ ¼ ð0; 1Þ: The gauge bundle constraint be-
comes w2ðEÞ ¼ Bþ w2ðTMÞmod 2. The magnetic
two-surface Um ∼ expðiπ R w2ðEÞÞ has a decorationR
w2ðTMÞ other than the two-form B field. ButR
w2ðTMÞ is associated with a spin structure. The

1d boundary of the 2d
R
w2ðTMÞ theory supports a

world line of a particle with fermionic statistics. Thus
due to

R
w2ðTMÞ decoration, the Wilson line We

living on the boundary of the magnetic two-surface
Um is fermionic. Since w2ðTMÞ specifies the exten-
sion of OðdÞ by the fermionic-parity ZF

2 via the short
exact sequence 1→ZF

2 →PinþðdÞ→OðdÞ→1 or
equivalently the induced fiber sequence BZF

2 →

BPinþðdÞ → BOðdÞ ⟶
w2ðTMÞ

B2ZF
2 , w2ðTMÞ specifies

a projective representation PinþðdÞ of the spacetime
symmetry OðdÞ [38]. The PinþðdÞ demands the
Euclidean reflection R2 ¼ þ1, and thus the Wick
rotated time-reversal transformation T 2 ¼ −1 in the
Lorentz signature [40]. Another way to see T 2 ¼ −1
is to use the methods of symmetry extension and the
pullback trivialization [54,57]. Defining the Wilson
line operator on the boundary of the magnetic two-
surface Um requires a trivialization of w2ðTMÞ ¼ 0,
which amounts to requiring a PinþðdÞ structure. The
PinþðdÞ structure imposes T 2 ¼ −1 and fermionic
statistics on the line. In summary, due to theR
w2ðTMÞ decoration, the Wilson line We is both

Kramer singlet (T2 ¼ þ1) and fermionic.
(4) ðK1; K2Þ ¼ ð1; 1Þ: The gauge bundle constraint

is w2ðEÞ ¼ Bþ w1ðTMÞ2 þ w2ðTMÞmod 2. Since
w2ðTMÞ specifies the extension of OðdÞ by the
fermionic-parity ZF

2 via the short exact sequence
1 → ZF

2 → Pin−ðdÞ → OðdÞ → 1 or equivalently

29We can also introduce an additional Pontryagin square B
term expði π

2
pPðBÞÞ with p ∈ Z4 into the path integral, as the

pioneer works Refs. [6,62] do. However, this weight factor term
only will result in shifting (thus relabeling) of the classification of
4d SUð2Þθ¼π theories that we are going to reveal. We use the
notations in [8].
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the induced fiber sequence BZF
2 →BPin−ðdÞ→

BOðdÞ⟶w1ðTMÞ2þw2ðTMÞ
B2ZF

2 , so w1ðTMÞ2þw2ðTMÞ
specifies a projective representation Pin−ðdÞ of the
spacetime symmetry OðdÞ [38]. The Pin−ðdÞ de-
mands the Euclidean reflection R2 ¼ −1, and thus
the Wick rotated time-reversal transformation T 2 ¼
þ1 in the Lorentz signature [40]. Another way to see
T 2 ¼ −1 is to use the methods of symmetry exten-
sion and the pullback trivialization [54,57]. Defining
the Wilson line operator on the boundary of the
magnetic two-surface Um requires the trivialization
of w1ðTMÞ2 þ w2ðTMÞ ¼ 0, which amounts to
requiring the Pin−ðdÞ structure. The Pin−ðdÞ struc-
ture imposes T 2 ¼ þ1 and fermionic statistics on
the line. The combined effect of

R
w1ðTMÞ2 þ

w2ðTMÞ decoration means that the one-Wilson line
We is a Kramer singlet (T2 ¼ þ1) and fermionic.

In fact, our discussions above are universally applicable to
more general SU(N) YM theories.30 This way of enumer-
ating gauge theories (based on new gauge bundle con-
straints) guides us to obtain new classes of gauge theories
beyond the framework of Ref. [62]. The implications are
not restricted to merely 4d SUð2Þθ¼π YM. This phenome-
non (also in [38]) can be poetically phrased as Lorentz
symmetry fractionalization [76].

B. Enumeration of gauge theories from dynamically
gauging 4d SPTs: View from 4d cobordism group data

We have discussed the four siblings of SUð2Þθ¼π YM
theories given by Z4d

SUð2ÞYMðK1 ;K2Þ
½B� in Eq. (3.1), with four

distinct sets of new anomalies derived in Sec. II, and with
Kramer singlet/doublet (T2¼þ1=−1) or bosonic/fermionic
Wilson lines in Sec. III A. With these properties shown, we
are confident that they are really four distinct classes of
SUð2Þθ¼π YM theories (at least at the UV high energy). The
two distinct ’t Hooft anomalies of ðK1; K2Þ also shows that
SUð2Þθ¼π YM theories with distinct K1 are distinct.
In this subsection, we would like to construct and

enumerate these four sSiblings of SUð2Þθ¼π YM theories
by dynamically gauging the SU(2) symmetry from 4d time-
reversal symmetric SU(2)-SPTs. To this end, we follow
Freed-Hopkins [41] to consider a suitable group extension
from the time-reversal symmetry [where the spacetime d
manifold requires the orthogonal group OðdÞ-structure] via
a SU(2) extension:

1 → SUð2Þ → G0 → OðdÞ → 1: ð3:2Þ
These 4d SPTs can be regarded as 4d co/bordism
invariants of

ΩG0
4;tor; ð3:3Þ

which is the torsion subgroup ΩG0
4;tor of ΩG0

4 for all the
possibleG0 under the above group extension. The extension
is classified by H2ðBOðdÞ;Z2Þ ¼ Z2 × Z2 for d > 1,
generated by w2

1ðTMÞ and w2ðTMÞ.
The solution G0 of this extension problem 1 → SUð2Þ →

G0 → O → 1 is given in [41] with indeed four choices of
G0 ¼ O × SUð2Þ, or E ×Z2

SUð2Þ, or Pinþ ×Z2
SUð2Þ,

or Pin− ×Z2
SUð2Þ.31

Following the similar study in Ref. [38], there is a
correspondence between the element b ¼ K1w1ðTMÞ2 þ
K2w2ðTMÞ and H2ðBOðdÞ;Z2Þ ¼ ðZ2Þ2. It will soon
become clear that b is related to w2ðVSOð3ÞÞ − B (i.e., the
difference of the gauge bundle E ¼ VSOð3Þ connection and
the background gauge connection B). Then the four central
extension choices labeled by b are the following:
(1) b ¼ 0 ⇒ G0 ¼ OðdÞ × SUð2Þ ⇒ After gauging

SU(2), we gain the gauge bundle constraint with
K1 ¼ K2 ¼ 0,

w2ðVSOð3ÞÞ − B ¼ 0:

We compute the co/bordism group in Table III
(details given in Appendix). For d ¼ 4, we obtain

ΩOðdÞ×SUð2Þ
4;tor ¼ Z3

2 ; ð3:4Þ

whose bordism invariants are generated by three
generators of mod 2 classes:

8<
:

w1ðTMÞ4;
w2ðTMÞ2;
c2mod 2:

ð3:5Þ

The c2 is the second Chern class of the SU(2) gauge
bundle.

(2) b ¼ w1ðTMÞ2 ⇒ G0 ¼ EðdÞ ×Z2
SUð2Þ32 ⇒ After

gauging SU(2), we gain the gauge bundle constraint
with K1 ¼ 1 and K2 ¼ 0,

w2ðVSOð3ÞÞ − B ¼ w1ðTMÞ2:

30Related studies along this line of analysis have also appeared
in [38,65,66].

31The notation G1 ×N G2 ≔
G1×G2

N is defined as the pro-
duct group G1 ×G2 mod out their (G1’s and G2’s) common
normal subgroup N [41].

32Here EðdÞ satisfies the following two short exact sequences:

�
1 → Z2 → EðdÞ → OðdÞ → 1;
1 → SOðdÞ → EðdÞ → Z4 → 1;

given that we also accept the well-known fact 1 → SOðdÞ →
OðdÞ → ZT

2 → 1. Here the above finite groups have physical
interpretations: Z2 ¼ Zb

2 is a bosonic group, and Z4 ¼ ZTb
4 is the

extended group under 1 → Zb
2 → ZTb

4 → ZT
2 → 1. Thus EðdÞ ¼

Zb
2⋊OðdÞ ¼ SOðdÞ⋊ZTb

4 ¼ ðSOðdÞ × Zb
2Þ⋊ZT

2 . Another way to
define EðdÞ is a specific subgroup of OðdÞ × Z4 given in [41].
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We compute the co/bordism group in Table IV
(details given in Appendix). For d ¼ 4, we obtain

ΩEðdÞ×Z2
SUð2Þ

4;tor ¼ Z3
2 ; ð3:6Þ

whose bordism invariants are generated by three
generators of the mod 2 class:

8<
:

w1ðTMÞ4;
w2ðTMÞ2;
c2mod 2.

ð3:7Þ

EðdÞ is defined in [41] which is a subgroup
of OðdÞ × Z4, described by two data ðM; jÞ ∈
ðOðdÞ;Z4Þ such that the detM ¼ j2.
By a different but more physical understanding

(see footnote 31), we can further obtain that

EðdÞ ¼ Zb
2⋊OðdÞ ¼ SOðdÞ⋊ZTb

4

¼ ðSOðdÞ × Zb
2Þ⋊ZT

2 ; ð3:8Þ

where the bosonic internal symmetry Zb
2 and the

time reversal ZT
2 form the extended group ZTb

4 under
1 → Zb

2 → ZTb
4 → ZT

2 → 1.
Here the c2 is the second Chern class of the U(2)

gauge bundle.33

(3) b ¼ w2ðTMÞ ⇒ G0 ¼ Pinþ ×Z2
SUð2Þ ⇒ After

gauging SU(2), we gain the gauge bundle constraint
with K1 ¼ 0 and K2 ¼ 1,

w2ðVSOð3ÞÞ − B ¼ w2ðTMÞ:

The co/bordism group is computed in [38,41] and in
Table V (see also Appendix). For d ¼ 4, we obtain

ΩPinþ×Z2
SUð2Þ

4;tor ¼ Z4 × Z2; ð3:9Þ

whose bordism invariants are generated by gener-
ators of mod 4 and mod 2 classes:

�
νηSUð2Þ; with a ν ∈ Z4 class;

w2ðTMÞ2: ð3:10Þ

This is related to the interacting version of the CI
class topological superconductor in condensed mat-
ter physics [38,41,77]. Details of these topological
terms are discussed in [38].

(4) b¼w2ðTMÞþw1ðTMÞ2⇒G0 ¼Pin−×Z2
SUð2Þ⇒

After gauging SU(2), we gain the gauge bundle
constraint with K1 ¼ K2 ¼ 1,

w2ðVSOð3ÞÞ − B ¼ w2ðTMÞ þ w1ðTMÞ2:

The co/bordism group is computed in [38,41] and in
Table VI (see also Appendix). For d ¼ 4, we obtain

Ω
Pin−×Z2

SUð2Þ
4;tor ¼ ðZ2Þ3; ð3:11Þ

whose bordism invariants are generated by three
generators of mod 2 classes:

TABLE III. Cobordism groups TPdðOðdÞ × SUð2ÞÞ and co/bordism invariants. Here wiðTMÞ is the ith Stiefel-
Whitney class of the spacetime tangent bundle, c2 is the second Chern class of the SU(2) gauge bundle. Here we set
H as the Hopf fibration, the SU(2) bundles on RP4, CP2, and SUð3Þ=SOð3Þ are trivial. See also Appendix.

d TPd;torðOðdÞ × SUð2ÞÞ Co/bordism invariants Manifold generators ðM;VSOð3ÞÞ
4 Z3

2 w1ðTMÞ4; w2ðTMÞ2; c2 mod 2 RP4;CP2; ðS4; HÞ
5 Z2 w2ðTMÞw3ðTMÞ SUð3Þ=SOð3Þ

TABLE IV. Cobordism groups TPdðEðdÞ ×Z2
SUð2ÞÞ and cobordism invariants. Here wiðTMÞ is the ith Stiefel-

Whitney class of the spacetime tangent bundle, c2 is the second Chern class of the U(2) gauge bundle (see
footnote 32). The second component in manifold generators ðM;VSOð3ÞÞ is the SO(3) gauge bundle over the first
component. LR is the real tautological line bundle. H is induced from the Hopf fibration by SUð2Þ → SOð3Þ. The
SO(3) bundle on SUð3Þ=SOð3Þ is trivial. See also Appendix.

d TPd;torðEðdÞ ×Z2
SUð2ÞÞ Cobordism invariants Manifold generators ðM;VSOð3ÞÞ

4 Z3
2 w1ðTMÞ4; w2ðTMÞ2; c2 mod 232 ðRP4; 2LR þ 1Þ; ðCP2; 3Þ; ðS4; HÞ

5 Z2 w2ðTMÞw3ðTMÞ SUð3Þ=SOð3Þ

33Since the constraint w1ðTMÞ2 ¼ w2ðVSOð3ÞÞ is satisfied, let
β2 denote the Bockstein homomorphism associated with the
extension Z→ Z→ Z2, and then W3ðVSOð3ÞÞ ¼ β2w2ðVSOð3ÞÞ ¼
β2w1ðTMÞ2 ¼ β2Sq1w1ðTMÞ ¼ 0 where W3ðVSOð3ÞÞ is the third
integral Stiefel-Whitney class of VSOð3Þ and we have used the fact
that β2Sq1 ¼ 0; hence VSOð3Þ lifts to a Spincð3Þ ¼ Uð2Þ bundle
VUð2Þ, where c2 ¼ c2ðVUð2ÞÞ is the second Chern class of VUð2Þ.
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8<
:

N0
0mod 2;

w1ðTMÞ4;
w2ðTMÞ2:

ð3:12Þ

This is related to the interacting version of the CII
class topological insulator in condensed matter phys-
ics [38,41,77]. Details of these topological terms are
discussed in [38].

More information about these (co)bordism group calcu-
lations can be read from [38,41]. See the appendix of [38]
for a quick background review. In particular, since the
computation involves no odd torsion, we can use Adams
spectral sequence to compute ΩG0

n ¼ πnðMTG0Þ:
Exts;tA2

ðH�ðMTG0;Z2Þ;Z2Þ ⇒ πt−sðMTG0Þ∧2 : ð3:13Þ
Here πt−sðMTG0Þ∧2 is the two-completion of the group
πt−sðMTG0Þ. For example,

TABLE V. Cobordism groups TPdðPinþðdÞ ×Z2
SUð2ÞÞ and cobordism invariants. Here w̃i is the ith Stiefel-

Whitney class of ðTM − nÞ ⊗ VSOð3Þ where VSOð3Þ is the associated vector bundle of the SOð3Þ gauge bundle. The
w̃i is computed in Eq. (3.16). The ηSUð2Þ is an eta invariant of the Dirac operator defined in [38]. More details of
computation can be read from [38,41]. The second component in manifold generators ðM;VSOð3ÞÞ is the SOð3Þ
gauge bundle over the first component. LC is the complex tautological line bundle. The SOð3Þ bundle on
SUð3Þ=SOð3Þ is given by the fibration SOð3Þ → SUð3Þ → SUð3Þ=SOð3Þ. See also Appendix. Note that [38]
actually derives that the 4d cobordism invariants are w̃2

2 ¼ w2ðTMÞ2 þ w1ðTMÞ4 and ηSUð2Þ with 2ηSUð2Þ ¼ w̃1w̃3 ¼
w1ðTMÞw3ðTMÞ þ w1ðTMÞ4, but since the third Wu class u3 ¼ w1ðTMÞw2ðTMÞ ¼ 0 on any four manifold, we
have w1ðTMÞw3ðTMÞ ¼ Sq1ðw1ðTMÞw2ðTMÞÞ ¼ 0, so by a base change, we can choose the 4d cobordism
invariants to be w2ðTMÞ2 and ηSUð2Þ. Also note that the 5d cobordism invariant is actually w̃2w̃3 ¼ ðw2ðTMÞþ
w1ðTMÞ2Þðw3ðTMÞ þ w1ðTMÞ3Þ, but since the third Wu class u3 ¼ w1ðTMÞw2ðTMÞ ¼ 0 on any five manifold, we
have Sq2ðw1ðTMÞw2ðTMÞÞ ¼ w1ðTMÞw2ðTMÞ2 þ w1ðTMÞ3w2ðTMÞ þ w1ðTMÞ2w3ðTMÞ ¼ 0; also by the Wu
formula, we have w1ðTMÞw2ðTMÞ2 ¼ Sq1ðw2ðTMÞ2Þ ¼ 0 and w1ðTMÞ5 ¼ Sq1ðw1ðTMÞ4Þ ¼ 0 on any five
manifold, so w̃2w̃3 ¼ w2ðTMÞw3ðTMÞ.
d TPd;torðPinþðdÞ ×Z2

SUð2ÞÞ Cobordism invariants Manifold generators ðM;VSOð3ÞÞ
4 Z2 × Z4 w2ðTMÞ2; ηSUð2Þ ðCP2; LC þ 1Þ; ðRP4; 3Þ
5 Z2 w2ðTMÞw3ðTMÞ SUð3Þ=SOð3Þ

TABLE VI. Cobordism groups TPdðPin−ðdÞ ×Z2
SUð2ÞÞ and cobordism invariants. Here w̃i is the ith Stiefel-

Whitney class of ðTM − nÞ ⊗ VSOð3Þ where VSOð3Þ is the associated vector bundle of the SO(3) gauge bundle. The

w̃i is computed in Eq. (3.16). TheN0ð4Þ
0 is the number of the zero modes of the Dirac operator in 4d. Its value mod 2 is

a spin-topological invariant known as the mod 2 index defined as N0
0 mod 2 in [38]. More details of computation can

be read from [38,41]. We find that the bordism invariant of N0ð4Þ
0 mod 2 read from Adams chart has the similar form

related to w̃3η̃, where η̃ is the eta invariant for the 1d Dirac operator, given by the generator of the 1d spin bordism

group ΩSpin
1;torðptÞ ¼ Z2. The N

0ð5Þ
0 is the number of the zero modes of the Dirac operator in 5d. Its value mod 2 is a

spin-topological invariant known as the mod 2 index defined in [56,57]. We find that the bordism invariant of

N0ð5Þ
0 mod 2 read from Adams chart has the similar form related to w̃3Arf, where Arf is an Arf invariant. The second

component in manifold generators ðM;VSOð3ÞÞ is the SO(3) gauge bundle over the first component. LC is the
complex tautological line bundle. LR is the real tautological line bundle. H is induced from the Hopf fibration by
SUð2Þ → SOð3Þ. The SO(3) bundle on SUð3Þ=SOð3Þ is given by the fibration SOð3Þ → SUð3Þ → SUð3Þ=SOð3Þ.
The SO(3) bundle on S1 × S4 is induced from the fibration S3 → S1 × S7 → S1 × S4 by SUð2Þ → SOð3Þ. See also
Appendix. Note that [38] actually derives that the 4d cobordism invariants are w̃2

2 ¼ w2ðTMÞ2 þ w1ðTMÞ4,
w̃4
1 ¼ w1ðTMÞ4, and ðN0ð4Þ

0 mod 2Þ, and by a base change, we can choose the 4d cobordism invariants to be

w2ðTMÞ2, w1ðTMÞ4, and ðN0ð4Þ
0 mod 2Þ. Also note that the 5d cobordism invariants are actually w̃2w̃3¼ðw2ðTMÞþ

w1ðTMÞ2Þðw3ðTMÞþw1ðTMÞ3Þ and ðN0ð5Þ
0 mod 2Þ, but since the third Wu class u3¼w1ðTMÞw2ðTMÞ¼0 on any

five manifold, we have Sq2ðw1ðTMÞw2ðTMÞÞ¼w1ðTMÞw2ðTMÞ2þw1ðTMÞ3w2ðTMÞþw1ðTMÞ2w3ðTMÞ¼0;
also byWu formula, we have w1ðTMÞw2ðTMÞ2 ¼ Sq1ðw2ðTMÞ2Þ ¼ 0 and w1ðTMÞ5 ¼ Sq1ðw1ðTMÞ4Þ ¼ 0 on any
five manifold, so w̃2w̃3 ¼ w2ðTMÞw3ðTMÞ.
d TPd;torðPin−ðdÞ ×Z2

SUð2ÞÞ Cobordism invariants Manifold generators ðM;VSOð3ÞÞ
4 Z3

2 w2ðTMÞ2; w1ðTMÞ4, ðN0ð4Þ
0 mod 2Þ ðCP2; LC þ 1Þ; ðRP4; 2LR þ 1Þ; ðS4; HÞ

5 Z2
2 w2ðTMÞw3ðTMÞ, ðN0ð5Þ

0 mod 2Þ SUð3Þ=SOð3Þ, S1 × S4
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8>>>>><
>>>>>:

MTðO × SUð2ÞÞ ¼ MO ∧ BSUð2Þþ;
MTðE ×Z2

SUð2ÞÞ ¼ MSO ∧ Σ−3MTPinþð3Þ ¼ MSO ∧ Σ−3MSpinð3Þ ∧ Σ−2MZ2;

MTðPinþ ×Z2
SUð2ÞÞ ¼ MSpin ∧ Σ−3MOð3Þ;

MTðPin− ×Z2
SUð2ÞÞ ¼ MSpin ∧ Σ3MTOð3Þ:

ð3:14Þ

The BSUð2Þþ is the disjoint union of BSUð2Þ and a point,
while Σ is the suspension. From the short exact sequence
1 → SO → E → Z4 → 1, we have an induced short exact
sequence

1 → SO → E ×Z2
SUð2Þ → SUð2Þ ×Z2

Z4 → 1: ð3:15Þ

Note that SUð2Þ ×Z2
Z4 ¼ Spinð3Þ ×Z2

Z4 ¼ Pinþð3Þ, so
MTðE ×Z2

SUð2ÞÞ ¼ MSO ∧ Σ−3MTPinþð3Þ ¼ MSO ∧
Σ−3MSpinð3Þ ∧ Σ−2MZ2.

Let M be an n manifold, and VSOð3Þ be the associated
vector bundle of the SO(3) gauge bundle. Below we com-
pute the Stiefel-Whitney classes of ðTM−nÞ⊗VSOð3Þ.
They are used to express the cobordism invariants of

Ω
Pin�×Z2

SUð2Þ
d . Below wi means the ith Stiefel-Whitney

class, and w means the total Stiefel-Whitney class; namely,
we have w ¼ 1þ w1 þ w2 þ w3 þ � � �. We denote w0

i ¼
wiðVSOð3ÞÞ and w̃i ¼ wiððTM − nÞ ⊗ VSOð3ÞÞ. In addition,
the wiðTMÞ means specifically the ith Stiefel-Whitney
class of spacetime tangent bundle TM:

wððTM − nÞ⊗ VSOð3ÞÞ ¼
wðTM ⊗ VSOð3ÞÞ

wðVSOð3ÞÞn

¼ 1þw1ðTMÞ þ w1ðTMÞ2 þ w2ðTMÞ þ nw0
2 þ w1ðTMÞ3 þ nw1ðTMÞw0

2 þw3ðTMÞ þ nw0
3 þ � � �

ð1þw0
2 þ w0

3 þ � � �Þn
¼ 1þw1ðTMÞ þ w1ðTMÞ2 þ w2ðTMÞ þw1ðTMÞ3 þw3ðTMÞ þ � � � : ð3:16Þ

So w̃1 ¼ w1ðTMÞ, w̃2 ¼ w1ðTMÞ2 þ w2ðTMÞ, w̃3 ¼
w1ðTMÞ3 þ w3ðTMÞ, etc.,
We also use the notation TP for the classification of

topological phases defined in [41], such that

TPd;torðG0Þ ¼ ΩG0
d;tor: ð3:17Þ

Here are the list of tables summarizing the results in 4d and
in 5d: Tables III, IV, V, and VI.
We conclude this section with a summary. The four

siblings of 4d SUð2Þθ¼π YM theories are obtained, spe-
cifically, from summing over the SU(2) gauge connections
of the following four topological terms (i.e., gauging the
SU(2) global symmetry of the following four distinct
SPTs):
(1) ð−1Þc2 in Eq. (3.5).
(2) ð−1Þc2 in Eq. (3.7). (See footnote 32.)
(3) expð2πiνηSUð2ÞÞ with an odd class of ν ¼ 1; 3 ∈ Z4

in Eq. (3.10).
(4) ð−1ÞN0

0 in Eq. (3.12).
These four theories exactly map to the enumeration of four
gauge theories in Sec. III A. Adding other SPTs/bordism
invariants such as ð−1Þw1ðTMÞ4 and ð−1Þw2ðTMÞ2 (and then
dynamically gauging them), do not alter or gain new classes
of gauge theories. The only tensor product is the gauge

theory with 4d SPTs, namely (4d SUð2Þθ¼π YM) ⊗ (4d
SPTs).34

IV. TIME-REVERSAL SYMMETRY-ENRICHED 5D
HIGHER-GAUGE TQFTs

A. Partition function of 5d higher-gauge TQFTs

Following the discussions of four classes of 5d time-
reversal and one-form center symmetry ZT

2 ×Ze
2;½1� higher-

SPTs Z5d
SPTðK1 ;K2Þ

½M5� in Sec. II F 1 with their partition

functions in Eq. (2.61), we proceed to dynamically gauge
the one-form symmetry Ze

2;½1�. Then we obtain the 5d time-
reversal symmetric enriched topologically ordered state
(SETs) with two-form Z2-valued dynamical B gauge fields.
We expect a precise mathematical formulation requires a
certain version of higher category theory. Below we instead

34For the classification of the gauge theory, we identify the
following phases:

ðgauge theoryÞ ⊗ ðSPTsÞ ≃ ðgauge theoryÞ:
For the classification of 4d SUð2Þθ¼π YM, we identify the
following phases:

ð4d SUð2Þθ¼πYMÞ ⊗ ð4d SPTsÞ ≃ ð4d SUð2Þθ¼πYMÞ:
See more physically motivated discussions in [38] and Refer-
ences therein.
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approach from a higher-gauge TQFT perspective. We
can define the four classes of 5d partition functions
Z5d
SETðK1 ;K2Þ

½M5� as

Z5d
SETðK1 ;K2Þ

½M5�

≡ jH0ðM;Z2Þj
jH1ðM;Z2Þj

X
B∈H2ðM5;Z2Þ

eiπ
R
M5

1
2
w̃1ðTMÞ∪PðBÞþK1w1ðTMÞ2Sq1B

ð4:1Þ

¼ jH0ðM;Z2Þj
jH1ðM;Z2Þj
×

X
B∈H2ðM5;Z2Þ

eiπ
R
M5 BSq

1Bþð1þK1Þw1ðTMÞ2Sq1Bþw2ðTMÞSq1B

ð4:2Þ

¼ jH0ðM;Z2Þj
jH1ðM;Z2Þj

X
B;b;h∈C2ðM5 ;Z2Þ
c∈C3ðM5 ;Z2Þ

exp

�
iπ
Z
M5

δw1ðTMÞ ∪ c

þ δw2ðTMÞ ∪ hþ b ∪ δBþ BSq1B

þ ð1þ K1Þw1ðTMÞ2Sq1Bþ w2ðTMÞSq1B
�

ð4:3Þ

≅
Z

½DB�½Db�½Dh�½Dc� exp
�
iπ
Z
M5

ðdw1ðTMÞÞc

þ ðdw2ðTMÞÞhþ bdBþ B
1

2
dB

þ ð1þ K1Þw1ðTMÞ2 1
2
dBþ w2ðTMÞ 1

2
dB

�
: ð4:4Þ

In the last step (under the symbol ≅), we have converted
the 5d higher-cochain TQFT to 5d higher-form gauge field
continuum TQFT for Z5d

SETðK1 ;K2Þ
½M5�. Moreover, we can

insert extended operators (say U;X; Y;…) into the path
integral:

Z5d
SETðK1 ;K2Þ

½M5;U;X; Y;…�

≡
Z

½DB�½Db�½Dh�½Dc�U · X · Y � � �

× exp

�
iπ
Z
M5

ðdw1ðTMÞÞcþ ðdw2ðTMÞÞhþ bdB

þ B
1

2
dBþ ð1þ K1Þw1ðTMÞ2 1

2
dBþ w2ðTMÞ 1

2
dB

�
:

ð4:5Þ

Note that since K2Sq1ðw2ðTMÞBÞ is trivial for closed five
manifolds, the partition function Z5d

SETðK1 ;K2Þ
½M5� and the

correlation function computed from the path integral
Z5d
SETðK1 ;K2Þ

½M5;U;X; Y;…� do not depend on K2.

B. Partition function and topological degeneracy

Below we compute the partition function ZðM5Þ on
closed manifolds M5. When M5 ¼ M4 × S1, we can
interpret it as topological GSD of TQFT. Our computations
follow the strategy in [13,15]. We directly summarize the
results in Tables VII, VIII, and IX.

TABLE VII. Partition function ZðM5Þ and topological degeneracy of 5d higher-SPTs, for example,

ZSPTBSq1B
ðM5Þ ≔ ð−1Þ

R
M5 BSq

1B. The notations α, β, γ, ζ are explained in the computation below in Sec. IV B 3.

ZðM5Þ with M5: ðW; 0Þ ðS1 × RP2 × RP2; γα1Þ ðS1 × RP4; γζÞ ðRP2 ×RP3; αβÞ
Ztrivial
SPT ðM5Þ 1 1 1 1

ZSPTBSq1B
ðM5Þ 1 1 1 −1

ZSPTSq2Sq1B
ðM5Þ 1 1 −1 1

ZSPTw1ðTMÞ2Sq1B
ðM5Þ 1 −1 −1 1

ZSPTw2ðTMÞSq1B
ðM5Þ 1 −1 1 1

TABLE VIII. Partition function ZðM5Þ and topological degeneracy of 5d higher-SETs, ZSETðK1 ;K2Þ
ðM5Þ ≔

jH0ðM5;Z2Þj
jH1ðM5;Z2Þj

P
B∈H2ðM5;Z2Þð−1Þ

R
M5 BSq

1Bþð1þK1Þw1ðTMÞ2Sq1Bþw2ðTMÞSq1B.

ZðM5Þ with M5: T5 S1 × S4 S1 ×RP4 T2 × S3 S1 × S2 × S2 S1 ×RP2 ×RP2 RP2 × RP3 S5 W

Zuntwist
2-formBðM5Þ 210 ·2

25
¼ 64 20 ·2

21
¼ 1 22 ·2

22
¼ 2 21 ·2

22
¼ 1 22·2

21
¼ 4 25 ·2

23
¼ 8 23·2

22
¼ 4 20·2

20
¼ 1 4

ZSETð0;0Þ ðM5Þ 64 1 1 1 4 2 2 2 4

ZSETð1;0Þ ðM5Þ 64 1 1 1 4 2 2 2 4

ZSETð0;1Þ ðM5Þ 64 1 1 1 4 2 2 2 4

ZSETð1;1Þ ðM5Þ 64 1 1 1 4 2 2 2 4
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1. 5d SPTs as short-range entangled invertible TQFTs

We evaluate the partition function of various 5d iTQFTs
on various manifolds and enumerate the results in
Table VII. Below we denote the five-dimensional Wu
manifold as W≡ SUð3Þ=SOð3Þ.

2. 5d SETs, as long-range entangled TQFTs

We evaluate the partition function of various 5d TQFTs
(as 5d SETs) on various manifolds, and enumerate the
results in Tables VIII and IX.

3. Computation

Now we illustrate our computation35:
(1) For M ¼ S1 ×RP4, let γ be the generator of

H1ðS1;Z2Þ ¼ Z2 and ζ be the generator of
H1ðRP4;Z2Þ ¼ Z2. Note that w1ðTMÞ ¼ ζ. The
cohomology groups have that H0ðS1 ×RP4;
Z2Þ ¼ Z2, H1ðS1 ×RP4;Z2Þ ¼ Z2

2, and H2ðS1 ×
RP4;Z2Þ ¼ Z2

2 whose two generators are γζ and ζ
2.

If B ¼ λ1γζ þ λ2ζ
2, then Sq1B ¼ λ1γζ

2. HenceZ
S1×RP4

BSq1B ¼ λ1λ2; ð4:6Þ
Z
S1×RP4

BSq1Bþ w1ðTMÞ2Sq1B ¼ λ1λ2 þ λ1:

ð4:7Þ
On the other hand, since w2ðTMÞ ¼ 0 for S1 × RP4,
we have

ZSETð0;0Þ ðS1 ×RP4Þ ¼ ZSETð0;1Þ ðS1 ×RP4Þ

¼ 1

2

X
λ1;λ2∈Z2

ð−1Þλ1ðλ2þ1Þ; ð4:8Þ

ZSETð1;0Þ ðS1 ×RP4Þ ¼ ZSETð1;1Þ ðS1 ×RP4Þ

¼ 1

2

X
λ1;λ2∈Z2

ð−1Þλ1λ2 : ð4:9Þ

Since the number of ðλ1; λ2Þ satisfying the constraint
λ1λ2 ¼ 1 is only one,

# fðλ1; λ2Þ ∈ Z2
2jλ1λ2 ¼ 1g ¼ 1; ð4:10Þ

also note that changing λ2 to λ2 þ 1 does not affect
the sum, so

ZSETð0;0Þ ðS1 ×RP4Þ ¼ ZSETð1;0Þ ðS1 ×RP4Þ
¼ ZSETð0;1Þ ðS1 ×RP4Þ
¼ ZSETð1;1Þ ðS1 ×RP4Þ

¼ 1

2
ð3 − 1Þ ¼ 1: ð4:11Þ

(2) For M ¼ RP2 ×RP3, let α be the generator of
H1ðRP2;Z2Þ ¼ Z2 and β be the generator of
H1ðRP3;Z2Þ ¼ Z2. Note that w1ðTMÞ ¼ α.
H0ðRP2 ×RP3;Z2Þ ¼ Z2, H1ðRP2 × RP3;Z2Þ ¼
Z2

2, H
2ðRP2 ×RP3;Z2Þ ¼ Z3

2 whose three gener-
ators are α2, β2, and αβ. If B ¼ λ1α

2 þ λ2β
2 þ λ3αβ,

then Sq1B ¼ λ3α
2β þ λ3αβ

2. Hence

Z
RP2×RP3

BSq1B ¼ λ23 þ λ2λ3; ð4:12Þ

Z
RP2×RP3

BSq1Bþ w1ðTMÞ2Sq1B ¼ λ23 þ λ2λ3:

ð4:13Þ

On the other hand, since w2ðTMÞ þ w1ðTMÞ2 ¼ 0

for RP2 ×RP3, so

ZSETð0;0Þ ðRP2 × RP3Þ ¼ 1

2

X
λ1;λ2;λ3∈Z2

ð−1Þλ23þλ2λ3 ;

ð4:14Þ

ZSETð1;0Þ ðRP2 × RP3Þ ¼ 1

2

X
λ1;λ2;λ3∈Z2

ð−1Þλ23þλ2λ3 :

ð4:15Þ

Since

# fðλ1; λ2; λ3Þ ∈ Z3
2jλ23 þ λ2λ3 ¼ 1g ¼ 2; ð4:16Þ

TABLE IX. Partition function ZðM5Þ and topological degen-
eracy of 5d higher SETs, for example, ZSETBSq1B

ðM5Þ ≔
jH0ðM5;Z2Þj
jH1ðM5;Z2Þj

P
B∈H2ðM5;Z2Þð−1Þ

R
M5 BSq

1B.

ZðM5Þ with M5: W S1 × RP2 ×RP2 S1 × RP4 RP2 × RP3

Zuntwist
2-formBðM5Þ 4 8 2 4

ZSETBSq1B
ðM5Þ 0 2 1 2

ZSETSq2Sq1B
ðM5Þ 0 8 0 4

ZSETw1ðTMÞ2Sq1B
ðM5Þ 4 0 0 4

ZSETw2ðTMÞSq1B
ðM5Þ 0 0 2 4

35Interestingly, we notice that the Wu manifold W can
assign a closely related but different partition function
Z0
SETðWÞ with a distinct value: Z0

SETðWÞ ≔ jH0ðM5;Z2Þj
jH1ðM5;Z2Þj×P

B∈H2ðM5;Z2Þð−1Þ
R
M5 BSq

1Bþð1þK1Þw1ðTMÞ2Sq1B ¼ 0.
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so

ZSETð0;0Þ ðRP2 × RP3Þ ¼ ZSETð1;0Þ ðRP2 ×RP3Þ
¼ ZSETð0;1Þ ðRP2 ×RP3Þ
¼ ZSETð1;1Þ ðRP2 ×RP3Þ

¼ 1

2
ð6 − 2Þ ¼ 2: ð4:17Þ

(3) For M ¼ S1 ×RP2 × RP2, let γ be the generator
of H1ðS1;Z2Þ ¼ Z2 and αi be the generator of
H1ðRP2;Z2Þ¼Z2 of the ith factor RP2 (i ¼ 1, 2).
Note that w1ðTMÞ ¼ α1 þ α2. H0ðS1 ×RP2×
RP2;Z2Þ ¼ Z2, H1ðS1 ×RP2 ×RP2;Z2Þ ¼ Z3

2,
H2ðS1 × RP2 ×RP2;Z2Þ ¼ Z5

2 whose five gener-
ators are α21, α22, γα1, γα2, and α1α2. If B¼
λ1α

2
1þλ2α

2
2þλ3γα1þλ4γα2þλ5α1α2, then Sq1B ¼

λ3γα
2
1 þ λ4γα

2
2 þ λ5α

2
1α2 þ λ5α1α

2
2. HenceZ

S1×RP2×RP2

BSq1B ¼ λ1λ4 þ λ2λ3 þ λ3λ5 þ λ4λ5;

ð4:18Þ

Z
S1×RP2×RP2

BSq1Bþ w1ðTMÞ2Sq1B

¼ λ1λ4 þ λ2λ3 þ λ3λ5 þ λ4λ5 þ λ3 þ λ4: ð4:19Þ

On the other hand, since w2ðTMÞ þ w1ðTMÞ2 ¼ 0

for S1 ×RP2 ×RP2, so

ZSETð0;0Þ ðS1 × RP2 ×RP2Þ

¼ 1

4

X
λ1;λ2;λ3;λ4;λ5∈Z2

ð−1Þλ1λ4þλ2λ3þλ3λ5þλ4λ5 ; ð4:20Þ

ZSETð1;0Þ ðS1 ×RP2 ×RP2Þ

¼ 1

4

X
λ1;λ2;λ3;λ4;λ5∈Z2

ð−1Þλ1λ4þλ2λ3þλ3ðλ5þ1Þþλ4ðλ5þ1Þ:

ð4:21Þ
Since

# fðλ1; λ2; λ3; λ4; λ5Þ ∈ Z5
2jλ1λ4 þ λ2λ3 þ λ3λ5 þ λ4λ5

¼ 1g ¼ 12; ð4:22Þ

also note that changing λ5 to λ5 þ 1 does not affect the sum, so

ZSETð0;0Þ ðS1 ×RP2 × RP2Þ ¼ ZSETð1;0Þ ðS1 × RP2 ×RP2Þ

¼ ZSETð0;1Þ ðS1 ×RP2 ×RP2Þ ¼ ZSETð1;1Þ ðS1 ×RP2 ×RP2Þ ¼ 1

4
ð20 − 12Þ ¼ 2: ð4:23Þ

(4) For a 5d Wu manifold W ¼ SUð3Þ=SOð3Þ,
with H0ðW;Z2Þ ¼ Z2, H1ðW;Z2Þ ¼ 0, note that
w1ðTWÞ ¼ 0, H2ðW;Z2Þ ¼ Z2 which is generated
by w2ðTWÞ. Sq1w2ðTWÞ ¼ w3ðTWÞ,
ZSETð0;0Þ ðWÞ ¼ 2

X
B¼0;w2ðTWÞ

ð−1ÞBSq1Bþw2ðTWÞSq1B ¼ 4;

ð4:24Þ
so

ZSETð0;0Þ ðWÞ ¼ ZSETð1;0Þ ðWÞ
¼ ZSETð0;1Þ ðWÞ ¼ ZSETð1;1Þ ðWÞ ¼ 4:

ð4:25Þ

In the next section, we will use the anyonic string/brane
braiding statistics and the link invariants of 5d TQFTs to
characterize and distinguish these 5d SETs.

V. ANYONIC STRING/BRANE BRAIDING
STATISTICS AND LINK INVARIANTS

OF 5D TQFTS

Now we compute the path integral Eq. (4.5) with
extended operator insertions. To recall the general defi-
nitions, we have

(i) Partition or path integral w/out insertion is

X
B∈C2ðM;Z2Þ���

ðeiSÞ:

(ii) In physics, the vacuum expectation value (VEV) of a theory S is defined as

hOiðVEVÞ ¼
hOiðVEVÞ
h1iðVEVÞ

¼
P

B∈C2ðM;Z2Þ���
ðeiSOÞP

B∈C2ðM;Z2Þ���
ðeiSÞ ¼

P
B∈C2ðM;Z2Þ���

ðeiSOÞ
Z

¼ path integral with insertionsO
path integral without insertions

: ð5:1Þ
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For example, this includes the link invariant that we will focus on in this section:

hexpði � � � ðLink invariants ofU;X; Y;…ÞÞiðVEVÞ ¼
Z5d
SETðK1 ;K2Þ

½M5;U;X; Y;…�
Z5d
SETðK1 ;K2Þ

½M5� : ð5:2Þ

For conventions of our notations, we label the 1d
Wilson line as W, the 2d surface operator as U, U0,
etc., We label the 3d membrane operator as X
and the 4d operator as Y, etc., We label the dd-
hypersurface of general operators that we inserted
as Σd, while we label this Σd’s ðdþ 1Þd-Seifert-
hypervolume as Vdþ1.

In this section, we focus on deriving the general link
invariants for these 5d TQFTs/SETs.36 In the next Sec. VI,
we will provide explicit examples of the spacetime
braiding process as the link configurations that can be
detected by these link invariants derived here in Sec. V.
The techniques for computing all these link invariants
below are based on Ref. [12]. Below we simply apply the
methods and notations introduced in Ref. [12].
Caveat: Note that while in the first section VA, we

explicitly study the discrete cochain version of TQFT, in the
sections below we implement the continuum formulation
of TQFT. The reason is related to a fact that the graded
noncommutativity of cochain fields is much more compli-
cated to be dealt with than the continuum differential form
fields. The subtle fact will be commented further in
footnotes 37 and 38. We also note that when we deal with
the continuum differential form fields later in Sec. V B to
Sec. V D, we choose a normalization of differential form
fields as

H
B ∈ Z with the periodicity

H
B ∼

H
Bþ 2 (thus

more similar to the convention of discrete cochain fields),
instead of the more conventional

H
B ∈ πZ with the

periodicity
H
B ∼

H
Bþ 2π.

A. 1
2 w̃1ðTMÞPðBÞ and a triple link invariant

Tlkð5Þ
w1BB

ðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ

We start with a 5d TQFT obtained from summing over
two-form field B of 1

2
w̃1ðTMÞPðBÞ. This amounts to

gauging the one-form Z2 of this 5d SPTs. The resulting
theory is ZSETðK1¼0;K2¼0Þ in Eq. (4.5). The topological action
and the partition function are

S¼ π

Z
M5

�
1

2
δw̃1ðTMÞ∪ c̃þb∪ δBþ1

2
w̃1ðTMÞ∪PðBÞ

�
;

ð5:3Þ

Z ¼
Z

½DB�½Dc̃�½Db� expðiSÞ: ð5:4Þ

Z ¼
X

B;b∈C2ðM5 ;Z2Þ
c̃∈C3ðM5 ;Z4Þ

exp

�
iπ
Z
M5

1

2
δw̃1ðTMÞ ∪ c̃þ b ∪ δB

þ 1

2
w̃1ðTMÞ ∪ PðBÞ

�
: ð5:5Þ

We consider the gauge transformation37:

w̃1ðTMÞ → w̃1ðTMÞ þ δα;

B → Bþ δβ;

c̃ → c̃þ δγ þ λ;

b → bþ δζ þ μ: ð5:6Þ

under which the action transforms as

S → π

Z
M5

1

2
ðw̃1ðTMÞ þ δαÞðB ∪ Bþ B ∪ δβ þ δβ ∪ B

þ δβ ∪ δβ þ B∪
1
δBþ δβ∪

1
δBÞ

þ 1

2
δw̃1ðTMÞðc̃þ λÞ þ ðbþ μÞδB: ð5:7Þ

The gauge variance of the action is

ΔS ¼ π

Z
M5

1

2
w̃1ðTMÞðδβ ∪ δβ þ 2δβ ∪ Bþ δðδβ∪

1
BÞÞ

þ 1

2
δαðB ∪ Bþ B∪

1
δBþ δβ ∪ δβ

þ 2δβ ∪ Bþ δðδβ∪
1
BÞÞ

þ 1

2
δw̃1ðTMÞλþ μδB ð5:8Þ

36For more guidance on the physical interpretations of link
invariants, please see [12] and its introduction.

37One may consider adding additional terms on the gauge
transformations, such as w̃1ðTMÞ→ w̃1ðTMÞþδαðt;xÞþα1ðt;xÞ
and B → Bþ δβðt; xÞ þ α2ðt; xÞ, etc., However, terms such as
α1ðt; xÞ ¼ α1 and α2ðt; xÞ ¼ α2 will need to be constant, which
acts as the higher-form global symmetry transformation, instead
of gauge transformation.
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¼ π

Z
M5

1

2
δw̃1ðTMÞðβδβÞ þ ðδw̃1ðTMÞðβBÞ

þ w̃1ðTMÞβδBÞ þ 1

2
δw̃1ðTMÞðδβ∪

1
BÞ

−
�
αBδBþ 1

2
αu2δB

�
− αδβδBþ 1

2
δw̃1ðTMÞλþ μδB:

ð5:9Þ

In Eq. (5.8), we have used the formula38

B ∪ δβ − δβ ∪ Bþ δβ∪
1
δBþ δ2β∪

1
B ¼ δðδβ∪

1
BÞ: ð5:11Þ

and δ2β ¼ 0. In Eq. (5.9), we have used integration by part:
for a closed five manifold without boundary, after integra-
tion by part we can drop the boundary term δð� � �Þ. Since
δ2B ¼ δ2β ¼ δ2α ¼ 0, we drop δαðδβ ∪ δβ þ δðδβ ∪1 BÞÞ
which has no effect on a closed five manifold without
boundary. Denote u2 ¼ w2ðTMÞ þ w1ðTMÞ2 as the second
Wu class. We have also used the formula in footnote 37 as

B ∪ δB− δB ∪ Bþ δB∪
1
δBþB∪

1
δ2B¼ δðB∪

1
δBÞ; ð5:12Þ

δB∪
1
δB ¼ Sq2δB ¼ u2δB: ð5:13Þ

In Eq. (5.9), we used δðαðB∪BþB∪1 δBÞÞ¼δαðB∪Bþ
B∪1 δBÞþαðδB∪BþB∪δBþ δðB∪1 δBÞÞ¼ δαðB∪Bþ
B∪1 δBÞþαð2B∪δBþu2δBÞ, and we dropped the total
derivative term on a closed five manifold. The solution of
gauge invariance, i.e., ΔS ¼ 0, imposes39

λ ¼ −βδβ − 2βB − δβ∪
1
Bmod 4;

μ ¼ −w̃1ðTMÞβ þ αBþ 1

2
αu2 þ αδβmod 2: ð5:14Þ

The three-submanifold gauge invariant operator is

X ¼ exp

�
iπ
2
k

�Z
Σ3

c̃þ
Z
V4

PðBÞ
��

¼ exp

�
iπ
2
k

�Z
M5

δ⊥ðΣ3Þc̃þ δ⊥ðV4ÞPðBÞ
��

; ð5:15Þ

where k ∈ Z4. To verify the gauge invariance, we use
PðBþ δβÞ ¼ PðBÞ þ δβ ∪ δβ þ 2δβ ∪ Bþ δðδβ ∪1 BÞ
and δB ¼ 0 on the four-submanifold Seifert volume V4.
The two-submanifold (two-surface) operator gauge

invariant is

U ¼ exp

�
iπl

�Z
Σ2

b −
Z
V3

w̃1ðTMÞB −
1

2

Z
V3

w̃1ðTMÞu2
��

¼ exp

�
iπl

�Z
M5

bδ⊥ðΣ2Þ −
�
w̃1ðTMÞBþ 1

2
w̃1ðTMÞu2

�
δ⊥ðV3Þ

��

¼ expðiπl
�Z

M5

bδ⊥ðΣ2Þ −
�
w̃1ðTMÞBþ 1

2
w̃1ðTMÞðw2ðTMÞ þ w1ðTMÞ2ÞÞδ⊥ðV3Þ

��
; ð5:16Þ

39In general, when we study action Eq. (5.3), we have made a convenient choice with a term δw̃1ðTMÞ ∪ c̃ instead of c̃ ∪ δw̃1ðTMÞ.
For a generic three-cochain x, δw̃1ðTMÞx ¼ xδw̃1ðTMÞ is not true; by Steenrod’s formula in footnote 37 Eq. (5.10), δw̃1ðTMÞx ¼
xδw̃1ðTMÞ þ δx ∪1 δw̃1ðTMÞ − δðx ∪1 δw̃1ðTMÞÞ, we can only drop the total derivative terms (i.e., the coboundary terms). In our
present case, we consider x ¼ 1

2
βδβ þ βBþ 1

2
δβ ∪1 B. So if δx ∪1 δw̃1ðTMÞ is a coboundary, then we can also drop it, which results in

λ ¼ −2x ¼ −βδβ − 2βB − δβ∪
1
Bmod 4:

If δx ∪1 δw̃1ðTMÞ is not a coboundary, we need the extra term

δw̃1ðTMÞx ¼ xδw̃1ðTMÞ þ δx∪
1
δw̃1ðTMÞ þ a total derivative=coboundary term:

When δx ∪1 δw̃1ðTMÞ is not a coboundary, this results in a modified gauge transformation to λ. By writing the action as in Eq. (5.3), we
can avoid additional complications, and thus we end up with a simpler gauge transformation Eq. (5.14). The graded noncommutativity
of cochain fields is much more complicated than the case for continuum differential form fields. J.W. thanks Pierre Deligne for a
discussion on the related issues.

38This is based on Steenrod’s work “Products of Cocycles and Extensions of Mappings” [61], which derives

δðu∪
i
vÞ ¼ ð−1Þpþq−iu ∪

i−1
vþ ð−1Þpqþpþqv ∪

i−1
uþ δu∪

i
vþ ð−1Þpu∪

i
δv; ð5:10Þ

where u ∈ Cp and v ∈ Cq.
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where l ∈ Z2 is an integer mod 2. To verify thatU is gauge invariant, we use δB ¼ δw̃1ðTMÞ ¼ 0 on the three-submanifold
Seifert volume V3.
We insert X;UðiÞ, andUðiiÞ into the path integral Z, and write the correlation function either in the continuum field theory

formulation or in the discrete cochain field theory formulation, interchangeably as

hXUðiÞUðiiÞi ¼
Z

½DB�½Dc̃�½Db�XUðiÞUðiiÞ expðiSÞ;

hXUðiÞUðiiÞi ¼
X

B;b∈C2ðM5 ;Z2Þ
c̃∈C3ðM5 ;Z4Þ

XUðiÞUðiiÞ exp
�
iπ
Z
M5

1

2
δw̃1ðTMÞ ∪ c̃þ b ∪ δBþ 1

2
w̃1ðTMÞ ∪ PðBÞ

�
: ð5:17Þ

We compute the correlation functions as follows:
(1) Integrating out c̃ yields

δw̃1ðTMÞ ¼ kδ⊥ðΣ3
XÞ;

w̃1ðTMÞ ¼ kδ⊥ðV4
XÞ; ð5:18Þ

hence as a consequence, δ2w̃1ðTMÞ ¼ δðkδ⊥ðΣ3
WÞÞ ¼ 0. So with the above configuration constraint, we get the

double-counting mod 2 cancellation in the exponent of expðiπ
2
kðRM5 δ⊥ðV4

XÞPðBÞÞÞ × expðiπ RM5
1
2
w̃1ðTMÞ

PðBÞÞ ¼ 1. This boils down to

hXUðiÞUðiiÞi ¼
Z

½DB�½Db�UðiÞUðiiÞ exp
�
iπ
Z
M5

b ∪ δB

�
jw̃1ðTMÞ¼kδ⊥ðV4

XÞ: ð5:19Þ

(2) Integrating out b yields

δB ¼ lðiÞδ⊥ðΣ2
UðiÞ Þ þ lðiiÞδ⊥ðΣ2

UðiiÞ Þ;
B ¼ lðiÞδ⊥ðV3

UðiÞ Þ þ lðiiÞδ⊥ðV3
UðiiÞ Þ: ð5:20Þ

(3) We finally integrate out B, from Eq. (5.19):

hXUðiÞUðiiÞi

¼
Z

½DB�eð−iπð
R
M5 ðw̃1ðTMÞBþ1

2
w̃1ðTMÞðw2ðTMÞþw1ðTMÞ2ÞÞðlðiÞδ⊥ðV3

UðiÞ
ÞþlðiiÞδ⊥ðV3

UðiiÞ
ÞÞÞÞ

����w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞ

Þ

þlðiiÞδ⊥ ðV3
UðiiÞ

Þ:

¼
Z

½DB�eð−iπð
R
M5 ðw̃1ðTMÞBþ1

2
w̃1ðTMÞðw2ðTMÞþw1ðTMÞ2ÞÞBÞÞ

���� w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞ

ÞþlðiiÞδ⊥ðV3
UðiiÞ

Þ:

¼
Z

½DB�eð−iπð
R
M5 ðw̃1ðTMÞBBþSq2ð1

2
w̃1ðTMÞBÞÞÞÞ

���� w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞ

ÞþlðiiÞδ⊥ðV3
UðiiÞ

Þ:

ð5:21Þ

¼
Z

½DB�eð−iπð
R
M5 ðw̃1ðTMÞBBþ1

2
w̃1ðTMÞBBþ1

2
ð1
2
δw̃1ðTMÞÞð1

2
δBÞÞÞÞ

����w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;δw̃1ðTMÞ¼kδ⊥ðΣ3

X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞÞþlðiiÞδ⊥ðV3

UðiiÞÞ:
δB¼lðiÞδ⊥ðΣ2

UðiÞ
ÞþlðiiÞδ⊥ðΣ2

UðiiÞ
Þ:

ð5:22Þ

¼ e
ð−iπðklðiÞlðiiÞ· # ðV4

X∩V
3
U1

∩V3
U2

Þþ1
8
δ⊥ðΣ3

XÞðδ⊥ðΣ2
UðiÞ

Þþδ⊥ðΣ2
UðiiÞ

ÞÞÞÞ ðself-intersecting # termsÞ ð5:23Þ

≅ e
ð−iπðklðiÞlðiiÞ·Tlkð5ÞðΣ3

X;Σ
2
UðiÞ

;Σ2
UðiiÞ

ÞÞÞ
: ð5:24Þ
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In Eq. (5.21), we used w̃1ðTMÞðw2ðTMÞ þ
w1ðTMÞ2ÞÞB ¼ w̃1ðTMÞu2B ¼ Sq2ðw̃1ðTMÞBÞ. In
Eq. (5.22), we rewrote 1

2
w̃1ðTMÞPðBÞ via40

1

2
w̃1ðTMÞu2B

¼ Sq2
�
1

2
w̃1ðTMÞB

�

¼ 1

2
w̃1ðTMÞBBþ Sq1

�
1

2
w̃1ðTMÞ

�
Sq1B

¼ 1

2
w̃1ðTMÞBBþ 1

2

�
1

2
δw̃1ðTMÞ

��
1

2
δB

�
:

We plugged all the constraints into the path integral
Eq. (5.22) to obtain Eq. (5.23).41 We propose a setup
to remove or renormalize the (self-intersecting #
terms) that appeared in Eq. (5.24), described in
footnote 40. The second exponent in Eq. (5.23)
shows that

R
M5 δ⊥ðΣ3

WÞðδ⊥ðΣ2
UðiÞ Þ þ δ⊥ðΣ2

UðiiÞ ÞÞ ¼
# ðΣ3

X ∩ Σ2
UðiÞ Þ þ # ðΣ3

X ∩ Σ2
UðiiÞ Þ, which counts the

number of intersections between our insertions of
three-surface and two-surface. However, we choose
by default that our insertions of three-surface and
two-surface have no intersections (to avoid unnec-
essary singularities). Namely, we set # ðΣ3

W ∩
Σ2
UðnÞ Þ ¼ 0 for ðnÞ ¼ ðiÞ or ðiiÞ, and # ðΣ2

UðiÞ ∩

Σ2
UðiiÞ Þ ¼ 0 by default. Overall, under the default

assumption and the clarifications in footnote 40, we
obtain a final relation between Eq. (5.23) and our
final effective answer Eq. (5.24). We use the con-
gruence symbol (≅) to express that other unwanted
terms can be removed by design.

In summary, we have derived the link invariant for the 5d
TQFT ZSETðK1¼0;K2¼0Þ ½M5� in Eq. (5.24):

#ðV4
X∩V3

UðiÞ ∩V
3
UðiiÞ Þ≡Tlkð5Þw1BB

ðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ : ð5:25Þ

The path integral, with appropriate insertions of extended
operators, becomes Eq. (5.24) which provides the above
link invariant.

B. w1ðTMÞ3B=w1ðTMÞ2Sq1B

1. Version I: w1ðTMÞ3B and a quartic link invariant
Qlkð5ÞðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ

As a test example, we consider a 5d TQFTobtained from
summing over two-form field B with the topological action
w1ðTMÞ3B (i.e., gauging the one-formZ2 symmetry of this
5d higher SPTs). For simplicity, we convert the cochain
TQFT to a differential-form continuum TQFT. The parti-
tion function and the topological action of the gauged
theory (see footnote 15) are

40We use the Cartan formula of the Steenrod square: Sq2ðuvÞ ¼ ðSq2uÞvþ ðSq1uÞðSq1vÞ þ uSq2ðvÞ where u; v ∈ H�ðM;Z2Þ.
41Here are some more explanations to derive Eq. (5.23):

(i) For
R ½DB�e−iπð

R
M5 ðw̃1ðTMÞBBÞÞ

���w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞÞþlðiiÞδ⊥ðV3

UðiiÞ
Þ:
, we get a mutual-quadratic crossing term V3

UðiÞ ∩ V3
UðiiÞ with a multiple 2π

exponent in e
i2π # ðV4

X∩V
3
UðiÞ

∩V3
UðiiÞ

Þ
which does not contribute to the expectation value. There are also two self-quadratic terms

V3
UðnÞ ∩ V3

UðnÞ for ðnÞ ¼ ðiÞ or ðiiÞ. These self-quadratic terms contribute, in principle, infinite many intersecting numbers in

# ðV4
X ∩ V3

UðnÞ ∩ V3
UðnÞ Þ for ðnÞ ¼ ðiÞ or ðiiÞ. Since a multiple 2π exponent has zero contribution to the expectation value,

therefore either we can design an even but infinite number of points on each of # ðV4
X ∩ V3

UðnÞ ∩ V3
UðnÞ Þ for ðnÞ ¼ ðiÞ or ðiiÞ or we

can absorb them into the ðself-intersecting # termsÞ in Eq. (5.23). In either case, this term does not have any net contribution in
the end at Eq. (5.24).

(ii) For
R ½DB�e−iπð

R
M5 ð12w̃1ðTMÞBBÞÞ

���w̃1ðTMÞ¼kδ⊥ðV4
X
Þ;

B¼lðiÞδ⊥ðV3
UðiÞ ÞþlðiiÞδ⊥ðV3

UðiiÞ
Þ:
, we get a mutual-quadratic crossing term V3

UðiÞ ∩ V3
UðiiÞ with a multiple π

exponent in e
iπ # ðV4

X∩V
3
UðiÞ

∩V3
UðiiÞ

Þ
, which does contribute to the expectation value when this intersecting number # is odd, in a 1

mod 2 effect. There are also two self-quadratic terms V3
UðnÞ ∩ V3

UðnÞ for ðnÞ ¼ ðiÞ or ðiiÞ. Again either we can design a quadruple/
four-multiplet but infinite number of points for each of # ðV4

X ∩ V3
UðnÞ ∩ V3

UðnÞ Þ or we can absorb them into the

ðself-intersecting # termsÞ in Eq. (5.23).

(iii) For Σ2
UðiÞ

R ½DB�eð−iπð
R
M5 ð18δw̃1ðTMÞδBÞÞÞ

���δw̃1ðTMÞ¼kδ⊥ðΣ3
X
Þ;

δB¼lðiÞδ⊥ðΣ2
UðiÞ

ÞþlðiiÞδ⊥ðΣ2
UðiiÞ

Þ
¼ e

−iπ
R
M5 ð18ðkδ⊥ðΣ3

XÞÞðlðiÞδ⊥ðΣ2
UðiÞ

ÞþlðiiÞδ⊥ðΣ2
UðiiÞ

ÞÞÞ
, we find the exponent

depends on the intersecting number # ðΣ3
X ∩ Σ2

UðnÞ Þ for ðnÞ ¼ ðiÞ or ðiiÞ, between three-surface and two-surface in a five

manifold—although generically this number # ðΣ3
X ∩ Σ2

UðnÞ Þ is finite but can be nonzero, we design by default that there is no

intersection between any of our insertions of three-surface and two-surface into the path integral. Thus we set # ðΣ3
X ∩ Σ2

UðnÞ Þ ¼ 0

by default.
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Z ¼
Z

½DB�½Db�½Dc� expðiSÞ; ð5:26Þ

S ¼ π

Z
M5

cdw1ðTMÞ þ bdBþ w1ðTMÞ3B: ð5:27Þ

This 5d TQFT is distinct from any of four classes of
ZSETðK1 ;K2Þ

, but it still serves as a useful toy model.
We first specify the gauge transformations of various

fields. Let us assume the gauge transformations take the
following form (see footnote 36):

w1ðTMÞ → w1ðTMÞ þ dα;

B → Bþ dβ;

c → cþ dγ þ λ;

b → bþ dζ þ μ: ð5:28Þ
The variation of action under the gauge transformations is

S → Sþ π

Z
M5

dγdw1ðTMÞ þ λdw1ðTMÞ þ dζdBþ μdB

þ ðdαdαw1ðTMÞ þ w1ðTMÞ2dαþ dαdαdαÞB
þ ðw1ðTMÞ3 þ dαdαw1ðTMÞ
þ w1ðTMÞ2dαþ dαdαdαÞdβ ð5:29Þ

¼ Sþ π

Z
M5

λdw1ðTMÞ þ μdB

þ ðαdαBdw1ðTMÞ − αdαw1ðTMÞdBÞ
− αw1ðTMÞ2dB − αdαdαdB

þ w1ðTMÞ2βdw1ðTMÞ þ αdαdβdw1ðTMÞ; ð5:30Þ
where we have used integration by part. For a closed five
manifold without boundary, after integration by part we
drop the total derivative terms dð� � �Þ which have no effect
on a closed five manifold without boundary. The gauge
variance of the action, i.e., ΔS ¼ 0, requires

λ ¼ −αdαB − w1ðTMÞ2β − αdαdβ;

μ ¼ αdαw1ðTMÞ þ αw1ðTMÞ2 þ αdαdα: ð5:31Þ
The gauge invariant three-submanifold operator is

X ¼ exp

�
iπk

�Z
Σ3

cþ
Z
V4

w1ðTMÞ2B
��

¼ exp

�
iπk

�Z
M5

ðδ⊥ðΣ3Þcþ δ⊥ðV4Þw1ðTMÞ2BÞ
��

;

ð5:32Þ

and the gauge invariant two-surface operator is

U ¼ exp

�
iπl

�Z
Σ2

b −
Z
V3

w1ðTMÞ3
��

¼ exp

�
iπl

�Z
M5

ðδ⊥ðΣ2Þb − δ⊥ðV3Þw1ðTMÞ3Þ
��

;

ð5:33Þ

where k;l ∈ Z2. To verify the gauge invariance, we need
to use dw1ðTMÞ ¼ dB ¼ 0 on the two-surfaces and three-
submanifolds.
To compute the link invariants, we insert XðiÞ; XðiiÞ;

XðiiiÞ; U into the path integral Z. In the continuum field
theory formulation, the link invariant is

hXðiÞXðiiÞXðiiiÞUi

¼
Z

½DB�½Dc�½Db�XðiÞXðiiÞXðiiiÞU expðiSÞ

¼
Z

½DB�½Dc�½Db�XðiÞXðiiÞXðiiiÞU

× exp

�
iπ
Z
M5

cdw1ðTMÞ þ bdBþ w1ðTMÞ3B
�
:

ð5:34Þ

We compute hXðiÞXðiiÞXðiiiÞUi as follows:
(1) Integrating out c, we get

dw1ðTMÞ ¼ kðiÞδ⊥ðΣ3
XðiÞ Þ þ kðiiÞδ⊥ðΣ3

XðiiÞ Þ
þ kðiiiÞδ⊥ðΣ3

XðiiiÞ Þ;
w1ðTMÞ ¼ kðiÞδ⊥ðV4

XðiÞ Þ þ kðiiÞδ⊥ðV4
XðiiÞ Þ

þ kðiiiÞδ⊥ðV4
XðiiiÞ Þ: ð5:35Þ

With the above configuration constraint, we
get the double-counting mod 2 cancellation in the
exponent of expðiπðRM5 w1ðTMÞ2BðkðiÞδ⊥ðV4

XðiÞ Þ þ
kðiiÞ δ⊥ ðV4

XðiiÞ Þ þ kðiiiÞ δ⊥ ðV4
XðiiiÞ ÞÞÞÞ exp ðiπ

R
M5 w1 ×

ðTMÞ3BÞ ¼ 1. Consequently the link invariant boils
down to

hXðiÞXðiiÞXðiiiÞUi ¼
Z

½DB�½Db�U exp

�
iπ
Z
M5

bdB

�����
w1ðTMÞ¼kðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞþkðiiiÞδ⊥ðV4

XðiiiÞ
Þ
: ð5:36Þ
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(2) Integrating out b further yields the constraint

dB ¼ lδ⊥ðΣ2
UÞ;

B ¼ lδ⊥ðV3
UÞ: ð5:37Þ

(3) We finally integrate out B as follows:

hXðiÞXðiiÞXðiiiÞUi

¼
Z

½DB�e−iπð
R
M5 w1ðTMÞ3lδ⊥ðV3

UÞÞ
����w1ðTMÞ¼kðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞþkðiiiÞδ⊥ðV4

XðiiiÞ
Þ;

B¼lδ⊥ðV3
U
Þ:

¼
Z

½DB�eð−iπð
R
M5 w1ðTMÞ3BÞÞ

����w1ðTMÞ¼kðiÞδ⊥ðV4
XðiÞ

ÞþkðiiÞδ⊥ðV4
XðiiÞ

ÞþkðiiiÞδ⊥ðV4
XðiiiÞ

Þ;

B¼lδ⊥ðV3
U
Þ:

ð5:38Þ

¼ e
ð−iπðkðiÞkðiiÞkðiiiÞlð # ðV4

XðiÞ
∩V4

XðiiÞ
∩V4

XðiiiÞ
∩V3

UÞþ # ðV4
XðiiÞ

∩V4
XðiiiÞ

∩V4
XðiÞ

∩V3
UÞþ # ðV4

XðiiiÞ
∩V4

XðiÞ
∩V4

XðiiÞ
∩V3

UÞ

# ðV4
XðiÞ ∩ V4

XðiiiÞ ∩ V4
XðiiÞ ∩ V3

UÞ þ # ðV4
XðiiiÞ ∩ V4

XðiiÞ ∩ V4
XðiÞ ∩ V3

UÞ þ # ðV4
XðiiÞ ∩ V4

XðiÞ ∩ V4
XðiiiÞ ∩ V3

UÞÞÞÞ
· ð� � �Þ · ðself-intersecting # termsÞ ð5:39Þ

≅ e
ð−iπðkðiÞkðiiÞkðiiiÞl·6 # ðV4

XðiÞ
∩V4

XðiiÞ
∩V4

XðiiiÞ
∩V3

UÞÞÞ · ð� � �Þ ð5:40Þ

≅ e
ð−iπðkðiÞkðiiÞkðiiiÞl·6Qlkð5ÞðΣ3

XðiÞ
;Σ3

XðiiÞ
;Σ3

XðiiiÞ
;Σ2

UÞÞÞ · ð� � �Þ : ð5:41Þ

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.39), following
the same strategy in footnote 40.

For S ¼ π
R
M5 cdw1ðTMÞ þ bdBþ w1ðTMÞ3B, we derive the link invariant for the 5d TQFT ZSET½M5� in Eq. (5.39) and

Eq. (5.40):

# ðV4
XðiÞ ∩ V4

XðiiÞ ∩ V4
XðiiiÞ ∩ V3

UÞ≡ Qlkð5ÞðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ : ð5:42Þ

The path integral with appropriate extended operator insertions becomes Eq. (5.40) which provides the above link invariant.
However, note that the factorial 3! ¼ 6 trivializes the complex eiπ phase to ei6π. It may be possible to take into account (see
footnote 38) from the subtle graded noncommutativity of the cochain field effect. Thus one may need to go beyond the
continuum differential form TQFT formulation by using the cochain TQFT formulation in order to see the subleading
effect.

2. Version II: w1ðTMÞ2Sq1B and a triple link invariant Tlkð5Þ
w1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ

As another test example, we consider a 5d TQFT obtained from summing over two-form field B with the topological
action w1ðTMÞ2Sq1B. We again use the continuum version of the TQFT.42 Its partition function and the topological action
(see footnote 15) are

Z ¼
Z

½DB�½Db�½Dc� expðiSÞ; ð5:43Þ

S ¼ π

Z
M5

cdw1ðTMÞ þ bdBþ w1ðTMÞ2Sq1B; ð5:44Þ

42Even though w1ðTMÞ2Sq1B is a rewriting of w1ðTMÞ3B on a closed five manifold, it turns out that we still gain new insights about
an additional link invariant.
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S ¼ π

Z
M5

cdw1ðTMÞ þ bdBþ w1ðTMÞ2 1
2
dB: ð5:45Þ

We assume the gauge transformations have the following
ansatz:

w1ðTMÞ → w1ðTMÞ þ dα;

B → Bþ dβ;

c → cþ dγ þ λ;

b → bþ dζ þ μ: ð5:46Þ

Under the gauge transformations, the action transforms as

S → Sþ π

Z
M5

dγdw1ðTMÞ þ λdw1ðTMÞ þ dζdBþ μdB

þ ðw1ðTMÞdαþ dαw1ðTMÞ þ dαdαÞ 1
2
dB

þ ðw1ðTMÞ2 þ w1ðTMÞdαþ dαw1ðTMÞ

þ dαdαÞ 1
2
d2β ð5:47Þ

¼ Sþ π

Z
M5

λdw1ðTMÞ þ μdB

þ 1

2
ðw1ðTMÞdαþ dαw1ðTMÞ þ dαdαÞdB; ð5:48Þ

where we have used integration by part. ΔS ¼ 0 requires

λ ¼ 0;

μ ¼ −
1

2
ðw1ðTMÞdαþ dαw1ðTMÞ þ dαdαÞ: ð5:49Þ

The gauge invariant three-submanifold operator is

X ¼ exp

�
iπk

�Z
Σ3

c

��

¼ exp

�
iπk

�Z
M5

ðδ⊥ðΣ3ÞcÞ
��

; ð5:50Þ

and the gauge invariant two-surface operator is

U ¼ exp

�
iπl

�Z
Σ2

�
bþ 1

2
w1ðTMÞ2Þ

��

¼ expðiπl
�Z

M5

�
δ⊥ðΣ2Þ

�
bþ 1

2
w1ðTMÞ2Þ

��
; ð5:51Þ

where k;l ∈ Z2.
We proceed to compute the link invariants by inserting

XðiÞ; XðiiÞ; U into the path integral Z,

hXðiÞXðiiÞUi ¼
Z

½DB�½Dc�½Db�XðiÞXðiiÞU expðiSÞ;

hXðiÞXðiiÞUi ¼
Z

½DB�½Dc�½Db�XðiÞXðiiÞU exp

�
iπ
Z
M5

cdw1ðTMÞ þ bdBþ w1ðTMÞ2 1
2
dB

�
: ð5:52Þ

To evaluate hXðiÞXðiiÞUi, we integrate out various fields step by step:
(1) Integrating out c, we get

dw1ðTMÞ ¼ kðiÞδ⊥ðΣ3
XðiÞ Þ þ kðiiÞδ⊥ðΣ3

XðiiÞ Þ;
w1ðTMÞ ¼ kðiÞδ⊥ðV4

XðiÞ Þ þ kðiiÞδ⊥ðV4
XðiiÞ Þ: ð5:53Þ

The link invariant thus boils down to

hXðiÞXðiiÞUi ¼
Z

½DB�½Db�U exp

�
iπ
Z
M5

bdBþ w1ðTMÞ2 1
2
dB

�����
w1ðTMÞ¼kðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
Þ
: ð5:54Þ

(2) Integrate out b, we get the constraint

dB ¼ lδ⊥ðΣ2
UÞ;

B ¼ lδ⊥ðV3
UÞ: ð5:55Þ
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(3) We finally integrate out B in Eq. (5.54):

hXðiÞXðiiÞUi

¼
Z

½DB�e−iπð
R
M5

1
2
w1ðTMÞ2lδ⊥ðΣ2

UÞþw1ðTMÞ21
2
dBÞ

����w1ðTMÞ¼kðiÞδ⊥ðV4
XðiÞ

ÞþkðiiÞδ⊥ðV4
XðiiÞ

Þ;

B¼lδ⊥ðV3
U
Þ

¼
Z

½DB�eð−iπð
R
M5

1
2
w1ðTMÞ2dBþw1ðTMÞ21

2
dBÞÞ

����w1ðTMÞ¼kðiÞδ⊥ðV4
XðiÞ

ÞþkðiiÞδ⊥ðV4
XðiiÞ

Þ;

B¼lδ⊥ðV3
U
Þ:

ð5:56Þ

¼ e
ð−iπðkðiÞkðiiÞlð # ðV4

XðiÞ
∩V4

XðiiÞ
∩Σ2

UÞþ # ðV4
XðiiÞ

∩V4
XðiÞ

∩Σ2
UÞÞÞÞ

· ð� � �Þ · ðself-intersecting # termsÞ ð5:57Þ

≅ e
ð−iπðkðiÞkðiiÞl·ðTlkð5Þw1w1dB

ðΣ3
XðiÞ

;Σ3
XðiiÞ

;Σ2
UÞþTlkð5Þw1w1dB

ðΣ3
XðiiÞ

;Σ3
XðiÞ

;Σ2
UÞÞÞÞ · ð� � �Þ : ð5:58Þ

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.57), following
the same strategy as footnote 40.

For S ¼ π
R
M5 cdw1ðTMÞ þ bdBþ w1ðTMÞ2 1

2
dB, we derive the link invariant for the 5d TQFT ZSET½M5� in Eq. (5.57)

and Eq. (5.58):

# ðV4
XðiÞ ∩ V4

XðiiÞ ∩ Σ2
UÞ≡ Tlkð5Þw1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ : ð5:59Þ

The path integral with appropriate extended operator
insertions become Eq. (5.58) which provides the above
link invariant. However, note that the two terms on the
exponent of Eq. (5.58) are the same, which trivializes the
complex eiπ to ei2π . It may be possible to take into account
(see footnote 38) from the subtle graded noncommutativity
of the cochain field effect. Thus one may need to go beyond
the continuum differential form TQFT formulation by
using the cochain TQFT formulation in order to see the
subleading effect.

C. w3ðTMÞB =w2ðTMÞSq1B and a quadratic link

invariant Lkð5Þ
w2dB

ðΣ2
U0 ;Σ2

UÞ
We further consider a 5d TQFT obtained from summing

over two-form field B of w3ðTMÞB ¼ w2ðTMÞSq1B. We
again adopt the continuum version of TQFT. The partition
function and action (see footnote 15) are

Z ¼
Z

½DB�½Db�½Dh� expðiSÞ; ð5:60Þ

S ¼ π

Z
M5

hdw2ðTMÞ þ bdBþ w2ðTMÞSq1B; ð5:61Þ

S ¼ π

Z
M5

hdw2ðTMÞ þ bdBþ w2ðTMÞ 1
2
dB: ð5:62Þ

We assume the gauge transformations have the following
ansatz:

w2ðTMÞ → w2ðTMÞ þ dα;

B → Bþ dβ;

h → hþ dγ þ λ;

b → bþ dζ þ μ: ð5:63Þ

Under the gauge transformation, the action transforms as

S → Sþ π

Z
M5

dγdw2ðTMÞ þ λdw2ðTMÞ þ dζdBþ μdB

þ dα
1

2
dBþ w2ðTMÞ 1

2
d2β þ dα

1

2
d2β ð5:64Þ

¼ Sþ π

Z
M5

λdw2ðTMÞ þ μdBþ
�
1

2
dα

�
dB

þ
�
−
1

2
dβ

�
dw2ðTMÞ: ð5:65Þ

Thus ΔS ¼ 0 requires
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λ ¼
�
1

2
dβ

�
;

μ ¼ −
�
1

2
dα

�
: ð5:66Þ

There are two types of gauge invariant two-surface oper-
ators,

U0 ¼ exp

�
iπk

�Z
Σ2

h−
Z
V3

1

2
dB

��

¼ exp

�
iπk

�Z
M5

�
δ⊥ðΣ2Þh− δ⊥ðV3Þ1

2
dB

���
ð5:67Þ

¼ exp

�
iπk

�Z
M5

�
δ⊥ðΣ2Þ

�
h −

1

2
B

����
ð5:68Þ

and

U ¼ exp

�
iπl

�Z
Σ2

bþ
Z
V3

1

2
dw2ðTMÞ

��

¼ exp

�
iπl

�Z
Σ2

bþ
Z
Σ2

1

2
w2ðTMÞ

��

¼ exp

�
iπl

�Z
M5

δ⊥ðΣ2Þ
�
bþ 1

2
w2ðTMÞ

���
; ð5:69Þ

where k;l ∈ Z2.
We define the link invariant by inserting U0, U into the

path integral Z

hU0Ui ¼
Z

½DB�½Dh�½Db�U0U exp

×
�
iπ
Z
M5

hdw2ðTMÞ þ bdBþ w2ðTMÞ 1
2
dB

�
:

Below we evaluate hU0Ui by integrating out various fields:
(1) Integrating out h, we get

dw2ðTMÞ ¼ kδ⊥ðΣ2
U0 Þ;

w2ðTMÞ ¼ kδ⊥ðV3
U0 Þ: ð5:70Þ

Plugging the above constraints into the partition
function, we find the double-counting mod 2 can-
cellation in the exponent of expðiπðRM5 δ⊥ðV3

U0 Þ×
k
2
dBþ w2ðTMÞ 1

2
dBÞÞ ¼ 1. Thus the link invariant

boils down to

hU0Ui ¼
Z

½DB�½Db�U exp

×

�
iπ
Z
M5

bdB

�����
w2ðTMÞ¼kδ⊥ðV3

U0 Þ
: ð5:71Þ

(2) Integrating out b, we get the constraint

dB ¼ lδ⊥ðΣ2
UÞ;

B ¼ lδ⊥ðV3
UÞ: ð5:72Þ

(3) We finally integrate out B in Eq. (5.71):

hU0Ui

¼
Z

½DB�e−iπð
R
M5

1
2
w2ðTMÞlδ⊥ðΣ2

UÞÞ
����w2ðTMÞ¼kδ⊥ðV3

U0 Þ;
B¼lδ⊥ðV3

U
Þ

¼
Z

½DB�eð−iπð
R
M5

1
2
w2ðTMÞdBÞÞ

����w2ðTMÞ¼kδ⊥ðV3
U0 Þ;

B¼lδ⊥ðV3
U
Þ

ð5:73Þ

¼ eð−iπð
kl
2
· # ðV3

U0∩Σ2
UÞÞÞ ð5:74Þ

≅ eð−iπð
kl
2
·Lkð5ÞðΣ2

U0 ;Σ2
UÞÞÞ : ð5:75Þ

We derive the link invariant for the 5d TQFT ZSET½M5� for
S¼ π

R
M5 hdw2ðTMÞ þ bdBþw2ðTMÞSq1B in Eq. (5.75):

# ðV3
U0 ∩ Σ2

UÞ≡ Lkð5Þw2dB
ðΣ2

U0 ;Σ2
UÞ : ð5:76Þ

The path integral with appropriate extended operators
insertions become Eq. (5.75) which provides the above
link invariant.

D. BSq1B+ ð1 +K1Þw1ðTMÞ2Sq1B+w2ðTMÞSq1B and

more link invariants: Tlkð5Þ
w1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ,

Lkð5Þ
BdBðΣ2

UðiÞ ;Σ
2
UðiiÞ Þ, and Lkð5Þ

w2dB
ðΣ2

U0 ;Σ2
UÞ

We finally consider the generic form including the four
classes of Z5d

SETðK1 ;K2Þ
in Eq. (4.5) by gauging Z5d

SPTðK1 ;K2Þ
in

Eq. (2.56), with ðK1; K2Þ ∈ ðZ2;Z2Þ labeling the four
siblings. Below, we find it convenient to introduce K0

1

via K0
1 ≔ 1þ K1 mod 2.

The partition function and action (see footnote 15) are

Z ¼
Z

½DB�½Db�½Dh�½Dc� expðiSÞ; ð5:77Þ

S ¼ π

Z
M5

K0
1cdw1ðTMÞ þ hdw2ðTMÞ þ bdBþ BSq1B

þ K0
1w1ðTMÞ2Sq1Bþ w2ðTMÞSq1B; ð5:78Þ

S ¼ π

Z
M5

K0
1cdw1ðTMÞ þ hdw2ðTMÞ þ bdBþ B

1

2
dB

þ K0
1w1ðTMÞ2 1

2
dBþ w2ðTMÞ 1

2
dB: ð5:79Þ
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1. Gauge invariance

We assume the following ansatz of the gauge transformations:

w1ðTMÞ → w1ðTMÞ þ dα1;

w2ðTMÞ → w2ðTMÞ þ dα2;

B → Bþ dβ;

c → cþ dγ1 þ λ1;

h → hþ dγ2 þ λ2;

b → bþ dζ þ μ: ð5:80Þ

The gauge variation of the action is

S → Sþ π

Z
M5

K0
1dγ1dw1ðTMÞ þ K0

1λ1dw1ðTMÞ þ dγ2dw2ðTMÞ þ λ2dw2ðTMÞ

þ dζdBþ μdBþ dβ
1

2
dBþ B

1

2
d2β þ dβ

1

2
d2β

þ K0
1ðw1ðTMÞdα1 þ dα1w1ðTMÞ þ dα1dα1Þ

1

2
dB

þ K0
1ðw1ðTMÞ2 þ w1ðTMÞdα1 þ dα1w1ðTMÞ þ dα1dα1Þ

1

2
d2β

þ dα2
1

2
dBþ w2ðTMÞ 1

2
d2β þ dα2

1

2
d2β ð5:81Þ

¼ Sþ π

Z
M5

K0
1λ1dw1ðTMÞ þ λ2dw2ðTMÞ þ μdBþ

�
1

2
dα2

�
dBþ

�
−
1

2
dβ

�
dw2ðTMÞ

þ K0
1

1

2
ðw1ðTMÞdα1 þ dα1w1ðTMÞ þ dα1dα1ÞdB; ð5:82Þ

where we have used integration by part. Gauge invariance, i.e., ΔS ¼ 0, requires

K0
1λ1 ¼ 0;

λ2 ¼
1

2
dβ;

μ ¼ −K0
1

1

2
ðw1ðTMÞdα1 þ dα1w1ðTMÞ þ dα1dα1Þ −

1

2
dα2: ð5:83Þ

2. Extended two-surface/three-brane operators and link invariants

The gauge invariant three-manifold operator is

X ¼ exp

�
iπkK0

1

�Z
Σ3

c

��

¼ exp

�
iπkð1þ K1Þ

�Z
M5

ðδ⊥ðΣ3ÞcÞ
��

: ð5:84Þ

X is trivial when K0
1 ¼ 1þ K1 ¼ 0 mod 2.
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There are two types of gauge invariant two-surface operators,

U0 ¼ exp

�
iπk0

�Z
Σ2

h −
Z
V3

1

2
dB

��

¼ exp

�
iπk0

�Z
M5

�
δ⊥ðΣ2Þh − δ⊥ðV3Þ 1

2
dB

���

¼ exp

�
iπk0

�Z
M5

�
δ⊥ðΣ2Þ

�
h −

1

2
B

����

¼ exp

�
iπk0

�Z
M5

�
δ⊥ðΣ2Þ

�
h −

1

2
B

����
ð5:85Þ

and

U ¼ exp

�
iπl

�Z
Σ2

�
bþ K1

0 1
2
w1ðTMÞ2 þ 1

2
w2ðTMÞ

���

¼ exp

�
iπl

�Z
M5

�
δ⊥ðΣ2Þ

�
bþ K1

0 1
2
w1ðTMÞ2 þ 1

2
w2ðTMÞ

����

¼ exp

�
iπl

�Z
M5

�
δ⊥ðΣ2Þðbþ ð1þ K1Þ

1

2
w1ðTMÞ2 þ 1

2
w2ðTMÞÞ

���
; ð5:86Þ

where k; k0;l ∈ Z2.
Inserting XðiÞ; XðiiÞ; U0; UðiÞ; UðiiÞ into path integral Z, we define the link invariant as

hXðiÞXðiiÞU0UðiÞUðiiÞi ¼
Z

½DB�½Db�½Dh�½Dc�XðiÞXðiiÞU0UðiÞUðiiÞ expðiSÞ

¼
Z

½DB�½Db�½Dh�½Dc�XðiÞXðiiÞU0UðiÞUðiiÞ exp
�
iπ
Z
M5

K1
0cdw1ðTMÞ

þ hdw2ðTMÞ þ bdBþ B
1

2
dBþ K1

0w1ðTMÞ2 1
2
dBþ w2ðTMÞ 1

2
dB

�
: ð5:87Þ

We evaluate the path integral below:
(1) Integrating out c, we get

K0
1dw1ðTMÞ ¼ K0

1ðkðiÞδ⊥ðΣ3
XðiÞ Þ þ kðiiÞδ⊥ðΣ3

XðiiÞ ÞÞ;
K0

1w1ðTMÞ ¼ K0
1ðkðiÞδ⊥ðV4

XðiÞ Þ þ kðiiÞδ⊥ðV4
XðiiÞ ÞÞ: ð5:88Þ

We keep K0
1 on both sides because when K0

1 ¼ 1 mod 2 we have this constraint; while when K0
1 ¼ 0 mod 2 the

constraint is trivial. Using the above constraints, the path integral boils down to

hXðiÞXðiiÞU0UðiÞUðiiÞi ¼
Z

½DB�½Db�½Dh�U0UðiÞUðiiÞ exp
�
iπ
Z
M5

hdw2ðTMÞ þ bdBþ B
1

2
dB

þ K1
0w1ðTMÞ2 1

2
dBþ w2ðTMÞ 1

2
dB

�
jK0

1
w1ðTMÞ¼K0

1
ðkðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞÞ: ð5:89Þ

(2) Integrating out h, we get

dw2ðTMÞ ¼ k0δ⊥ðΣ2
U0 Þ;

w2ðTMÞ ¼ k0δ⊥ðV3
U0 Þ: ð5:90Þ
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Substituting these into the path integral, we find

hXðiÞXðiiÞU0UðiÞUðiiÞi ¼
Z

½DB�½Db�UðiÞUðiiÞ exp
�
iπ
Z
M5

bdBþ B
1

2
dB

þ K0
1w1ðTMÞ2 1

2
dB

�����K01w1ðTMÞ¼K0
1
ðkðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞÞ;

w2ðTMÞ¼k0δ⊥ðV3
U0 Þ:

: ð5:91Þ

(3) Integrating out b, we get the constraint

dB ¼ lðiÞδ⊥ðΣ2
UðiÞ Þ þ lðiiÞδ⊥ðΣ2

UðiiÞ Þ;
B ¼ lðiÞδ⊥ðV3

UðiÞ Þ þ lðiiÞδ⊥ðV3
UðiiÞ Þ: ð5:92Þ

(4) We finally integrate out B in Eq. (5.89):

hXðiÞXðiiÞU0UðiÞUðiiÞi

¼
Z

½DB� exp
�
−iπ

�Z
M5

1

2
ðK0

1w1ðTMÞ2 þ w2ðTMÞÞðlðiÞδ⊥ðΣ2
UðiÞ Þ þ lðiiÞδ⊥ðΣ2

UðiiÞ ÞÞ

þ B
1

2
dBþ K0

1w1ðTMÞ2 1
2
dB

������K0
1
w1ðTMÞ¼K0

1
ðkðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞÞ;

w2ðTMÞ¼k0δ⊥ðV3
U0 Þ;

B¼lðiÞδ⊥ðV3
UðiÞÞþlðiiÞδ⊥ðV3

UðiiÞ
Þ

¼
Z

½DB� exp
�
−iπ

�Z
M5

1

2
ðK0

1w1ðTMÞ2 þ w2ðTMÞÞdBþ B
1

2
dB

þ K0
1w1ðTMÞ2 1

2
dB

������K0
1
w1ðTMÞ¼K0

1
ðkðiÞδ⊥ðV4

XðiÞ
ÞþkðiiÞδ⊥ðV4

XðiiÞ
ÞÞ;

w2ðTMÞ¼k0δ⊥ðV3
U0 Þ;

B¼lðiÞδ⊥ðV3
UðiÞÞþlðiiÞδ⊥ðV3

UðiiÞ
Þ

ð5:93Þ

¼ exp

�
−iπ

�
K0

1kðiÞkðiiÞ · 2 # ðV4
XðiÞ ∩ V4

XðiiÞ ∩ ðlðiÞδ⊥ðΣ2
UðiÞ Þ þ lðiiÞδ⊥ðΣ2

UðiiÞ ÞÞÞ

þ
�
k0lðiÞ
2

· # ðV3
U0 ∩ Σ2

UðiÞ Þ þ
k0lðiiÞ
2

· # ðV3
U0 ∩ Σ2

UðiiÞ Þ
�
þ lðiÞlðiiÞ

2
· ð # ðV3

UðiÞ ∩ Σ2
UðiiÞ Þ þ # ðV3

UðiiÞ ∩ Σ2
UðiÞ ÞÞ

��

· ð� � �Þ · ðself-intersecting # termsÞ ð5:94Þ

≅ exp

�
−iπ

�
K0

1ðkðiÞkðiiÞlðiÞ · 2Tlkð5ÞðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UðiÞ Þ þ kðiÞkðiiÞlðiiÞ · 2Tlkð5ÞðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UðiiÞ ÞÞ

þ
�
k0lðiÞ
2

· Lkð5ÞðΣ2
U0 ;Σ2

UðiÞ Þ þ
k0lðiiÞ
2

· Lkð5ÞðΣ2
U0 ;Σ2

UðiiÞ Þ
�
þ lðiÞlðiiÞ · Lkð5ÞðΣ2

UðiÞ ;Σ
2
UðiiÞ Þ

��
· ð� � �Þ: ð5:95Þ

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.94), following
the same strategy as footnote 40.

For S ¼ π
R
M5 K0

1cdw1ðTMÞ þ hdw2ðTMÞ þ bdBþ B 1
2
dBþ K0

1w1ðTMÞ2 1
2
dBþ w2ðTMÞ 1

2
dB, we derive the link

invariant for the 5d TQFT ZSET½M5� in Eq. (5.94) and Eq. (5.95):

K0
1kðiÞkðiiÞ · 2 # ðV4

XðiÞ ∩ V4
XðiiÞ ∩ ðlðiÞδ⊥ðΣ2

UðiÞ Þ þ lðiiÞδ⊥ðΣ2
UðiiÞ ÞÞÞ

þ
�

k0lðiÞ
2

· # ðV3
U0 ∩ Σ2

UðiÞ Þ þ
k0lðiiÞ
2

· # ðV3
U0 ∩ Σ2

UðiiÞ Þ
�
þ lðiÞlðiiÞ

2
· ð # ðV3

UðiÞ ∩ Σ2
UðiiÞ Þ þ # ðV3

UðiiÞ ∩ Σ2
UðiÞ ÞÞ

≡ ð1þ K1ÞðkðiÞkðiiÞlðiÞ · 2Tlk
ð5Þ
w1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UðiÞ Þ þ kðiÞkðiiÞlðiiÞ · 2Tlk

ð5Þ
w1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UðiiÞ ÞÞ

þ
�

k0lðiÞ
2

· Lkð5Þw2dB
ðΣ2

U0 ;Σ2
UðiÞ Þ þ

k0lðiiÞ
2

· Lkð5Þw2dB
ðΣ2

U0 ;Σ2
UðiiÞ Þ

�
þ lðiÞlðiiÞ · Lk

ð5Þ
BdBðΣ2

UðiÞ ;Σ
2
UðiiÞ Þ:

ð5:96Þ
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The path integral with appropriate extended operator
insertions becomes Eq. (5.95) which provides the above
link invariant.

3. ðK1;K2Þ= ð0;0Þ or (0, 1): First
and third siblings

The Z5d
SETðK1¼0;K2¼0Þ gives rise to a 5d triple link invariant:

(i) Tlkð5Þw1BB
in Eq. (5.25) of Sec. VA. We present an

exemplary link configuration later in Sec. VI B that
can be detected by this link invariant.

In another equivalent expression, Z5d
SETðK1¼0;K2¼0Þ in

Eq. (4.5) gives rise to other link invariants in Eq. (5.96)
including

(i) Tlkð5Þw1w1dB
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ, a second type of triple

link in 5d (although seemly undetectable due to an
exponent factor 2π in the expectation value). We
present an exemplary link configuration later in
(Sec. VI C) that can be detected by this link invariant.

(ii) Lkð5ÞBdBðΣ2
UðiÞ ;Σ

2
UðiiÞ Þ, a quadratic link of two-surfaces

in 5d. We present an exemplary link configuration
later in Sec. VI E that can be detected by this link
invariant.

(iii) Lkð5Þw2dB
ðΣ2

U0 ;Σ2
UÞ, another quadratic link of two-

surfaces in 5d. We present an exemplary link con-
figuration later in Sec. VI F that can be detected by
this link invariant.

Physically, these link invariants may be related to each
other by rearranging the spacetime braiding process of
strings/branes. It will be interesting to find a precise
mathematical equality to relate these link invariants.

4. ðK1;K2Þ= ð1;0Þ or (1,1): Second
and fourth siblings

Z5d
SETðK1¼1;K2¼0Þ in Eq. (4.5) gives rise to link invariants in

Eq. (5.96) including the following:
(i) Lkð5ÞBdBðΣ2

UðiÞ ;Σ
2
UðiiÞ Þ, a quadratic link of two-surfaces

in 5d. We present an exemplary link configuration
later in (Sec. VI E) that can be detected by this link
invariant.

(ii) Lkð5Þw2dB
ðΣ2

U0 ;Σ2
UÞ, another quadratic link of two-

surfaces in 5d. We present an exemplary link
configuration later in Sec. VI F that can be detected
by this link invariant.

Similar to our comments above in Sec. V D 3, it will be
interesting to find a precise mathematical equality to relate
these link invariants.

VI. ANYONIC STRING/BRANE SPACETIME
BRAIDING PROCESSES AND LINK

CONFIGURATIONS OF EXTENDED OPERATORS

We provide the exemplary spacetime braiding processes
of anyonic strings and branes in general dimensions (with

an emphasis on 5d) and the link configurations of extended
operators, which can be detected by the link invariants that
we derived in Sec. V.

A. Quadratic link (Aharanov-Bohm)
configuration in any dimension

To warm up, we first discuss the quadratic link, asso-
ciated with the Aharanov-Bohm statistics in dd due to the
linking of one world line of the charged particle and the
(d − 2)d world sheet of the fractional flux. In 3d spacetime,
we have the following presentation:

where gluing two solid tori D2 × S1 gives rise to a three-
sphere: ðD2

L × S1RÞ ∪ ðS1L ×D2
RÞ ¼ S3. We represent the

two solid tori as a blue solid tori and a red solid tori,
ðD2

L × S1RÞ ∪ ðS1L ×D2
RÞ ¼ S3. The quadratic link invariant

detecting this Aharanov-Bohm configuration is given by
Ref. [12] and references therein: Lkðð0ptÞL × S1R; S

1
L ×

ð0ptÞRÞ, which we also express as

Lkðð0ptÞL × S1R; S
1
L × ð0ptÞRÞ ð6:1Þ

based on the color labeling of the inclusion of two S1 circles
belonging to which of the two solid tori. This link invariant
can be computed from the intersection number,

where

# ðð0ptÞL × S1RÞ ∩ ðD2
L × ð0pt−ÞRÞÞ ¼ 1: ð6:2Þ

ð0pt−Þ means the point ð0ptÞ now is attached to a line. The
intersection number #ðð0ptÞL×S1RÞ∩ ðD2

L×ð0pt−ÞRÞÞ¼1

precisely corresponds to the black dot •.
In dd spacetime, Sd can be obtained by

ðDd−1
L × S1RÞ ∪ ðSd−2L ×D2

RÞ ¼ Sd; ð6:3Þ

which can be graphically represented as
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The associated link invariant is

Lkðð0ptÞL × S1R; S
d−2
L × ð0ptÞRÞ ð6:4Þ

with the color prescription explained earlier. This link
invariant can be computed from the intersection number,

# ðð0ptÞL × S1RÞ ∩ ðDd−1
L × ð0pt−ÞRÞÞ ¼ 1: ð6:5Þ

Here, ð0pt−Þ means the point ð0ptÞ now is attached with a
line. We see the intersection number # ðð0ptÞL × S1RÞ ∩
ðDd−1

L × ð0pt−ÞRÞÞ ¼ 1 precisely corresponds to the black
dot •.

B. The first triple link # ðV4
X ∩ V3

UðiÞ ∩ V3
UðiiÞ Þ≡

Tlkð5Þ
w1BB

ðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ configuration in 5d

We proceed to discuss the triple link configuration for

Tlkð5Þw1BB
ðΣ3

X;Σ2
UðiÞ ;Σ

2
UðiiÞ Þ derived in Sec. VA.43 We propose

that this link invariant derived in Sec. VA can detect the
link configuration in Fig. 2.
To explain, we start by constructing the five-sphere via

S5 ¼ ∂D6 ¼ ∂ðD4 ×D2Þ ¼ S3 ×D2 ∪D4 × S1 ¼ S3 ×D2 ∪
D2 ×D2 × S1. More explicitly, we color the different com-
ponents as S5 ¼ ðS3L ×D2

RÞ ∪ ðD4
L × S1RÞ and S5 ¼ ðS3L ×

D2
RÞ ∪ ðD2

L ×D2
L × S1RÞ.

Consider the link invariant defined by # ðV4
X ∩ V3

UðiÞ ∩

V3
UðiiÞ Þ≡ Tlkð5Þw1BB

ðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ, where we see that the

link configuration in Fig. 2 gives the intersection number 1
in Fig. 3. Again in Fig. 3 associated with the intersection
number # ðV4

X ∩ V3
UðiÞ ∩ V3

UðiiÞ Þ, ð0pt−Þ means the point

ð0ptÞ now is attached to a line. We see the intersection
number # ðV4

X ∩ V3
UðiÞ ∩ V3

UðiiÞ Þ ¼ 1 precisely corresponds

to the black dot •.

C. The second triple link # ðV4
XðiÞ ∩ V4

XðiiÞ ∩ Σ2
UÞ≡

Tlkð5Þ
w1w1dB

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ configuration in 5d

We now discuss Tlkð5Þw1w1dB
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ, or schemati-

cally Tlkð5ÞAAdBðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ. This link invariant is derived

in Sec. V B 2.
Let us consider the link invariant defined by # ðV4

XðiÞ ∩

V4
XðiiÞ ∩ Σ2

UÞ≡ Tlkð5Þw1w1dB
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ. We see that the

link configuration in Fig. 4 gives the intersection number 1
in Fig. 5.

D. Quadruple link # ðV4
XðiÞ ∩ V4

XðiiÞ ∩ V4
XðiiiÞ ∩ V3

UÞ≡
Qlkð5Þ

w1w1w1B
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ configuration in 5d

We now discuss Qlkð5Þw1w1w1B
ðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

3
XðiiiÞ Þ, or sche-

matically Qlkð5ÞaaabðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

3
XðiiiÞ Þ. This link invariant is

derived in Sec. V B 1.

FIG. 2. S5 ¼ ∂D6 ¼ ∂ðD4 ×D2Þ ¼ S3 ×D2 ∪D4 × S1 ¼ S3 ×
D2 ∪D2 ×D2 × S1, the intersection of the two copies of
D2 × S1 in the second piece (D2 × 0pt × S1 and 0pt ×D2 × S1)
is 0pt × 0pt × S1 ¼ 0pt × S1; this 0pt × S1 and S3 × 0pt in the first
piece are linked. In this figure, Σ3

X ¼ S3 × 0pt, Σ2
UðiÞ ¼

∂ðD2 × 0pt × S1Þ, Σ2
UðiiÞ ¼ ∂ð0pt ×D2 × S1Þ.

FIG. 3. Following Fig. 2, V4
X ¼ D4 × 0pt which bounds Σ3

X,
V3
UðiÞ ¼ D2 × 0pt × S1 which bounds Σ2

UðiÞ , V3
UðiiÞ ¼ 0pt ×

D2 × S1 which bounds Σ2
UðiiÞ . The intersection of V3

UðiÞ and

V3
UðiiÞ is 0pt × S1, the intersection of V4

X and this 0pt × S1 is a

point which is the point in black in this figure.

43Effectively, Tlkð5Þw1BB
ðΣ3

X;Σ2
UðiÞ ;Σ

2
UðiiÞ Þ can also be regarded as

Tlkð5ÞABBðΣ3
X;Σ2

UðiÞ ;Σ
2
UðiiÞ Þ where A is the other Zn one-form gauge

field.
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Let us consider the link invariant defined by

# ðV4
XðiÞ ∩ V4

XðiiÞ ∩ V4
XðiiiÞ ∩ V3

UÞ
≡ Qlkð5Þw1w1w1B

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ:

We see that the link configuration in Fig. 6 gives the
intersection number 1 in Fig. 7.

E. Quadratic link # ðV3
UðiÞ ∩ Σ2

UðiiÞ Þ≡Lkð5Þ
BdBðΣ2

UðiÞ ;Σ
2
UðiiÞ Þ

Now we discuss Lkð5ÞBdBðΣ2
UðiÞ ;Σ

2
UðiiÞ Þ. This link invariant

is derived in Sec. V D.
Let us consider the link invariant defined by

# ðV4
XðiÞ ∩ V4

XðiiÞ ∩ V4
XðiiiÞ ∩ V3

UÞ
≡ Qlkð5Þw1w1w1B

ðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

3
XðiiiÞ ;Σ

2
UÞ:

FIG. 4. S5 ¼ ∂D6 ¼ ∂ðD3 ×D3Þ ¼ S2 ×D3 ∪ D3 × S2. Put a two-torus [denoted by (1)] in D3 × 0pt, and put a Hopf link [the two
circles are denoted by (2) and (3), respectively] in the solid two-torus. Put two circles [denoted by S1ð1Þ and S1ð3Þ, respectively] which
intersect in only one point in 0pt × S2 (denoted by S2ð2Þ). In this figure, Σ

3
XðiÞ is the Cartesian product of the two-torus (1) and S

1
ð1Þ, Σ

3
XðiiÞ is

the Cartesian product of the circle (2) and S2ð2Þ, Σ
2
U is the Cartesian product of the circle (3) and S1ð3Þ.

FIG. 5. Following Fig. 4, if we fill in Σ3
XðiÞ and Σ3

XðiiÞ , we get V4
XðiÞ ¼ D2 × S1 × S1 and V4

XðiiÞ ¼ D2 × S2. V4
XðiÞ , V

4
XðiiÞ , and Σ2

U will
intersect in only one point which is the point in black in this figure.
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We see that the link configuration in Fig. 8 gives the
intersection number 1 in Fig. 9.

F. Quadratic link # ðV3
U0 ∩ Σ2

UÞ≡Lkð5Þ
w2dB

ðΣ2
U;Σ2

U0 Þ
Now we discuss Lkð5Þw2dB

ðΣ2
U0 ;Σ2

UÞ or Lkð5ÞB0dBðΣ2
U0 ;Σ2

UÞ.
This link invariant is derived in Sec. V C.

Let us consider the link invariant defined by # ðV3
U0 ∩

Σ2
UÞ≡ Lkð5Þw2dB

ðΣ2
U;Σ2

U0 Þ. We see that the link configuration
in Fig. 10 gives the intersection number 1 in Fig. 11.

G. The third triple link # ðV4
XðiÞ ∩ Σ3

XðiiÞ ∩ V3
UÞ≡

Tlkð5Þ
ðAdAÞBðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ configuration in 5d

Finally, we discuss a third triple link invariant

#ðV4
XðiÞ ∩Σ3

XðiiÞ ∩V3
UÞ≡Tlkð5ÞðAdAÞBðΣ3

XðiÞ ;Σ
3
XðiiÞ ;Σ

2
UÞ. We have

not derived these from 4d YM-5d SET coupled systems.

FIG. 6. S5 ¼ ∂D6 ¼ ∂ðD3 ×D3Þ ¼ S2 ×D3 ∪ D3 × S2. Put
Borromean rings in D3 × 0pt. If we fill in each of the three
circles of the Borromean rings, then we get an intersection point,
and we can think of this point as 0pt in D3. Then the Cartesian
product of each of the three circles and S2 (denoted by Σ3

XðiÞ, Σ
3
XðiiÞ ,

and Σ3
XðiiiÞ , respectively) will intersect in 0pt × S2; this 0pt × S2

and S2 × 0pt (Σ2
U in this figure) are linked.

FIG. 7. Following Fig. 6, we denote the three D2 × S2 which
bound the Cartesian product of the three circles and S2 as V4

XðiÞ ,

V4
XðiiÞ , V

4
XðiiiÞ , respectively. The intersection of V4

XðiÞ , V
4
XðiiÞ , and

V4
XðiiiÞ is 0pt × S2. The intersection of V3

U ¼ D3 × 0pt which

bounds Σ2
U and 0pt × S2 is a point which is the point in black

in this figure.

FIG. 8. S5 ¼ ∂D6 ¼ ∂ðD3 ×D3Þ ¼ S2 ×D3 ∪ D3 × S2. The
S2 × 0pt in the first piece and the 0pt × S2 in the second piece
are linked. In this figure, Σ2

UðiÞ ¼ S2 × 0pt and Σ2
UðiiÞ ¼ 0pt × S2.

FIG. 9. Following Fig. 8, if we fill in S2 × 0pt, we get
V3
UðiÞ ¼ D3 × 0pt; the intersection of D3 × 0pt and 0pt × S2 is a

point which is the point in black in this figure.

FIG. 10. S5 ¼ ∂D6 ¼ ∂ðD3 ×D3Þ ¼ S2 ×D3 ∪ D3 × S2. The
S2 × 0pt in the first piece and the 0pt × S2 in the second piece are
linked. In this figure, Σ2

U0 ¼ S2 × 0pt and Σ2
U ¼ 0pt × S2.

FIG. 11. Following Fig. 10, if we fill in S2 × 0pt, we get
V3
U0 ¼ D3 × 0pt, the intersection of D3 × 0pt and 0pt × S2 is a

point which is the point in black in this figure.

FIG. 12. S5 ¼ ∂D6 ¼ ∂ðD3 ×D3Þ ¼ S2 ×D3 ∪ D3 × S2, and
put a Hopf link in D3 × 0pt. In this figure, Σ3

XðiÞ and Σ3
XðiÞ are the

Cartesian product of the two circles in the Hopf link and S2,
respectively; namely, they are both S1 × S2 and Σ2

U ¼ S2 × 0pt.
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However, to get this, we need a topological term
ðw1ðTMÞdw1ðTMÞÞB. This is possible, however, from
the ðAIdAJÞB type of TQFTs.
Let us consider the link invariant defined by #ðV4

XðiÞ ∩

Σ3
XðiiÞ ∩V3

UÞ≡Tlkð5ÞðAdAÞBðΣ3
XðiÞ ;Σ

3
XðiiÞ ;Σ

2
UÞ. We see that the

link configuration in Fig. 12 gives the intersection number
1 in Fig. 13.

VII. 4D SOð3Þθ=π YANG-MILLS GAUGE THEORIES
COUPLED TO THE BOUNDARY OF 5D SETs/

LONG-RANGE ENTANGLED TQFTs

InSec. II,we have shown that the SUð2ÞYang-Mills theory
with θ ¼ π, with the gauge bundle constraint w2ðVPSUð2ÞÞ ¼
Bþ K1w1ðTMÞ2 þ K2w2ðTMÞ, has two distinct ’t Hooft
anomalies as shown in Eq. (2.38). In this section, we further
comment on gauging the one-formZe

2;½1� center symmetry of

the four sSiblings of SUð2Þθ¼π YM to obtain SOð3Þθ¼π YM
theories. Since the ’t Hooft anomalies involve the one-form
center symmetry and the spacetime symmetries [whose
background fields are the Stiefel-Whitney classes wiðTMÞ],
depending onwhich manifold we formulate the SUð2ÞYang-
Mills, one obtains different theories.

A. From SU(2) to SO(3) gauge theory

To illustrate, we start by gauging the one-form symmetry
[6,78] of the SUð2Þθ¼0 YM theories which is time-reversal
symmetric and anomaly-free. There are still four choices
of gauge bundle constraints labeled by ðK1; K2Þ, i.e.,
Eq. (3.1). Let Z4d

SUð2ÞYM½B� be the path integral without
specifying the gauge bundle constraint, the partition func-
tion with the gauge bundle constraint w2ðEÞ ¼ ðBþ
K1w1ðTMÞ2 þ K2w2ðTMÞÞmod 2 is

Z4d
SUð2ÞYMðK1 ;K2Þ

½B�≡
Z

½DΛ�Z4d
SUð2ÞYM½B� expðiπΛ ∪ ðw2ðEÞ − ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞÞÞ:

More generally, we can add the counterterm pπ
2
PðBÞ labeled by an integer p, which modifies the partition function as

Z4d
SUð2ÞYMðK1 ;K2Þ

½B�≡
Z

½DΛ�Z4d
SUð2ÞYM½B� exp

�
iπ

�
Λ ∪ ðw2ðEÞ − ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞÞ þ p

2
PðBÞ

��
: ð7:1Þ

Below we would like to obtain SOð3Þ YM by gauging one-form Ze
2;½1� center symmetry. The theta angle of the resulting

theory is 2πp. If w2ðTMÞ is nontrivial, the resulting SOð3Þ theory is time-reversal symmetric only when p ∈ 2Z and
p ∼ pþ 4. When w2ðTMÞ is trivial, the resulting SOð3Þ theory is time-reversal symmetric for p ∈ Z and p ∼ pþ 2. In the
following, we always restrict to the time-reversal symmetric case. Gauging one-form center symmetry amounts to summing
over the background gauge field B (promoting B to a dynamical gauge field),

Z4d
SOð3ÞYMðK1 ;K2Þ

¼
Z

½DΛ�½DB�Z4d
SUð2ÞYM½B� exp

�
iπ

�
Λ ∪ ðw2ðEÞ − ðBþ K1w1ðTMÞ2 þ K2w2ðTMÞÞÞ þ p

2
PðBÞ

��
:

ð7:2Þ

Integrating outΛ enforces the relation between SO(3)-gauge
bundles and two-formdynamical gauge fieldB. This outputs
the SO(3)-gauge theory Z4d

SOð3ÞYMðK1 ;K2Þ
with θ ¼ 2πp.

B. Gauging one-form Ze
2;½1� symmetry of SUð2Þ

gauge theory with θ =π

We proceed to discuss gauging the one-form symmetry
of SUð2Þ Yang-Mills with θ ¼ π.

If one formulates the SUð2Þθ¼π Yang-Mills on an
orientable and spin manifold, i.e., w1 ¼ w2 ¼ 0 (hence
w3 ¼ 0 as well), for spacetime tangent bundle TM, there is
the freedom to ignore the time reversal as a symmetry of
the theory. The only symmetry of interest is the one-form
symmetry, which does not have an anomaly with itself.
Hence one can gauge the one-form symmetry, and
the resulting theory is PSUð2Þ ¼ SOð3Þ Yang-Mills with
θ ¼ π. Indeed, SOð3Þ Yang-Mills with θ ¼ π does not

FIG. 13. Following Fig. 12, if we fill in Σ3
XðiÞ , we get

V4
XðiÞ ¼ D2 × S2; the intersection of V4

XðiÞ and Σ3
XðiiÞ is the

Cartesian product of a point (we can think of the point as 0pt)
and S2. If we fill in Σ2

U further, we get V3
U ¼ D3 × 0pt; the

intersection of D3 × 0pt and 0pt × S2 is a point which is the point
in black in this figure.
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respect time reversal, which maps θ ¼ π to θ ¼ 3π due to
the identification θ ∼ θ þ 4π on a spin manifold.
If one formulates the SUð2Þθ¼π Yang-Mills on an

orientable and nonspin manifold, one still has the freedom
to ignore the time reversal as a symmetry of the theory.
However, in this case, there is a counterterm

Z
M5

K2πSq1ðw2ðTMÞ ∪ BÞ; ð7:3Þ

which is a WZW-like term of background fields (i.e., probe
fields in condensed matter language). Denoting the parti-
tion function of the SUð2Þθ¼π Yang-Mills coupled to B as
ZSUð2ÞYMð0;K2Þ

½M4; B�, after promoting B to a dynamical
field, the partition function of the entire 4d–5d system is

Z
½DB�ZSUð2ÞYMð0;K2Þ

½M4; B�

× exp

�
iπ
Z
M5

K2πSq1ðw2ðTMÞ ∪ BÞ
�
: ð7:4Þ

If K2 ¼ 0, the 4d–5d system reduces to an intrinsic 4d
system. Physically, this corresponds to the case where the
gauge charge is a boson. It makes sense to gauge the one-
form symmetry which again gives rise to the time-reversal
broken SOð3Þ Yang-Mills theory. If K2 ¼ 1, the theory is
still an intrinsic 4d system. Physically, this corresponds to
the case where the gauge charge is a fermion.
If one formulates the SUð2Þ Yang-Mills on an unorient-

able manifold, the time-reversal symmetry is built in, so
time-reversal symmetry is too late to be abandoned.
Promoting B to a dynamical gauge field, the partition
function for the entire 4d–5d system is

Z
½DB�ZSUð2ÞYMðK1 ;K2Þ

½M4;B�exp½iπ
Z
M5

ðBSq1BþSq2Sq1B

þK1w1ðTMÞ2Sq1BþK2Sq1ðw2ðTMÞ∪BÞÞ�: ð7:5Þ

Since M5 is unorientable, for all four choices of ðK1; K2Þ,
the 5d terms do not vanish (because BSq1Bþ Sq2Sq1B is
always nonvanishing on an unorientable manifold). Hence
one can only discuss the 4d–5d system rather than discuss
the 4d system alone. We summarize all the above cases in
Table X.

VIII. LATTICE REGULARIZATION,
UV COMPLETION, AND SYMMETRIC

ANOMALOUS TQFT

In this section, we formulate the partition function
of the 5d higher-SPT Z5d

SPTðK1¼0;K2¼0Þ ½M5;B� on a simplicial

complex spacetime. This provides a lattice regularization
of the 5d SPT. We also provide lattice realization of
(i) 4d higher-symmetry-extended boundary theory or
(ii) 4d higher-symmetry-enriched anomalous topologi-
cally ordered boundary theory. We will generalize the
approach in [54] and follow Sec. IX of [55]. In condensed
matter physics, this (ii) phenomenon is known as the
anomalous surface topological order (first noticed in
[79]) typically for the 2þ 1D boundary of 3þ 1D
SPTs; see a review [30].

A. Lattice realization of 4d higher SPTs and
higher-gauge TQFT: 4d simplicial complex
and 3 + 1D condensed matter realization

We warm up by considering a lattice realization of 4d
higher SPTs given by a probe-field partition function

Z4d
SPT½M4;B� ¼ exp

�
i
π

2

Z
M4

PðBÞ
�

¼ exp

�
i
π

2

Z
M4

B ∪ Bþ B∪
1
δB

�
: ð8:1Þ

The path integral can be regularized on a triangulated
four manifold M4. The building blocks of M4 are four-
simplices. Without loss of generality, we consider an
arbitrary four-simplex which we denote as (01234) where
each number labels one vertex. See Fig. 14 for a graphical
representation of a four-simplex. We denote Bijk as
restricting the two-cochain B on the two-simplex ðijkÞ.
We label the path integral amplitude on (01234) as
ω4ð01234Þ, i.e.,

ω4ð01234Þ¼ exp

�
i
π

2
ðB∪BþB∪

1
δBÞ01234

	

¼ exp

�
i
π

2
ðB012B234

þB034ðB123−B023þB013−B012Þ

þB014ðB234−B134þB124−B123ÞÞ
	
: ð8:2Þ

TABLE X. Possibilities of gauging the SUð2Þθ¼π Yang-Mills
theory with gauge bundle constraint ðK1; K2Þ on a manifold with
Stiefel-Whitney (SW) class ðw1; w2Þ ¼ ðw1ðTMÞ; w2ðTMÞÞ,
where 0 and 1 mean trivial or nontrivial SW classes, respectively.
The ✓ means that there is a way to make sense of the resulting
gauged theory as a purely 4d theory. The theories labeled
by ✗ mean that it only makes sense to discuss the combined
4d–5d systems. The WZW means the theory is intrinsically 4d;
however, there is a WZW-like term of background fields, which
involves a 5d integral (but does not depend on the choice of 5d
manifold M5).

ðw1; w2ÞnðK1; K2Þ (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) ✓ ✓ ✓ ✓
(1, 0) ✗ ✗ ✗ ✗
(0, 1) ✓ ✓ WZW WZW
(1, 1) ✗ ✗ ✗ ✗
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It is straightforward to verify that ω4ð01234Þ satisfies the
cocycle condition:

ðδω4Þð012345Þ ¼
ω4ð12345Þ ·ω4ð01345Þ ·ω4ð01235Þ
ω4ð02345Þ ·ω4ð01245Þ ·ω4ð01234Þ

¼ 1:

ð8:3Þ

B. Lattice realization of 5d higher SPTs and
higher-gauge SETs: 5d simplicial complex
and 4 + 1D condensed matter realization

The 5d partition function with ðK1 ¼ 0; K2 ¼ 0Þ is

Z5d
SPTðK1¼0;K2¼0Þ ½M5� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1B

�
:

ð8:4Þ
We start by triangulating the 5d closed spacetime manifold
(without boundary) into a five-simplicial complex. There
are some useful identities:

Sq1B ¼ B∪
1
B ¼ 1

2
δB;

Sq2Sq1B ¼ ðSq1BÞ∪
1
ðSq1BÞ ¼ 1

4
ðδBÞ∪

1
ðδBÞ: ð8:5Þ

Note that in the second equality of the first line, we have
used the cocycle condition that δB ¼ 0mod 2. One can
express the SPT action Eq. (8.4) in terms of the sum of cup
products of B cochains over five-simplices

Z5d
SPTðK1¼0;K2¼0Þ ½M5� ¼ exp

�
i
π

2

X
M5

B ∪ δBþ i
π

4

X
M5

δB∪
1
δB

�
:

ð8:6Þ

Without loss of generality, we consider an arbitrary five-
simplex which we denote as (012345) where each number
labels one vertex. See Fig. 15 for a graphical representation
of a five-simplex. We will label the path integral amplitude
on the simplex (012345) as ω5ð012345Þ, i.e.,

ω5ð012345Þ ¼ exp

�
iπð1

2
B ∪ δBþ 1

4
δB∪

1
δBÞ012345

	
;

ð8:7Þ

so that the partition function can be simplified as
Z5d
SPTðK1¼0;K2¼0Þ ½M5� ¼ Q

ðijklmnÞ∈M5 ωðijklmnÞ. Using the

definition of the cup products on simplices and the
identities Eq. (8.5), we have

ðSq1BÞ0123 ¼
1

2
ðB123 − B023 þ B013 − B012Þ;

ðSq2Sq1BÞ012345 ¼
1

4
ððδBÞ0345ðδBÞ0123 þ ðδBÞ0145ðδBÞ1234 þ ðδBÞ0125ðδBÞ2345Þ

¼ 1

4
ðð−B045 − B034 þ B035 þ B345Þð−B023 − B012 þ B013 þ B123Þ

þ ð−B045 − B014 þ B015 þ B145Þð−B134 − B123 þ B124 þ B234Þ
þ ð−B025 − B012 þ B015 þ B125Þð−B245 − B234 þ B235 þ B345ÞÞ: ð8:8Þ

FIG. 14. Graphical representation of a four-simplex (01234).

FIG. 15. Graphical representation of a five-simplex (012345).
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Hence the path integral amplitude on the simplex (012345) is

ω5ð012345Þ ¼ exp

�
iπ
2
B012ð−B245 − B234 þ B235 þ B345Þ

þ iπ
4
ð−B045 − B034 þ B035 þ B345Þð−B023 − B012 þ B013 þ B123Þ

þ iπ
4
ð−B045 − B014 þ B015 þ B145Þð−B134 − B123 þ B124 þ B234Þ

þ iπ
4
ð−B025 − B012 þ B015 þ B125Þð−B245 − B234 þ B235 þ B345Þ

	
: ð8:9Þ

It is straightforward to verify that ω5ð012345Þ satisfies the cocycle condition:

ðδω5Þð0123456Þ ¼
ω5ð123456Þ · ω5ð013456Þ · ω5ð012356Þ · ω5ð012345Þ

ω5ð023456Þ · ω5ð012456Þ · ω5ð012346Þ
¼ 1: ð8:10Þ

We emphasize that ωð012345Þ is a cocycle only when B
is a cocycle, i.e., δB ¼ 0. If B is a cochain rather than a
cocycle, Eq. (8.4) is not a cocycle, and hence it cannot be
a partition function of a topological field theory.44

We further comment on the lattice regularization of
theory with various choices of ðK1; K2Þ:
(1) When ðK1; K2Þ ¼ ð0; 0Þ, as we derived above, there

is a lattice regularization of the 5d SPT partition
function.

(2) When ðK1; K2Þ ¼ ð1; 0Þ, the path integral ampli-
tude depends on the first Stiefel-Whitney class
w1ðTMÞ. Using the method of [29], one can write
down the simplicial form of w1ðTMÞ2 using the
twisted cocycle, with the coefficient in Uð1ÞT due
to the antiunitary nature of time-reversal symmetry
(in the Hamiltonian formalism of [29]). We will
not write down the explicit expression for the
cocycle.

(3) ðK1; K2Þ ¼ ð0; 1Þ; ð1; 1Þ has the same anomaly pol-
ynomial as ðK1; K2Þ ¼ ð0; 0Þ; ð1; 0Þ, respectively.

Other than treating B as the background gauge field, we can
also sum over B to get the topologically ordered 5d
SET Z5d

SETðK1 ;K2Þ
½M5�.

Given that the 5d SPT and 5d SET path integral can
be regularized on a lattice, following [29], one can write
down the quantum wave function via the spacetime path
integral. It is also possible to construct a lattice quantum
Hamiltonian on the 4D space (on a constant time slice),
for both SPTs and SETs, similar to the formulations of
[29,80–82]. For the topologically ordered 5d SET, we
implement the method of [81,82]

Ĥ ¼ −
X
1-linkl

Âl −
X

3-simplex

B̂3-simplex; ð8:11Þ

where Âl is an operator acting on the plaquettes (two-
simplex) adjacent to the one-link l, and B̂3-simplex is an
operator acting on the boundary of a given three-simplex
which again are plaquettes (two-simplex). The Âl has its
effect on imposing the time evolution constraint as the same
as the path integral formulation: Âl lifting the state vector
to a next time slice locally around the one-link l. The
B̂3-simplex imposes the zero flux condition enclosed by the
three-simplex (which is a two-sphere S2 in topology). We
will not give the explicit expression of the quantum
Hamiltonian Ĥ in this work.

C. Higher-symmetry-extended
3 + 1D gapped boundaries

One option to saturate the anomaly inflow from the bulk
5d (4þ 1D) SPT is to extend the global symmetry on the 4d
(3þ 1D) boundary, based on the symmetry-extension
method of [54]. Note that ðK1; K2 ¼ 0Þ and ðK1; K2 ¼
1Þ theories have the same 4d anomaly, but they differ by a
4d WZW-like counterterm written on a 5d M5,

Z5d
SPTðK1 ;K2Þ

½M5� ¼ Z5d
SPTðK1 ;0Þ

½M5�

× exp

�
iπ
Z
M5

K2Sq1ðw1ðTMÞ2BÞ
�
:

The 4d counterterm is shown to be vanished on a closedM5

in 5d in Eq. (2.33). Due to Eq. (2.33), this K2-dependent
term has no consequences via any anomaly consideration
on 4d dynamics. Thus we only discuss the 3þ 1D gapped
boundary for the two siblings ðK1; K2 ¼ 0Þ. The 5d
partition function is

44The cocycle condition is crucial in proving the partition
function to be invariant under retriangulating the spacetime
manifold M5.
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Z5d
SPTðK1 ;0Þ

½M5� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1B
�

¼ exp

�
iπ
Z
M5

ðBþ ð1þ K1Þw1ðTMÞ2 þ w2ðTMÞÞ ∪ Sq1B

�
· exp

�
iπ
Z
M5

δð� � �Þ
�
: ð8:12Þ

In the second line, we have used
R
M5 Sq2Sq1B ¼R

M5ðw1ðTMÞ2 þ w2ðTMÞÞSq1Bþ R
M5 δð� � �Þ. Note that

when M5 is closed, the total derivative vanishes and
we have the standard Wu formula

R
M5 Sq2Sq1B ¼R

M5ðw1ðTMÞ2 þ w2ðTMÞÞSq1B. WhenM5 has a boundary,
the standard Wu formula may no longer hold, and they
differ at most by a coboundary term.45 We denote the
coboundary term as δð� � �Þ in the second line. Since ð� � �Þ is
a well-defined term of background gauge fields, it is a 4d
invertible TQFT, which does not contribute to the 4d
dynamics. Hence in the construction of 4d symmetric
boundary TQFT below, we only focus on the first part
in the second line of Eq. (8.12). Using the systematic
way in [54] and its generalized higher-symmetry exten-
sion [55], we find that the boundary of 5d SPT can support
a 4d TQFT via the higher-symmetry extension from a one-
form Z2 to a one-form Z4 symmetry. Schematically, let

ωðK1;0Þ
5 be the five-cocycle whose product over the 5d

manifoldM5 gives the 5d SPT partition function Eq. (8.12).

Let βðK1;0Þ
4 be a four-cochain which trivializes the 5d

cocycle, i.e.,

ωðK1;0Þ
5 ¼ δβðK1;0Þ

4 : ð8:13Þ

We find that the following βðK1;0Þ
4 satisfies Eq. (8.13):

βðK1;0Þ
4 ¼ exp

�
iπ
Z
M4

ðBþ ð1þ K1Þw1ðTMÞ2

þ w2ðTMÞÞ ∪ γðCÞ
	
; ð8:14Þ

where C is a Z4 valued two-cochain satisfying B ¼
Cmod 2 and γ∶Z4 → Z2 is a function which maps the
Z4 two-cochain to a Z2 two-cochain:

ðγðCÞÞijk ¼
ðCijkÞ2 − Cijk

2
: ð8:15Þ

In summary, the βðK1;0Þ
4 in (8.14) is the partition function

of the higher-symmetry-extended 3þ 1D gapped boun-
dary, while the original one-form anomalous global sym-
metry Z2;½1� is extended to the anomaly-free one-form
global symmetry Z4;½1�. We can also rephrase that the
higher anomaly associated with the bordism group
ΩO

5 ðB2Z2Þ with a higher classifying space B2Z2 can be
pulled back and trivialized as fully anomaly-free in the
bordism group ΩO

5 ðB2Z4Þ with an extended higher classi-
fying space B2Z4:

B2Z2 ⟶ B2Z4 ⟶ B2Z2

ðExtended global symmetry ðGlobal Symmetry

Z4 one-form symmetry probe Z2 one-form symmetry probe

byZ4 two-cochainC background fieldÞ byZ2 two-cochainB background fieldÞ

: ð8:16Þ

This higher-symmetry-extended 3þ 1D gapped boundary,
described by (8.14), has no long-range entanglement and
no intrinsic topological order. This higher-symmetry-
extended 3þ 1D gapped boundary is known as system
(i) in Sec. 7 of Ref. [13] as a short-range entangled state,

both in the bulk and on the boundary (denoted as SRE/SRE
in Sec. 7 of Ref. [13]). In fact, this whole SRE/SRE
bulk-boundary theory is still an invertible TQFT with a
partition function jZj ¼ 1 on an M5 with a 4d gapped
boundary M4.

D. Higher-symmetry anomalous 3 + 1D topologically
ordered gapped boundaries: Spontaneous

higher-symmetry breaking

There also exists another boundary theory of the 5d SPTs
in Eq. (8.12), with Z2 two-cochain b summed over as
dynamical fields on the boundary. The boundary theory is
a dynamical Z2 gauge theory, which can be obtained
from gauging the normal Z2;½1� subgroup of Z4;½1� in the

45By the Wu formula for n manifolds with boundary, Sqjx ¼
ujx where uj is the relative Wu class, and x ∈ Hn−jðM; ∂M;Z2Þ.
The total relative Wu class u is related to the total Stiefel-Whitney
class w of M as SqðuÞ ¼ w. So u1 ¼ w1ðTMÞ, u2 ¼ w1ðTMÞ2 þ
w2ðTMÞ, etc., still hold but Sq1B may not be in H3ðM; ∂M;Z2Þ
for a five manifold M with boundary. Therefore, Sq2Sq1B ¼
ðw1ðTMÞ2 þ w2ðTMÞÞSq1B may not hold for a five manifold M
with boundary. See for instance Ref. [83].
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symmetry extended gapped boundary from the previous
section. Schematically, we promote the two-form (or two-
cochain) gauge field b coupling to one-form Z2;½1� sym-
metry to dynamical, in a normal subgroup of Z4;½1�. The
resulting boundary theory has long-range entanglement in

contrast to the short-range entanglement of the symmetric
extended boundary theory in the previous section,
Sec. VIII C. This can be summarized as an induced fiber
sequence of their higher classifying space B2Z2 →
B2Z4 → B2Z2:

B2Z2 → B2Z4 → B2Z2

ðDynamical=emergent ðGlobal Symmetry

gaugeable Z2;½1� symmetry probed by

Z2 two-cochain b fieldÞ Z2 two-cochain backgroundB fieldÞ

: ð8:17Þ

Or we may denote the above as B2Zgauged
2 → B2Ztotal

4 →
B2ZG

2 , implementing the notations of [13,54].
However, as noticed in Ref. [54] and in Sec. 7 of

Ref. [13], when the boundary theory is long-range
entangled (after gauging a normal subgroup), it is possible
that the new fate of low energy dynamics may not preserve
the global symmetry. Specifically, Ref. [54] finds that,
under the exact sequence K → H → G, even for a suc-
cessful H-symmetry extended construction of gapped
boundary, in certain cases, dynamically gauging the normal

subgroup K may still result in G spontaneously broken. In
short, we should question:
Is it possible that Z2;½1� global symmetry in the long-

range entangled boundary theory happens to be sponta-
neously broken?
Namely, following the notations in Sec. 7 of Ref. [13] on

the SRE/SRE and SRE/LRE of the bulk/boundary (denoted
bulk/bdry) systems, the symmetry-extension construction
[13,54] under the exact sequence K → H → G may result
in different dynamical fates:

8>>>>>>>>><
>>>>>>>>>:

Case 1: H-symmetry-extended gapped boundary∶ SRE=SREbulk=bdry:

e:g:; The one-formZ4;½1� symmetry extended in Sec: 8.3.Many zero-formG-symmetry examples given inRef: ½53�:
Case 2.G-symmetry-preserving anomalousK-gauge gapped boundary∶ SRE=LREbulk=bdry:

e:g:; Many zero-formG-symmetry examples given in Ref: ½53�:
Case 3.G-symmetry-breakingK-gauge gapped boundary∶ SRE=LREbulk=bdry:

e:g:; Sec: 3.4 andAppendix A.2.4 of Ref: ½53�; and Sec: 7.1 of Ref: ½12�:
Thus below what we aim to examine is whether a proposal of Case 2 associated with Eq. (8.17) is in fact the Case 3 in
disguise, when K is dynamically gauged, as

B2Z2 → B2Z4 → B2Z2

ðDynamical=emergent ðGlobal Symmetry

gaugeable Z2;½1� symmetry

Z2 two-cochain b fieldÞ spontaneously broken?Þ

: ð8:18Þ

Concretely, we propose aZ2 gauge theory [as a candidate IR theory of the UV SU(2) YM] which hasZ2;½1� global symmetry
and saturates the ’t Hooft anomaly Eq. (8.12). We will find that the Z2;½1� global symmetry is spontaneously broken.

We consider the 4d Z2-gauge TQFT

Z
½Db�½Dã� exp

�
iπ
Z
M4

bδãþ 1

4
PðδãÞ

�

¼
Z

½Db�½Dã� exp
�
iπ
Z
M4

bδãþ ã ã ã ã

�
: ð8:19Þ

Here
R ½Db�½Dã� means we sum over the Z2 valued two-

cochain b ∈ C2ðM;Z2Þ and Z2 valued one-cochain
ã ∈ C1ðM;Z2Þ. The first term is the standard BF term
of discrete gauge theory, while the second term is the 4d
analogue of the Dijkgraaf-Witten–type action [12]. We also
refer to it as the twisting term. Integrating out b enforces ã
to be a Z2 valued cocycle, and hence the twisting term
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1
4
PðδãÞ ¼ 1

4
δãδã ¼ ã ã ã ã mod 2 is time-reversal sym-

metric. To match the anomaly from 5d SPTs in Eq. (8.12),
we couple to background fields B and w1ðTMÞ, as follows:
Z
M4

πbðδã − B − K1w1ðTMÞ2Þ þ π

4
Pðδã − BÞ: ð8:20Þ

Summing over the Z2 valued two-cochain b enforces the
gauge bundle constraint:

δã ¼ Bþ K1w1ðTMÞ2 mod 2: ð8:21Þ

Notice that under the gauge transformation of the back-
ground field B → Bþ δλ, we demand ã → ãþ λ. It is
obvious that the action Eq. (8.20) is gauge invariant.
However, due to the gauge bundle constraint Eq. (8.21),
the twisting term π

4
Pðδã − BÞ is no longer 0 or πmod 2π;

hence it is not time-reversal invariant, and Eq. (8.20) is not
well defined on an unorientable manifold. To make sense of
the theory on an unorientable manifold, we use the same
idea in Sec. II where we promote the twisting term to a 5d
integral,

Z
M5

π

4
δPðδã − BÞ ¼

Z
M5

π

2
δãδðδãÞ þ π

2
δBδãþ π

4
δPðBÞ

¼ π

Z
M5

BSq1Bþ Sq2Sq1B

þ K1w1ðTMÞ2Sq1B; ð8:22Þ

where we have used π
4
δPðBÞ ¼ πðBSq1Bþ Sq2Sq1BÞ and

the gauge bundle constraint Eq. (8.21). Thus when we
couple theory to the background field B and formulate it on
an unorientable manifold, only the 4d–5d coupled system is
well defined,

Z
½Db�½Dã� exp

�
iπ
Z
M4

πbðδã − B − K1w1ðTMÞ2Þ

þ iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1B
�
:

ð8:23Þ

Indeed, the 5d integral implies that the Z2 gauge theory
saturates the anomaly Eq. (8.12). Let us comment on the
dynamics of the above 4d Z2 gauge theory. The fact that ã
transforms as ã → ãþ λ under one-form background
gauge transformation B → Bþ δλ suggests that the
Wilson line

exp

�
iπ
I

ã

�
ð8:24Þ

has charge 1 under Z2;½1�. In a TQFT, any genuine line
operators are tensionless, and thus the expectation does not

satisfy area law. Since expðiπ H ãÞ is a genuine line
operator, it obeys a perimeter law, and it spontaneously
breaks the Z2;½1� one-form symmetry.
We comment that in Sec. 7 of Ref. [13], similar argu-

ments have been used to show that the zero-form Z2 global
symmetry of a 2d TQFT is spontaneously broken. In the 2d
theory, there is a scalar ϕ with charge 1 under Z2 zero-form
global symmetry. In the 2d TQFT, ϕ has a nontrivial
expectational value. Thus the Z2 zero-form symmetry is
spontaneously broken. See Ref. [13] for more details.
The fact that the dynamical Z2 gauge theory we

constructed spontaneously breaks the one-form Z2;½1� sym-
metry is consistent with the conclusion pointed out by
Cordova and Ohmori (see [84,85]) where the authors
showed the impossibility of having any ZT

2 × Z2;½1� sym-
metric anomalous gapped 4d TQFT saturating the 4d
higher anomaly of 5d SPTs Eq. (8.12).

IX. CONCLUSIONS, DISCUSSIONS,
AND DYNAMICS

(1) Summary.—In this work, we proved (physically via
the quantum field theory method) that 4d time-
reversal symmetric pure YMs of an SU(2) gauge
group with a second-Chern-class topological term at
θ ¼ π [i.e., SUð2Þθ¼π YM] have new higher ’t Hooft
anomalies in 4d, given by a 5d topological term
Eq. (2.38) and Eq. (2.61):

π

Z
M5

ðB ∪ Sq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2 ∪ Sq1B

þ K2Sq1ðw2ðTMÞ ∪ BÞÞ:
The 5d term BSq1BþSq2Sq1BþK1w1ðTMÞ2Sq1B
is a 5d bordism invariant (or equivalently 5d iTQFT/
SPTs/counterterm) that specifies the 4d ’t Hooft
anomaly. However, the 5d termK2Sq1ðw2ðTMÞBÞ is
not a 5d bordism invariant but only a 4d WZW-like
counterterm; thus strictly speaking it does not
indicate any 4d ’t Hooft anomaly. We found
that there are at least four siblings of SUð2Þθ¼π
YM with bosonic UV completion, labeled by
ðK1; K2Þ ∈ ðZ2;Z2Þ. Their higher ’t Hooft anoma-
lies of generalized global symmetries indicate that
4d SUð2Þθ¼π YM, in order to realize all global
symmetries locally, necessarily couple to 5d higher
symmetry-protected topological states (SPTs, as
invertible TQFTs [iTQFTs], as 5d one-form-center-
symmetry-protected interacting “topological super-
conductors” in condensed matter).
We explored various 4d Yang-Mills gauge the-

ories living as boundary conditions of 5d gapped
short-/long-range entangled (SRE/LRE) topo-
logical states. We revisited 4d SUð2Þθ¼π YM-5d
SRE-higher-SPTs coupled systems [5,8]. Follow
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Weyl’s gauge principle, by dynamically gauging
the one-form center symmetry, we transformed a 5d
bulk SRE SPTs into an LRE symmetry-enriched
topologically ordered state (SETs); thus we ob-
tained the 4d SOð3Þθ¼π YM-5d LRE-higher-SETs
coupled system with dynamical higher-form gauge
fields. We illustrate such 4d–5d systems schemati-
cally in Fig. 1 and Fig. 16.
The 4d SO(3) YM has a θ periodicity θ ∼ θ þ

4π on a spin manifold, and θ ∼ θ þ 8π on a
nonspin manifold. Since time-reversal symmetry
is preserved if and only if θ → −θ is identified,
thus SOð3Þθ¼π YM explicitly breaks the time-
reversal symmetry. In the right-hand side (b) of
Fig. 1 and Fig. 16, we actually have a 5d SETs
whose 4d boundary explicitly breaks time-reversal
symmetry.
Applying the tool introduced in [12], we derive

new exotic anyonic statistics of extended objects
such as two world sheet of strings and three world
volume of branes, which physically characterize the
5d SETs. We discover new triple and quadruple
link invariants associated with the underlying 5d
higher-gauge TQFT, hinting at a new intrinsic
relation between nonsupersymmetric 4d pure YM
and topological links in 5d.

(2) Appearances of mod 2 anomalies.—We note
that the anomaly associated with the 5d term
expðiπ R w3ðTMÞBÞ has also appeared in the context
of an adjoint QCD4 theory [55,86–88]. The
expðiπ R w2ðTMÞw3ðTMÞÞ has also appeared as a
new SU(2) anomaly in the SU(2) gauge theory [57].
All these anomalies andall our anomalies inEq. (2.61)
are mod 2 nonperturbative global anomalies, such as
the SU(2) anomalies [56,57].

(3) Mathematical relation between 5d and 4d bordism
groups.—Mathematically there seems to be an
amusing relation between (1) gauging the SU(2)
gauge bundle/connection under the coupling of 4d
YM with 4d SPTs (4d bordism invariants of ΩG0

4 )
with G0 derived from a group extension Eq. (3.2),

1 → SUð2Þ → G0 → OðdÞ → 1;

and (2) some of the 5d bordism invariants given by
ΩO

5 ðB2Z2Þ ¼ Z4
2. We provide the computations of

bordism groups and topological invariants in Ap-
pendix. It will be illuminating to explore this relation
further in the future.

(4) Classes of 4d SUð2Þθ¼π YM.—In Ref. [38], it was
noted that the Pinþ and Pin− versions of the above
group extensions G0 ¼ Pinþ ×Z2

SUð2Þ and G0 ¼
Pin− ×Z2

SUð2Þ provide two different SPTs vacua
after dynamically gauging the SU(2) symmetry to
give rise to two distinct 4d SUð2Þθ¼π YM theories.
Although Ref. [38] suggested that the Pinþ and Pin−

of 4d SUð2Þθ¼π YM are secretly indistinguishable
by correlators of local operators on orientable space-
times or by gapped SPT states, they can be distin-
guished on nonorientable spacetimes or potentially
by correlators of extended operators.
In this work, we have shown that Pinþ and Pin− of

4d SUð2Þθ¼π YM indeed have distinct new higher ’t
Hooft anomalies, given by Eq. (2.38) and Eq. (2.61),
with ðK1; K2Þ ¼ ð0; 1Þ and ðK1; K2Þ ¼ ð1; 1Þ, re-
spectively. Thus we confirm that Pinþ and Pin− of
4d SUð2Þθ¼π YM live in distinct Hilbert spaces, and
thus they are indeed distinct vacua.
More generally, in this work, we propose a

classification 4d SUð2Þθ¼π YM with a bosonic
UV completion (e.g., on a lattice with bosonic
degrees of freedom) and without fermionic parity
symmetry ZF

2 . We propose that a classification can
all be obtained from dynamically gauging the SU(2)
normal subgroup of 4dG0 SPTs whereG0 is given by
Eq. (3.2): 1 → SUð2Þ → G0 → OðdÞ → 1; i.e., fol-
low [38] by coupling the 4d G0 SPTs to a pure 4d
SU(2) YM theory and dynamically gauge their
SUð2Þ (see Sec. III).46 Other than the Pinþ and

(a) (b)

FIG. 16. An alternative illustration of Fig. 1: Various 4d Yang-Mills gauge theories live as the boundary conditions of certain 5d
invertible TQFT (iTQFT) or 5d TQFT, in order to realize YM’s (higher) global symmetries locally.

46Althoughwemainly focus on4dSUð2Þθ¼π YMhere, this gauge
principle works for more general 4d SU(2) YM, or equivalently 4d
SU(2)-gauge quantum spin liquids in condensed matter.
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Pin− cases, this extension Eq. (3.2) includes two more cases:G0 ¼OðdÞ×SUð2Þ and EðdÞ×Z2
SUð2Þ. In summary, in

terms of the ungauged 4d SPTs, we have the symmetry group G0 [38,41]:

G0 ¼

8>>>>><
>>>>>:

OðdÞ × SUð2Þ ½bosonic; relates to ðK1; K2Þ ¼ ð0; 0Þ�;
EðdÞ ×Z2

SUð2Þ ½bosonic; relates to ðK1; K2Þ ¼ ð1; 0Þ�;
Pinþ ×ZF

2
SUð2Þ ½fermionic; relates to ðK1; K2Þ ¼ ð0; 1Þ�;

Pin− ×ZF
2
SUð2Þ ½fermionic; relatesto ðK1; K2Þ ¼ ð1; 1Þ�:

ð9:1Þ

The global symmetries of SPTs for the first two cases
are purely bosonic since they do not contain ZF

2 ; the
later two cases are fermionic since they do containZF

2

[the ZF
2 is shared by Pin and by the center of SU(2)]:

(a) Before gauging (see Fig. 17), the 4d SPTs are
well-defined 4d topological terms/bordism invar-
iants that can live on 4d with fully local on-site
symmetry without the need of an extra 5d bulk.

(b) After gauging the SU(2) normal subgroup of G0
symmetry of these SPTs [see Fig. 16(a)], there is
an emergent one-form center Ze

2;½1� symmetry.
After gauging SU(2), all four systems become
bosonic without ZF

2 symmetry. We obtain new
theories: 4d SUð2Þθ¼π YM as boundary con-
ditions of 5d iTQFT in order to realize all global
symmetries locally.

(c) Furthermore, after gauging this Ze
2;½1� symmetry

of the 4d SUð2Þθ¼π YM and 5d iTQFT coupled
system [see Fig. 16(b)], we obtain new theories:
4d SOð3Þθ¼π YM as boundary conditions of
5d TQFT.

(5) Quantum spin liquids in condensed matter.—Strong
coupled gauge theories have condensed matter

implications as quantum spin liquids. Time-reversal
symmetric U(1) gauge theories as quantum spin
liquids [30] have been explored and classified based
on the quantum numbers of gapped electric and
magnetic excitations (Wilson and ’t Hooft line
operators) in Refs. [63,64]; see also recent works
[89,90]. Time-reversal symmetric SU(N) gauge the-
ories as quantum spin liquids have been explored in
[38]. We will leave additional interpretations of our
results of non-Abelian SU(2) gauge theories in the
context of quantum spin liquids for a future work.

(6) Relations of link invariants and braiding statistics in
various dimensions.—We have applied the tools
developed in [12] to compute link invariants of 5d
higher-gaugeTQFTs inSec. IV.Weanticipateaprecise
mathematical formulation of this 5d higher-gauge
TQFT requires a certain higher category theory. We
remark that several link invariants that we find here in
5d have dimensional reduction analogy to 4d and 3d,
such that the dimensional reduced link configurations
in 4d and 3d are related to what had been studied in
[11,12] and references therein.

(7) Fate of IRdynamics of gauge theories,UVcompletion,
and lattice regularizations at θ ¼ π.—For the 4d–5d
systems that we explore (schematically in Fig. 1 and
Fig. 16), we mainly focus on their four siblings as the
UV theories. We do not yet know the IR fate of their
dynamics of these strongly coupled gauge theories
givenatUV.However, given thepotentially complete ’t
Hooft anomalies in Eq. (2.38) and Eq. (2.61) (at zero
temperature),wecanconstrain theIRdynamicsbyUV-
IR anomaly matching. The consequence of anomaly
matching implies that the IR theories must be at least
one of the following scenarios:
(i) Time-reversal ZT

2 symmetry broken (spontane-
ously or explicitly): The conventional standard
lore suggests the twofold ZT

2 -breaking degen-
erate ground states [5].

(ii) One-form center Ze
2;½1� symmetry broken (spon-

taneously or explicitly) as deconfinement:
(2-i) One-form Ze

2;½1�-breaking and deconfined
TQFTs, i.e., topological order in con-
densed matter. A Z2 gauge theory with
the one-form symmetry spontaneously
broken has been proposed in Sec. VIII D.

FIG. 17. The 4d time-reversal and SU(2) symmetric-protected
topological states (SPTs) can be defined as 4d iTQFTs/bordism
invariants. Their symmetries can be realized locally in 4d, without
the need to an extra dimensional 5d system. Gauging SU(2)
symmetry of this 4d SPTs renders the 4d–5d coupled system in
Fig. 16(a). Further gauging Ze

2;½1� symmetry of the whole system
in Fig. 16(a) renders the 4d–-5d coupled system in Fig. 16(b). See
remark 4 of Sec. 9 for details.
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(2-ii) One-form Ze
2;½1�-breaking and deconfined

gapless theories or deconfined CFTs.
(iii) One-form symmetry unbroken as confinement:

(3-i) One-form symmetry-extended invertible
TQFT: This exotic scenario is discussed
in Sec. VIII C. In Sec. VIII C, one-form
Z2;½1� symmetry is extended to Z4;½1� in
order to trivialize, and thus saturate, the
anomaly.

(3-ii) One-form symmetry-preserving TQFT:
Cordova andOhmori [84,85] have proved
the nonexistence of TQFTs preserving
both the one-form symmetry and time-
reversal symmetry while saturating the 4d
SUðNÞθ¼π YM’s anomaly. This is consis-
tent with Sec. VIII D’s analysis, which
results in the previous phase of (2-i).

(iv) Full symmetry-preserving gapless theory
(CFT): This is a fairly exotic case which seems
to be less likely to happen.

Let us comment more on the recent Cordova-Ohmori’s result
[84,85] which rules out the one-form and time-reversal
symmetry-preserving gapped phases for 4d SUðNÞθ¼π YM,
namely the phase of (3-ii). To recall, although in Sec. VIII C,
we show the phase of (3-i) one-form symmetry-extended
invertibleTQFTcanbeconstructed, but in reality, suchphases
are unlikely to happen [54] and should be only regarded as an
intermediate step to construct the phase of (3-ii) one-form
symmetry-preserving TQFT. Furthermore, we show in
Sec. VIII D that dynamically gauging the extended symmetry
of symmetry-extended invertible TQFT (of Sec. VIII C)
results in the spontaneous symmetry-breaking phases, instead
of thesymmetry-preservinggappedphases.ThusourSec.VIII
is consistent with [84,85].

The fate of any of the four scenarios of IR phases above is
meant to match the anomaly (or match the Lieb-Schultz-
Mattis–type of theorem in condensed matter physics). Since
we have the four siblings of 4d SUð2Þθ¼π YM at UV, labeled
by ðK1; K2Þ ∈ ðZ2;Z2Þ, we can discuss each of their IR
dynamics. We leave more systematic discussions of the IR
dynamics for a future work.

(a) 4dSUð2Þθ¼π YMwith ðK1;K2Þ¼ð0;0Þ and (1,0):
For ðK1; K2Þ ¼ ð0; 0Þ or (1,0) with K2 ¼ 0, we
see that

R
M5 BSq1Bþ Sq2Sq1BþK1w1ðTMÞ2 ×

Sq1B¼ R
M5

1
2
w̃1ðTMÞPðBÞ þK1w1ðTMÞ2Sq1B

(or schematically ∼
R
M5 T BBþ K1T 3B) van-

ishes on 5d orientable manifolds. In other words,
if ZT

2 symmetry is spontaneously or explicitly
broken, we can match the anomaly at IR. This
means that when K2 ¼ 0, the OðdÞ × SUð2Þ and
EðdÞ ×Z2

SUð2Þ versions of 4d SUð2Þθ¼π YM in
Eq. (9.1) can indeed flow to the ZT

2 -breaking
scenario (1) at IR.

(b) 4d SUð2Þθ¼π YM with ðK1; K2Þ ¼ ð0; 1Þ and
(1,1): For ðK1; K2Þ ¼ ð0; 1Þ or (1,1) with
K2 ¼ 1, we see that K2

R
M5 Sq1ðw2ðTMÞBÞ is

nonzero if M5 has a boundary, and thisR
M5 Sq1ðw2ðTMÞBÞ term does not vanish even
if we restrict to orientable manifolds. In other
words, even if we break ZT

2 symmetry (sponta-
neously or explicitly), the

R
Sq1ðw2ðTMÞBÞ still

can suffer from background gauge variance. In
this case, we should define the physical 4d theory
to include not only Z4d

SUð2Þθ¼πYM
½M4;B;wjðTMÞ�

given in Eq. (2.37) but also the 4d countertermR
Sq1ðw2ðTMÞBÞ, which combine to

Z4d
SUð2Þθ¼πYMþcounterterms

½M4;B;wjðTMÞ�≡ Z4d
SUð2Þθ¼πYM

½M4;B;wjðTMÞ� · exp
�
iπ
Z

K2Sq1ðw2ðTMÞBÞ
�
: ð9:2Þ

The intrinsic 5d theory thus contains only the 5d bordism invariant/SPTs/iTQFT,47

Z5d
SPTs½M5;B; wjðTMÞ� ¼ exp

�
iπ
Z
M5

BSq1Bþ Sq2Sq1Bþ K1w1ðTMÞ2Sq1B
�
: ð9:3Þ

In fact, in Sec. VIII, we construct the 4d boundary based on the scenario (3) above as a boundary TQFTwith a lattice
spacetime path integral or a lattice Hamiltonian regularization; in this case, the full spacetime partition function
Z½M� of the 4d–5d system can be explicitly computed as a number (by following Sec. 9 of [54]).

47Alternatively, if we instead interpret the background gauge variance of
R
Sq1ðw2ðTMÞBÞ as a 4d higher ’t Hooft anomaly (rather

than just a 4d counterterm), then it has a consequence on 4d SUð2Þθ¼π YM dynamics. This means that when K2 ¼ 1, the PinþðdÞ ×
SUð2Þ and Pin−ðdÞ ×Z2

SUð2Þ versions of 4d SUð2Þθ¼π YM in Eq. (9.1) cannot flow merely to the ZT
2 -breaking scenario (1) at IR.

However, scenarios (2), (3), and (4) are still possible IR fates. It seems that scenario (2) with Ze
2;½1� breaking with deconfinement (due to

the perimeter law of the Wilson loop) can be the most likely outcome. Scenario (2-ii) for PinþðdÞ × SUð2Þ and Pin−ðdÞ ×Z2
SUð2Þ

versions of 4d SUð2Þθ¼π YM are proposed in [38] as two distinct versions of deconfined gapless theories or deconfined CFTs: In this
work, we show that these two siblings are indeed distinct theories with different Hilbert spaces at UV, due to their distinct 4d anomalies
differed by a 5d invariant

R
M5 K1w1ðTMÞ2Sq1B ∼

R
M5 K1T 3B. However, we will see that interpreting

R
M5 Sq1ðw2ðTMÞBÞ as a 4d higher

’t Hooft anomaly will lead to a rather bizarre and strong constraint on the dynamics of 4d SUð2Þθ¼0 YM; see footnote 47.
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We will revisit other issues of dynamics in the future.
(8) Refinement and modification of Yang-Mills exist-

ence and mass gap problem at θ ¼ 0.— The original
statement of the Clay Math Millennium Prize Prob-
lem [3] is “Prove that for any compact simple gauge
group G, a nontrivial quantum Yang-Mills theory
exists onR4 and has a mass gapΔ > 0.” It seems that
in addition to the specification of gauge group G and
topological term θ

8π2

R
M4 TrðF ∧ FÞ with θ ¼ 0, we

may also need to specify the data ðK1; K2Þ ∈
ðZ2;Z2Þ for Kramers single/doublet and bosonic/
fermionic statistics for a quantum number of Wilson
lines We, as we did in Eq. (2.25) and Eq. (2.37), say
for 4d SUð2Þθ¼0 YM. The data ðK1; K2Þ ∈ ðZ2;Z2Þ
may have been ignored in the past.
Here are possible outcomes for four siblings

ðK1; K2Þ ∈ ðZ2;Z2Þ of 4d SUð2Þθ¼0 YM. Notice
that the transition from the vacua of 4d SUð2Þθ¼π YM
to 4d SUð2Þθ¼0 YM must break ZT

2 in between
0 < θ < π.
(a) 4d SUð2Þθ¼0 YM ðK1; K2Þ ¼ ð0; 0Þ and (1,0):

Since the anomalies associated with 4d
SUð2Þθ¼π YM with ðK1; K2Þ ¼ ð0; 0Þ and
(1,0) can be removed by ZT

2 breaking, therefore
4d SUð2Þθ¼0 YM ðK1; K2Þ ¼ ð0; 0Þ and (1,0)
can have no ’t Hooft anomaly; thus it can be
trivially gapped as a trivial vacuum.

(b) 4d SUð2Þθ¼0 YM with ðK1; K2Þ ¼ ð0; 1Þ and
(1,1): These two siblings only differ from the
trivially gapped vacuum of the previous two
siblings, ðK1; K2Þ ¼ ð0; 0Þ and (1,0), by the 4d
counterterm

R
K2Sq1ðw2ðTMÞBÞ.48

It will be enlightening to contemplate more conse-
quences of their IR dynamics for these four siblings
ðK1; K2Þ ∈ ðZ2;Z2Þ of 4d SU(2) YM.
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APPENDIX: COMPUTATION
OF BORDISM GROUPS

In this appendix, we compute the bordism groups ΩG0
d

where G0 is a solution of all possible extensions of

1 → SUð2Þ → G0 → OðdÞ → 1;

given by Eq. (9.1)

G0 ¼

8>>>>><
>>>>>:

OðdÞ × SUð2Þ ½bosonic; relates to ðK1; K2Þ ¼ ð0; 0Þ inAppendix A:1;

EðdÞ ×Z2
SUð2Þ ½bosonic; relates to ðK1; K2Þ ¼ ð1; 0Þ� inAppendix A:2;

Pinþ ×ZF
2
SUð2Þ ½fermionic; relates to ðK1; K2Þ ¼ ð0; 1Þ� in Appendix A:3;

Pin− ×ZF
2
SUð2Þ ½fermionic; relates to ðK1; K2Þ ¼ ð1; 1Þ� in Appendix A:4:

The bordism groups and their bordism invariants (topological invariants and SPTs) are used in the main text, for example,
ΩG0

d¼4 in Sec. III. We also compute ΩO
d¼5ðB2Z2Þ, used in Sec. II, in Appendix A 5.

48Follow the earlier footnote 46: if we instead interpret the background gauge variance of
R
Sq1ðw2ðTMÞBÞ as a 4d higher ’t Hooft

anomaly (rather than just a 4d counterterm), then it has a consequence on 4d SUð2Þθ¼0 YM dynamics also. Notice that
R
Sq1ðw2ðTMÞBÞ

survive without ZT
2 protection; therefore if there is an “anomaly”

R
Sq1ðw2ðTMÞBÞ at θ ¼ π, then it remains for all 0 ≤ θ ≤ π including

at θ ¼ 0. The only way to saturate the if anomaly of
R
K2Sq1ðw2ðTMÞBÞ for SUð2Þθ¼0 YM is breaking the one-form symmetry. If so,

this means that SUð2Þθ¼0 YM with the fermionic Wilson line (i.e., K2 ¼ 1) has one-form symmetry spontaneously broken thus
deconfined, which cannot be trivially gapped nor a trivial vacuum. In this case, if 4d SUð2Þθ¼0 YM with K2 ¼ 1 is still gapped as the
conventional wisdom goes, they belong to the scenarios:

(i) (2-i) One-form Ze
2;½1�-breaking and deconfined TQFTs, i.e., topological order.

This deconfined scenario seems to be too exotic for SUð2Þθ¼0 YM merely with the fermionic Wilson line. Therefore, our canonical
interpretation with

R
Sq1ðw2ðTMÞBÞ being a 4d counterterm in 4d YM [see the main text around Eq. (9.2)] avoids leading to this bizarre

deconfinement scenario for SUð2Þθ¼0 YM.
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In the two subsections Appendix A 3 and A 4, we will
encounter theA2ð1Þmodule structure due to the appearance
of MSpin in the decomposition of MTðPin� ×Z2

SUð2ÞÞ.
Readers can find the introduction to this computation in

Refs. [10,38,41]. For a short summary of the concepts and
terminology used here, the readers may consult a succinct
summary in Appendix B of [38]. For readers who are not
familiar with the details of mathematical calculations, we
will help by stating the results explicitly.

1. Bordism group of O × SUð2Þ: ΩO×SUð2Þ
d

We first notice that MTðO×SUð2ÞÞ¼MO∧BSUð2Þþ,
where ∧ is the smash product and SUð2Þþ is the disjoint
union of the topological space SUð2Þ and a point. MTH is
the Madsen-Tillmann spectrum of the group H, andMH is
the Thom spectrum of the group H. By the Adams spectral
sequence, we have

Exts;tA2
ðH�ðMO ∧ BSUð2Þþ;Z2Þ;Z2Þ ⇒ ΩO×SUð2Þ

t−s : ðA1Þ

The mod 2 cohomology of Thom spectrum MO is

H�ðMO;Z2Þ ¼ A2 ⊗ Ω�; ðA2Þ

where Ω ¼ Z2½y2; y4; y5; y6; y8;…� is the unoriented bord-
ism ring and Ω� is the Z2-linear dual of Ω. Here yi are
manifold generators; for example, y2 ¼ RP2, y4 ¼ RP4,
and y5 is Wu manifold SUð3Þ=SOð3Þ.
On the other hand, H�ðMO;Z2Þ ¼ Z2½w1; w2; w3;…�U,

where U is the Thom class of the virtual bundle (of
dimension 0) over BO which is the colimit of En − n.
Here En is the universal n bundle over BOðnÞ, and wi is the
ith Stiefel-Whitney class of the virtual bundle (of dimen-
sion 0) over BO. Note that the pullback of the virtual bundle
(of dimension 0) over BO along the map g∶M → BO is just
TM − d where M is a d-dimensional manifold, TM is the
tangent bundle of M, and g is given by the O structure on
M. We will not distinguish wi and wiðTMÞ.
By Thom’s result, twomanifolds are unorientedly bordant

if and only if they have identical sets of Stiefel-Whitney
characteristic numbers. The nonvanishing Stiefel-Whitney
numbers of y2 ¼ RP2 are w2 and w2

1, the nonvanishing
Stiefel-Whitney numbers of y22 ¼ RP2 ×RP2 are w2

2 and
w4, the nonvanishing Stiefel-Whitney numbers of y4 ¼ RP4

are w4
1 and w4, and the only nonvanishing Stiefel-Whitney

number of Wu manifold SUð3Þ=SOð3Þ is w2w3. So y�2 ¼ w2
1

orw2, ðy22Þ� ¼ w2
2, y

�
4 ¼ w4

1, y
�
5 ¼ w2w3, etc., where y�i is the

Z2-linear dual of yi ∈ Ω. Below we choose y�2 ¼ w2
1 by

default, and this is reasonable since Sq2ðxd−2Þ ¼
ðw2 þ w2

1Þxd−2 on the d manifold by the Wu formula. Since

H�ðBSUð2Þ;Z2Þ ¼ Z2½c2�; ðA3Þ

by the Künneth formula, we get

H�ðMO ∧ BSUð2Þþ;Z2Þ
¼ H�ðMO;Z2Þ ⊗ H�ðBSUð2Þ;Z2Þ
¼ A2 ⊕ Σ2A2 ⊕ 3Σ4A2 ⊕ Σ5A2 ⊕ � � � : ðA4Þ

Here ΣnA2 is the nth iterated shift of the graded algebraA2.

In summary we have ΩO×SUð2Þ
4 ¼ Z3

2, Ω
O×SUð2Þ
5 ¼ Z2.

The bordism invariants of ΩO×SUð2Þ
4 ¼ Z3

2 are w4
1, w

2
2,

and c2mod 2. Namely, in physics terms, the topological

invariants/SPTs from ΩO×SUð2Þ
4 are w1ðTMÞ4, w2ðTMÞ2,

and c2mod 2.

The bordism invariant of ΩO×SUð2Þ
5 ¼ Z2 is w2w3.

Namely, in physics terms, the topological invariants/

SPTs from ΩO×SUð2Þ
5 are w2ðTMÞw3ðTMÞ.

2. Bordism group of E ×Z2
SUð2Þ: ΩE×Z2SUð2Þ

d

From the short exact sequence

1 → SO → E → Z4 → 1; ðA5Þ

we derive the short exact sequence

1 → SO → E ×Z2
SUð2Þ → Z4 ×Z2

SUð2Þ → 1: ðA6Þ

Hence MTðE ×Z2
SUð2ÞÞ ¼ MSO ∧ Σ−3MTðSpinð3Þ×Z2

Z4Þ ¼MSO ∧ Σ−3MTPinþð3Þ ¼MSO ∧ Σ−3MSpinð3Þ ∧
Σ−2MZ2 ¼ MO ∧ Σ−4MSpinð3Þ, where ∧ is the smash
product, Σ is the suspension, MTH is the Madsen-
Tillmann spectrum of the group H, and MH is the Thom
spectrum of the group H.
By the Adams spectral sequence,

Exts;tA2
ðH�ðMO ∧ Σ−4MSUð2Þ;Z2Þ;Z2Þ ⇒ ΩE×Z2

SUð2Þ
t−s :

ðA7Þ

Since

H�ðΣ−4MSUð2Þ;Z2Þ ¼ Z2½c2�U; ðA8Þ

where U is the Thom class, by the Künneth formula,

H�ðMO ∧ Σ−4MSUð2Þ;Z2Þ
¼ H�ðMO;Z2Þ ⊗ H�ðΣ−4MSUð2Þ;Z2Þ
¼ A2 ⊕ Σ2A2 ⊕ 3Σ4A2 ⊕ Σ5A2 ⊕ � � � : ðA9Þ

Hence we have Ω
E×Z2

SUð2Þ
4 ¼ Z3

2, Ω
E×Z2

SUð2Þ
5 ¼ Z2.

The bordism invariants of Ω
E×Z2

SUð2Þ
4 ¼ Z3

2 are w4
1, w

2
2,

and c2 mod 2. Namely, in physics terms, the topological

invariants/SPTs from Ω
E×Z2

SUð2Þ
4 are w1ðTMÞ4, w2ðTMÞ2,

and c2mod 2. Since the constraint w1ðTMÞ2 ¼ w2ðVSOð3ÞÞ
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is satisfied, let β2 denote the Bockstein homomorphism
associated with the extension Z→Z→Z2. Then
W3ðVSOð3ÞÞ ¼ β2w2ðVSOð3ÞÞ ¼ β2w1ðTMÞ2 ¼
β2Sq1w1ðTMÞ ¼ 0 where W3ðVSOð3ÞÞ is the third integral
Stiefel-Whitney class ofVSOð3Þ andwehave used the fact that
β2Sq1 ¼ 0. Hence VSOð3Þ lifts to a Spincð3Þ ¼ Uð2Þ bundle
VUð2Þ, where c2 ¼ c2ðVUð2ÞÞ is the second Chern class
of VUð2Þ.

The bordism invariants of Ω
E×Z2

SUð2Þ
5 are w2w3. Namely,

in physics terms, the topological invariants/SPTs from

Ω
E×Z2

SUð2Þ
5 are w2ðTMÞw3ðTMÞ.

3. Bordism group of Pin+ ×Z2
SUð2Þ: ΩPin+ ×Z2SUð2Þ

d

Since there is a homotopy pullback square

where f maps ðV;WÞ to ðV −W þ 3;WÞ, we have
MTH ¼ MTPinþ ∧ Σ−3MSOð3Þ ¼ MSpin ∧ Σ−3MOð3Þ.
By the Adams spectral sequence,

Exts;tA2
ðH�ðMSpin ∧ Σ−3MOð3Þ;Z2Þ;Z2Þ ⇒ ΩPinþ×Z2

SUð2Þ
t−s :

ðA10Þ

The mod 2 cohomology of Thom spectrum MSpin is

H�ðMSpin;Z2Þ ¼ A2 ⊗A2ð1Þ fZ2 ⊕ Mg; ðA11Þ

where M is a graded A2ð1Þ module with the degree i
homogeneous partMi ¼ 0 for i < 8. HereA2ð1Þ stands for
the subalgebra of A2 generated by Sq1 and Sq2.
For t − s < 8, we can identify the E2 page with

Exts;tA2ð1ÞðH�þ3ðMOð3Þ;Z2Þ;Z2Þ: ðA12Þ

For other details and the computation of the A2ð1Þ
module structure and Adams chart, please consult
Refs. [38,41]. We can extract the bordism group and their
bordism invariants from [38].

4. Bordism group of Pin− ×Z2
SUð2Þ: ΩPin− ×Z2SUð2Þ

d

Since there is a homotopy pullback square

where f maps ðV;WÞ to ðV −W þ 3;WÞ, we have
MTH ¼ MTPin− ∧ Σ−3MSOð3Þ ¼ MSpin ∧ Σ3MTOð3Þ.
By the Adams spectral sequence,

Exts;tA2
ðH�ðMSpin ∧ Σ3MTOð3Þ;Z2Þ;Z2Þ⇒Ω

Pin−×Z2
SUð2Þ

t−s :

ðA13Þ
For t − s < 8, we can identify the E2 page with

Exts;tA2ð1ÞðH�−3ðMTOð3Þ;Z2Þ;Z2Þ: ðA14Þ

For other details and the computation of the A2ð1Þ
module structure and Adams chart, please consult
Refs. [38,41]. We can extract the bordism group and their
bordism invariants from [38].

5. Bordism group of O × Ze
2;½1�: Ω

O
d ðB2Z2Þ

By the Adams spectral sequence,

Exts;tA2
ðH�ðMO ∧ ðB2Z2Þþ;Z2Þ;Z2Þ ⇒ ΩO

t−sðB2Z2Þ:
ðA15Þ

Since H�ðB2Z2;Z2Þ ¼ Z2½x2; x3; x5; x9;…� where x2 is
the generator of H2ðB2Z2;Z2Þ, x3 ¼ Sq1x2, x5 ¼ Sq2x3,
x9 ¼ Sq4x5, etc., so by the Künneth formula,

H�ðMO ∧ ðB2Z2Þþ;Z2Þ
¼ H�ðMO;Z2Þ⊗ H�ðB2Z2;Z2Þ
¼A2 ⊗ Z2½y2; y4; y5; y6; y8;…�� ⊗ Z2½x2; x3; x5; x9;…�
¼A2 ⊕ 2Σ2A2 ⊕ Σ3A2 ⊕ 4Σ4A2 ⊕ 4Σ5A2 ⊕ � � � :

ðA16Þ

Hence we have ΩO
4 ðB2Z2Þ ¼ Z4

2, ΩO
5 ðB2Z2Þ ¼ Z4

2.
The bordism invariants of ΩO

4 ðB2Z2Þ ¼ Z4
2 are x22, w

4
1,

w2
1x2, and w2

2. Namely, in physics terms, the topo-
logical invariants/SPTs from ΩO

4 ðB2Z2Þ are B2,
w1ðTMÞ4, w1ðTMÞ2B, and w2ðTMÞ2.
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The bordism invariants of ΩO
5 ðB2Z2Þ ¼ Z4

2 are x2x3, x5,
w2
1x3, and w2w3. Namely, in physics terms, the topological

invariants/SPTs from ΩO
5 ðB2Z2Þ are BSq1B, Sq2Sq1B,

w1ðTMÞ2Sq1B, and w2ðTMÞw3ðTMÞ. Readers can find
more detailed discussions and calculations of the cobord-
ism theory of higher symmetries in Ref. [10].
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