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We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped
short-/long-range entangled (SRE/LRE) topological states. Specifically, we explore 4d time-reversal
symmetric pure YM of an SU(2) gauge group with a second-Chern-class topological term at § = =z
[SU(2),_, YM], by turning on the background fields for both the time reversal (i.e., on unorientable
manifolds) and the one-form center global symmetry. We find four siblings of SU(2),_, YM with distinct
couplings to background fields, labeled by (K, K,): K; = 0, 1 specifies Kramers singlet/doublet Wilson
line and new mixed higher 't Hooft anomalies; K, = 0, 1 specifies the boson/fermionic Wilson line and a
new Wess-Zumino-Witten—like counterterm. Higher anomalies indicate that to realize all higher n-global
symmetries locally on n simplices, the 4d theory becomes a boundary of a 5d higher-symmetry-protected
topological state (SPTs, as an invertible topological quantum field theory (iTQFT) or a cobordism invariant
in math, or as a 5d higher-symmetric interacting topological superconductor in condensed matter). Via
Weyl’s gauge principle, by dynamically gauging the one-form symmetry, we transform 5d bulk SRE SPTs
into an LRE symmetry-enriched topologically ordered state (SETs); thus we obtain the 4d SO(3),_, YM-
5d LRE-higher-SETs coupled system with dynamical higher-form gauge fields. We further derive new
exotic anyonic statistics of extended objects such as two world sheets of strings and three world volumes of
branes, physically characterizing the 5d SETs. We discover triple and quadruple link invariants potentially
associated with the underlying 5d higher-gauge topological quantum field theories, hinting at a new
intrinsic relation between nonsupersymmetric 4d pure YM and topological links in 5d. We provide 4d-5d
lattice simplicial complex regularizations and bridge to 4d SU(2)- and SO(3)-gauged quantum spin liquids
as (3 + 1)-dimensional realizations.
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I. INTRODUCTION AND SUMMARY

The world where we reside, to our best present under-
standing, can be described by quantum theory and the
underlying long-range entanglement. Quantum field theory
(QFT) and in particular quantum gauge field theory, under
the spell of the gauge principle following the insights since
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Maxwell, Hilbert, Weyl, Pauli, and others (see a historical
review [1]), embodies the quantum, special relativity, and
long-range entanglement into a systematic framework.
Yang-Mills (YM) gauge theory [2], generalizing the
U(1) gauge group of quantum electrodynamics to a non-
Abelian Lie group, has been proven to be powerful to
describe the Standard Model physics.

The Euclidean partition function of a pure YM theory
with an SU(N) gauge group on a four-dimensional (i.e., 4d)'
spacetime M* and a second-Chern-class topological term S,
labeled by 6, i.e., SU(N),-YM, is

'We denote nd for an n-dimensional spacetime. We denote
m + 1D for an m-dimensional space and one-dimensional time.
We denote mD for an m-dimensional spatial object.
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where a is the SU(N) gauge field and F, = da —ia A a is
the SU(N) field strength. g is the gauge coupling constant.
See the footnote” for further explanations of the notations.
When 0 = 0, the SU(N),_, YM theory is believed to be in
the confined phase [3], to have an energy gap, and to have a
single ground state on any manifold. In particular, there is no
’t Hooft anomaly [4]. Recently, the authors of Ref. [5]
discovered that for SU(N),_,-YM with even N, there is a
subtle 't Hooft anomaly [4] involving the time-reversal
symmetry Z1 and one-form center global symmetry [6]
Zf\m] 2 The *t Hooft anomaly of a 4d theory is captured by a

5d topological term through the anomaly inflow [7] mecha-
nism. Schematically, Ref. [5] suggested a 5d topological
term linear in the time-reversal background field 7 and
quadratic in the Zf\m] background field B,

~TBB. (1.2)

The 5d topological term characterizes the 5d short-range-
entangled (SRE) phase. See Sec. II for more rigorous
definitions of the background fields and the 5d topological
term.

2q is locally a one-form SU(N) connection obtained from
parallel transporting the principal-SU(N) bundle over the space-
time manifold M*. Locally a = a,dx* = a;T*dx* with T* is the
generator of su(N) Lie algebra, satisfying the commutator
[T*, TP] = if*rT" where f®" is a fully antisymmetric structure
constant. Locally dx* is a differential one-form. a, = agT* is the
Lie algebra valued gauge field. The path integral [[Da] is meant to
integrate over all the configurations of a(t,x) modding out the
SU(N) gauge transformation @ — g~'ag —ig~'dg. The %Tr(Fa A
*F,) is the Yang-Mills Lagrangian [2] [a non-Abelian generali-
zation of Maxwell U(1) gauge theory] where xF, is the Hodge
dual of F,. Tr stands for the trace as an invariant quadratic form of
the Lie algebra su(N). The term Syla] = S‘Ti[fTrF o« N F, is related
to the second-Chern-class ¢,(Vgsy)) of the SU(N) gauge bundle
via Spla] = =ifc,(Vsyn)). This path integral is sensible for
physicists, but may not be mathematically well defined. We will
also point out how to grasp the meaning of the YM path integral on
unorientable manifolds in Sec. II.

*We use the subscript [1] to indicate that the symmetry is
one-form, and the superscript e to indicate the symmetry is
electric as opposed to magnetic (i.e., the charged line
operators are the Wilson lines rather than the ’t Hooft lines).
When we say symmetry in this article, we always mean global
symmetry unless we state otherwise.

Further recently, Ref. [8] suggested that there are
additional new higher 't Hooft anomalies for some 4d
SU(N),_, theories at even N: From one perspective,
Ref. [8] suggested that when N = 2, there is a mixed
anomaly captured by a 5d topological term which is cubic
in 7 and linear in B, which is schematically denoted as

~TTTB. (1.3)
From another perspective, Ref. [8] suggested that the
SU(N),_, YM at an even integer N >4 contains new
mixed anomalies involving Zg, Zf\w], and a zero-form
charge conjugation (i.e., a Z, outer-automorphism) sym-
metry. For example, at N =4, another anomaly can be
captured by the 5d topological terms schematically as

~AcTTB. (1.4)
The detailed derivation will be left for the future work [9].4
Here A is a one-form background field for the zero-form
Z§ charge conjugation symmetry. In the following, we will
make the above schematic 5d topological terms Egs. (1.2),
(1.3), and (1.4) mathematically precise, following the setup
in Refs. [8,10].

The above 5d topological terms can be regarded as
semiclassical partition functions (definable on closed five
manifolds with appropriate structures) whose functional
values depend on the couplings to global symmetry-
background probe fields. These 5d topological terms are
also known as invertible topological quantum field theories
(ATQFTs) in the literature.” In the present work, we will
further dynamically gauge the one-form symmetry ZTE\T,[I]

associated with the coupled systems of 4d YM and 5d
topological terms above. After gauging, the 5d SRE
topological terms become 5d long-range entangled
(LRE) topological quantum field theories (TQFT). We
further apply the methods developed in Refs. [11-13] to
analytically compute the physical observables of the

“Note that so far for N = 4, we only find a new 4d anomaly
expressible by a term

Acw (TM)?B ~ A TTB.

Although there is still a possibility that another 4d anomaly may
exist

A%ﬁ(24)B ~ ACACTB

More precisely, these two 4d anomalies are captured by
5d invertible topological quantum field theories (iTQFTs)
Acw (TM)?B and AZC[}QA)B on a 5d closed manifold.

5By iTQFT, physically it means that the absolute value of
partition function |Z| = 1 on any closed manifold. Thus this Z
can only be a complex phase Z = e'’, which can thus be inverted
and canceled by e™ as another iTQFT.

085012-2



QUANTUM 4D YANG-MILLS THEORY AND TIME-REVERSAL ...

PHYS. REV. D 100, 085012 (2019)

higher-gauge 5d TQFTs. The physical observables of 5d
TQFTs include, for example, (i) the partition functions
Z[M?] on closed manifolds M>, and (ii) braiding statistics
of anyonic strings and anyonic branes whose spacetime
trajectories form two world sheets and three world vol-
umes, respectively, and link invariants of these two world
sheets and three world volumes in M>. We uncover new
spacetime braiding processes and link invariants, including
triple and quadruple linkings analogous to previous works
[11,12,14-16].°

Now let us take a step back to digest the physical
meanings of these 5d topological terms Eq. (1.2)-Eq. (1.4).
The d-dimensional 't Hooft anomaly of ordinary zero-
form global symmetries is known to be captured by a
(d + 1)-dimensional iTQFT. In the condensed matter
literatures, these (d+ 1)d iTQFTs describe symmetry-
protected topological states (SPTs)’ [29-32]. The relations

between the SPTs and the response probe field-theoretic
partition functions have been systematically studied, selec-
tively, in [21,33-38] (and references therein), and climaxed
to the hint of cobordism classification of SPTs [39,40].
Recently the iTQFTs and SPTs have been found to be
systematically classified by a powerful cobordism theory
framework of Freed-Hopkins [41], following the earlier
work of Thom-Madsen-Tillmann spectra [42,43].

Further recently, Ref. [10] generalized the Thom-Madsen-
Tillmann-Freed-Hopkins cobordism theory [41-43] to the
cases with generalized higher global symmetries [6]. The
generalized cobordism group computation [10], which
involves the bordism group of higher classifying spaces
and their fibrations, e.g., BG, can capture the d-dimensional
higher ’t Hooft anomaly of generalized global symmetries G
by (d + 1)-dimensional bordism invariants (i.e., generalized
symmetric or higher symmetric iTQFTs). In the following,

®Here we comment on the physical and mathematical meanings of fractional statistics and non-Abelian statistics associated with the
spacetime braiding processes involving 0D anyonic particles, 1D anyonic strings, 2D anyonic branes, and other extended objects. In the

discussions below, we take a generalized definition of anyonic:

(1) In a more restricted definition, anyonic means the self-exchange statistics can go beyond bosons or fermions [17].

(ii) In our generalized definition, anyonic means that either self-exchange statistics (of identical objects) or the mutual statistics (of
multiple distinguishable objects, may involving more than two objects) can go beyond bosonic or fermionic statistics.—In 3d
(2 + 1D) spacetime M?>, braiding statistics of particles can be fractional (such as the exchange statistics of two identical particles,
or mutual statistics of two different particles) which are called anyonic particles (see an excellent historical overview [17]). As an
example, this can be understood from a 3d Chern-Simons action with one-form gauge field a integrated over M>
~ f e @rda; which modifies the quantum statistics of particle world line whose open ends host the anyonic particles.—In
4d (3 + 1D) spacetime M*, braiding statistics of particles cannot be fractional as the two 1-world lines cannot be linked in 4d.
Thus there is no anyonic particle and no fractional particle statistics beyond bosons or fermions in 4d. However, the braiding
statistics of strings can be fractional, which we dub anyonic strings. As an example, the fractional statistics of strings can be
understood from a 4d TQFT with a one-form gauge field a and a two-form gauge field b, as ~ [}, bda, which modifies the

mutual quantum statistics of a 0D particle from one world line W| = eifra linked with a 1D string from two world sheet

U, = ¢ fsz »in M*. Since a particle cannot carry a fractional charge in 4d, we can interpret the above theory as the anyonic string
carrying a fractional flux in 4d. Another way to interpret the fractional statistics of anyonic strings is through the dimensional
reduction from 4d to 3d. Let M* = S' x M? with the size of S! much smaller than the size of M3 and let the closed anyonic
strings wrap around S! [18-20]; then the anyonic strings in M* reduce to anyonic particles in M. From the field theory side, the
4d TQFTs ~ f e aragdag, ~ f ¢ arajaga; can modify the braiding statistics of strings [11,12,21-26]. See the relations between
Dijkgraaf-Witten’s group cohomology theory [27] and these TQFTs discussed in [11,12,21]. Furthermore, there are 4d gauge
invariant topological terms with two-form gauge field b [6,12,28] ~ f ¢ bib;—In 5d (4 + 1D) spacetime M 3, for example, there
exist self- and mutual coupling types of 5d topological terms with two-form gauge fields b, by, by, etc., ~ [,;s bdb, ~ [,,s b;db;.
The self-coupling term [,,s bdb leads to anyonic strings within the restricted definition, where the self-exchange statistics goes
beyond bosonic and fermionic [17]. The mutual coupling term [y,s b;db; leads to anyonic strings within the generalized
definition, where anyonic means that mutual statistics of distinguishable 1D strings can go beyond bosonic or fermionic
statistics. Both terms modify the quantum statistics of a string world sheet whose open ends host the 1D anyonic string. We can
have another Aharonov-Bohm-like topological term with local one-form gauge field a and three-form gauge field c,
~ f 5 ¢da.When the above term appears together with other topological terms such as f s arajagday , the statistics of 2D brane
(attached to the end of three world volume) can have fractional statistics within the general definition, while the statistics of 0D

particle (attached to the end of one world line eif ) remains nonanyonic. Again the anyonic brane in 5d can reduce to anyonic
particles in 3d by compactifying along 72 in M> [18-20]. There are many other terms allowed in 5d [21]. For a general
dimension d, there exists the topological term f cpde, ~ f c,dc,,,n+m=d—1,n < m, where c, is a n-form gauge field. We
always take the higher-dimensional object from the c,, field to have fractional statistics (the analogs of fractional flux), while we
take the lower-dimensional object from the ¢, field to have regular statistics (the analogs of integrally quantized charge).

"We abbreviate both symmetry-protected topological state and symmetry-protected topological states as SPTs.
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we also call the generalized symmetric iTQFTSs as higher-
SPTs. The boundary of higher-SPTs has higher-anomalies.
Gauging the higher-symmetry of higher-SPTs gives rise to
higher-gauge theories. Earlier pursuits on a systematic
framework of the generalized iTQFTs through cobordism
theories and cohomology theories include, but are not
limited to, Refs. [44-53] and references therein. In this
paper, we identify the 4d anomalies of SU(N),_, YM
Eq. (1.2)-Eq. (1.4) with the mathematically precise 5d
bordism invariants,8 obtained in Refs. [8,10].

Let us rephrase the higher anomalies into a condensed
matter language on the lattice: Higher anomaly indicates that
in order to realize all higher n-global symmetries locally on
n-simplices, the theory needs to become a boundary of a one-
higher dimensional higher-symmetry-protected topological
state (higher-SPTs). If a theory has a higher anomaly, then the
theory in its own dimension has some higher n-global
symmetries acting non-locally (on n-simplices). Then there
is an obstruction to gauge such a non-local symmetry, hence
the name of higher ('t Hooft) anomaly [4]. More in Sec. 8.

A. The Outline

Here are the outlines of the present work:

(1) Section II.—We identify the 5d bordism invariants
with the ’t Hooft anomalies of 4d SU(N),_, YM
theory (where we focus on N = 2), as a version of
higher-anomaly matching.

(2) Section III.—We clarify and enumerate possible
distinct classes of 4d SU(2),_, YM theories. We
take the condensed matter viewpoint, where we
regard the SU(2),_, YM theories as infrared theo-
ries emerging from high-energy ultraviolet (UV)
bosonic systems with a lattice cutoff, as opposed to
fermionic systems. We thus dub the UV system as
bosonic YM theories. These bosonic YM theories
still allow Wilson line operators as world lines of
particles being (1) either bosonic or fermionic in
quantum statistics, and (2) either Kramers doublet or
Kramers singlet under the time-reversal symmetry.
This supplements as a partial classification of 4d
SU(2),_, bosonic YM theories. We apply the tools
in Ref. [38] to understand the relation between the

¥For the mathematical terminology, we call the following:

(1) the bordism group generators as the manifolds or manifold
generators, which generate finite Abelian groups, e.g., Z,,.

(ii) the cobordism group generators as the topological terms
or iTQFTs, which generate Abelian groups, e.g., Z, or
Z, etc.,

(iii) the (co)bordism invariants (people call bordism invariants
as cobordism invariants with the same meaning) mean that
they are invariants under the bordism class of manifolds,
thus (co)bordism invariants mean the topological terms or
iTQFTs, which again generate Abelian groups, Z, or
Z, etc.,

gauge bundle constraint and the properties of line/
surface operators.

From Secs. II and III, we will see that there are at
least four closely related 4d SU(2),_, nonsupersym-
metric pure YM theories [which we nickname as four
siblings of 4d SU(2),_, YM theories] with bosonic
UV completions. Each of them carries either a distinct
4d ’t Hooft anomaly associated with 5d higher-SPTs
or a distinct 4d counterterm. The distinct 5d higher-
SPTs labeled by distinct 5d bordism invariants are
actually the physical analogs of the 5d (4 4+ 1D) one-
form-center-symmetry-protected interacting topologi-
cal superconductors in the condensed matter language.

(3) Sections IV and V.—We dynamically gauge the
one-form center symmetry ng. This turns the 4d

SU(2),_, YM/5d-higher-SPTs coupled systems in
[8] into 4d SO(3),_, YM/5d-higher-SETs coupled
systems, where SETs stand for the symmetry-
enriched topologically ordered states.” We then ex-
plore the detailed properties of various 5d higher

SETs. The 5d higher SETs are described by 5d time-

reversal symmetric higher-TQFTs with emergent

two-form dynamical gauge fields. We mainly focus
on the four siblings of 5d higher SETs, while we also
consider other highly relevant exotic 5d higher SETs.

To characterize these 5d higher SETs, we study the

following aspects:

(a) Partition function Z[M?] without extended oper-
ator (one-line, two-surface, three-submanifold)
insertions on five-manifold M3. We compute
Z|M?] following the techniques and tools built
from [12,13]. In particular, when M> = M* x S!,
the partition function Z[M* x S'] is the topologi-
cal ground state degeneracy (topological GSD)
on a spatial M*. This issue is addressed in Sec. IV.

(b) Braiding statistics involving anyonic 1D string/2D
branes and the associated link invariants of the
spacetime two world sheet/three world volume.
Here we compute the path integral Z[M>; W, U,
] with extended-operator insertions (W, U, ...),
following the techniques and tools built from
[11,12,15,16]. This issue is addressed in Sec. V.

(4) Section VI.—We provide the exemplary spacetime
braiding processes of anyonic string/brane in 5d, and
the link configurations of extended operators, which

The SPTs is a short-ranged entangled quantum state that can
be defined on a lattice. Once we break the global symmetry, SPTs
can be deformed to a trivial product state under finite steps of
local unitary transformations. SETs is a long-ranged entangled
quantum state that can be defined on a lattice. (Here we only
discuss the SETs that are anomaly-free.) Even if the global
symmetry is completely broken, SETs cannot be deformed to a
trivial product state under finite steps of local unitary trans-
formations. The SETs have the same LRE nature as topologically
ordered states. See recent reviews [29-32].
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TABLE L. A short summary of some results obtained in our work for the four sSiblings of 4d pure nonsupersymmetric SU(2),_, YM
theories or SO(3) YM theories, and for the 4d-5d-SPT coupled systems or 4d-5d-higher-SET coupled systems.

Four Siblings of 5d SRE-higher-SPTs-4d SU(2)y—, YM coupled systems
and their gauged analogous
Four Siblings of 5d LRE-higher-SETs-4d SO(3)y—, YM coupled systems

(i). 5d higher-anomaly polynomial
(5d bordism invariants of Q9 (B?Zy))
involving 1-form center 7§ [

(ii). 4d SU(2)p=» YM obtained via
dynamical gauging 4d SPTs
(4d bordism invariants of Q")

(iii). 5d-spacetime-braiding process
of anyonic-1D-strings/2D-branes

from 2-worldsheet and 3-worldvolume
of 5d Higher-Gauge TQFTs/SETs:
Path-integral Z[M?5, Link]/Z[M?]
= (Link)

3 > T _q leg . .
time-reversal Z;-symmetries G’ for a group extension:

1—SU((2) - G — 0(d) — 1.

5d iTQFT / SPT partition function :
23, . V)

Gauge and spacetime
bundle/connection constraints

5d TQFT / SET path integral :
d y
L3 e, ey M-

New 5d Topological Link Invariants
Wilson line operator W properties poios

1st system (K; =0,K, =0):
1y (TM)P(B)= BSq'B + Sq°Sq' B
~ wlBB

Eq. (3.1)

Eq. (5.25)

G’ = 0(d) x SU(2) in Eq. (3.5)

#VR OV, NV ,)

iTQFT: Z3¢ M?5] of Eq. (2.61 5
Q SPT0.0) M q. (2.61) — Tic® (55,53, .53,

wa(Vesu(z)) = B

w1 BB

TQFT: Zg%T(M) [M?®] of Eq. (4.1) Kramers singlet (T2 = +1) bosonic W

2nd system (K; =1,K,=0):
Ly (TM)P(B) + wy (TM)3B
= BSq'B + wy(TM)Sq'B
~ w1 BB + (w1)*B

Faq. (3.1) Eq. (5.96)

G' = E(d) xz, SU(2) in Eq. (3.7) s#(V3 N%E,)

(5)
LkwgdB(E%]h7 E%Jb)v

#(V3,N3,)
_ 5
= Lk(Bng(E?Jb’ E%]b)

1
2

. 5 wa (V3 =B+ w (TM)?
iTQFT: Z&y,  [M] of Eq. (2.61) 2(Vesu) 1(IM)

5 5 K 5 let (12 = —1) bosoni
TQFT: Zé%‘,Tu_n) (M) of Eq. (4.1) ramers doublet ( ) bosonic W

3rd system (K; =0,K,=1):
L@ (TM)P(B) + Sq' (w2 (TM)B)

Eq. (3.1)

Eq. (5.25)

G' = Pin"(d) xz, SU(2) in Eq. (3.10)

FVENVE, NVEL)

iTQFT: Z&¢ [M?] of Eq. (2.61) 5 )
= Tik 55 (5% B, 5,

we(Vpsu(z)) = B + w2 (TM)

TQFT: ZFS’%T“‘_D [M?] of Eq. (4.1) Kramers doublet (T? = —1) fermionic W

4th system (K; =1,K,=1):
L@y (TM)P(B) + wi(TM)3B + Sq' (wa(TM)B)
~ w1 BB + (w1)*B + 16(w2B)
or in a closed 5-manifold :
BSq'B + wo(TM)Sq' B

Eq. (3.1) Eq. (5.96)

G’ =Pin~ (d) xz, SU(2) in Eq. (3.12)

#(V§, N33,

(5)
LkadB(E%]h7 E%Jb)v

#(V3,N3E,)
_ 5
= Lk(BziB(E?Jh’ E%]b)

=1
wa(Vesu(a)) = (B+ -2

w1 (TM)? + we(TM))

iTQFT: Zg‘fva [M?] of Eq. (2.61)

5 5 Kramers singlet (7% = +1) fermionic W
TQFT: Zh,, [M?] of Eq. (4.1) ramers singlet (T% = +1) fermionic

can be detected by the link invariants that we derived
in Sec. V.

Section VII.—We make more comments on the 4d
SO(3)y—, YM theories, which live on the boundary
of 5d higher SETS. In particular, we reexamine these
4d SO(3),_, YM-5d-higher-SETs coupled systems
in Sec. IV.

(&)
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(6) Section VIIL.—We construct the lattice regularization
and UV completion of some of our systems. This
includes a lattice realization of 5d higher SPTs and
higher-gauge SETs by implementing on a 5d simplicial
complex spacetime path integral and a 4 + 1D “con-
densed matter” realization on the spatial Hamiltonian
operator. We also provide a lattice regularization
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of (1) higher-symmetry-extended and (2) higher-
symmetry-preserving anomalous 3 + 1D topologi-
cally ordered gapped boundaries by generalizing the
method of [54]. The higher-symmetry-extension
method was also developed in [55].
(7) Section IX.—We conclude and make connections to
physics and mathematics in other perspectives.
Before we proceed to the detailed discussions in the main
text, we first give a quick overview on more colloquial and
pedestrian summaries in terms of schematic descriptions
and Table I, in Sec. I B. Readers who are not familiar with
certain mathematical information or physical motivations
may seek for additional help from Refs. [8,10,38] (and its
Appendixes).

B. Summaries and Tables

As we mentioned, in Secs. II and III, we will see that
there are at least four closely related 4d SU(2),_, non-
supersymmetric pure YM theories [nicknamed the four
siblings of 4d SU(2),_, YM theories are labeled by
(K\,K,) € (Z,,7,)] with a bosonic UV completion.
They carry either distinct 4d higher *t Hooft anomalies'
or distinct 4d counterterms. All these anomalies that we
will discuss below are the mod 2 nonperturbative global
anomalies, similar to the old and the new SU(2) anomalies
[56,57], except that instead of an ordinary global symmetry,
now we require a higher 1-form symmetry Zé.[ll to probe
higher anomalies. Here we advertise these results in a
colloquial and pedestrian manner.

(1) (Ky,K,)=(0,0). The first sibling of 4d SU(2),_,
with Kramers singlet (72 = 41) bosonic Wilson
line has the 4d anomaly/5d bordism invariant
schematically as

~w, (TM)BB, (1.5)

with w;(TM) the jth Stiefel-Whitney (SW) class
of spacetime M’s tangent bundle 7M. Here B €
H?*(M, Z,) is a degree-2 cohomology class obtained
from restricting the two-form 3 field via B ~ zB and
fZB = nZ for any closed surface X. More rigor-
ously, w;(TM)BB stands for 1w,(TM)UP(B),
explained in Sec. IL

(2) (Ky,K,)=(1,0). The second sibling of 4d
SU(2),_, with Kramers doublet (T2 = —1) bosonic

"Distinct 4d higher 't Hooft anomalies correspond to distinct
5d higher-SPTs/counterterms labeled by distinct 5d bordism
invariants: physical analogs of 5d (4 4 1D) one-form-center-
symmetry-protected interacting “topological superconductors” in
a condensed matter language. In condensed matter, topological
superconductors refer to electronic systems with time-reversal
symmetry but without U(1) electron charge conservation sym-
metry (see an overview [30,31]), for example, due to the Cooper
pairing breaking U(1) down to a discrete subgroup or down to
nothing.

Wilson line has the 4d anomaly/5d bordism invariant
schematically as

~w(TM)BB + w,(TM)*B. (1.6)

We note that the 4d anomaly associated with the 5d
wy(TM)3B term is highly related to the 2d charge
conjugation anomaly associated with the 3d cubic
A* term for a Z,-valued one-cohomology class A.
See the relevant studies of the 2d anomaly from
the 3d cubic A3 term in [8,22,58—60] and references

therein.
(3) (K,K,) = (0,1). The third sibling of 4d SU(2),_,
with Kramers doublet (7% = —1) fermionic Wilson

line has the 4d anomaly/5d bordism invariant sche-
matically as

(1.7)

Here 6 is a coboundary operator, sending a j-cochain
in the cochain group C/(M,Z,) to a (j+ 1)-
coboundary in the coboundary group B/*'(M, Z,,).
Note that there are maps M — BOand M — B?Z,,so
wo(TM)B in the cohomology group H*(BO x
B2Z,, Z,) can be pulled back to another cohomology
group H*(M, Z,), with O the orthogonal group O(d)
for the d manifold. In this case, the w,(TM)B
is a cohomology class in H*(M, Z,). Meanwhile
18(w2(TM)B) sends wy(TM)B to a cohomology
class in H>(M, Z,). The 15 is mathematically pre-
cisely a Steenrod square Sq' [61].

(4) (K,K,)=(1,1). The fourth sibling of 4d SU(2),_,
with Kramers singlet (72 = +1) fermionic Wilson
line has the 4d anomaly/5d bordism invariant
schematically as

~w(TM)BB + %5(W2(TM)B).

~w(TM)BB +w(TM)*B + %5(WZ(TM)B).
(1.8)

We remark that our investigations on Kramers time-
reversal properties and bosonic/fermionic statistics of line
operators (for non-Abelian gauge theories here) give rise to
a further refined classification of gauge theories somehow
beyond the previous framework of Refs. [6,62]. See
Refs. [63,64] for the case of Abelian U(1) gauge theories.
See also [38,65,66] for other examples of non-Abelian
gauge theories.

The schematic [, 26(wo(TM)B) term in Eq. (1.7)
and Eq. (1.8) is written as mathematically precisely
Jus Sq' (w2(TM)B) on a five manifold M in Sec. IL
We will see that such a term [,,5 Sq' (w,(TM)B) vanishes
(as the 0 mod 2), when M> is a closed five manifold.
However, Sec. II shows that when M3 has a boundary
M*=0M>, [,,5Sq"(w,(TM)B) transforms nontrivially
under B — B+ 64 where 4 is a one-cochain. This nontrivial
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Gauging |1-form Z§ E center symmetry

(b)

d SO(3)g—r YM

(@) |
4d SU(2)g=r YM
A higher-?t Hooft anomady
: \
by Ad higher-SPT or iTQFT
(5d SRE state)
z
. Y

FIG. 1.

5d SET or TQFT
(5d LRE state)

(a) Schematic illustration of 4d-5d coupled system: SU(2),_, YM-5d SRE higher-SPTs coupled systems. There are four

siblings of such systems with bosonic UV completion, summarized in Table I. We use x, y, z to label the spatial coordinates of 4d
(3+ 1D) YM, and we introduce an extra coordinate w to label the additional dimension of 5d higher SPTs. (b) Schematic illustration
of 4d-5d coupled system: 4d SO(3),_, YM-5d LRE higher-SETs coupled systems via gauging one-form Z§ 1] center symmetry in

Fig. 1(a). There are four siblings of such 5d SET systems with bosonic UV completion, summarized in Table I. We use x, y, z to label the
spatial coordinates of 4d (3 + 1D) YM, and we introduce an extra coordinate w to label the additional dimension of 5d higher SETs. See

also Fig. 16.

transformation is essential to cancel the noninvariance
of the 4d YM theory. This observation indicates a subtle
fact that [,,s Sq' (w,(TM)B) cannot be dropped and should
be kept as a certain physical term, since we are studying
the physics on a 5d manifold with a 4d boundary. To
summarize:

(@) [i5Sq'(w2(TM)B) vanishes as 0 (mod 2) on a
closed five manifold M. This can be interpreted in
many distinct but related ways. It describes a trivial
gapped vacuum with no SPT order, or a trivial
gapped insulator in condensed matter language, or
a trivial iTQFT on M°.

(ii) However, [,,;s Sq'(w,(TM)B) has essential physical
effects on a five manifold M> with a nontrivial
boundary M* = OM?>. Under the background gauge
transformation B — B + 64, the gauge variant is
nonzero.

(iii) st Sq'(wo(TM)B) = [,s36(w2(TM)B) on  an
M3 with boundary M* = OM® may behave as
fM4 (wo(TM)B)—which is half of a 4d bordism
invariant wz(TM )B. Twice of this fractional term
~2 [iys 5 (Wa(TM)B) ~ [,4(wy(TM)B) is a 4d bord-
ism 1nvarlant and the quadruple of this fractional term
is a tr1V1a1 4d bordism invariant. Thus f e Sq' x
(wo(TM)B) cannot be interpreted as a 4d local
counterterm. Instead, we interpret it as a nonlocal
counterterm or a fractional counterterm on M*. This is
analogous to a certain Wess-Zumino-Witten (WZW)-
like term'" with the following new features:

""We thank Ho Tat Lam for an inspiring conversation on this
issue.

(i) The standard WZW term [67,68] is labeled by
an integer, but here [,s Sq'(w,(TM)B) is
labeled by a Z, number.

(i1)) The standard WZW term is written in terms of
dynamical fields, but the WZW-like term here is
written in terms of the background fields of
the time-reversal symmetry Z! and a higher
symmetry Z;m.

(iv) Similar to the standard WZW term, our WZW-
like term affects the symmetry quantum numbers
of physical observables, i.e., the statistics and
Kramers degeneracy (i.e., singlet or doublet) of
the Wilson lines.

A schematic illustration of 4d SU(2),_, YM-5d SRE
higher-SPTs coupled system is shown in Fig. 1. See
Table I for a short summary for the four siblings of 4d
SU(2)y_, YM theories and their coupling to the 5d
systems, as well as their physical properties. See
Table II for a summary of the link invariants and link
configurations of 5d TQFTs.

IL 4D SU(2),_, YANG-MILLS GAUGE
THEORIES COUPLED TO 5D
SHORT-RANGE ENTANGLED SPTs

A. Ordinary and higher global symmetries
of Yang-Mills theory

We discuss the global symmetries of SU(N), YM theory
in Eq. (1.1).

(1) We first focus on the discrete time-reversal sym-
metry Z¥ and its symmetry transformation 7 acting
on the gauge field a, = ajT*, where the temporal
component is a, and the spatial component is @;. 7
acts on a, as
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TABLE II. Link invariants and link configurations of two world sheet and three world volume from the anyonic-1D-strings/2D-
branes’ spacetime braiding processes in 5d higher-gauge time-reversal SETs in Secs. V and VI. Readers can find other related link
invariants in 3d, 4d, and others in the tables of [11,12].

Section and link invariant

Link configuration Intersecting number configuration
: ; — O
Sections VA and VIB: # (Vi nV3, nVy ) =Tk (5% 3, . 27,)

Sl

X
Sections VB2, VD, and VIC: #(V§, n Vi, n3}) =T, (5%, . 2%, . 23)

(

; : = o1®
Sections VB I and VID: #(Vy, nVy, nVy . nVY)=Qlko, 5%,y  Zxy - Z0)

Sections VD and VIE: #(V}, NX} )= Lkply(S3, .33 )

S2 S?

2 3
U [©)
X D3 e X
Nil®

Sections V C, VD, and VIF: #(V3, 0 3%) = Lk)5(53.52,)

. 5
Section VIG: #(V, nX} . nV}) =Tk, (5% 5%, 23)
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T: aj — —ag, ai — af, (t,x;) = (=t.x;),

T% = T?, ay = —do, a; = a;. (2.1)

The components of the field strength are F;; = F{;T" and Fy; = F§;T*. Under T, F % 1s preserved, while F
flips sign.

T: F% = 0,a% — 0;a¢ + fd]a; - 9,a% — 0;a¢ + f¥d]a; = F&(~t.x;),
F§, = 0,af — 0;af +f"ﬁ7a0al- — —0_,a? + 0;af —f"‘ﬁ"aoaﬁ' = —F§(—t.x;). (2.2)

Here £ is the structure constant of the SU(N) Lie algebra which is real. The reason that this 7 is a good symmetry
choice in contrast to the familiar 7 symmetry of the U(1) gauge theory case is explained in the footnote.' It is
obvious that the kinetic term [}, Tr(F A xF) is invariant under 7. The 6 term flips the sign under T":

T: i/ Tr(F A F) - _ b Tr(F A F).
M4

872 872 Jus

The 0 € [0,27) has a 2z periodicity, and thus the theories at # = 0 and 6 = 7z are time-reversal invariant.
(2) We can define the Z§T symmetry associated with the C7 transformation for an SU(N) gauge theory:

CT: af »—af.  af—+af. (1) - (~1.x,).
T¢ — _T{l*, ag — +a0’ a; — —af,
Fo; — —Fg(—1.x;). Fo = FGT" - (=Fg;(=t,x,))(=T") = Fg; (=1, x;),
F?j el Fla](—t, .xl'), F’] = F?JTa b d FZ(—Z‘,X,)(—TG*) = —F;kj(—t, .xl'). (23)

Here « is the complex conjugation. We also define the charge conjugation Z§ symmetry associated with the C
transformation for an SU(N) gauge theory:

The familiar U(1) gauge theory sends ag — ag and a; — —a;. If we choose instead af — a§ and a¢ — —a? for SU(N) gauge field,
then F{; and F{; are not mapped back to themselves (not even up to a sign); thus this does not define any symmetry of SU(N) YM. Given

a gauge group G, the above discussion is related to the center Z(G), the automorphism group Aut(G), the outer automorphism Out(G),
and the inner automorphism Inn(G). They form short exact sequences:

1 ->Z(G) > G—-Inn(G) > 1, and 1 - Inn(G) - Aut(G) — Out(G) — 1,

and a combined exact sequence
1 - Z(G) - G - Aut(G) - Out(G) — 1.

If G is a simply connected compact Lie group and g is its Lie algebra (which would necessarily be semisimple), then
Inn(G) = Inn(g) = PG, Aut(G) = Aut(g), and Out(G) = Out(g) = Aut(D,) is isomorphic to the automorphism group of the
Dynkin diagram D, of the Lie algebra g.
(i) For G =U(1), we have Z(G) = U(1), Inn(G) = 1, Aut(G) = Out(G) = Z,.
(ii) For G = SU(2), we have Z(G) = Z,, Inn(G) = SO(3), Aut(G) = PSU(2) = SO(3), and Out(G) = 1.
(iii) For G = SU(N) with N > 3, we have Z(G) = Zy, Inn(G) = PSU(N), and Out(G) = Z,. We also have Aut(G) = PSU(N)xZ,
where Z, acts on PSU(N) by Eq. (2.3)’s T* - —T** and a — —a* with a minus sign and a complex conjugation.
The validity of the charge conjugation symmetry Z§, with a C global symmetry transformation, is based on the validity of the outer
automorphlsm Out(G) that includes a Z, as a Z§.
SMore explicitly, under 7 [using Eq. (2.2)]

T e Fg(1,x)F (1, x) = =X F (=1, ) F% (—1, x).

The time reversal changes the sign in the bracket of the field f(#) — f(—t), and the integration measure maintains dz — dz.
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3

“

C: af — af, a; — aj, (t.x;) = (,x;),
T - T, ay = —ayg, a; = —a;,
— a a *
Fo = F&T% — —F,
J— a Ta *

However, for N = 2, the SU(2) YM does not have Z$ global symmetry because SU(2) does not have a Z, outer
automorphism. The C transformation is part of the SU(2) gauge transformation. Let Cgy(p) = €52 € SU(2) be the
matrix that provides an isomorphism between the fundamental representation of SU(2) and its conjugate, and let
Usu) = exp(iga ) be the unitary SU(2) transformation on the SU(2) fundamentals, where o, @ = 1, 2, 3 are Pauli
matrices. Then Csy(2)Usu(a >CSU(2) exp(—i§ol) = exp(-ifoy) = Usy(z)- In other words, 7Y and Z§T are the
same symmetry for the SU(2) YM. See more discussions in footnote 11, Sec. 2.2 of [38], and Sec. 2 of [8].
Parity symmetry Z% is another discrete symmetry associated with the transformation P:

Piag—ag,  af = —af,  (1x) = (6-x),
T — T?, ap — agp, a; = —a,;,
F = a8 = 0;af + [P dld) — 0_(—a%) — 0_(—af) + [ (=d})(=d}) = F&(~t,x)),
F2 = ,a% — 0;a8 + fP7dhal — 9,(—a%) + _jal + fPral(=dl) = —F§ (1, —x,). (2.5)

P is related to C7 via the CP7 symmetry:
CPT: df——daf.  af—>-af,  (t.x) = (~,—x).
T - —=T%*, a, — —i—a;,
Fo = Foi(=t,=x;),  Foj = FGT% = Fg(=t,—x;)(=T"") = —Fg;(=t, —x,),

Ff — Fi(=t, —x;), Fij = FiT* = F(=t,—x;)(=T%) = =F};(=t, =x;). (2.6)
|
The one-form electric Z§, , center global symmetry: representation transforms under ng[l] by a sign
The charged object of the one-form Zg (1] Symmetry Whnd _, _yyfund,
is a gauge-invariant Wilson line The charge operator (i.e., symmetry generator) of
the Zlﬁw] symmetry is a codimension 2 (thus a 2D
WR = Tro [ Pe . . 27 operator in 4d spacetime) electric surface operator U ,..
¢ R < *p (l f a)) 27) For SU(2) gauge theory, we will see that

The gauge field a is Lie algebra su(N) valued. The U, = exp <iﬂ 7{ A>, (2.9)
Pexp(i § a) specifies a SU(N) group element where

P is the path ordering. Tr is the trace in the
representation R of SU(N). For the SU(N) gauge
theory, R can be any possible representation. If R is
an irreducible representation and [ is the number of
boxes in the Young diagram of R, then W, trans-

where A € H>(M*, Z,) as a cohomology class.
One can couple the SU(2) theory to Z§ (] back-

ground gauge field B. Following [5,6,69], we first

promote the SU(2) gauge field a to a U(2) gauge
field 4,

forms under ZN ] s
) .
Zf\] 0k . Wle{ N e2m'l/Nwl§_ (28) a—=a-+ EAHZ’ (210)

For the fundamental representation, there is only one where I is a two-dimensional identity matrix. The

box in the Young diagram; hence the Wilson line first Chern class Of the U(2) bundle is ¢; =
W transforms under 7§ 1) Wwiind _, g27i/Nyyfund a1 (Vyp) = % =4 4 \where F=da—id A disaU
For N =2, the Wilson line in the fundamental (2) field strength. Then we couple to B by requiring
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¢y = Bmod 2, which can be done via introducing a
Lagrangian multiplier A [see Eq. (2.37)]. This
amounts to introducing the following term in the
path integral:

/[DA]~~~exp(iﬂAI4AU(cl —B)). (2.11)

The minimal coupling exp(iz [ A U B) implies that
the generator of Zy |, is precisely exp(ir [ A). This
explains Eq. (2.9). Notice that integrating out the
Lagrangian multiplier A removes the U(1) degree of
freedom; hence the gauge group is SO(3) = PSU(2)
[rather than SU(2)],
SU(2)xU(1)

u@)_—7z — _Su@)
u() U Z,

= PSU(2) = SO(3).
(2.12)

with the gauge bundle constraint c; =w, Vso@) )=B.
Here the second Stiefel-Whitney class w,(Vso(3)) €

H*(M,Z,) is the obstruction of promoting the
SO@3) bundle to the SU(2) bundle, which we
explain in detail below. The nontrivial SU(2) gauge
bundle on a manifold M can be constructed by finding
an open cover of M and then gluing together trivial
bundles from adjacent open patches via the SU(2)
transition functions. Suppose g;; € SU(2) is the
transition function (which plays the role of gauge
transformation) defined on the intersections of two
open covers indexed by i and j. There is a consistency
condition

9:j9k9u = 1 € SU(2)

on the triple overlapping intersections of three open
patches indexed by i, j, and k. However, the con-
sistency condition of the SO(3) bundle is weaker. Let
h;; be the transition function in the SO(3) bundle, and

A

h;; is the lift of h;; in the SU(2) bundle. Then
hihh =1 € SO(3), (2.13)
while
ﬁijﬁjkﬁkz = exp(iﬂwijk(vso(3>)) € {£1} cSU(2).
(2.14)
The w;jx(Vso(3)) € Z isrelated to w,(Vso(s)) evalu-

ated on the simplex (i jk).14 Thus the SO(3) bundle

“The patch i is dual to a zero-simplex i in the dual cell
decomposition of spacetime. The intersection of two patches i
and j is dual to a one-simplex (i) in the dual cell decomposition
of M. The intersection of the patches i, j and k is dual to a two-
simplex (ijk) in the dual cell decomposition of M.
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can belifted to an SU(2) bundle only when w; (Vs3))
is trivial, i.e., the fol.[]] background field B €

H?*(M,Z,) is trivial. Namely, activating B allows
us to study the SU(2) gauge theory with the nontrivial
SO(3)-gauge bundle. In short,

dA
PP c1(Vuw) = B =wy(Vpsuz)) = w2(Vso))

= w,(E)mod?2, (2.15)

and we learn that the SU(2) gauge theory coupled
to a background B field can be regarded as a path
integral summing over the SO(3) gauge bundle
E subject to the gauge bundle constraint B =
WZ(VPSU(Z)) = Wz(Vso(3)) = WQ(E) mod 2. We will
soon propose a new generalization of the gauge
bundle constraint of Eq. (2.15) on unorientable or
nonspin manifolds. See Eq. (2.25) in Sec. II B.
Coupling to ZE-[I] background field B allows one to

say more on various line and surface operators. First,
one can use B to construct a magnetic two-surface
U,, =exp(iz [y w2 (Vpsu())) =exp(iz [x B). When =
is a surface with a boundary, a Wilson line W' in the
fundamental representation (below, we will simply
use W, for simplicity) can be supported on the
boundary so that W,U,, is invariant under the back-
ground gauge transformation B — B + 0. Second,
when the surface X of the electric two-surface
operator U, Eq. (2.9), has a boundary 0%, a "t Hooft
line T, can be supported on OX. Since U, is
dynamical in the SU(2) gauge theory, the 't Hooft
line T, is not a genuine line operator, and 7', has to
live on the boundary of U,. Thus the "t Hooft line 7',
as the world line of the probe background magnetic
monopole must be attached with the dynamical and
detectable open Dirac string, which is visible by W,.
The closed two world sheet of detectable Dirac string
forms the U, operator. This can be seen from the
correlation function

= (rn(peso (i) Yoo in f.2))

i
— exp <ll\;[Lk(y1,22)>, (2.16)

where R stands for the fundamental representation.
Lk(y', £2) is the linking number between y! and 2.

From the Hamiltonian point of view, the spatial
Wilson line operator W, and the spatial ’t Hooft
operator T,, (as two canonically quantized line
operators) in the SU(N) gauge theory satisfy the
commutation relation [70]
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N A , 127
We<}/1)Tm<y1 ) = eXp (FLK(}/I’}/I/)>

X T (r")We(r"), (2.17)
where Lk(y', y!) is the linking number between '
and y' in the 3d space. For the SU(2) YM, Eq. (2.17)
reduces to

W) Tn(r") = (DO, (YW ().
The noncommutative nature of Eq. (2.17) implies that
W, and T, are not mutually local, which is consistent
with the fact that W, is a genuine line operator while
T, is not a genuine line operator as discussed in the
last paragraph.
(5) The full symmetry Z% x Zg-[l]: The full symmetry of
the SU(2) YM theory relevant in our study is
7¥ x Z;m.ls The 7! symmetry implies the space-
time symmetry has an orthogonal group O(d) via a
short exact sequence extension 1 — SO(d) —
O(d) » ZF -1 where SO(d) is the spacetime
rotation symmetry. Knowing the full relevant global
symmetry, Z1 x Z;[l]’ we can classify the ’t Hooft
anomalies based on Thom-Madsen-Tillmann-Freed-
Hopkins bordism spectra and cobordism theory
[41-43]. In terms of a bordism group QF (more
precisely, we focus on the torsion part QF ), the
classification of 4d ’t Hooft anomalies for 4d SU®2)
YM can be written as linear combinations of bord-
ism invariants Q¢ = QQ(B?Z,) for d =5 [8,10].
[We leave the details of bordism invariants for later
in Eq. (2.40) and in Sec. I C.]

B. Derivation of new higher anomalies of
SU(2) Yang-Mills theory at §=7 on
unorientable manifolds

We start with the SU(2) Yang-Mills theory with 6 = r,
denoted SU(2),_,. The Euclidean action Sg is

| .
Sp[M*) = —2/ Te(F A +F) —L‘;/ Te(F A F).
9 JImt 8z Jm

(2.18)

Since the anomaly is a renormalization group flow invari-
ant, in the following discussion, the kinetic term that is
proportional to the running coupling constant 1/g> will not
play a role. Hence we only consider the second term in
Eq. (2.18), which we dub the theta term. To probe the
anomaly, we turn on the background gauge field 5 for the
Zg-[l] one-form symmetry. Here B is a Z,-valued two-form

PSince Z§7 x 75 ) and 7 x 7§,

transformation, we only discuss Zg X Z

differ by a SU(2) gauge

e

2.]1)°

gauge field with ¢y8 = zZ for any closed surface X. The
two-form gauge field B is related to the two-cochain B via
B~ zB, and we also convert the wedge product A to the
cup product U when the action is written in terms of
cochains. To couple the SU(2) YM theory to the back-
ground gauge field B, we promote the SU(2) gauge field a
to a U(2) gauge field d, and the theta term at @ = reads'®

0

2 /. Tr((F — BI,) A (F - BL,)),

(2.19)
where F' = dd —id A a is the U(2) field strength, and I, is
the two-dimensional identity matrix. To restore the SU(2)
gauge field, the U(2) field strength should satisfy the gauge
bundle constraint

TeF 2B
ﬁ = Z =B = W2(VPSU(2)) = WZ(VSO(3))

Here w,(Vpsu(2)) =w2(Vso)) is the Stiefel-Whitney class
of the associated vector bundle of the PSU(2) = SO(3) [the
principal gauge bundle E of PSU(2) = SO(3)].

To activate the background field for the time-reversal
symmetry, we formulate Eq. (2.19) on an unorientable
manifold M*. On an unorientable manifold, the top differ-
ential form is not well defined, due to the lack of the
volume form whose definition needs an orientation. To
make sense of Eq. (2.19) on an unorientable manifold,
we reformulate it in terms of the Chern characteristic
classes. We denote the jth Chern class of the U(N) gauge
bundle as cj(VU(N)). For j =1, 2, we have

TrF
CI(VU(N)> = or
1 PO 1 N A
(2.21)
Replacing #Tr(ﬁ A F) by 959U — ¢y, we rewrite

Eq. (2.19) as'’

"“The topological term for the Euclidean action Sg ;opologica 1
the Euclidean partition function Z = exp(—Sg iopological) CONtains
a factor of imaginary i, namely Sg = —i(---) in Eq. (2.18).
However, by converting exp(—Sg) = exp(iS), we have the
following Minkowski S in Eq. (2.19).

""Some of the mathematical-oriented readers may wonder how
to rigorously define Eq. (2.19)’s Z [y Tr((F = BL) A (F -
BI,)) to a term TII;ZIM“‘ Tr((F — zBI,) A (F — zBI,)) with the

continuous differential form F coupling to a discrete cohomology
class B € H>(M, Z,). In fact, the physics way to interpret this
coupling is related to the coupling between QFT to TQFT
explained in [69]. More formally, we can also implement
mathematical methods [71] to formulate such couplings. J. W.
thanks Shing-Tung Yau for insightful conversations on this
method [71].
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T
87[2 M

Using Eq. (2.21), Eq. (2.22) can be reinterpreted as

I . 1~ ~ 1. (F\ B 1B B

¢ (V Uc(V 1 P(B
ﬂAﬁ(—Cz(VU(z))Jr 1(Vug)) Uer( U(Z))_ECI<VU(2))UB+(—))7

2

where P(B) is the Pontryagin square'® of B.

Note that Eq. (2.23) is not well defined even on an
orientable manifold. In Sec. II D, we resolve this problem
for the torsion-free oriented manifolds M. Yet, Eq. (2.23)
is also not well defined on an unorientable manifold. In
general, if M is a d-dimensional unorientable manifold
and w is a d cocycle, 7 f y @mod 27 is well defined only
when o is valued in Z,."” Since c;(Vyq)) € HY(M*, Z)
is integer valued, the first term in Eq. (2.23) makes sense
when M* is unorientable. However, the other terms are
fractional; hence the integral of those terms does not
make sense if M* is unorientable. To make sense of
Eq. (2.23), we actually need to define it on both the
unorientable M* and an unorientable M> such that
|

y (2.23)

|
oM® = M** To proceed, we extend the integer valued
cohomology class ¢;(Vy(y)) on M* to an integer valued
cochain ¢ (Vy()) on M°. Note that & (Vyp)) on M?
does not have to be an element in H*(M°,Z7), ie.
6¢1(Vy(z)) =0 does not have to hold onto M>. The
requirement of ¢ (Vy(y)) will be imposed later by the
gauge bundle constraint. The extension means, in par-
ticular, that when restricting ¢;(Vy)) to M*, it reduces
to a Z-valued cohomology class c;(Vy()). We further
extend the Z,-valued cohomology class B on M* to a
Z,-valued cohomology class on M?>, and for simplicity,

we use the same notation B on M> as well. Thus we
define Eq. (2.23) as follows:

c(V Uc(V 1 P(B
—7[/ CZ(VU(2)> +7L’/ 5( 1( U(Z)) 3 1( U(Z)) —Ecl(VU(z)) UB +—( >>
M* M

4

- A 2(Vue) + ”Ap (5(&1(%(2)) Ua Vo)) _ %5(51 (Vyw) U B) + _57)(3))’

with the background field B properly extended to M>.
Here 6 is a coboundary operator, such that we apply
JagsC+2) = [iys 8(- - ) from (2.23) to (2.24). To make sure
that the integral on an unorientable M> is well defined,
and also independent of the dynamical gauge field, we
need to utilize the gauge bundle constraint, which relates
¢1(Vy(z)) with the background gauge fields B, w,(TM)
and w,(TM). Below, we will see that the five-
dimensional integral does not depend on the dynamical

"®Notice it is crucial to treat ¢ Ja Te(Bly A Bly) =% [14 B A
B(Tr(L)) =% [,s BAB=%[,s BAB=~% [ .P(B) as the
more precise rewriting for the later purposes. The P(B) denotes
the Pontryagin square; e.g., see Ref. [10].

]9Using the definition of the fundamental class of an unorient-
able manifold M, i.e., [M], one has fM o = (w,[M]) where
(w, [M]) isthe Z, valued pairing between w and [M| € H,(M, Z,).

Note that if M is orientable, then M* must be orientable.
Conversely, if M* is unorientable, M> must be unorien-

table. However, if M* is orientable, M can be orientable or
unorientable.

(2.24)

|
gauge fields due to the gauge bundle constraints. Hence
the 5d integral is an invertible TQFT whose partition
function is a local function of the background fields. In
summary, we find that in order to make sense of the theta
term of the SU(2) YM theory with the background fields
on an unorientable manifold, one needs to treat the
SU(2)y_, YM theory as a 4d-5d coupled system. This
is a manifestation of the mixed 't Hooft anomaly between
the one-form global symmetry ZS,[I] and the time-reversal
symmetry ZZ.

On an unorientable manifold M = M*, the w(TM) is
nontrivial and one can treat it as the background gauge field
for the time-reversal symmetry. This allows us to modify
the gauge bundle constraint Eq. (2.20) by an additional
term K,w,(TM)?, with K|, = 0,1 € Z,. Furthermore, we
are also allowed to consider the manifold M with nontrivial
w,(TM) since the underlying manifold does not necessarily
allow a spin/pin structure; hence we activate the term
Kow,(TM) with K, =0,1 € Z,. In summary, there are
four choices of gauge bundle constraints labeled by the pair
(K1.K3) € (22, Z5) as
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‘CI(VU(Z)) =B+ Kiwi(TM)* + Kywy(TM) = wy(Vesu)) = w2(Vsos)) = wa(E)mod2, K, € Zz‘- (2.25)

This is a nontrivial constraint between the gauge bundle E, the spacetime tangent bundle 7M, and the background field B.
The value of K ; has physical consequences: when K; = 0, 1, the SU(2) gauge charge [in the fundamental representation
of SU(2)] is a Kramers singlet (T2 = +1) or a Kramers doublet (T? = —1) under time-reversal transformationﬂ; when
K, =0, 1, the SU(2) gauge charge is a boson (spin statistics as an integer spin) or a fermion (spin statistics as a half-integer
spin). More details about the Wilson line properties are derived in Sec. III.

The gauge bundle constraint Eq. (2.25) is defined on M*. We would like to promote it to M> as follows:

&1 (Vuw) = B+ Kiw (TM)* + Kywy(TM) mod 2, K, € Z,. (2.26)

Equation (2.26) imposes additional constraints on ;(Vyy)). Since B, w;(TM)? and w,(TM) are Z, cohomology on M?,
¢1(Vuy(z)) is equivalent to a Z,-valued cohomology H?*(M?,Z,) mod 2 (although it is not a Z-valued cohomology),
ie., 6¢1(Vy()) = 0mod 2.

We further apply the gauge bundle constraint Eq. (2.25) to the five-dimensional integral Eq. (2.24). We should be aware
that the five manifold M3 has a boundary M*. Here we summarize some helpful formulas and mathematical definitions in a
footnote.” Since ¢, (Vua)) mod 2 is in H*(M, Z,), it makes sense to define its Steenrod square Sq'¢;(Vy2)). Then the 5d
integral in Eq. (2.24) can be written as

*'For an SU(2) gauge theory, one can use either 7 or C7 as the time-reversal transformation because the charge conjugation C of
SU(2) is an inner automorphism. The Kramers doublet (7> = —1) of the Wilson line [in the SU(2) fundamental representation] means
that there is a doublet (twofold) degeneracy associated with the Wilson line. The two states of the Wilson line, say |1) and |2) forming a
two-dimensional Hilbert space, transforms as |1) — |2) and |2) — —|1) under the time-reversal transformation.

We clarify the definitions of various fields we used in terms of cochain (C"), cocycle (Z"), coboundary (B"), or cohomology (H"):

c1(Vyp) € H*(M, Z),

sci(Vyp) =0€ B3(M. Z),

¢ €C(M,2Z), (¢, mod?2) € H*(M, Z,),

e>(Vyp)) € HY(M, Z),

B € H*(M, Z,), P(B) € H*(M, Z,),

wi(TM) € H'(M, Z,),

wo(TM) € H*(M, Z,)

L€ CY(M,Z,), o1 € B2(M, Z,), 84 =0mod?2, Sq'é1 € Z3(M, Z,).

(2.27)

Here C” stands for the nth cochain, H” for the nth cohomology, Z" for the nth cocycle, and B” for the nth coboundary. When discussing the
cup products, there are subtle distinctions between (1) cohomology classes in H”, (2) cocycles in Z", and (3) cochains in C", which we
enumerate below:

(1) The cup product between two cohomology classes u € H” (M, Z,),v € H1(M, Z,) are supercommutative, i.e.,
uUv= (=1 U u. (2.28)

(2) The cup products between two cocycles are not supercommutative. If u € Z? and v € Z? are general pth and gth
cocycles, their commutation relation is governed by Steenrod’s relation [61]

uvov—(=1)Plouu= (—1)p+‘1‘1(6(uL1Jv) - 6uLlJv - (—l)l’uLIJév) = (—1)1’+‘1‘15(uliw), (2.29)

where we have used the cocycle condition 6u = O mod 2, v = O mod 2.
(3) The cup products between two cochains satisfy Steenrod’s relation [61]

S(uuv) = (—1)p+q—iu.ul1) + (—1)”q+”+qv'ulu + 6uuv + (—1)PuUsw, (2.30)

S(uuwv)=6uuv+ (=1)Puudv, (2.31)

where u € C? and v € C? are general pth and gth cochains.
In this section, all the calculations still go through if we regard the B field as a Z, two-cocycle, because we did not use the
supercommutativity.
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P(B) 1

Sanom EHA/P&(T_EEI(VUQ)) UB+

OoP(B) 1. 1
:ﬂ/ws ( )_7C1(VU(2))UéB—E(Scl(VU(Z))UB+

4

[\

¢1(Vyp) U 51<VU(2))>
2

6¢1(Vup)) U &1 (Vuw) n ¢1(Vy) uée;(Vuw)
2 2

= HA/IS BSqlB + SqQSq]B — EI(VU(Q)) U SqlB - SqlEI(VU<2)) U B+ SqlEI(VUQ)) U E](VU(Q))

+ 1 (Vup) U Sq'e (Vyw)

= n'/ BSq'B + Sq?Sq'B — (B + K w;(TM)? + Kow,(TM)) U Sq'B — (Sq'B + K,Sq'w»(TM)) U B
M3

+(Sq'B + K>Sq'w,(TM)) U (B + K \w(TM)? + K,w,(TM))
+ (B + K wi(TM)? + Kow,(TM)) U (Sq'B + K»Sq'w,(TM))

= n/ BSq'B +Sq*Sq'B + K;Sq'B U w(TM)? + K,Sq' (B U w,(TM))
MS

+ Ky ((Kywi + Kawy) U Sq'wy + Sq'wy U (Kywi + Kawy))

= n/ BSq'B +S¢?Sq'B + KSq'B U w,(TM)? + K,Sq' (B U w,(TM))|.
M5

(2.32)

In the first equality, we simply stated the initial definition.
In the second equality, we plugged in the coboundary
operator 6. In the third equality, we used Eq. (2.31) and
replaced 5/2 by Sq' which is valid for Z,-valued cocycles.
We also used the identity %(B) = BSq'B + Sq*Sq'B since
B is a Z,-valued two-cocycle [8].% In the fourth equality,
we plug in the gauge bundle constraint Eq. (2.25).
Equation (2.25) also implies Sqlcl(VU(z)) =Sq'B+
K,Sq'w,(TM). In the fifth equality, we used Sq'(B U
wi(TM)?) = (Sq'B) Uw(TM)> + BuU Sq' (w,(TM)?). In
the last equality, we used ((K,w?+ Kow,) U Sq'w, +
Sq'w, U (Kjw? + Kow,)) = 0mod?2 since the Stiefel-
Whitney classes are supercommutative.

Several comments are in order:

(1) As mentioned below Eq. (2.24), S,,om 15 a properly
quantized integral of the background field B and the
Stiefel-Whitney class w;(TM ), which is independent
of the dynamical U(2) gauge field. Hence S, is an
invertible TQFT.

(2) In Eq. (2.24) and Eq. (2.32), the 5d unorientable
manifold M> has a boundary M*:

ZFor a two-cocycle B, the following equality holds:

1 1
Z573(3) = Z6(B UB+ BLlJéB)

-(Loor- (i)

=BSq'B + SqlBLlJSqlB = BSq'B + Sq*>Sq'B.

See Eq. (124) in [8] for further details.

(a) If M° does not have a boundary, the term
K,Sq' (B U w,(TM)) vanishes, due to

K> (wy(TM) U Sq'B + Sq'ws (TM) U B)
= K,Sq' (w,(TM) U B)
= Kow, (TM)w,(TM) U B
= K,Sq’B = K,u3;B = Omod 2x.
(2.33)

In the last step, we have used the Wu formula
Uz = u3(TM) = wy (TM)w,(TM) = 0 mod 2,
on a closed five manifold. Hence Eq. (2.32)
simplifies to

77.'/ BSq'B+Sq*Sq'B+ K w,(TM)*> U Sq'B.
MS
(2.34)

(b) If M° has a boundary, K,7Sq'(w,(TM) U B)
transforms nontrivially under the background
gauge transformation B — B + 04,

K,m / . Sq!(w,(TM) U B)
- KZEA/P Sq!(w,(TM) U B)

+ Kor / Sq'(na(TM) U ). (2.39)

085012-15



ZHEYAN WAN, JUVEN WANG, and YUNQIN ZHENG

PHYS. REV. D 100, 085012 (2019)

This compensates the noninvariance of the 4d
theory under B — B + 6. Thus although the K,
terms vanish when M’ is a closed manifold,
when M> has a boundary, it is crucial to keep
track of this term.

(c) We can show that the term K, f v Sq' x
(wo(TM) U B) is well defined in 4d by showing
that this terms depends only on the 4d boundary
OM>. The triviality of [,,;s K»Sq' (wo(TM) U
B) =0 on a closed M° implies that when the
5d manifold has a boundary, such a term does
not depend on the choice of extension; i.e.,
given two 5d extensions M> and M>, we know
K [isuirs S4' (wa(TM) U B) = 0 because M° U
M? is closed, and thus we derive K, [,,s Sq'x
(w2(TM)UB) =K, [35Sq' (w2(TM) U B). Note
that when M° has a boundary, K, [,,;sSq' x
(wo(TM) U B) can be nonzero. This is analogous

|

to the WZW term. See Sec. IIE for further
discussions.

(3) The 4d-5d integral Eq. (2.24) is invariant under a
one-form gauge transformation B — B 4+ 61. We
will show this explicitly in Sec. II C.

(4) Although S, depends only on K; when M is
closed, we still label it as the 5d anomaly polynomial
parametrized by (K, K, ), due to the subtlety that the
5d integral still depends on K, when M> has a
boundary.

To summarize, the partition function of the combined
4d-5d coupled system
L), ymMY B.w;(TM)] - Z[M°; B,w;(TM)] (2.36)

is gauge invariant under the gauge transformation of the
background field B, and it also makes sense when M* and
M? are unorientable, where

zg%<2)9:”YM[M4;B, wi(TM)] = / [Da][DA] exp (—912 Al ) Tr((F — zBL,) A *(F — ﬂBHZ))>

exp (—m /M 4 C2(VU(2>)) exp (m A AU (e~ B— Kywi (TM)? - KZWZ(TM))>

and

(2.37)

2>4M3; B,w;(TM)] = exp (iﬂ' A/[S BSq'B +Sq*Sq'B + K w(TM)?* U Sq'B + K,Sq" (w,(TM) U B)) (2.38)

The combined 4d—5d system is anomaly-free. Equivalently,
to couple the background fields of both time-reversal
symmetry and the one-form global symmetry Z‘im, the
SU(2),_, YM theory cannot be placed on an unorientable
M?* only; instead, one needs to place it on the boundary of
an unorientable M> which supports a 5d invertible TQFT.
This is the manifestation of the mixed 't Hooft anomaly

between the one-form global symmetry Z;m and the time-

reversal symmetry Z7.

C. Anomaly matching of Sd—4d inflow and 5d
cobordism group data

In this subsection, we identify the 5d topological terms
Eq. (2.32) with the mathematically well-defined 5d bord-
ism invariants and further explicitly check the invariance of
the 4d—5d system Eq. (2.36) under B — B + 64

1. Identifying S, nom With 5d cobordism group data

We compare S,,,, in Eq. (2.32) with the bordism group
data given in [8,10]. Since the global symmetries of 4d

[

SU(2),_, YM theory are Z1 x 7¢

S We compute the 5d
24,25

bordism group

Q0(B2Z,) = 73. (2.39)

Hence there are four independent generators of the bordism
group Q9 (B*Z,),

*In addition to [8,10], we notice that the oriented version of
the bordism group Q3°(B2Z,) has been studied recently in [72]
for different purposes. Here we study instead the unoriented
version of the bordism group Q9 (B?Z,), new to the literature.
See details in the Appendix.

*For an ordinary (zero-form) global symmetry, we denote G
as the zero-form global symmetry group. When gauging a zero-
form symmetry, we introduce a one-form flat gauge field with a
gauge group G, whose classifying space is BG. For an Abelian
group and for a higher symmetry: We denote G as the one-form
global symmetry group. When gauging a one-form symmetry, we
introduce a two-form flat gauge field with a higher gauge group,
whose classifying space is associated with B(BG) = B?G.
Similarly, for an Abelian n-form global symmetry group Gj,

we have the associated classifying space B"*'G. See [48-50].
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BSq'B,

Sq’Sq'B = (wo(TM) + w1 (TM)*)Sq' B = (w3(TM) + w\(TM)?*)B,

wi(TM)*Sq'B = w,(TM)*B,
wo(TM)w3(TM),

where the equalities hold only on closed five manifolds.
Clearly, S,pom in Eq. (2.32) is a bordism invariant except the
term proportional to K,. Setting K, = 0, S,,0m 1S identified
with the sum of the first three bordism invariants in
Eq. (2.40),

exp (iﬂ:/ (BSq'B + Sq*>Sq'B + K w, (TM)3B)>.
MS
(2.41)

As explained in Sec. II B, the fourth term in S, is trivial
when M?> does not have a boundary. This is consistent with
the fact that there is not any bordism invariant of Q9 (BZ,)
of the form Sq!(w,(TM) U B).

Notice that the last invariant in Eq. (2.40),26 1.e.,
wo(TM)ws(TM), does not participate in the anomaly
of SU(2),_, YM. However, it is responsible for the new
SU(2) anomaly [57]: 4d SU(2) gauge theory with an odd
number of fermion multiplets in representations of isospin
4r+ 3/2 of the gauge group is inconsistent, for a non-
negative integer r. The theory is nevertheless consistent on
certain manifolds with spin or spin® structure. The new SU(2)
anomaly [57] is in contrast to the old SU(2) anomaly [56].
The familiar SU(2) anomaly [56] states that a 4d SU(2)
gauge theory with an odd number of fermion multiplets in
the isospin 2r + 1/2 representation is inconsistent.

2. Anomaly matching of 4d-5d inflow

We first highlight the distinctions between the derivation
of anomalies in [5] and in our Sec. II B:

(i) Reference [5] places the SU(2),_, YM on an
orientable manifold and turns on the two-form
background field B of the one-form symmetry
Z;[l] (or a two-cochain B). By performing a

**The w,(TM)w3(TM) is a bordism invariant in Q2 (B2Z,),

SpinxSU(2)

Q9(p1), Q30(pt),and Qg * ;see [10]. Namely, this w,(TM) x
w3(TM) is not only a topological term respecting a spacetime
O(d) symmetry and one-form Z3 ) symmetry but also a
topological term respecting a spacetime O(d) or SO(d) symmetry
alone, or respecting an enhanced spacetime-internal locked

SpinxSU(2) St
Z,

symmetry . Thus the 4d anomaly from Q. © is a

signature for the new SU(2) anomaly [57]. In fact, the
w,(TM)w3(TM) topological term plays an important role as
the only possible anomaly of an interacting Spin(10) chiral
fermion theory—which is responsible for the anomaly-free of
the SO(10) grand unification [57,73].

085012-17

(2.40)

time-reversal Zg transformation, Ref. [5] detects
the 7BB anomaly, which is linear in ZI trans-
formation 7 and quadratic to the two-cochain B.

(i1) In Sec. II B, we have derived the anomaly by first
turning on the two-form gauge field B, and further
place the theory on an unorientable manifold. We
find that to make sense of the 4d theta term on an
unorientable manifold, we need to promote the
original 4d YM theory to a combined 4d-5d system.
The 5d theory is an invertible TQFT. In the follow-
ing, we reverse the logic:

(Step 1) We first formulate the SU(2) YM on an
unorientable manifold before activating B.

(Step 2) We further match the noninvariance of the 4d
SU(2)y_, YM theory Eq. (2.37) under B — B + 64
with the noninvariance of S,,,, in Eq. (2.32).

(Step 1) We first place the SU(2) Yang-Mills theory on
an unorientable manifold without activating the back-
ground field B. If we limit to the case that the gauge
bundle constraint Eq. (2.25) as ¢;(Vy(z)) = 0mod?2,
then the theta term is simplified to

/] A,ﬂ CZ(VU(2))’ (2.42)

which is a well-defined 4d term. If we further change
the time-reversal property (i.e., Kramers singlet/
doublet) and the statistics (i.e., bosonic/fermionic)
of the SU(2) gauge charge by modifying the gauge
bundle constraint to ¢ (Vyp)) = Kyw; (TM)? +
Kow,(TM)mod 2, the theta term is

erﬁ <—C2(VU(2)) +%01(VU(2)) U Cl(VU(2))>'
(2.43)

The second term does not make sense for M* unorient-
able, and one needs to define it by promoting the integral
to a 5d unorientable manifold M. Following the dis-
cussion around Eq. (2.26), the Z-valued cohomology
class ¢ (Vyy)) is extended to a Z, cohomology class
¢1(Vy(), along with the gauge bundle constraint,
¢1(Vu)) =K wi(TM)*+ Kyw,(TM)mod2.  Then,
Eq. (2.43) shall be reinterpreted as

| N
—ﬂ/ (Vo) +7T/ 55(C1(VU(2>) U ¢ (Vyp)).
M M5

(2.44)
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When M does not have a boundary, 7 f[,s36x F > F 4 z8L.

(¢1(Vy@)) U €(Vyg))) vanishes. This means that,

for a fixed M*, the second term in Eq. (2.44) does not Using Eq. (2.21), we determine that

depend on the choice of M3 . Hence, when B is turned off,

there is no anomaly for generic (K|, K, ). To summarize, c1(Vu) = a1(Vup) + 62,

;\}}I?Ir; 1;&1;1? guie:rl'me reversal anomaly of SU(2) Yang Cz(VU(z)) . Cz(VU(z)) n % ‘o (VU(z)) U S+ 21177(6/1).
(Step 2) We further turn on the background field B. (2.45)

Under the gauge transformation B — B + 01 where 4

is a Z,-valued one-cochain, the U(2) field strength F The only 4d term in Eq. (2.24) is the first term

transforms as proportional to ¢,(Vy)). Under B — B + 64,

|
1 1
—77,'/ c, > —ﬂ'/ ¢y +5¢1(Vyp) U dA+—-P(64)
M M 2 4

1 1
:—n'/ cz—n'/ 5<—EI(VU(2)) U5/1+—77(5£)>
M* ws \2 4

= —n’/ r— n’/ Sq'd; U84+ &, U Sq!dA + 64 U Sq'64 + Sq>Sq' 82
M* M3

= —71'/ Cz—ﬂ'/ [(SqlB—i—Kqu]wz(TM))&l—i- (B+K]W1(TM)2+K2W2(TM))SC116/1
M4 MS
+ 845q'62 + Sq>Sq'84). (2.46)
In the second equality, we replaced 5/2 by Sq!, which is valid for Z,-valued cocycles, and used the identity Wfﬁ)

628q'81 + Sq>Sq' 84 since 81 is a cocycle [8]. On the other hand, the variation of the bulk invertible TQFT S,,om, i.€.,
the 5d integral in Eq. (2.24), is

Sunom = f;/ BSq'B + Sq2Sq'B + Kyw, (TM)? U Sq' B + K,Sq'w,(TM) U B + Kyw,(TM) U Sq' B
M5
1
s / JOP(B) + Kywy (TM)? U Sq'B + K>3q'w(TM) U B + Ky (TM) U Sq' B
M5

1 1
= Sanom + 7 / 1573(5,1) + E5(1535/1) + Kyw, (TM)?Sq'61 + K,Sq'w,(TM)S1 + Kyw,(TM)Sq' 51
MS

= S.nom + ﬂ'/ 528q' 64 + Sq°Sq'64 + Sq' B6A + BSq's4
M3

+ K w, (TM)?Sq'62 + K,Sq'wy (TM)S4 + Kow,(TM)Sq'62. (2.47)
In the second equality, we used the identity %(B) = BSq'B + Sq?Sq'B since B is a cocycle [8], and the formula
P(B + 61) = P(B) + P(5A) + 2B5A since B and 64 are both cocycles. In the third equality, we replaced §/2 by Sq',
which is valid for Z,-valued cocycles, and used the identity w = 61Sq'61 + Sq?Sq' 84 since 81 is a cocycle [8].

Comparing Eq. (2.46) and Eq. (2.47), we find that the noninvariance of the 4d terms Eq. (2.46) precisely cancels the
noninvariance of the 5d terms Eq. (2.47). Thus the combined 4d—5d coupled system —z [, cz(VU(z)) + S.nom 18
symmetric under the background gauge transformation of B, and thus is anomaly-free under the one-form background
gauge transformation.”’ Furthermore, since both the boundary theory Eq. (2.42) and the bulk invertible TQFT S, are
well defined on unorientable manifold M* and M?, respectively, the full system 7 S cz(VU(z)) =+ S.nom also respects
the time-reversal symmetry. Thus we again arrive at the conclusion that the combined partition function Eq. (2.36) is
well defined and free of the 't Hooft anomalies of both one-form symmetry, time-reversal symmetry, and their mixed
anomaly.

2’On an unorientable manifold, the mixed time-reversal and one-form anomaly reduces to the one-form anomaly, since time-reversal
symmetry is “gauged” on an unorientable manifold and it is too late to break ZZ.
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D. Topological term on torsion-free
orientable manifolds

In the previous Secs. II B and II C, we derived the mixed
anomaly by first reformulating the theta term in terms of
characteristic classes, and then we make sense of it on
unorientable manifolds by promoting the ill-defined terms
on five manifolds. However, there is a loophole: Eq. (2.23)
is not well defined even on an oriented manifold, because
¢1(Vup)) U B and 1 P(B), as a Z, and a Z, valued coho-
mology, respectively, are ill -defined when the coefficients are
fractional. In this subsection, we resolve this issue, for certain
manifolds, by lifting the Z, class B to a Z class B, i.e.,

B = Bmod?2. (2.48)

Here we restrict to the orientable manifolds M* with torsion-
free cohomology class H,(M*,Z) [74] where the lifting
makes sense. Hence Eq. (2.23) becomes

c1(Vuw) Ucei(Vyp)
ﬂ/ -2 (Vyp)) + = <
M* 2
1 . BUB
—ECI(VU(Q)) UB+ 4 . (249)

To further formulate Eq. (2.49) on an unorientable
manifold, we note that every unorientable manifold M
contains nontrivial torsion in H{ (M, Z), and thus the lifting
does not exist. This implies that on an unorientable manifold
M* and M?, it is not possible to promote a Z, cohomology
class to a Z cohomology class. However, the derivation of
the 5d anomaly polynomial Eq. (2.32) still goes through.

E. Consequences and interpretations of four
siblings of “anomalies”

In this section, we discuss the two siblings of anomalies
labeled by (K; = 0,K,) and (K, = 1, K,). We also com-
pare our results with the known mixed 75, — 71 anomaly

discussed in [5].
(1) When (K,K;)=(0,0), the bulk anomaly polyno-
mial is

T

71'/ BSq'B + Sq*Sq'B = —/ w1 (TM) U P(B),
M3 2w
(2.50)

which is nonvanishing only on an unorientable M>.
This equality has been explored in Ref. [8] in
relating to the 4d YM theory’s anomaly. Further-
more, we find that this equality is also explained in a
remarkable mathematical note in Ref. [75].

Below let us gain a better understanding based on
Ref. [75]: Let Z,, be the orientation local system,
and then H'(BO(1), Z,, ) = Z,. Indeed, this is the
group cohomology H!(Z,, Z,,), where Z,, denotes Z
with the sign action. The pullback of the nonzero
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elementof H'(BO(1), Z,, ) underthemap M — BZ,
determined by w,(TM) € H'(M, Z,) is called the
twisted first Stiefel-Whitney class w, € H'(M, Z,,,).
Its mod 2 reduction is the usual first Stiefel-Whitney
class in an untwisted Z, cohomology. We consider its
reduction W, € H'(M, (Z,),, ) in a twisted mod 4
cohomology. Here P denotes the Pontryagin square
P:H*(M,Z,)— H*(M,Z,). In Eq. (2.50), we use
cup and cap products in twisted Z, cohomology: if
[M] denotes the fundamental class in the twisted Z,
cohomology, this means that

H'(M,(Z,),,) ® H(M,Z,)—>H (M. (Z,),,)

™Mz, (2.51)

However, since 2w; is a twisted coboundary,
2(w; UP(B),[M]) =0mod4, (w, UP(B), [M]) is
even, hence it makes sense to divide by 2 and obtain an
element of Z,. This defines 1w, (TM) U P(B) as a
mod 2 class in the fifth cohomology group H>(BO x
B2Z,,U(1)) which is also a bordism invariant of the
fifth bordism group Q9 (B%Z,).
There are two options for the boundary M*:
orientable or unorientable.
(a) When M* is orientable, the time reversal of the
SU(2),_, theory is not gauged. However, there is
still a way to probe the mixed Z5 -Z¥ anomaly,

following the approach of [5]. We first couple the
SU(2),_, Yang-Mills to background gauge field
B, and then perform a global time-reversal trans-
formation. To determine how the theta term
changes under time reversal, we make use of
the fact that shifting by 27 amounts to changing
the parameter p of the counterterm by 1, where
the counterterm is 2z% [,,.P(B) and p € Z,, i.e.,

(@427, p)« (6,p+1). (252

Under time reversal, both the theta term
Eq. (2.19) and the counterterm change sign,
ie., Z1: (%, p) = (—x,—p). Using the identifi-
cation Eq. (2.52), (-7, —p) <> (m,—p — 1),

zy: (m,p) - (m,—p—1). (2.53)

Equivalently, under time reversal, the theta term is
unchanged, but there is a shift of the counterterm

z(2p +1)

6SE[M4} - - 2 "

P(B). (2.54)
The noninvariance in Eq. (2.54) cannot be zero
by properly choosing p € Z, which represents an
anomaly. The anomaly Eq. (2.54) can be canceled
by the ’t Hooft anomaly inflow Eq. (2.50).
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(b)

So it is important to emphasize that the 4d
anomaly from 7 BB detected by [5] (and Sec. 2 of
Ref. [8]) is precisely captured by the bordism
invariant $, (TM) U P(B) in Eq. (2.50) noticed
in Ref. [8].

When M* is unorientable, the anomaly can be
detected as well, as discussed in Secs. Il Band II C.

(2) When (K, K,)= (1,0), the bulk action is

71'/ BSq'B + Sq*Sq'B + w(TM)?Sq'B, (2.55)
MS

which is nonvanishing only when M3 is unorientable.

(a)

(b)

When M* is orientable, one cannot probe K.
This is because for [,s w;(TM)*Sq'B to be
nonvanishing mod 2 on M?, there should be at
least two or more orientation reversing cycles in
M>, and hence there should be at least one
orientation cycle in M*. Thus if M* is orientable,
even if M? is unorientable, we still cannot detect
a particular 4d anomaly associated with the 5d
term K,w,(TM)?Sq'B.

When M* is unorientable, the anomaly can be
detected, as discussed in Secs. II B and II C.

(3) When (K, K,)= (0,1):

(a)

(b)

If M° is a closed 5d manifold (regardless
whether orientable or unorientable), we cannot
detect the term [y,s K,Sq' (w,(TM) U B).
If M> is a 5d manifold with a 4d boundary M*
(regardless orientable or unorientable in 5d or in
4d) and w,(TM) is nontrivial on both M* and
M (e. g., non-Pin™ manifolds), we can detect the
term [,,s K,Sq' (w,(TM) U B) on the 4d boun-
dary via the one-form background gauge trans-
formation. On an M with a boundary M*, we
regard [,,s K»Sq' (wo(TM) U B) schematically
as 4d fractional SPTs, which is characterized by
a 4d ill-defined term with a fractional coefficient
Jus K22 (wa(TM) U B). Two copies of such
4d fractional SPTs become a well-defined
time-reversal Z} and one-form Z5 1y symmetric
4d SPTs/bordism invariant [,,s(w,(TM) U B),
J

®

(i)

(iii)

the

with respect to a nontrivial Z, generator in
QQ(B2Z,) = 73; see Ref. [8] and Appendix.
Thus, four layers of such 4d fractional SPTs
become trivial SPTs with respect to Q9 (B*Z,).

The [y;5Sq'(wo(TM)B) is similar to the
Wess-Zumino-Witten term [67,68] in some
way but with its own exoticness:
The familiar WZW term is an integer Z class
[67,68], and here this [,,s Sq' (wo(TM)B) has a
fractional discrete class. [In some sense,
Jus Sq" (w2 (TM)B) seems to be a unit generator
in Z, with respect to 4d trivial SPTs.]
The familiar WZW term is written as a path
integral of dynamical fields, but here [},s Sq' x
(wo(TM)B) depends on the background probe
fields w,(TM) and B.
Both WZW and [,s Sq' (wo(TM)B) govern
the 4d physics, but they need to be written in
one extra higher dimension. It is tempting to
speculate that [y,s Sq'(w,(TM)B) may be a
nonlocal counterterm on M*, which is 4d in
nature but cannot be written in 4d alone. The
Jus S (w2 (TM)B) can access the 5d extra
bulk, but it does not depend on how M° is
chosen as long as OM> = M*.

Related interpretations and facts about
Jurs K2Sq' x (wo(TM) U B) are also summa-
rized in Sec. I B.

(4) When (K, K,)= (1, 1), the interpretation is simply

linear combination of (K,K,)= (1,0) and

(K, K,) = (0, 1) interpretations above.

We will further comment about the fate of the
dynamics of four siblings of SU(2) YM based on their
“anomalies” Eq. (2.38), in Sec. VIII and in Sec. IX.

F. 5d SPTs/bordism invariants whose boundary

allows 4d SU(2),_, YM

1. On a closed manifold

We now give various equivalent formulas of the 5d
SPTs/bordism invariant in Eq. (2.38) on a closed five
manifold M>

closed :

23514,y Mioseal = exp (iﬂ A _BSq'B+Sq’Sq' B + Kyw,(TM)*Sq' B + Kqul(Wz(TM)B)>

= exp (in’/ BSq'B + Sq*Sq'B + Klwl(TM)ZSqlB)
M5

= exp (iﬂ/ BSq'B + (wo(TM) + w(TM)*)Sq' B + K w, (TM)ZSqlB>
MS

=exp <iﬂ/ BSq'B + w3 (TM)B + (1 + K;)w, (TM)3B>
MS
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= exp <in’ /v[»‘ %W1<TM) U P(B) + Klwl(TM)3B> (2.58)

= exp <i7z /M %6(P2(B2)) + Klwl(TM)3B>. (2.59)

In the second line, we knew already from the derivation of Eq. (2.33) that exp(iz [,,s K»Sq' (wo(TM)B)) = 1 on a closed
manifold.

In the fourth line, we used w,(TM)?>Sq'B = Sq' (w1 (TM)?>B) = w,(TM)(w,(TM)?B) = w,(TM)>B where the second
equality uses the Wu formula on a closed manifold. We also used
usB = wy (TM)ws(TM)B = Sq' (w;(TM)B) = (Sq'w»(TM))B + w,(TM)Sq' B
= (W (TM)w,(TM) + w3(TM))B + w,(TM)Sq'B,
= w,(TM)Sq'B = w3(TM)Bmod 2,
by the Wu formula on a closed five manifold.*®

In the fifth line, Eq. (2.58) is based on Eq. (2.50) and Ref. [8,75].
In the sixth line, Eq. (2.59) is based on Eq. (124) in [8].

2. On a manifold with a boundary

We also give various equivalent formulas of the 5d SPTs/bordism invariant in Eq. (2.38) on a five manifold M> with a
nonempty 4d boundary M*:

L, o M) = exp <i7r / BSq'B +Sq?Sq' B + K w (TM)*Sq' B + Kzsql(Wz(TM)B)>
182 M5

exp (iﬂ A 5 %wl (TM) UP(B) + Kyw, (TM)*Sq'B + Kzsql(wz(TM)B)> (2.61)
=exp (in’ Ap BpayP(B) + K w,(TM)*Sq'B + KZSql(wz(TM)B)> (2.62)
~exp (iﬂ A 5 %5(?(3)) + Ky (TM)’Sq'B + K,Sq! (WZ(TM)B)> . (2.63)

In the third line, we followed Ref. [8] to define S, = H* (-, Z,,) » H*"'(—,Z,) as the Bockstein homomorphism

associated with the extension Z, = Zym = Z,,, where -m is the group homomorphism given by multiplication by m. We
can show that f(; o) = Zl omod 2 [8]. Using the bordism group data and the identities given in Refs. [8,10], we rewrite the
4d higher anomalies and 5d higher-SPTs/bordism invariants/anomaly polynomials.

III. CLASSIFICATION OF 4d SU(2),_, YANG-MILLS THEORIES AND CLASSIFICATION OF 4d TIME-
REVERSAL SYMMETRIC BOSONIC/FERMIONIC SU(2)-SPTs

In this section we explore the physical meaning of the gauge bundle constraint in Eq. (2.25), i.e.,
w1 (Vsom)) = B+ Kywi (TM)? + Kowy(TM) mod 2, K, € Z,,

and discuss their physical consequences.

2If we consider instead a different 5d SPTs/bordism invariant as K 3w, (TM)Sq' B, we have the following equalities on a closed five
manifold:

Zg%T(Kz)[Maosed] = exp (izr A/P K3w2(TM)Sq1B) = exp (iﬂ A/P K3w3(TM)B). (2.60)

085012-21



ZHEYAN WAN, JUVEN WANG, and YUNQIN ZHENG

PHYS. REV. D 100, 085012 (2019)

A. Kramers singlet/doublet under time-reversal
and bosonic/fermionic Wilson line

Below we provide some physical interpretations of the
four siblings of 4d SU(2) YM theories in terms of the
Wilson line properties.

We introduce the standard 4d SU(2) Yang-Mills path

integral Zg%(z) ym|B] coupled to the background two-form
gauge field B. Zg%(z) ym[B] is obtained by replacing F with

F— B in Z3, in Eq. (1.1). We also need to impose the
gauge bundle constraint w,(E) = w,(Vso(3)) = B, which
can be imposed by introducing a Lagrangian multiplier,zg

/[DA]Z‘S‘%(Z)YM[B] exp (iﬂ'//\ U (wy(E) — B))

(i) Electric two-surface U,: Mathematically, integrating
out the Lagrange multiplier A sets (w,(E) — B) =
0 mod 2. Physically, exp(iz [ A) plays the role of an
electric two-surface U, = exp(iz [ A), which mea-
sures one-form e-symmetry ZS,[I]' The magnetic ’t

Hooft line lives on the boundary of an electric two-
surface U, = exp(iz [ A). Since U, is dynamical,
the "t Hooft line is not genuine and thus is not in the
line spectrum for the SU(2) gauge theory [6].
(ii) Magnetic two-surface U, is given by exp(iz [ w,x
(E)). The boundary of U, supports the Wilson loop
W, = Tr(Pexp(i § a)). Unlinking a two-surface U,
and a Wilson loop W, yields a nontrivial statistical
n-phase e = —1.
Following Sec. II, we enrich the gauge bundle constraint
as Eq. (2.25) by introducing two couplings labeled by
(K1, K,), and the partition function is

28 vntg, 1 8= [ IDNZ 0 v Blexplin
< [ AU Gna(E) - (B + Kow (TM)

+ Kow, (TM)))). (3.1)

As we just deduced, the magnetic two-surface U, ~
exp(iz [w,(E)) has its boundary as Wilson loop
W, = Tr(Pexp(i § a)). We will apply this relation to the
four siblings with the YM partition function Eq. (3.1) and
its constraint Eq. (2.25) and discuss the properties of the
Wilson lines.

*We can also introduce an additional Pontryagin square B
term exp(i5 pP(B)) with p € Z, into the path integral, as the
pioneer works Refs. [6,62] do. However, this weight factor term
only will result in shifting (thus relabeling) of the classification of
4d SU(2),_, theories that we are going to reveal. We use the
notations in [8].

ey

(@)

3

“
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(Ky,K;) = (0,0): The gauge bundle constraint is
w,(E) = Bmod2. The magnetic 2-surface U, ~
exp(ir [w,(E)) has no decoration other than the
two-form background B field. Thus the one-Wilson
line W, (which can live on the magnetic two-surface
U,,’s boundary) is Kramer singlet (72 = +1) and
bosonic.

(K{,K,) =(1,0): The gauge bundle constraint
becomes w,(E) = B + w;(TM)?mod 2. The mag-
netic two-surface U, ~ exp(iz [ w,(E)) has a deco-
ration ['wy(TM)? other than the two-form B field.
But ['w;(TM)? is a topological term in a cohomol-
ogy group H?(Z%,U(1)) also in bordism group
Q9 (pt), which is effectively a 1 + 1D Haldane’s
antiferromagnetic quantum spin-one chain (Haldane
chain) protected by time-reversal symmetry. It is
well known that there exists twofold degeneracy due
to Kramer doublet (72 = —1) on the boundary of the
Haldane chain. Thus due to ['w,(7TM)? decoration,
the Wilson line W, is Kramer doublet (7% = —1) and
bosonic.

(Ki,K,) = (0,1): The gauge bundle constraint be-
comes w,(E) = B + w,(TM) mod2. The magnetic
two-surface U, ~ exp(iz [w,(E)) has a decoration
Jwo(TM) other than the two-form B field. But
Jwy(TM) is associated with a spin structure. The
1d boundary of the 2d ['w,(TM) theory supports a
world line of a particle with fermionic statistics. Thus
due to [w,(TM) decoration, the Wilson line W,
living on the boundary of the magnetic two-surface
U,, is fermionic. Since w,(TM) specifies the exten-
sion of O(d) by the fermionic-parity Z4 via the short
exact sequence 1—Z5 —Pin*(d)—>0(d)—1 or
equivalently the induced fiber sequence BZS —

wy(TM
BPin*(d) - BO(d) L>)BZZ‘2”, wo(TM) specifies

a projective representation Pin™ (d) of the spacetime
symmetry O(d) [38]. The Pin"(d) demands the
Euclidean reflection R2 = +1, and thus the Wick
rotated time-reversal transformation 72 = —1 in the
Lorentz signature [40]. Another way to see 7~ |
is to use the methods of symmetry extension and the
pullback trivialization [54,57]. Defining the Wilson
line operator on the boundary of the magnetic two-
surface U, requires a trivialization of w,(TM) = 0,
which amounts to requiring a Pin™ (d) structure. The
Pin"(d) structure imposes 72 = —1 and fermionic
statistics on the line. In summary, due to the
Jwy(TM) decoration, the Wilson line W, is both
Kramer singlet (7> = +1) and fermionic.

(K{,K,) =(1,1): The gauge bundle constraint
is wy(E) = B+ w,(TM)?* + w,(TM)mod2. Since
wy(TM) specifies the extension of O(d) by the
fermionic-parity Z5 via the short exact sequence
1 - 27 - Pin(d) > O(d) > 1 or equivalently
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the induced fiber sequence BZZ — BPin~(d)—

2
BO(@) "IN R27F 6wy (TM)2 +wa(TM)
specifies a projective representation Pin™(d) of the
spacetime symmetry O(d) [38]. The Pin~(d) de-
mands the Euclidean reflection R = —1, and thus
the Wick rotated time-reversal transformation 72 =
+1 in the Lorentz signature [40]. Another way to see
T? = —1 is to use the methods of symmetry exten-
sion and the pullback trivialization [54,57]. Defining
the Wilson line operator on the boundary of the
magnetic two-surface U, requires the trivialization
of w(TM)?*+w,(TM) =0, which amounts to
requiring the Pin~(d) structure. The Pin~(d) struc-
ture imposes 72 = +1 and fermionic statistics on
the line. The combined effect of [w(TM)*+
w,(TM) decoration means that the one-Wilson line
W, is a Kramer singlet (T2 = +1) and fermionic.
In fact, our discussions above are universally applicable to
more general SUNN) YM theories.”® This way of enumer-
ating gauge theories (based on new gauge bundle con-
straints) guides us to obtain new classes of gauge theories
beyond the framework of Ref. [62]. The implications are
not restricted to merely 4d SU(2),_, YM. This phenome-
non (also in [38]) can be poetically phrased as Lorentz
symmetry fractionalization [76].

B. Enumeration of gauge theories from dynamically
gauging 4d SPTs: View from 4d cobordism group data

We have discussed the four siblings of SU(2),_, YM
theories given by Zé%(z) e, [B] in Eq. (3.1), with four

distinct sets of new anomalies derived in Sec. II, and with
Kramer singlet/doublet (72 =+1/ — 1) or bosonic/fermionic
Wilson lines in Sec. III A. With these properties shown, we
are confident that they are really four distinct classes of
SU(2)y_, YM theories (at least at the UV high energy). The
two distinct 't Hooft anomalies of (K, K;) also shows that
SU(2),_, YM theories with distinct K are distinct.

In this subsection, we would like to construct and
enumerate these four sSiblings of SU(2),_, YM theories
by dynamically gauging the SU(2) symmetry from 4d time-
reversal symmetric SU(2)-SPTs. To this end, we follow
Freed-Hopkins [41] to consider a suitable group extension
from the time-reversal symmetry [where the spacetime d
manifold requires the orthogonal group O(d)-structure] via
a SU(2) extension:

1-SU_2)—>G - 0(d) — 1. (3.2)

These 4d SPTs can be regarded as 4d co/bordism
invariants of

Qs

4,tor?

(3.3)

Related studies along this line of analysis have also appeared
in [38,65,66].

which is the torsion subgroup Q. of Qf for all the
possible G’ under the above group extension. The extension
is classified by H*(BO(d),Z,) = Z, x Z, for d > 1,
generated by wi(TM) and w,(TM).

The solution G’ of this extension problem 1 — SU(2) —
G’ - O — 1 is given in [41] with indeed four choices of
G' =0 xSU(2), or Exgz SU(2), or Pin" x5 SU(2),
or Pin~ x, SU(2).”!

Following the similar study in Ref. [38], there is a
correspondence between the element b = K w, (TM)? +
Kyw,(TM) and H?*(BO(d),Z,) = (Z,)*. Tt will soon
become clear that b is related to w,(Vso(3)) — B (i.e., the
difference of the gauge bundle E = Vgq(3) connection and
the background gauge connection B). Then the four central
extension choices labeled by b are the following:

() b=0= G =0(d) xSU(2) = After gauging

SU(2), we gain the gauge bundle constraint with
K, =K,=0,

W2<Vso(3)) -B=0.

We compute the co/bordism group in Table III
(details given in Appendix). For d = 4, we obtain

O(d)xSU(2
Q>

— 73
_ZQ’

(3.4)

whose bordism invariants are generated by three

generators of mod 2 classes:
wi(TM)*,
way(TM)?,

¢, mod 2.

(3.5)

The ¢, is the second Chern class of the SU(2) gauge
bundle.

2) b=w,(TM)> = G' = E(d) x5, SU(2)” = After
gauging SU(2), we gain the gauge bundle constraint
with K; =1 and K, =0,

w1 (Vso3) = B = w(TM)*.

The notation G, xy G, :=% is defined as the pro-

duct group G; x G, mod out their (G;’s and G,’s) common
normal subgroup N [41].
*Here E(d) satisfies the following two short exact sequences:

1 - Z, > E(d) - 0(d) -1,
1 -S0(d) » E(d) —» 7, — 1,

given that we also accept the well-known fact 1 — SO(d) —
O(d) - ZF - 1. Here the above finite groups have physical
interpretations: Z, = ZJ is a bosonic group, and Z, = Z1? is the
extended group under 1 — 75 — 71 — 7T — 1. Thus E(d) =
75x0(d) = SO(d)»zZL" = (SO(d) x Z5)xZE. Another way to
define E(d) is a specific subgroup of O(d) x Z4 given in [41].
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TABLE III. Cobordism groups TP,(O(d) x SU(2)) and co/bordism invariants. Here w;(TM) is the ith Stiefel-
Whitney class of the spacetime tangent bundle, ¢, is the second Chern class of the SU(2) gauge bundle. Here we set
H as the Hopf fibration, the SU(2) bundles on RP*#, CP2, and SU(3)/SO(3) are trivial. See also Appendix.

d TP, :(O(d) x SU(2)) Co/bordism invariants Manifold generators (M, Vso(3))
4 z wi(TM)*, wy(TM)?, c; mod 2 RP*, CP?, (% H)
5 z, w (TM)w+(TM) SU(3)/S0(3)

TABLE IV. Cobordism groups TP,(E(d) xz, SU(2)) and cobordism invariants. Here w;(T'M) is the ith Stiefel-
Whitney class of the spacetime tangent bundle, ¢, is the second Chern class of the U(2) gauge bundle (see
footnote 32). The second component in manifold generators (M, Vgq3)) is the SO(3) gauge bundle over the first
component. Ly, is the real tautological line bundle. H is induced from the Hopf fibration by SU(2) — SO(3). The

SO(3) bundle on SU(3)/SO(3) is trivial. See also Appendix

d TP, (E(d) xz, SU(2)) Cobordism invariants Manifold generators (M, Vso(3))
4 z wi (TM)*, w,(TM)?, c; mod 22 (RP*, 2Ly + 1), (CP2,3), (S* H)

We compute the co/bordism group in Table IV
(details given in Appendix). For d = 4, we obtain

E(d) Xz, SU(2) .
4 tor B

Q

z| (3.6)

whose bordism invariants are generated by three
generators of the mod 2 class:

WI(TM)47
wy(TM)?, (3.7)

¢, mod 2.

E(d) is defined in [41] which is a subgroup
of O(d) x Z,, described by two data (M, ) €
(O(d), Z4) such that the detM = 2.

By a different but more physical understanding
(see footnote 31), we can further obtain that

E(d) = Z5%0(d) = SO(d)»Z1"
= (SO(d) x Z5)»xZF, (3.8)

where the bosonic internal symmetry Z5 and the
time reversal Z2 form the extended group Z2” under
175> 7" > 77 > 1.

Here the ¢, is the second Chern class of the U(2)
gauge bundle.*

#Since the constraint w (TM)* = wy(Vso(3)) is satisfied, let
P> denote the Bockstein homomorphism associated with the
extension Z — Z — 75, and then W3(Vso3)) = fow2(Vso3)) =
Bowi (TM)? = B,Sq'w(TM) = 0 where W3(Vso(3)) is the third
integral Stiefel-Whitney class of Vgq(3) and we have used the fact
that ,Sq' = 0; hence Vo3 lifts to a Spin“(3) = U(2) bundle
Vu(2)» Where ¢, = ¢;(Vyp)) is the second Chern class of Vy ).
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b=w,(TM) = G' =Pin" x5, SU(2) =  After
gauging SU(2), we gain the gauge bundle constraint
with K1 =0 and K2 = 1,

wr(Vsom)) = B = wy(TM).

The co/bordism group is computed in [38,41] and in
Table V (see also Appendix). For d = 4, we obtain

Pin*x,,SU(2)
4, tor

= Z4 X Zz, (39)

whose bordism invariants are generated by gener-
ators of mod 4 and mod 2 classes:

{ sy (2)» witha v € Z, class, (3.10)

wy(TM)?.

This is related to the interacting version of the CI
class topological superconductor in condensed mat-
ter physics [38,41,77]. Details of these topological
terms are discussed in [38].
b=w,(TM)+w,(TM)*= G’ =Pin~ x5, SU(2) =
After gauging SU(2), we gain the gauge bundle
constraint with K; = K, =1,

wa(Vso@)) — B = wo(TM) + wi (TM)>.

The co/bordism group is computed in [38,41] and in
Table VI (see also Appendix). For d = 4, we obtain

Pin-x,SU(2)
Qe — = (Z0) (3.11)

whose bordism invariants are generated by three
generators of mod 2 classes:
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TABLE V. Cobordism groups TP,(Pin*(d) xz, SU(2)) and cobordism invariants. Here W, is the ith Stiefel-
Whitney class of (TM — n) ® Vso(3) Where Vo3 is the associated vector bundle of the SO(3) gauge bundle. The
W; is computed in Eq. (3.16). The 55y(y) is an eta invariant of the Dirac operator defined in [38]. More details of
computation can be read from [38,41]. The second component in manifold generators (M, Vso(3)) is the SO(3)
gauge bundle over the first component. L¢ is the complex tautological line bundle. The SO(3) bundle on
SU(3)/SO(3) is given by the fibration SO(3) — SU(3) — SU(3)/SO(3). See also Appendix. Note that [38]
actually derives that the 4d cobordism invariants are w3 = w,(TM)* 4w (TM)* and 55y o) With 215y (2) = W3 =
wi (TM)w3(TM) + w, (TM)*, but since the third Wu class u3 = w;(TM)w,(TM) = 0 on any four manifold, we
have w(TM)w;(TM) = Sq' (w;(TM)w,(TM)) =0, so by a base change, we can choose the 4d cobordism
invariants to be w,(TM)? and gy (). Also note that the 5d cobordism invariant is actually Ww,ws = (w,(TM)+
w1 (TM)?)(w3(TM) + w(TM)?), but since the third Wu class u3 = w;(TM)w,(TM) = 0 on any five manifold, we
have Sq*(w (TM)w,(TM)) = w,(TM)wy(TM)? +w,(TM)*>w,(TM) + w,(TM)*w5(TM) = 0; also by the Wu
formula, we have w,(TM)w,(TM)?> = Sq'(w,(TM)?) =0 and w,(TM)> = Sq'(w,(TM)*) =0 on any five
manifold, so Wy w3 = wy(TM)w3(TM).

d TP, o (Pin* (d) xz, SU(2)) Cobordism invariants Manifold generators (M, Vso(3))
4 Zy X 2y wo(TM)?, su(a) (CP?, Le + 1), (RP*,3)
5 z, wa (TM)w3(TM) SU(3)/S0(3)

TABLE VI. Cobordism groups TP,(Pin~(d) xz, SU(2)) and cobordism invariants. Here w; is the ith Stiefel-
Whitney class of (TM —n) ® Vso(3) where Vgg3) is the associated vector bundle of the SO(3) gauge bundle. The

w; is computed in Eq. (3.16). The N:)(4) is the number of the zero modes of the Dirac operator in 4d. Its value mod 2 is

a spin-topological invariant known as the mod 2 index defined as Nj, mod 2 in [38]. More details of computation can

be read from [38,41]. We find that the bordism invariant of NE)<4> mod 2 read from Adams chart has the similar form
related to wsij, where 7 is the eta invariant for the 1d Dirac operator, given by the generator of the 1d spin bordism

group Q?ﬁg; (pt) = Z,. The N;)(s) is the number of the zero modes of the Dirac operator in 5d. Its value mod 2 is a

spin-topological invariant known as the mod 2 index defined in [56,57]. We find that the bordism invariant of
N;)(S) mod 2 read from Adams chart has the similar form related to w3 Arf, where Arf is an Arf invariant. The second
component in manifold generators (M, Vgo(3)) is the SO(3) gauge bundle over the first component. L¢ is the
complex tautological line bundle. Ly is the real tautological line bundle. A is induced from the Hopf fibration by
SU(2) — SO(3). The SO(3) bundle on SU(3)/SO(3) is given by the fibration SO(3) — SU(3) — SU(3)/SO(3).
The SO(3) bundle on S' x S$* is induced from the fibration S3 — §' x 7 — §' x §* by SU(2) — SO(3). See also
Appendix. Note that [38] actually derives that the 4d cobordism invariants are W3 = w,(TM)? + w,(TM)*,

Wi =w, (TM)*, and (NE)(4) mod?2), and by a base change, we can choose the 4d cobordism invariants to be

wo (TM)?, wi (TM)*, and (Né)(4) mod 2). Also note that the 5d cobordism invariants are actually W, w3 = (w,(TM) +
w1 (TM)?)(w3(TM)+w,(TM)?) and (Ni)(5> mod 2), but since the third Wu class u3 =w, (TM)w,(TM) =0 on any
five manifold, we have Sq*(w(TM)w,(TM))=w(TM)wo(TM)*+w;(TM)*w,(TM)+w,(TM)>w3(TM) =0
also by Wu formula, we have w, (TM)w,(TM)?* = Sq' (w,(TM)?*) = 0and w(TM)> = Sq' (w;(TM)*) = 0 on any
five manifold, so Wy w3 = wo(TM)w3(TM).

PHYS. REV. D 100, 085012 (2019)

d TP, (Pin~(d) xz, SU(2)) Cobordism invariants Manifold generators (M, V50(3))
4 z; w(TM)2, wy (TM)*, (N(¥ mod2)  (CP? Lc + 1), (RP*,2Lg + 1), (S*. H)
5 73 wa (TM)ws(TM), (N\*) mod 2) SU(3)/S0(3), ' x s*
N{ymod?2, More information about these (co)bordism group calcu-
M 312 lations can be read from [38,41]. See the appendix of [38]
wi(TM)*, (3.12) for a quick background review. In particular, since the
wy(TM)? computation involves no odd torsion, we can use Adams

This is related to the interacting version of the CII
class topological insulator in condensed matter phys-
ics [38,41,77]. Details of these topological terms are
discussed in [38].

spectral sequence to compute QS = 7, (MTG'):
Exti’{z(H*(MTG’, Z,),2,) = 7, (MTG"),.  (3.13)

Here 7,_(MTG'), is the two-completion of the group
7,_s(MTG'). For example,
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MT(O x SU(2)) =

( MO ABSU(2).,,
MT(E x5, SU(2))

(

(

<

T(Pin™ xz, SU(2))
MT(Pin~ x5, SU(2))

The BSU(2), is the disjoint union of BSU(2) and a point,
while X is the suspension. From the short exact sequence
1 -SO - E— Z; — 1, we have an induced short exact
sequence

15 S0 > Exz, SUQ2) - SUQ) xz, Zy — 1. (3.15)
Note that SU(2) xz, Z4 = Spin(3) xz, Z, = Pin"(3), so
MT(E x,, SU(2)) = MSO A S-3MTPin* (3) = MSO A

~3MSpin(3) A 22MZ,.

w(TM ® Vo(3))

W((TM =m) ® Vsop) = —1 =%

— MSO A £3MTPin* (3) =
= MSpin A 2MO(3),
= MSpin A Z3MTO(3).

MSO A =3MSpin(3) A £2MZ,,
(3.14)

|

Let M be an n manifold, and Vgp(3) be the associated
vector bundle of the SO(3) gauge bundle. Below we com-
pute the Stiefel-Whitney classes of (TM—n)® Vo)

They are used to express the cobordism invariants of
Pin*x,, SU(2 . . .
QT @ Below w; means the ith Stiefel-Whitney

class, and w means the total Stiefel-Whitney class; namely,
we have w=1+w; +w, + w3 +---. We denote w; =
wi(Vso@m)) and w; = w;((TM — n) ® Vso(3)). In addition,
the w;(TM) means specifically the ith Stiefel-Whitney
class of spacetime tangent bundle 7M:

14w (TM) +w (TM)? +wy (TM) + nwh + w (TM)? + nw (TM)w), + w3 (TM) + nw) + - - -

=14+w (TM) 4w (TM)* +w,y(TM) +w(TM)? +w3(TM) + - - -.

So ﬂ/l =Wy (TM), Wz = Wl(TM)Z + Wz(TM), W:; =
wi(TM)? + w;3(TM), etc.,

We also use the notation TP for the classification of
topological phases defined in [41], such that

TP (G') = QF - (3.17)

Here are the list of tables summarizing the results in 4d and
in 5d: Tables III, IV, V, and VI.

We conclude this section with a summary. The four
siblings of 4d SU(2),_, YM theories are obtained, spe-
cifically, from summing over the SU(2) gauge connections
of the following four topological terms (i.e., gauging the
SU(2) global symmetry of the following four distinct
SPTs):

(1) (=1)* in Eq. (3.5).

(2) (=1) in Eq. (3.7). (See footnote 32.)

(3) exp(27ivngy(p)) with an odd class of v = 1,3 € Z,

in Eq. (3.10).
@ (=)™ in Eq. (3.12).
These four theories exactly map to the enumeration of four
gauge theories in Sec. Il A. Adding other SPTs/bordism
invariants such as (—1)"(™)" and (=1)*2("™)* (and then
dynamically gauging them), do not alter or gain new classes
of gauge theories. The only tensor product is the gauge

(14+wh+wh+--)"
(3.16)

theory w1th 4d SPTs, namely (4d SU(2),_, YM) ® (4d
SPTs)

IV. TIME-REVERSAL SYMMETRY-ENRICHED 5D
HIGHER-GAUGE TQFTs
A. Partition function of 5d higher-gauge TQFTs
Following the discussions of four classes of 5d time-
reversal and one-form center symmetry Z2 x z5 0 higher-
SPTs Z3.  [M°] in Sec. IIF1 with their partition
(K1.K3)

functions in Eq. (2.61), we proceed to dynamically gauge
the one-form symmetry ZS,[I]' Then we obtain the 5d time-

reversal symmetric enriched topologically ordered state
(SETs) with two-form Z,-valued dynamical B gauge fields.
We expect a precise mathematical formulation requires a
certain version of higher category theory. Below we instead

HFor the classification of the gauge theory, we identify the
following phases:

(gauge theory) ® (SPTs) ~ (gauge theory).

For the classification of 4d SU(2),_, YM, we identify the
following phases:

(4dSU(2),_,YM) ® (4d SPTs) ~ (4dSU(2),_,YM).

See more physically motivated discussions in [38] and Refer-
ences therein.
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TABLE VIL. Partition function Z(M?>) and topological degeneracy of 5d higher-SPTs, for example,
ZSI’TRSql,;(MS) = (—l)fM5 B54' The notations a, f, 7, ¢ are explained in the computation below in Sec. IV B 3.
Z.(M) with M>: (W,0) (S' x RP? x RP?, ya;) (S' x RP*,7¢) (RP? x RP3, aff)
Zial (M) 1 1 1 1
ZSPTBSq]B(MS) 1 1 1 -1
Zipr, g, (1) ! ! -1 !
ZSVTWI(TM)ZSqIR(MS) 1 -1 -1 1
Zspr, IB(MS) 1 -1 1 1

v (TM)Sq

approach from a higher-gauge TQFT perspective. We
can define the four classes of 5d partition functions
Zg%T(Kl &) [M?] as
L, . M)

_|H'(M. 7,)|

_ iz [ 4 (TM)UP(B)+K,w (TM)*Sq' B
|H' (M

7 €
’ 2)|B€H2(M5,Zz)

(4.1)
H(M.2,)

- |H'(M, Z,)|

P>

BEH?(M°,Z,)

ol .5 BSQ'B+(14+K 1 )wi (TM)?Sq' B+w, (TM)Sq' B

(4.2)
_|H' M, Z,)]
- |H' (M, 2,)] 2

B.b.heC2(M5 .2,
ceC3 (M3 ,7,)

exp(iﬂ/ owi(TM) U ¢
) me

+ 6wy (TM) U h+ b U SB + BSq'B

+ (1 4+ K)w(TM)*Sq'B + wz(TM)SqlB) (4.3)

M

~ / 'DB)[Db][Dh][De] exp (m / (dwy (TM))e
4 (dwo(TM))h + bdB + B%dB

+ (1 + Kl)wl(TMf%dB +wy(TM) %dB) : (4.4)

TABLE VIIL

|H(M>.2,)]
|H' (M5 Z,)] ZBGHZ(M?ZZ

In the last step (under the symbol =), we have converted
the 5d higher-cochain TQFT to 5d higher-form gauge field
continuum TQFT for Z3gy . [M’]. Moreover, we can

insert extended operators (say U, X,Y,...) into the path
integral:

5d 5.
Z3r, o MUK Y,

= /[DB}[Db}[Dh][Dc]U-X- Y-
X exp (iﬂ/s(dwl(TM))c + (dw,(TM))h + bdB

1 1 1
+ BEdB +(1+ Kl)wl(TM)2§dB + wz(TM)EdB)

(4.5)

Note that since K,Sq!(w,(TM)B) is trivial for closed five
manifolds, the partition function ZSET [MS] and the

correlation function computed from the path integral
Zy.  [M°U,X.,Y,...] do not depend on K,.
(K1.K3)

B. Partition function and topological degeneracy

Below we compute the partition function Z(M>) on
closed manifolds M>. When M’ = M*x S', we can
interpret it as topological GSD of TQFT. Our computations
follow the strategy in [13,15]. We directly summarize the
results in Tables VII, VIII, and IX.

Partition function Z(M?>) and topological degeneracy of 5d higher-SETs, Lspr,, (MS) =
(=1) fMa BSq' B+(14+K )w (TM)*Sq' B+wy(TM)Sq' B

Z(M3) with M>: 75 S'xS* SIxRP* T2 x §% S x §2 x §2 S! x RP? x RP? RP? x RP?* §5 W
Ziomp(M)  Z2—64 221 Z2=0 Z2=] 2124 22— 22=q Z2=14

Zsgr,,, (MP) 64 1 1 1 4 2 2 2 4
Zsgr,, (MP) 64 1 1 1 4 2 2 2 4
Lsgr,,, (M) 64 1 1 1 + 2 2 2 4
Zser,, (MP) 64 1 1 1 4 2 2 2 4
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TABLE IX. Partition function Z(M?) and topological degen-
eracy of 5d higher SETs, for example, Zgpr (M) =

_1)st BSq'B.

BSq'B
H'(M°.Z
7};112;‘45,23} ZBGHZ(M5,ZZ)(

Z(M>) with M>: W S' x RP? x RP? S' x RP* RP? x RP3

2 (M) 4 8 2 4

Lsgr,,, (M) 0 : ! 2

Zser,.,,, (M) O 8 0 4
5

ZSETW[ (TnPsal B (M ) 4 0 0 4

0 0 2 4

ZSETWZ(TM)SqI B (MS)

1. 5d SPTs as short-range entangled invertible TQFTs

We evaluate the partition function of various 5d iTQFTs
on various manifolds and enumerate the results in
Table VII. Below we denote the five-dimensional Wu
manifold as W = SU(3)/SO(3).

2. 5d SETs, as long-range entangled TQFTs

We evaluate the partition function of various 5d TQFTs
(as 5d SETs) on various manifolds, and enumerate the
results in Tables VIII and IX.

3. Computation

Now we illustrate our computation3 5,

(1) For M = S' x RP* let y be the generator of
H'(S'.Z,) =7, and ¢ be the generator of
H'(RP*,Z,) = Z,. Note that w,(TM) =¢{. The
cohomology groups have that HO(S! x RP#,
Z,) = 7Z,, H'(S' x RP*,Z,) = 73, and H?*(S' x
RP*,Z,) = Z5 whose two generators are y¢ and ¢2.
If B = A,7¢ + 2,¢?, then Sq'B = A,y¢%. Hence

/ BSq]B = 11127
SIxRP*

BSqlB + w1 (TM)ZSqlB = /11/12 + /11.
S'xRP*

(4.6)

(4.7)

On the other hand, since w,(TM) = 0 for S' x RP*,
we have

ZSET(OA())(SI X RP“) - ZSET(()_])(SI X RP4)

_l Z (_1)/11(/12-5—1)’

(4.8)

2 M EZ,

35Interestingly, we notice that the Wu manifold W can
assign a closely related but different partition function

0 5
Zger (W) Zir (W) = |H(M2.25)| o

value: = OV 20

with a distinct

ZBeHZ(MS.Zz)(—l)j“5 BSA'BH(1EK i (TM)*Sq'B _ )

085012-28
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ZSET(1_0)<Sl X RI]:D4) = ZSET(H)(SI X R[FD4>

— 1 Z (_1)/11/12.

2/11,/12622

(4.9)

Since the number of (4, 4,) satisfying the constraint
A4, =1 is only one,

#{(A1. ) € Z3| M =1} =1;  (4.10)

also note that changing 4, to 1, 4+ 1 does not affect
the sum, so

ZSET(()_O)(SI X RP4) = ZSET(],O) (Sl X RP4)
— ZSET(Q.]) (Sl X RP4)
= ZSET(]_,)(SI x RP*)

1
=56-1=1 (4.11)

For M = RP? x RP3, let a be the generator of
H'(RP?,Z,) =7, and B be the generator of
H'(RP3,Z,) = 7,. Note that w(TM)=a.
HO(RP? x RP?, Z,) = Z,, H'(RP? x RP?, Z,) =
73, H*(RP? x RP3, Z,) = Z3 whose three gener-
ators are a?, f%, and af. If B = A,a% + A,% + Azap,
then Sq'B = 1;0?f + A3a8*>. Hence

/ BSq'B =2+ Jods.  (4.12)
RP2xRP3

BSq'B +w(TM)?*Sq'B = 13 + 12s.
RP2xRP?
(4.13)

On the other hand, since w,(TM) + w,(TM)* =0
for RP? x RP3, so

1 2
Zser,, (RP? x RP?) = (=1)B i,

M A Ja€Z,
(4.14)

1 2
ZSET“_O)(R[FDZ x RP3?) =~ Z (=1)f+iats
M AEZ,

(4.15)
Since

#{()«1,/12,/13) (S Z%M% +ﬂ.2/13 - 1} - 2, (416)
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SO

ZSET(().O)(RPZ X RP3) = ZSET(LO)(RPZ X RP3)
= Zsgr,,, (RP? x RP3)
= ZSET(H)(RPZ X RP3)

6-2)=2.  (4.17)

1
T2
(3) For M = §' x RP? x RP?, let y be the generator
of H'(S',Z,) =7, and a; be the generator of
H'(RP?,Z,) =17, of the ith factor RP? (i = 1, 2).
Note that w(TM) =a; +a,. H°(S' x RP*x
RP2,Z,) = Z,, H'(S'x RP2x RP2,Z,) = 73,
H?(S' x RP? x RP?,Z,) = Z5 whose five gener-
ators are al, a3, ya;, ya,, and ajo. If B=
03 + 2203 + Asyay + Agyar +Asa s, then Sq'B =
Iyad + dyas + Asada, + Asaya3. Hence

Al S BSqIB = 11/14 + /1213 + /1315 + 14/15,
(4.18)
|

/ BSq'B +w,(TM)?Sq'B
S'xRP2xRP?

= Jidg + dody + A3ds 4+ Aghs + A3 + Ay (4.19)

On the other hand, since w,(TM) + w,(TM)*> =0
for $1 x RP? x RP2, so

Zser,, (S' x RP? x RP?)

_ l (= 1 )hiathodatisis-+is

(4.20)
4 Ao A3. 44,45 €7,

Zspr,, (S' x RP? x RP?)

— l (_1)/11/14'5‘/12/134‘/13(/15“"1)+/14(25+1).

4/1]./12./13./14.}»5622
(4.21)

Since

#{(A1. . 3. Aas As) € Z53| Ay + dadsy + Iads + Ayl
=1} =12, (4.22)

also note that changing A5 to A5 + 1 does not affect the sum, so

ZSET(0.0)<S1 X RPZ X RPZ) = ZSET(I_O) (Sl X RPZ X RPZ)

1
= Zser,,, (8" X RP? x RP?) = Zggr, , (8" x RP? x RP?) = 7(20 - 12) = 2.

(4) For a 5d Wu manifold W = SU(3)/SO(3),
with HY(W, Z,) = Z,, H'(W,Z,) = 0, note that
w(TW) =0, H*(W, Z,) = Z, which is generated
by wy(TW). Sq'wy(TW) = w3(TW),

ZSET(QO) (W) =2
B=0,w,(TW)

(4.24)

SO

ZSET(W) (W) = ZSET(L(» (W)
= ZSET((“)(W) = ZSET(H)(W) =4.

(_I)BSqlB+w2(TW)SqIB =4,

(4.23)

In the next section, we will use the anyonic string/brane
braiding statistics and the link invariants of 5d TQFTs to
characterize and distinguish these 5d SETs.

V. ANYONIC STRING/BRANE BRAIDING
STATISTICS AND LINK INVARIANTS
OF 5D TQFTS

Now we compute the path integral Eq. (4.5) with
extended operator insertions. To recall the general defi-
nitions, we have

(i) Partition or path integral w/out insertion is

Z (eiS).

BeC2(M,z,)

(ii) In physics, the vacuum expectation value (VEV) of a theory S is defined as

is is
(0) (VEV) ZBECZ_W'ZZ)(e 0) B ZB“ZW-M(" 0) _ pathintegral with insertions O

<O> (VEV) — <1> oS

(VEV) a Zﬂec%gw.zy( ) -

(5.1)

Z ~ pathintegral without insertions
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For example, this includes the link invariant that we will focus on in this section:

(exp(i- - - (Linkinvariants of U, X, Y, ...))) vgy) =

For conventions of our notations, we label the 1d
Wilson line as W, the 2d surface operator as U, U’,
etc., We label the 3d membrane operator as X
and the 4d operator as Y, etc., We label the dd-
hypersurface of general operators that we inserted
as X4, while we label this =%’s (d + 1)d-Seifert-
hypervolume as V41,

In this section, we focus on deriving the general link
invariants for these 5d TQFTs/SETs.3 ® In the next Sec. VI,
we will provide explicit examples of the spacetime
braiding process as the link configurations that can be
detected by these link invariants derived here in Sec. V.
The techniques for computing all these link invariants
below are based on Ref. [12]. Below we simply apply the
methods and notations introduced in Ref. [12].

Caveat: Note that while in the first section VA, we
explicitly study the discrete cochain version of TQFT, in the
sections below we implement the continuum formulation
of TQFT. The reason is related to a fact that the graded
noncommutativity of cochain fields is much more compli-
cated to be dealt with than the continuum differential form
fields. The subtle fact will be commented further in
footnotes 37 and 38. We also note that when we deal with
the continuum differential form fields later in Sec. V B to
Sec. VD, we choose a normalization of differential form
fields as § B € Z with the periodicity ¢ B ~ ¢ B + 2 (thus
more similar to the convention of discrete cochain fields),
instead of the more conventional 39 B € nZ with the
periodicity § B~ ¢ B + 2x.

A. 1w((TM)P(B) and a triple link invariant

5
lesV1>BB (E;(’E%](I) ’E%](ii) )

We start with a 5d TQFT obtained from summing over
two-form field B of 1w, (TM)P(B). This amounts to

gauging the one-form Z, of this 5d SPTs. The resulting
theory is ZSET( , in Eq. (4.5). The topological action

K1=0,Ky=0
and the partition function are

1 1
MS

(5.3)

%For more guidance on the physical interpretations of link
invariants, please see [12] and its introduction.

5d 5.
Z3r, . [MUXY. ]

1 M) >
|
z— / 'DB|[DE|[Db] exp(iS). (5.4)

. I .
Z: Z )exp<lﬂ[W5§6W1(TM)Uc+bU6B

BbeC?(M5.7,
ceC3(M3,2,)

+%WI(TM) u P(B)). (5.5)

We consider the gauge transformation®’:

wi(TM) - w(TM) + éa,
B — B+ 0p,
C—>C+oy+4,
b—b+6¢+p.

under which the action transforms as

1
S—>7r/ S0 (TM) +5a)(BU B+ BUSH +op U B
MS

+ 6 USp+ BL1J5B + 5ﬂL1J5B)

+%5W1(TM)(Z‘+/1) + (b + u)8B. (5.7)

The gauge variance of the action is

AS:n/ 1Vvl(TM)((Sﬂu(SﬂJFZ(SﬁuB+6(5ﬁuB))
M52 1

1
+§6a(B U B+BL1J§B+5ﬁU5ﬁ

+26UB+ 5(5ﬂLlJB))

1
+ o 0w (TM)2 + uoB

0ne may consider adding additional terms on the gauge
transformations, such as w;(TM) = w,(TM) + da(t,x) + o, (1,x)
and B — B + (1, x) + a(t, x), etc., However, terms such as
a,(t,x) = a; and ay(t, x) = a, will need to be constant, which
acts as the higher-form global symmetry transformation, instead
of gauge transformation.
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- 1 - In Eq. (5.9), we used 6(a(BUB+BU,6B))=6a(BUB +
= ”/Ms 2O (TM)(Bop) + (&, (TM)(BB) BU, 5B) + a(SBUB +BUSB + 5(BU, 5B)) = 6a(BUB +
1 BU,6B)+a(2BUSB+u,6B), and we dropped the total

+ W (TM)B5B) + 55% (T™M )(5,3\]JB ) derivative term on a closed five manifold. The solution of

: : gauge invariance, i.e., AS = 0, imposes39
- <aB§B + Eau268> — adpéB + Eéwl (TM)A + uéB.

A= —p5f — 2B — §fUB mod 4,
(5.9) !

1
=—w(TM B+ - ) d2. 5.14
In Eq. (5.8), we have used the formula®® # W(TM) + aB + 2au2 + agpmo ( )

B U8B — 6B U B+ 5USB + &PUB = 5(6pUB).  (5.11) The three-submanifold gauge invariant operator is
1 1 1

and 5’ = 0. In Eq. (5.9), we have used integration by part: i
for a closed five manifold without boundary, after integra- X = exp (5 k ( / ¢+ / P(B )>>
tion by part we can drop the boundary term §(- - -). Since = ve
8B = 8*f = 8*a = 0, we drop sa(5p U 68 + 8(56 U, B)) iz / L s3vx L sl

’ = —k o (X o (V B , 5.15
which has no effect on a closed five manifold without P 2 S (Z)e +5(V)P(B) ( )
boundary. Denote u, = w,(TM) + w;(TM)? as the second

Wu class. We have also used the formula in footnote 37 as where k € Z,. To verify the gauge invariance, we use

P(B+8) =P(B)+5fUdp+25fU B+ 558U, B)
and 6B = 0 on the four-submanifold Seifert volume V*.

The two-submanifold (two-surface) operator gauge
6BL1J§B:quéB:u2¢‘SB. (5.13)  invariant is

BUGSB—6BU B +5BUSB + BUS'B = 6(BUSB).  (5.12)

|
U= exp(imf(/zzb—/‘/3W1(TM)B—;/V3W1(TM)L¢2>>
= exp (iﬂf(Als b5+ (22) — (wl(TM)B +%WI(TM)M2)5L(V3)>)

— exp(int < A bsH(E?) - <w1 (TM)B + %wl (TM) (wy(TM) + w, (TM)Z))5L(V3)>> : (5.16)

*This is based on Steenrod’s work “Products of Cocycles and Extensions of Mappings” [61], which derives

S(uuv) = (—1)P+‘1"'MAU11) + (—1)P‘1+P+‘11}Aulu + Suuv + (=1)Puusw, (5.10)
1 - - 1 1
where u € CP and v € C9.

*In general, when we study action Eq. (5.3), we have made a convenient choice with a term 8, (TM) U ¢ instead of & U &, (TM).
For a generic three-cochain x, 5w, (TM)x = x6w,(TM) is not true; by Steenrod’s formula in footnote 37 Eq. (5.10), 6w, (TM)x =
x6w (TM) + 6x Uy 6w (TM) — 8(x Uy 6w, (TM)), we can only drop the total derivative terms (i.e., the coboundary terms). In our
present case, we consider x = % Pop + BB + %5/)’ Uy B. Soif 6x Uy 6w (TM) is a coboundary, then we can also drop it, which results in

A= =2x = —pop - 26B — 5pUB mod4.
If 6x U; 6w, (TM) is not a coboundary, we need the extra term

5w (TM)x = xéw((TM) + 5xL1J5Vv 1(TM) + atotal derivative /coboundary term.

When 6x Uy 6w, (TM) is not a coboundary, this results in a modified gauge transformation to 4. By writing the action as in Eq. (5.3), we
can avoid additional complications, and thus we end up with a simpler gauge transformation Eq. (5.14). The graded noncommutativity
of cochain fields is much more complicated than the case for continuum differential form fields. J.W. thanks Pierre Deligne for a
discussion on the related issues.
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where £ € Z, is an integer mod 2. To verify that U is gauge invariant, we use 6B = 6w, (TM) = 0 on the three-submanifold
Seifert volume V3.
We insert X, U;), and U ;) into the path integral Z, and write the correlation function either in the confinuum field theory

formulation or in the discrete cochain field theory formulation, interchangeably as

(XU Ugiy) = /[DB][DE][Db}XU(i)U(m exp(iS),

1 1
5 M3
gy

We compute the correlation functions as follows:
(1) Integrating out ¢ yields
oW, (TM) = ks (Z3),
Wi (TM) = ks (V$); (5.18)

hence as a consequence, 8*W,;(TM) = 5(k6*(Z3,)) = 0. So with the above configuration constraint, we get the
double-counting mod 2 cancellation in the exponent of exp(Zk( [, 5L(VE)P(B))) x exp(in [y5 1, (TM)
P(B)) = 1. This boils down to

(XU Ugsy) = / (DB|[Db]U ;) Uy exp (m /

(2) Integrating out b yields
8B = £ (Xy, ) + fm)(sl(z%](m),
B = f(i)5L(V%/(i)) + f(ii)él(V%](m)- (5.20)
(3) We finally integrate out B, from Eq. (5.19):
(XU Ugi))

_ /[DB]C(—iﬂ(st (W (TM)B+3iv, (TM)(WQ(TM)er](TM)Z))(ZU)(;L(V%/(D)Jrf(“)éj_(vi/(m))))
Wy (TM)=ks- (v‘)‘()A
B:t’(i)ﬁL(‘?J(i))

et Vg,

/ [DB]e s (31 (THM)B-37 (TM) (o (TM) 430 (7)) )

wl(z’m):kal(v‘)‘().
B=¢(i)oL (v3 Candt (V3.
(1) ( U(i))+ (i) 0~ ( U(ii))

= [DB]e(_i”(st () (TM)BB+Sq> (4, (TM)B)))) (5.21)
W (TM):krsi(v?{), .
B VP Vg -
(i) (i)
— | (DB s (1 (TM) BB, (TA)BB (350, (Th0) (495)) (5:22)
Wy (TM):/«SJ-(V‘)‘()A,SQ:] (TM)=ks+ (2§(>: .
B:f(i)ai(vi(i)>+f(ii),sL(vz/(ii)>.
aB=ret (2, et ).
(i) (ii)
(=im(ke o) iy # (VENVE, OVE )+ () (84 (22 )+65(E ) . .
= (i) (ii) XU Uy X Y Y (Self—lntersectmg#terms) (5.23)
—in(kt i€ ) TIKO) (23,52, 52
~ (=i ( (1)% (ii) ( XUy U(ii)))) ' (524)
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In Eq. (5.21), we used wl(TM Y(wo(TM) + Z%](m) =0 by default. Overall, under the default
wi (TM )2)>B =w (TM )”23 Sq ( 1( ) ) In assumption and the clarifications in footnote 40, we
Eq. (5.22), we rewrote 2W1 (TM)P(B) via® obtain a final relation between Eq. (5.23) and our
1 final effective answer Eq. (5.24). We use the con-
—w(TM)u,B gruence symbol (=) to express that other unwanted
2 terms can be removed by design.
=S¢ <1 i, (TM) B) In summary, we have5 dc?ﬁved the link invariant for the 5d
TQFT ZSET(KI:O.KZ:O) [M ] m Eq (524)

1 (TM)BB + Sq Gwl(TM))sqlB

5
#(VEOVE, V] ) STIK (33,53 53 L (5.25)

l\.)l'—' l\)l'—

Wi (TM)BB + 5 2 <§ 5V~V1(TM)> (E 53)' The path integral, with appropriate insertions of extended

operators, becomes Eq. (5.24) which provides the above
We plugged all the constraints into the path integral  [ipnk invariant.

Eq. (5.22) to obtain Eq. (5.23). T we propose a setup

to remove or renormalize the (self-intersecting # B. w,(TM)3B=w,(TM)*Sq'B

terms) that appeared in Eq. (5.24), described in

footnote 40. The second exponent in Eq. (5.23) 1. Version I: w,(TM)*B and a quartic link invariant
shows that  [y,s 64 () (64 (XF, ) + 64 (X7,)) = Qlk(s)(23 2 EZh)

p>
3 A2 3 A2 - Y
#(Ex NIy ) HH#(EIx N >’ wh1cl.1 cou.nts the As a test example, we con51der a 5d TQFT obtained from
number of 1ntersect10ns between our insertions of summing over two-form field B with the topological action
three-surface and twp-surface. However, we choose w,(TM)3B (i.e., gauging the one-form Z, symmetry of this
by default that our insertions of three-surface and 54 hioher SPTs). For simplicity, we convert the cochain
two-surface have no intersections (to avoid unnec- TQFT to a differential-form continuum TQFT. The parti-
essary singularities). Namely, we set #(Zj, N tion function and the topological action of the gauged
Z%,(n)) =0 for (n)=(i) or (ii), and #<Z%/m N theory (see footnote 15) are

“*We use the Cartan formula of the Steenrod square: Sq?(uv) = (Sq?u)v + (Sq'u)(Sq'v) + uSq2(v) where u, v € H*(M, Z,).

*'Here are some more explanations to derive Eq. (5.23):

(@)

(i)

(iii)

For f[DB]e_i”(st (#,(TM)BB))

Wl(TM) ), , we get a mutual-quadratic crossing term V;’](,) N V%/(N) with a multiple 2z

i)t (vU )+ (37) 0T w3 ).

® Y(i)

. 2a#(VinV3, Vi
exponent in e mH Y Yy ) which does not contribute to the expectation value. There are also two self-quadratic terms

V%j(") n V?/(n) for (n) = (i) or (ii). These self-quadratic terms contribute, in principle, infinite many intersecting numbers in
#(Vin V*?](n) N V%](m) for (m) = (i) or (ii). Since a multiple 27 exponent has zero contribution to the expectation value,
therefore either we can design an even but infinite number of points on each of # (V4 N V%J(..) N V%,(m) for (n) = (i) or (ii) or we

can absorb them into the (self-intersecting # terms) in Eq. (5.23). In either case, this term does not have any net contribution in
the end at Eq. (5.24).

: 1~ . . . .
For [ [DB]&:_I”(IM5 G (TM)BE)) ’M(TM) W), , we get a mutual-quadratic crossing term V3, 0 Vg, with a multiple 7

B= (() (v +f(")ai(v ).

3
u(i) Uiy

#(VenVi nvi . . .. . . .
VeV, Vi) , which does contribute to the expectation value when this intersecting number # is odd, in a 1

exponent in ¢
mod 2 effect. There are also two self-quadratic terms VU( n V%,(") for (n) = (i) or (ii). Again either we can design a quadruple/
four-multiplet but infinite number of points for each of #(V§n V?/(n) N V?,m)) or we can absorb them into the
(self-intersecting # terms) in Eq. (5.23).

—in s 5 —iz | 5 (§(k6H(Z3)) 5i(22 )+f,, (22, )
For 33, [[DBle = utom 7o) Jus &€

oo (TM) k5 (5 Y™’ we find the exponent

55:/(i)5i(2%/(iJ )+/(ii>5i (=2

U(m)

depends on the intersecting number # (X3 N Z%/m) for (n) = (i) or (ii), between three-surface and two-surface in a five
manifold—although generically this number # (3 N Z%j(“)) is finite but can be nonzero, we design by default that there is no
intersection between any of our insertions of three-surface and two-surface into the path integral. Thus we set # (X3 N 2%,“‘)) =0
by default.
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zZ- / (DB|[Db][De] exp(iS), (5.26)

S = 71'/ cdw,(TM) + bdB +w,(TM)*B.  (5.27)
MS

This 5d TQFT is distinct from any of four classes of
ZSET(KI.K7)7 but it still serves as a useful toy model.

We first specify the gauge transformations of various
fields. Let us assume the gauge transformations take the
following form (see footnote 36):

wi(TM) = w(TM) + da,
B - B +dp,
c—c+dy+ 1,
b b+dl+p (5.28)

The variation of action under the gauge transformations is

S-S+ 71'/ dydw,(TM) + Adw,(TM) + d{dB + udB
M5

+ (dadaw, (TM) + w,(TM)*da + dadada)B
+ (W (TM)? + dadaw, (TM)

+w(TM)?*da + dadada)dp (5.29)
=S+ 77.'/ Adw(TM) + udB
M3
+ (adaBdw(TM) — adaw,(TM)dB)
—aw(TM)?dB — adadadB
+w (TM)?Bdw,(TM) + adadBdw,(TM), (5.30)

where we have used integration by part. For a closed five
manifold without boundary, after integration by part we
drop the total derivative terms d(- - -) which have no effect
on a closed five manifold without boundary. The gauge
variance of the action, i.e., AS = 0, requires
A = —adaB —w,(TM)?*p — adadp,
u = adaw,(TM) + aw,(TM)? + adada. (5.31)

The gauge invariant three-submanifold operator is

X = exp(ink(/zz c+/v4 WI(TM)23>>

=exp (iﬂk <A4 (8H(Z)e + sH(VhHw, (TM)zB)> > :

(5.32)
|

XX XanU) = /[DB] [Db]U exp <i7z/

de)

and the gauge invariant two-surface operator is

Uzexp(iﬂf(/zzb—//3 wl(TM)3)>

= exp (iﬂf (/ (6+(Z*)b - 5L(V3)w1(TM)3))>,
MS
(5.33)
where k, ¢ € Z,. To verify the gauge invariance, we need
to use dw;(TM) = dB = 0 on the two-surfaces and three-
submanifolds.
To compute the link invariants, we insert X, X,

Xiii)» U into the path integral Z. In the continuum field
theory formulation, the link invariant is

(X)X i) X iy U)
= /[DB][DC][Db]X(i)X(ii)X(iii)Uexp(is)
= /[DB][Dc][pb]x(i)Xm)X(iii)U

X exp <iﬂ / cdw(TM) + bdB + w, (TM)3B).
MS

(5.34)
We compute (X)X 35X 45) U) as follows:
(1) Integrating out ¢, we get
dw (TM) = k(i)5l(2§(m) + k(ii)éL(z‘g((ﬁ))
+ k(iii)él(z‘;{(m))’
wi(TM) = ko™ (Vy, ) + kad- (V)
+ k(iii)fsl(V?(( )- (5.35)

iii)

With the above configuration constraint, we
get the double-counting mod 2 cancellation in the
exponent of exp(in(fys wi(TM)*B(ka5*(V, ) +
kiiiy 04 (Vi) + kaiin 84 (Vi ) exp (i fyys wi x
(TM)*B) = 1. Consequently the link invariant boils
down to

(5.36)
WI(TM>:k(i)5L<V§((i))+k(ii)5L(V;‘(i JkGindt (Vi )

(i) (iii)
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(2) Integrating out b further yields the constraint

dB = ¢854 (22),
B = ¢5-(V3). (5.37)

(3) We finally integrate out B as follows:

‘ Xy XX U) ‘

= /[DB]e—iﬂ(fMS wi (TM)*¢6-(V3))

wi (TM):k(i)ai(v;‘((i) )+k<ﬁ)5L(V3‘((ii) Hk(‘“)él(vi(iii) )
B:mi(vfj).

_ / (DBl s W (T4°B)

wi (TM):k(i),sl(v§(<i) )+k(ii)5l-(v‘)‘((m )+k(iii)5¢(v4 ). (5 . 38)

sl (y3
B=t5-(V3).

(=i (kg ki K iy € (# (Vy, i nvy  nvy nv3)

3 4 4
o . an)+#(vX(ﬁ>va

4 3 4 4 4
i) nVX(i)an)+#<VX(iii)nVX(i)nVX

= (i) (iii)

(i)

# (V;‘(m N v;‘((m) n V;‘((m NV + # (Vé‘(“m N V;‘Qm n V;‘(m NV3)+ # (V‘}(m) N V§(m n Vi(im nV3i))))

- (-++) - (self-intersecting # terms) (5.39)
o Tk k6% (Vi Vi Wiy V) () (5.40)
~ e(_i”(k<i)k(“>k(iii)f'ﬁQlk(S)(zg%i) ’Eg((ii)’zi((m) ) . ( . ) . (5.41)

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.39), following
the same strategy in footnote 40.
ForS = 7 [};s cdw,(TM) + bdB + w,(TM)?B, we derive the link invariant for the 5d TQFT Zggr[M°] in Eq. (5.39) and
Eq. (5.40):

#(VE, N Vi, nVE, 0 V) = QO 5 2 2] (5.42)

The path integral with appropriate extended operator insertions becomes Eq. (5.40) which provides the above link invariant.
However, note that the factorial 3! = 6 trivializes the complex ' phase to €. It may be possible to take into account (see
footnote 38) from the subtle graded noncommutativity of the cochain field effect. Thus one may need to go beyond the
continuum differential form TQFT formulation by using the cochain TQFT formulation in order to see the subleading
effect.

2. Version II: wy(TM)*Sq'B and a triple link invariant lefvsl )wldB<2§Y(i)’E§((ii) X%)

As another test example, we consider a 5d TQFT obtained from summing over two-form field B with the topological
action w (TM)?Sq' B. We again use the continuum version of the TQFT.42 Its partition function and the topological action
(see footnote 15) are

Z= / [DB][Db][De] exp(iS), (5.43)

S=r / cdw,(TM) + bdB + w,(TM)?Sq!B, (5.44)
M3

“Even though w, (TM)?Sq' B is a rewriting of w; (TM)?B on a closed five manifold, it turns out that we still gain new insights about
an additional link invariant.
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1
S—z / cdw,(TM) + bdB 4w, (TM)* 34B. (5.45)
MS

We assume the gauge transformations have the following
ansatz:

wi(TM) - wi(TM) + da,
B — B+ dp,
c—c+dy+ 1,

b—b+dl+p (5.46)

Under the gauge transformations, the action transforms as
S-S+ 71'/ dydw,(TM) + Adw,(TM) + d{dB + udB
MS

1
+ (w(TM)da + daw,(TM) + dada) EdB
+ (W (TM)? + w(TM)da + daw, (TM)

1
+ dada) &5 (5.47)

=S+ 7[/ Adw, (TM) + udB
MS

1
+ 3 (wi(TM)da + daw,(TM) + dada)dB, (5.48)
|

where we have used integration by part. AS = 0 requires

A=0,
1
n=-3 (wi(TM)da + daw(TM) + dada).  (5.49)
The gauge invariant three-submanifold operator is
X = exp(ink(/ c>>
23
= exp <iﬂ,’k (/ (6+ (23)6)) ) , (5.50)
MS

and the gauge invariant two-surface operator is

U = exp (imf (L <b + %wl (TM)2)>>

— explin? (L <5¢(22) (b + %wl(TM)2)>> . (5.51)

where k,7 € Z,.
We proceed to compute the link invariants by inserting
Xy, Xii), U into the path integral Z,

(XX U) = / (DB|[De][Db)X )X iy U expliS).

(X@Xa)U) = /[DB] [Dc][Db]X )X i) U exp (iﬂ.’/

To evaluate (X oHXaU ), we integrate out various fields step by step:

(1) Integrating out c, we get

wi(TM) =

The link invariant thus boils down to

(XpXaU) = / [DB][Db]U exp <i7r [M _bdB + wi (TM)? %dB)

(2) Integrate out b, we get the constraint

1
M3
dw) (TM) = k)& (Zx,, ) + kai o™ (Zx, )-

0 (Vi) + ko™ (Vi )- (5.53)

. (5.54)

wi (TM):km&L(V;‘((i) )+k(ﬁ>5i(v§((ii) )
dB = ¢854 (22),

B = ¢5-(V3). (5.55)
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(3) We finally integrate out B in Eq. (5.54):

(X XaiyU)

_ / (DBl [ s hwr (TM)2£6* (534w, (TM)21dB)

1 (TM)=k 8- (V4 koot (vA ),
wi (TM)=kj) (vX(i))+ (ii)® <VX(ii))

B:mL(vZ)
—iz( [ Siw,(TM)*dB+w, (TM)*}dB
— /[DB}G( <fM52 1( ) l( 2 ) ‘”'I(TM):k(i)‘SL(V;‘((,))*k(ii)‘sL(V;‘((_,))» (556)
B:mi(v?j).
ik s 4 4 2 4 4 2
_ e( ur(k(,)k(")f(#(VX(UnVX(ii)nZU)Jr#(Vx(ii)nVX(i)nEU))))
- (+-+) - (self-intersecting # terms) (5.57)
: (5) 3 3 2 (5) 3 3 2
—ist(kiyk sy - (TIK 3 F2)4TIK » 33 3
L e e A e ) U))))-("')- (5.58)

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.57), following

the same strategy as footnote 40.

For S = x [,s cdw,(TM) + bdB + w(TM)? 1 dB, we derive the link invariant for the 5d TQFT Zggr[M°] in Eq. (5.57)

and Eq. (5.58):

#(V4, nx2)

nV“i

) R —
=TI, 45 (S, T

22|

(5.59)

The path integral with appropriate extended operator
insertions become Eq. (5.58) which provides the above
link invariant. However, note that the two terms on the
exponent of Eq. (5.58) are the same, which trivializes the
complex e'” to e?7. It may be possible to take into account
(see footnote 38) from the subtle graded noncommutativity
of the cochain field effect. Thus one may need to go beyond
the continuum differential form TQFT formulation by
using the cochain TQFT formulation in order to see the
subleading effect.

C. w3(TM)B=w,(TM)Sq'B and a quadratic link
. . 5
invariant kah)d 5(Z3.2%)
We further consider a 5d TQFT obtained from summing
over two-form field B of w3(TM)B = w,(TM)Sq'B. We

again adopt the continuum version of TQFT. The partition
function and action (see footnote 15) are

Z- / 'DB][Db|[D]exp(iS),  (5.60)
S = 7[/ hdws(TM) + bdB + w,(TM)Sq'B,  (5.61)
MS
1
S—x / o (TM) + bdB + w(TM) SdB.  (5.62)
MS

We assume the gauge transformations have the following
ansatz:

wo(TM) = wy(TM) + da,
B — B+ dp,
h—h+dy+ 4,

b—b+dl +p. (5.63)

Under the gauge transformation, the action transforms as

S-S+ ﬂ/ dydw,(TM) + Adw,(TM) + d¢dB + udB
M3

1 1 1
- daEdB +w,(TM) Edzﬁ + daidzﬂ (5.64)
1
=S+ 71'/ Adw,(TM) + pdB + <da>dB
M3 2
1
+ <_§dﬁ> dw,(TM). (5.65)

Thus AS = 0 requires
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i= Gdﬂ),
ﬂZ—Gda).

There are two types of gauge invariant two-surface oper-
ators,

eenl( [ )

(5.66)

:exp<ink< /M 5 (5L(22)h—5L(v3)%dB>>> (5.67)
— exp (irzk < /M 5 (5L(22) (h - %B)))) (5.68)
and
U— exp<iﬂf(/22 b+ /W%dwz(m)»
:exp(in’f(/zzb—k/):z%wz(TM)))
— exp (izrf (A 54 (2) (b + %wz(TM)> ) ) (5.69)

where k,7 € Z,.
We define the link invariant by inserting U’, U into the
path integral Z

(U'v) = /[DB][Dh][Db}U’Uexp
X <izr/S hdw,(TM) + bdB + wz(TM)%dB)

Below we evaluate (U'U) by integrating out various fields:
(1) Integrating out h, we get

(5.70)

Plugging the above constraints into the partition
function, we find the double-counting mod 2 can-
cellation in the exponent of exp(iz( [,;s 6-(V3,) x
XdB + w,(TM)1dB)) = 1. Thus the link invariant
boils down to

(U'u) = /[DB][Db]UeXp

X (iﬂAﬁ de>

(5.71)

wz(TM):k(SL(V‘Z,)

(2) Integrating out b, we get the constraint

dB = £5+(32),

B =¢5+(V3). (5.72)
(3) We finally integrate out B in Eq. (5.71):
(v'v)
_ / D B]e—iﬂ( [ s hoa(TM)E8" (52)) it
peest ()
- / [DB]e( - fysd2(T4)45) i, (573)
b5t (v3)

_ ol #(vV],nz))) (5.74)
o | Cir KO (5], )| (5.75)

We derive the link invariant for the 5d TQFT Zggr[M?] for
S =7 [yys hdw,(TM) + bdB + w,(TM)Sq' B in Eq. (5.75):

5
#(V3, nI3) =LkO (32, 53|

(5.76)

The path integral with appropriate extended operators
insertions become Eq. (5.75) which provides the above
link invariant.

D. BSq'B+ (1+K;)w{(TM)*Sq'B +w,(TM)Sq'B and
more link invariants: Tlk "> (2}@,2}@,2@),

wiw,dB
5 5
Lkégs(f’%}(i) ’Zﬁ(m ), and kavz)dB(E%,,,E%])

We finally consider the generic form including the four
classes of Zg%T(Kl.Kz) in Eq. (4.5) by gauging Zg%T(K],m in
Eq. (2.56), with (K, K,) € (Z,,Z,) labeling the four
siblings. Below, we find it convenient to introduce K’
via K =1+ K| mod 2.

The partition function and action (see footnote 15) are

Z— / (DB|[DB][DA][De] exp(iS),  (5.77)

S = 71'/ K cdw,(TM) + hdw,(TM) + bdB + BSq'B
MS

+ Kiw(TM)*Sq'B + w,(TM)Sq' B, (5.78)

1

1 1
+ Kyw (TM)? EdB +w,(TM) 5dB. (5.79)
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1. Gauge invariance
We assume the following ansatz of the gauge transformations:

wi(TM) - w(TM) + day,

wo(TM) = w,(TM) + da,,
B - B +dp,
c—c+dy + 44,
h—= h+dy, + 1,
b—b+dl+ p.

The gauge variation of the action is

S-S+ ”AP K'\dy dw(TM) + K\ A;dw(TM) + dy,dw,(TM) + Aydw,(TM)
+d{dB + udB + dﬁ%dB + B%dzﬂ + dﬁ%dzﬁ
+ K\ (w (TM)da; + dayw(TM) + daldal)%dB
+ K| (W (TM)? + w(TM)da; + dayw, (TM) 4 da,da; ) %dzﬂ

1 1 1
+ daZEdB + WQ(TM)de,B + da2 Edzﬂ

1 1
=S+ ﬂ'/ K 21dw(TM) + A,dw,(TM) + udB + <§da2> dB + <—§dﬂ> dw,(TM)
M5
1
—|— Kll 5 (W1 (TM)d(Xl + d(xlwl (TM) —|— daldal)dB,
where we have used integration by part. Gauge invariance, i.e., AS = 0, requires

Kllll - O,

1 1
H = _K,I 5 (Wl (TM)dal + da1w1 (TM) + daldal) - zdaz.

2. Extended two-surface/three-brane operators and link invariants
The gauge invariant three-manifold operator is

X = exp <i7rkK’1 ( L 3 c>)
— exp <mk(1 + K1><AS(5L(23>C)>>.

X is trivial when K| =14 K; =0 mod 2.
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There are two types of gauge invariant two-surface operators,

ool 1)
oo [ (o))

ofos( [ (0s-12)

(o o-12)

U= exp <ima</22 <b n 1<1’%w1(TM)2 + %Wz(TM))))
el e i)
(

exp imf<A45 <5L(z2)(b+ (1 —I—Kl)%w](TM)z —l—%wz(TM))))), (5.86)

ik’

= exp| izk’

and

where k, k', ¢ € Z,.
Inserting X, X jj)» U,Uu ()» Ui into path integral Z, we define the link invariant as

XXy U'UnUgiy) = /[DB][Db][Dh}[DC]X(i)X(ii>U'U<i)U<ii) exp(iS)

— [ DBDH DD X0V Uiy exp (i | e (T

1 1 1
We evaluate the path integral below:
(1) Integrating out ¢, we get
K\ dw\(TM) = K (ka)d* (2%, ) + kai o (Zx, ))-
Kiwi (TM) = K} (k8- (Ve ) + Ky 8-(V4,))- (5.88)

We keep K| on both sides because when K| = 1 mod 2 we have this constraint; while when K| = 0 mod 2 the
constraint is trivial. Using the above constraints, the path integral boils down to

1
M3
1 1
+ Ky 'wi (TM)? 4B +wy(TM) 5d3> |kt wy(ra)=k, (ka3 (Vi Vrkand* (v, ))° (5.89)

(2) Integrating out i, we get

dw,(TM) = K's+(22,),
wy(TM) = K'6-(V3,). (5.90)
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Substituting these into the path integral, we find
1
<X(i)X(ii) U/U(i)U(ii)> = /[DB] [Db] U(i)U(ii) exp <17I/ bdB + BEdB
MS
1
+ K/] wi (TM)2 EdB 'K’IWHTM)K', (k(i)ﬁiwz)t((i))M(ii)éL(Vﬁ((ii)))q. (591)
»1:2(71\4):1{’5#%,).
(3) Integrating out b, we get the constraint
dB = f(i)él (Z%/(i)) + f(ii)él (Z%](ii)),
B = f(i)csl(vzm) + f(ii>5l(v%,(m). (5.92)
(4) We finally integrate out B in Eq. (5.89):
(Xo X U'UnUpy)|

= [Blexp(<in( [ K (M7 waTh) 05 (5, ) + 0, )

1 1
+ BEdB + Kiw (TM)? EdB) Ky (FW) =K (g 5V 0.

X 7 Vg
wo (TM)=K'51 (V3 ),

_ 3 sL(y3
Bff(i){sl(vU@Hf(ii)a (VU(ii))

~ [ Bjexp(<in( [ 5 Kim(rmy s wara0)a + 5308

1
+ KIIWI (TM)zidB)> KIIWI(TM):KII(“(i)'SL( 4

Vv
U]

)+k(ii)’sL(V§((..)>)’ (5-93)
11
wo (TM)=K'5L (V3 ),

5L (v3 3
B=C(;)6 (vU(i))w(mai(vu(m

= exp (—iﬂ' (K,I k(l)k 2 # (VX< ) n V;‘((ii) N (bﬂméj‘ (Z%](i)) + l/ﬂ(ii)éj‘ (Z%J(ii) )))

2
- (+-+) - (self-intersecting # terms) (5.94)

Keg K e
+ ( SVl N )+ # (VN 2%,@)) + B (# (VY nZh,) + #(VE, 0 z%,@))))

=~ exp <—m <K’1 (kaykan g - 2T11<<5>(23 2* 22 ) + kgiykan i) - 2T1k(5)(2§(m, z}(m, z%](m))

Kt K'¢ i
+( 2()-Lk<5)( U/’ZZ )+%-Lk<5)( U,,zg( )>+f iy - - LkG (22 z%](ii>)>>.(...), (5.95)

We propose a setup to remove or renormalize the (self-intersecting # terms) that appeared in Eq. (5.94), following
the same strategy as footnote 40.

For S =7 [ys K\cdw,(TM) + hdw,(TM) + bdB + B1dB + K \w (TM)*1dB + w,(TM) 1dB, we derive the link
invariant for the 5d TQFT Zggr[M?] in Eq. (5.94) and Eq. (5.95):

K kykaiy - 2#(Vy, 0 Vi, N (€00t (Zg,) + Cad (Zg,)))

+ ("‘” H(VENEY) G # (VN 2%,@)) + 00 (#(Vy, N TR )+ # (VY NEEL)

5.96)
_ (5) 3 3 2 (5) 3 3 2 (
= (14 Ky) (ke ko € ) - ZlewlwldB(z X Zu) T Rk i - 2T ap (Bx - D Z0,))

Kt 5
+(%-Lk$v3d3< 2.5 )+ L) (52, 5 >)+»f Chi) - Lkinap(Z3, . 23 -
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The path integral with appropriate extended operator
insertions becomes Eq. (5.95) which provides the above
link invariant.

3. (K1.K,)=(0,0) or (0, 1): First
and third siblings

Sd . . . . . . .
The ZSET(KI:(),KZ:O) gives rise to a 5d triple link invariant:

(1) lef )BB in Eq. (5.25) of Sec. VA. We present an
1
exemplary link configuration later in Sec. VI B that
can be detected by this link invariant.

In another equivalent expression, ZSET(Klf() a0

Eq. (4.5) gives rise to other link invariants in Eq. (5.96)
including

(1) leévl)wldB(ZX( ’ ’)(“

link in 5d (although seemly undetectable due to an
exponent factor 2z in the expectation value). We
present an exemplary link configuration later in
(Sec VIC) that can be detected by this link invariant.
(i1) Lde) B(ZZ Ug)» @ quadratic link of two-surfaces
in 5d. We present an exemplary link configuration
later in Sec. VIE that can be detected by this link
invariant.
(iii) Lk )dB(Z%j,, ¥?), another quadratic link of two-
surfaces in 5d. We present an exemplary link con-
figuration later in Sec. VIF that can be detected by
this link invariant.

Physically, these link invariants may be related to each
other by rearranging the spacetime braiding process of
strings/branes. It will be interesting to find a precise
mathematical equality to relate these link invariants.

¥2), a second type of triple

4. (K,.K,)=(1,0) or (1,1): Second
and fourth siblings

Y/ 1 1y0 i EQ. (4.5) gives rise to link invariants in

Eq. (5.96) 1nclud1ng the following:

1 Lkggd)B(Z2 (m) a quadratic link of two-surfaces
in 5d. We present an exemplary link configuration
later in (Sec. VI E) that can be detected by this link
invariant.

(i1) LkSz)dB( U ¥?), another quadratic link of two-
surfaces in 5d. We present an exemplary link
configuration later in Sec. VIF that can be detected
by this link invariant.

Similar to our comments above in Sec. V D 3, it will be

interesting to find a precise mathematical equality to relate
these link invariants.

VI. ANYONIC STRING/BRANE SPACETIME
BRAIDING PROCESSES AND LINK
CONFIGURATIONS OF EXTENDED OPERATORS

We provide the exemplary spacetime braiding processes
of anyonic strings and branes in general dimensions (with

an emphasis on 5d) and the link configurations of extended
operators, which can be detected by the link invariants that
we derived in Sec. V.

A. Quadratic link (Aharanov-Bohm)
configuration in any dimension

To warm up, we first discuss the quadratic link, asso-
ciated with the Aharanov-Bohm statistics in dd due to the
linking of one world line of the charged particle and the
(d — 2)d world sheet of the fractional flux. In 3d spacetime,
we have the following presentation:

St st

where gluing two solid tori D? x S' gives rise to a three-
sphere: (D7 x SL) U (S! x D) = S°. We represent the
two solid tori as a blue solid tori and a red solid tori,
(D} x Sk) U (S} x D§) = S°. The quadratic link invariant
detecting this Aharanov-Bohm configuration is given by
Ref. [12] and references therein: Lk((0,), % Sk.S! X
(O )r)» Which we also express as

LK((Ope)r. x S SLx (Ope)r) (6.1)

pt

based on the color labeling of the inclusion of two S circles
belonging to which of the two solid tori. This link invariant
can be computed from the intersection number,

St St

where

#((Op)r, x Sg) N (D x (Op-)g)) =1

(6.2)
(Op—) means the point (0,) now is attached to a line. The
intersection number #((0y) X Sk) N (Df x (Op-)g)) =1
precisely corresponds to the black dot .
In dd spacetime, S¢ can be obtained by
(D=1 x Sk u

(Sé-2 x D&) = 84, (6.3)

which can be graphically represented as
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Sd—2 Sl

The associated link invariant is

LK((0p0), x Sh. 572 x

(Ope)r) (6.4)

with the color prescription explained earlier. This link
invariant can be computed from the intersection number,

Sd—2 Sl

#((0p)r X Sp) N (DI x (0p)g)) = 1. (6.5)
Here, (Op—
line. We see the intersection number # ((0y)p X Sg) N
(D" x
dot e.

) means the point (0,) now is attached with a

(Op—)r)) = 1 precisely corresponds to the black

B. The first triple link # (V§ n V3 Uy N V;’](m) =
lew op (23 X%, -Xt,,) configuration in 5d

We proceed to discuss the triple link configuration for
5) :
TIG s (53 T, - 2,
that this link invariant derived in Sec. VA can detect the
link configuration in Fig. 2.

To explain, we start by constructing the five-sphere via
5 =0D° =9(D*xD?) =S*xD>*uD*xS' =83 x D*u
D? x D? x S'. More explicitly, we color the different com-
ponents as $° = (S} x DE) U (D{ x Sk) and $° = (S} x
D}) U (D} x D} x Sk).

Consider the link invariant defined by # (V4 n V{’,m n

5
V?/(,,)) = leEV])BB(Zi’ Z%}(l) ? Z%](")
link configuration in Fig. 2 gives the intersection number 1
in Fig. 3. Again in Fig. 3 associated with the intersection
number #(V} N V%,(i) N V%,(ii)), (Op—) means the point
(Op) mow is attached to a line. We see the intersection

4 3 3
number # (Vi nVy nVy
to the black dot .

) derived in Sec. VA.*® We propose

), where we see that the

) = 1 precisely corresponds

“Effectively, TIk"? >B (X%, - 20, ) can also be regarded as
lei t; 5(Zx. 22 Z%J( ) where A 1s the other Z,, one-form gauge
field.

Sl

FIG. 2. §°=0D°=0(D*xD?*) =S*xD?>uD*xS' =§°x
D?>UD?x D?>x S!, the intersection of the two copies of
D? x S' in the second piece (D* x Ope X S! and Opy X D? x SY)
is 0 X 0p X ST = 0, x S'; this 0, x S and % x 0, in the first
piece are linked. In this figure, X3 = 8% x 0y, Z%/m =
A(D* x Oy x 8'), Zf - = 9(0y x D* x ).

Sl

FIG. 3. Following Fig. 2, V4 = D* x 0 which bounds Z X
Vi, = D?*x 0, xS which bounds zgm, Vi = Opt X
D? x ' which bounds Z%fm)' The intersection of V3U(i) and
V%Jm) is 0 x S', the intersection of V} and this 0, x S' is a
point which is the point in black in this figure.
C. The second triple link #(V} nVy NZIf)=
lefvl)wldB(E3 X}, -Ty) configuration in 5d
S ) 3 3
We no:sv) discuss leWlW]dB(EX(i) Zx
3 93
cally Tlk,; 5 (Zx - Zx,

in Sec. VB 2.
Let us consider the link invariant defined by # (V‘)‘(m N

Vi, NZ3) =TI, (S, 33, Z3). We see that the

link configuration in Fig. 4 gives the intersection number 1
in Fig. 5.

,X2,), or schemati-

, 22,). This link invariant is derived

D. Quadruple link # (V4 "
Qlkwlwlwl3(23 23 23

N Vi,
o 20) configuratlon in 5d

N Vi N V)=

iii)

3 0v3 y3
We now discuss Qlkwlwlw1 (Zx 5 Zx ) Zx

matically Qlkmmb(z3 Dy
derived in Sec. VB 1

,)» or sche-

Zi ,)- This link invariant is
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FIG. 4. §° =0D® = 9(D* x D*) = §* x D* U D* x §2. Put a two-torus [denoted by (1)] in D* x 0, and put a Hopf link [the two
circles are denoted by (2) and (3), respectively] in the solid two-torus. Put two circles [denoted by S(ll) and S<13>, respectively] which

intersect in only one point in 0, x S? (denoted by S<22)). In this figure, Z}m is the Cartesian product of the two-torus (1) and S él), 2‘3((“) is
the Cartesian product of the circle (2) and S(zz), E%/ is the Cartesian product of the circle (3) and S ('3).

52

S(2)

FIG. 5. Following Fig. 4, if we fill in X} and Ty, we get Vi =D’xS'x S"and V§ ~=D?xS% Vy .V} . and T will
intersect in only one point which is the point in black in this figure.

. . . . . qe 3 2 _ (5) 2 2
Let us consider the link invariant defined by E. Quadratic link # (VU(i) N ZU(“)) = LdeB(ZUm,EU(m)
Now we discuss Lk}, (Z3,,- 20, ) This link invariant
#(Vi, N Vi N Vg N V) is derived in Sec. V D.

5 Let us consider the link invariant defined by
= QI 5 (5, Th Zh 2

4 4 4 3
#(Vy 0 Vi 0 Vi 0 V0)
We see that the link configuration in Fig. 6 gives the — o™ 53 33 3 w2
intersection number 1 in Fig. 7. = Qlky, 0,5 Xy TXai)” Ty 0)-
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FIG. 6. $°=0D°=09(D>x D?) =58?>xD*u D?x S Put
Borromean rings in D3 x Op- If we fill in each of the three
circles of the Borromean rings, then we get an intersection point,
and we can think of this point as Oy in D3. Then the Cartesian
product of each of the three circles and S? (denoted by 23 Z§(||)

and Zi(m), S2: this 0 x §2
and $% x 0, (X7, in this figure) are linked.

respectively) will intersect in Oy x

FIG. 7. Following Fig. 6, we denote the three D> x S which
bound the Cartesian product of the three circles and S2 as V;‘(m,

4 4
VX(ii) > VX(iii)

(i)
Vi(m) is 0, x §%. The intersection of V3 = D? x 0, which
bounds X?, and Op x $? is a point which is the point in black

in this figure.

, respectively. The intersection of V;‘(m, V‘}‘( , and

We see that the link configuration in Fig. 8 gives the
intersection number 1 in Fig. 9.

F. Quadratic link #(V3, n 22 = Lkﬁf)dB(E%J,EZ )

Now we discuss LkSV?dB(Z%],,Z%]) or LkB dB(ZU,, 7).
This link invariant is derived in Sec. V C.

2 S2 2 S?
FIG. 8. S§°=0D°=0(D>x D3 =5?>xD?u D?x §%. The

§? x 0, in the first piece and the 0, x $? in the second piece
are linked. In this figure, 2%,(” =52 x 0Op; and Z%I(m = 0y X S2.

FIG. 9. Following Fig. 8, if we fill in S? x0

V%/m =D*x0
point which is the point in black in this figure.

FIG. 10. §° =0D°® = 9(D* x D*) = §* x D’ U D* x §%. The
52 x 0, in the first piece and the 0, x $? in the second piece are
linked. In this figure, ZU, =52 x 0 and X2, = =0y X 52,

3 S2 ) 52

FIG. 11. Following Fig. 10, if we fill in §* x 0,, we get
V3, = D*x0,, the intersection of D? x 0, and 0, x $? is a
point which is the point in black in this figure.

we get

pt>

bt> the intersection of D3 x Op¢ and 0y x S%is a

Let us consider the link invariant defined by #(V3, N

5
2h) = Lk (%5,
in Fig. 10 gives the intersection number 1 in Fig. 11.

¥2,). We see that the link configuration

3 3\ =
nZy, NVy)=

%) configuration in 5d

G. The third triple link # (V4
(5) 3 33
le(AdA)B(ZXm’E X

Finally, we discuss a third triple link invariant
5
#(V4, NZk, NVI) =TIk 53R, 2%, - E3). We have

not derived these from 4d YM-5d SET coupled systems.

~2

52

FIG. 12. $° =0D% = 9(D*x D) = $? x D3 U D? x §2, and
put a Hopf link in D? x Op. In this figure, me and Zim are the

Cartesian product of the two circles in the Hopf link and $?,
respectively; namely, they are both S! x §% and XF = §% X 0.
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73

FIG. 13. Following Fig. 12, if we fill in X3 , we get
Vi, = D?x 8% the intersection of V} = and Xy - is the
Cartesian product of a point (we can think of the point as 0y)
and S2. If we fill in Z%/ further, we get V3 =D3x Opt; the
intersection of D3 x Op¢ and Oy, x S§? is a point which is the point
in black in this figure.

However, to get this, we need a topological term
(wi(TM)dw,(TM))B. This is possible, however, from
the (A;dA;)B type of TQFTs.

Let us consider the link invariant defined by # (Vj‘(m n
— 6 :
Ty N Vo) =Tk A)dA) (X Zxyy Z0)- We see that the

link configuration in Fig. 12 gives the intersection number
1 in Fig. 13.

VIL 4D SO(3),., YANG-MILLS GAUGE THEORIES
COUPLED TO THE BOUNDARY OF 5D SETs/
LONG-RANGE ENTANGLED TQEFTs

In Sec. II, we have shown that the SU(2) Yang-Mills theory
with @ = z, with the gauge bundle constraint w, (Vpgy(2)) =
B+ K \w(TM)?* + K,w,(TM), has two distinct "t Hooft
anomalies as shown in Eq. (2.38). In this section, we further
comment on gauging the one-form ZS»[I] center symmetry of

the four sSiblings of SU(2),_, YM to obtain SO(3),_, YM
theories. Since the ’t Hooft anomalies involve the one-form
center symmetry and the spacetime symmetries [whose
background fields are the Stiefel-Whitney classes w;(TM)],
depending on which manifold we formulate the SU(2) Yang-
Mills, one obtains different theories.

A. From SU(2) to SO(3) gauge theory

To illustrate, we start by gauging the one-form symmetry
[6,78] of the SU(2),_, YM theories which is time-reversal
symmetric and anomaly-free. There are still four choices
of gauge bundle constraints labeled by (K, K,), i.e.,
Eq. (3.1). Let Zg%@) ym!B] be the path integral without
specifying the gauge bundle constraint, the partition func-
tion with the gauge bundle constraint w,(E) = (B+
K w(TM)* + Kow,(TM)) mod 2 is

280 v (B = / IDAJZE, ) il Bl expirA U (3 (E) = (B + Kywi (TM? + Kawa(TM)))).

More generally, we can add the counterterm 27 P(B) labeled by an integer p, which modifies the partition function as

28ty B = [ONZ8 oyl Blexp (15 AU (0a8) = (B Koo (T 4 Kawa(TM) + 5P(®)) ). (2.1

Below we would like to obtain SO(3) YM by gauging one-form Z3

theory is 2zp. If w,(TM) is nontrivial, the resulting SO(3) theory is time-reversal symmetric only when p € 2Z and
p ~ p+ 4. When w,(TM) is trivial, the resulting SO(3) theory is time-reversal symmetric for p € Z and p ~ p + 2. In the
following, we always restrict to the time-reversal symmetric case. Gauging one-form center symmetry amounts to summing

center symmetry. The theta angle of the resulting

over the background gauge field B (promoting B to a dynamical gauge field),

28 ot 0y = | DNIDBIZ sl Blexo (in(A U (0(8) = (B-+ Ky (107 + Kowa(Tb0) + 2P(8)) ).

Integrating out A enforces the relation between SO(3)-gauge
bundles and two-form dynamical gauge field B. This outputs
the SO(3)-gauge theory Zésk(i)@) . with @ = 2zp.

(K1.Ky)

B. Gauging one-form ng symmetry of SU(2)
gauge theory with =7

We proceed to discuss gauging the one-form symmetry
of SU(2) Yang-Mills with 6 = 7.

(7.2)

If one formulates the SU(2),_, Yang-Mills on an
orientable and spin manifold, i.e., w; =w, =0 (hence
ws = 0 as well), for spacetime tangent bundle TM, there is
the freedom to ignore the time reversal as a symmetry of
the theory. The only symmetry of interest is the one-form
symmetry, which does not have an anomaly with itself.
Hence one can gauge the one-form symmetry, and
the resulting theory is PSU(2) = SO(3) Yang-Mills with
0 = z. Indeed, SO(3) Yang-Mills with 0 = = does not
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TABLE X. Possibilities of gauging the SU(2),_, Yang-Mills
theory with gauge bundle constraint (K, K,) on a manifold with
Stiefel-Whitney (SW) class (wy,w,) = (W (TM),w,(TM)),
where 0 and 1 mean trivial or nontrivial SW classes, respectively.
The v/ means that there is a way to make sense of the resulting
gauged theory as a purely 4d theory. The theories labeled
by X mean that it only makes sense to discuss the combined
4d-5d systems. The WZW means the theory is intrinsically 4d;
however, there is a WZW-like term of background fields, which
involves a 5d integral (but does not depend on the choice of 5d
manifold M?).

(w1, wy)\(Ky, K3) ©, 0) (1, 0) ©, 1) (1, 1
0, 0) v v v v
1, 0) X X X X
©, 1) v v WZW  WZW
(1, 1) X X X X

respect time reversal, which maps € = 7z to € = 37 due to
the identification @ ~ 6 + 4z on a spin manifold.

If one formulates the SU(2),_, Yang-Mills on an
orientable and nonspin manifold, one still has the freedom
to ignore the time reversal as a symmetry of the theory.
However, in this case, there is a counterterm

/M KamSq! (w,(TM) U B), (7.3)

which is a WZW-like term of background fields (i.e., probe
fields in condensed matter language). Denoting the parti-
tion function of the SU(2),_, Yang-Mills coupled to B as
ZSU(2)YM<0,K2>[M4vB]’ after promoting B to a dynamical
field, the partition function of the entire 4d—5d system is

I
X exp <i7z A KaSq! (w(TM) U B)). (7.4)

If K, =0, the 4d-5d system reduces to an intrinsic 4d
system. Physically, this corresponds to the case where the
gauge charge is a boson. It makes sense to gauge the one-
form symmetry which again gives rise to the time-reversal
broken SO(3) Yang-Mills theory. If K, = 1, the theory is
still an intrinsic 4d system. Physically, this corresponds to
the case where the gauge charge is a fermion.

If one formulates the SU(2) Yang-Mills on an unorient-
able manifold, the time-reversal symmetry is built in, so
time-reversal symmetry is too late to be abandoned.
Promoting B to a dynamical gauge field, the partition
function for the entire 4d-5d system is

[ 0B st M Blexplin | (BSa'B+Sq'Sa's

MS
+ K w,(TM)?*Sq' B+ K,Sq' (w,(TM)U B))]. (7.5)

Since M? is unorientable, for all four choices of (K, K»),
the 5d terms do not vanish (because BSq'B + Sq>Sq'B is
always nonvanishing on an unorientable manifold). Hence
one can only discuss the 4d—5d system rather than discuss
the 4d system alone. We summarize all the above cases in
Table X.

VIIL. LATTICE REGULARIZATION,
UV COMPLETION, AND SYMMETRIC
ANOMALOUS TQFT

In this section, we formulate the partition function
of the 5d higher-SPT Z3%. [M>; B] on a simplicial
(K1=0.K»=0)

complex spacetime. This provides a lattice regularization
of the 5d SPT. We also provide lattice realization of
(i) 4d higher-symmetry-extended boundary theory or
(i) 4d higher-symmetry-enriched anomalous topologi-
cally ordered boundary theory. We will generalize the
approach in [54] and follow Sec. IX of [55]. In condensed
matter physics, this (ii) phenomenon is known as the
anomalous surface topological order (first noticed in
[79]) typically for the 2+ 1D boundary of 3+ 1D
SPTs; see a review [30].

A. Lattice realization of 4d higher SPTs and
higher-gauge TQFT: 4d simplicial complex
and 3 +1D condensed matter realization
We warm up by considering a lattice realization of 4d
higher SPTs given by a probe-field partition function

Zinlr's) = exp(i5 [

M4

:exp<if/ BUB+BU5B>. (8.1)
2 Sy 1

The path integral can be regularized on a triangulated
four manifold M*. The building blocks of M* are four-
simplices. Without loss of generality, we consider an
arbitrary four-simplex which we denote as (01234) where
each number labels one vertex. See Fig. 14 for a graphical
representation of a four-simplex. We denote B;j; as
restricting the two-cochain B on the two-simplex (ijk).
We label the path integral amplitude on (01234) as
4(01234), i.e.,

P(B)>

w4(01234) =exp [ig(B UB +BL1J5B)01234]

¥
=exp [15(30123234
+ Bosa(B123 — Boos + Boiz — Boi2)

+3014(Bz34—3134+3124—3123))}- (8.2)
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FIG. 14. Graphical representation of a four-simplex (01234).

It is straightforward to verify that w,(01234) satisfies the
cocycle condition:

04(12345) - ,(01345) - ,(01235)
504)(012345) = =1
(6w3)( ) 04(02345) - ,(01245) - w,(01234)

(8.3)

B. Lattice realization of 5d higher SPTs and
higher-gauge SETs: 5d simplicial complex
and 4+ 1D condensed matter realization

The 5d partition function with (K; =0, K, = 0) is
zggT(Klzo_KF(» [M?] = exp (iﬂ' Aﬁ BSq'B + SqZSq‘B>.
(8.4)

We start by triangulating the 5d closed spacetime manifold
(without boundary) into a five-simplicial complex. There
are some useful identities:

1
Sq'B = BUB = - 3B,

FIG. 15. Graphical representation of a five-simplex (012345).

Note that in the second equality of the first line, we have
used the cocycle condition that 6B = Omod?2. One can
express the SPT action Eq. (8.4) in terms of the sum of cup
products of B cochains over five-simplices

5d 51 T T
ZSPTm:O.Kz:O) [M°] = exp (15;3 U B+ 11;63?53> .
(8.6)

Without loss of generality, we consider an arbitrary five-
simplex which we denote as (012345) where each number
labels one vertex. See Fig. 15 for a graphical representation
of a five-simplex. We will label the path integral amplitude
on the simplex (012345) as ws5(012345), i.e.,

1 1
5(012345) = exp|in(5 B U 3B + 7 5BUSB)g 345

(8.7)

so that the partition function can be simplified as

g%nKIZOAKZZO) (M) = [ Liijktmnyenss @(ijklmn). Using the

definition of the cup products on simplices and the
identities Eq. (8.5), we have

((8B)345(8B) o123 + (6B)145(0B) 1234 + (6B)125(0B)345)

1
Sq*Sq'B = (SqlB)L]J(SqlB) =2 (5B)k1J(5B). (8.5)
|
! 1
(Sq'B)g123 = 5(3123 — Boos + Boiz — Bopa),
1
(Sq2SqlB)0,2345 = 4

—_

=1 ((=Bous — Boss + Boss + Bsus)(—=Boxz — Bora + Bois + Bio3)

+ (=Boss — Boia + Bois + Bias)(—=Bi3s — Bioz + Bioa + Boag)

+ (=Boas — Boio + Bois + Bias)(—=Boas — Basa + Byss + Bias)).

(8.8)
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Hence the path integral amplitude on the simplex (012345) is

i
ws(012345) = exp 53012(—3245 — Byss + Bazs + Biys)

in

+ = (=Boss — Bosa + Boszs + B3as)(—=Booz — Boio + Boiz + Bias)

4

iz

+ — (=Bous — Bo1s + Bois + Bias)(=B13s — Bio3 + Bios + Baas)

4
in

4

It is straightforward to verify that ws(012345) satisfies the cocycle condition:

(5w5)(0123456) =

+ — (=Bos — Bo1a + Bois + Bias)(—=Boas — Bosa + Byss + Biys) |- (8.9)

05(123456) - 05(013456) - 5(012356) - 5(012345) _ 5.10)
05(023456) - w5 (012456) - w5 (012346) - ‘

H=- Z Af - Z f;3»simplex’ (81 1)

We emphasize that w(012345) is a cocycle only when B
is a cocycle, i.e., 6B = 0. If B is a cochain rather than a
cocycle, Eq. (8.4) is not a cocycle, and hence it cannot be
a partition function of a topological field theory.™

We further comment on the lattice regularization of

theory with various choices of (K, K»):

(1) When (K, K,) = (0,0), as we derived above, there
is a lattice regularization of the 5d SPT partition
function.

(2) When (K;,K;) = (1,0), the path integral ampli-
tude depends on the first Stiefel-Whitney class
w1 (TM). Using the method of [29], one can write
down the simplicial form of w(TM)? using the
twisted cocycle, with the coefficient in U(1); due
to the antiunitary nature of time-reversal symmetry
(in the Hamiltonian formalism of [29]). We will
not write down the explicit expression for the
cocycle.

(3) (Ki,K,)=(0,1),(1,1) has the same anomaly pol-
ynomial as (K, K,) = (0,0), (1,0), respectively.

Other than treating B as the background gauge field, we can
also sum over B to get the topologically ordered 5d
SET Zg%T(K . [M5).

1-K2)

Given that the 5d SPT and 5d SET path integral can
be regularized on a lattice, following [29], one can write
down the quantum wave function via the spacetime path
integral. It is also possible to construct a lattice quantum
Hamiltonian on the 4D space (on a constant time slice),
for both SPTs and SETSs, similar to the formulations of
[29,80-82]. For the topologically ordered 5d SET, we
implement the method of [81,82]

“The cocycle condition is crucial in proving the partition
function to be invariant under retriangulating the spacetime
manifold M>.

1-link? 3-simplex

where Af is an operator acting on the plaquettes (two-
simplex) adjacent to the one-link #, and ﬁ3—simplex is an
operator acting on the boundary of a given three-simplex
which again are plaquettes (two-simplex). The Af has its
effect on imposing the time evolution constraint as the same
as the path integral formulation: A, lifting the state vector
to a next time slice locally around the one-link #. The
1§3_Simp]ex imposes the zero flux condition enclosed by the
three-simplex (which is a two-sphere S? in topology). We
will not give the explicit expression of the quantum
Hamiltonian H in this work.

C. Higher-symmetry-extended
3+1D gapped boundaries

One option to saturate the anomaly inflow from the bulk
5d (4 + 1D) SPT s to extend the global symmetry on the 4d
(3+ 1D) boundary, based on the symmetry-extension
method of [54]. Note that (K;,K, =0) and (K;,K, =
1) theories have the same 4d anomaly, but they differ by a
4d WZW-like counterterm written on a 5d M>,

Z3y, M) =23 | M)
X exp <iﬂ / Kzsql(wl(TM)zB)>.
MS

The 4d counterterm is shown to be vanished on a closed M?
in 5d in Eq. (2.33). Due to Eq. (2.33), this K,-dependent
term has no consequences via any anomaly consideration
on 4d dynamics. Thus we only discuss the 3 + 1D gapped
boundary for the two siblings (K;,K, =0). The 5d
partition function is
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ZHr,,, M) = exp (in A BSq'B+5¢°Sq'B + Kyw (TM)qu'B)

= exp(in/Ms(B + (1 + K)w (TM)?> +w,(TM)) U SqlB> -exp(iﬂ/‘/l5 5(- ))

In the second line, we have used [,;sSq*Sq'B =
Jus W1 (TM)? +wy(TM))Sq'B + [,;58(---). Note that
when M is closed, the total derivative vanishes and
we have the standard Wu formula [),;s Sq*Sq'B =
Jus (w1 (TM)? + wy(TM))Sq' B. When M has a boundary,
the standard Wu formula may no longer hold, and they
differ at most by a coboundary term.” We denote the
coboundary term as &(- - -) in the second line. Since (- - -) is
a well-defined term of background gauge fields, it is a 4d
invertible TQFT, which does not contribute to the 4d
dynamics. Hence in the construction of 4d symmetric
boundary TQFT below, we only focus on the first part
in the second line of Eq. (8.12). Using the systematic
way in [54] and its generalized higher-symmetry exten-
sion [55], we find that the boundary of 5d SPT can support
a 4d TQFT via the higher-symmetry extension from a one-
form Z, to a one-form Z, symmetry. Schematically, let
a)gK"O> be the five-cocycle whose product over the 5d
manifold M?> gives the 5d SPT partition function Eq. (8.12).

Let ﬂgK"()) be a four-cochain which ftrivializes the 5d
cocycle, i.e.,
w10 = 510, (8.13)
|
B’Z, — B’Z,

(Extended global symmetry
Z 4 one-form symmetry probe

by Z4 two-cochain C background field)

This higher-symmetry-extended 3 + 1D gapped boundary,
described by (8.14), has no long-range entanglement and
no intrinsic topological order. This higher-symmetry-
extended 3 + 1D gapped boundary is known as system
(1) in Sec. 7 of Ref. [13] as a short-range entangled state,

45By the Wu formula for n manifolds with boundary, Sq/x =
u;x where u; is the relative Wu class, and x € H"™(M,0M; Z,).
The total relative Wu class u is related to the total Stiefel-Whitney
class w of M as Sq(u) = w. So u; = w((TM), uy = w(TM)? +
w,(TM), etc., still hold but Sq' B may not be in H*(M,OM; Z,)
for a five manifold M with boundary. Therefore, Sq°Sq'B =
(w1 (TM)? + w,(TM))Sq' B may not hold for a five manifold M
with boundary. See for instance Ref. [83].

(8.12)

We find that the following A< satisfies Eq. (8.13):
BE0 = exp [m / (B+(1+K)wi(TM)?
M

+wy(TM)) U y(C)] . (8.14)
where C is a Z, valued two-cochain satisfying B =
Cmod?2 and y:Z, — Z, is a function which maps the
Z4 two-cochain to a Z, two-cochain:
2
(O =BG g
In summary, the ﬁgK"O) in (8.14) is the partition function
of the higher-symmetry-extended 3 + 1D gapped boun-
dary, while the original one-form anomalous global sym-
metry Z, ;) is extended to the anomaly-free one-form
global symmetry Z,;. We can also rephrase that the
higher anomaly associated with the bordism group
Q9(B2Z,) with a higher classifying space B?Z, can be
pulled back and trivialized as fully anomaly-free in the
bordism group Q9 (B%Z,) with an extended higher classi-
fying space B%Z,:

B2Z,
(Global Symmetry (.16)

Z, one-form symmetry probe

by Z, two-cochain B background field)

|
both in the bulk and on the boundary (denoted as SRE/SRE
in Sec. 7 of Ref. [13]). In fact, this whole SRE/SRE
bulk-boundary theory is still an invertible TQFT with a
partition function |Z| =1 on an M°> with a 4d gapped
boundary M*.

D. Higher-symmetry anomalous 3 + 1D topologically
ordered gapped boundaries: Spontaneous
higher-symmetry breaking

There also exists another boundary theory of the 5d SPTs
in Eq. (8.12), with Z, two-cochain b summed over as
dynamical fields on the boundary. The boundary theory is
a dynamical Z, gauge theory, which can be obtained
from gauging the normal Z, |;; subgroup of Z, ;) in the
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symmetry extended gapped boundary from the previous
section. Schematically, we promote the two-form (or two-
cochain) gauge field b coupling to one-form Z,; sym-
metry to dynamical, in a normal subgroup of Z, ;). The
resulting boundary theory has long-range entanglement in

B2Z,

(Dynamical /emergent

e BZZ4

gaugeable
Z, two-cochain b field)

Or we may denote the above as B2Z&"¢¢ — B2ztoul
B2Z¢, implementing the notations of [13,54].

However, as noticed in Ref. [54] and in Sec. 7 of
Ref. [13], when the boundary theory is long-range
entangled (after gauging a normal subgroup), it is possible
that the new fate of low energy dynamics may not preserve
the global symmetry. Specifically, Ref. [54] finds that,
under the exact sequence K - H — G, even for a suc-
cessful H-symmetry extended construction of gapped
boundary, in certain cases, dynamically gauging the normal

contrast to the short-range entanglement of the symmetric
extended boundary theory in the previous section,
Sec. VIIIC. This can be summarized as an induced fiber
sequence of their higher classifying space B?Z, —
B’Z, — B*Z,:

B%Z,
Global Symmet
( yImmey (8.17)
Z, 1) symmetry probed by

Z, two-cochain background B field)

subgroup K may still result in G spontaneously broken. In
short, we should question:

Is it possible that Z, [y global symmetry in the long-
range entangled boundary theory happens to be sponta-
neously broken?

Namely, following the notations in Sec. 7 of Ref. [13] on
the SRE/SRE and SRE/LRE of the bulk/boundary (denoted
bulk/bdry) systems, the symmetry-extension construction
[13,54] under the exact sequence K — H — G may result
in different dynamical fates:

Case 1. H-symmetry-extended gapped boundary: SRE/SRE bulk/bdry.

e.g., The one-form Z, ;) symmetry extended in Sec. 8.3. Many zero-form G-symmetry examples given in Ref. [53].
Case 2. G-symmetry-preserving anomalous K-gauge gapped boundary: SRE/LRE bulk/bdry.

e.g., Many zero-form G-symmetry examples given in Ref. [53].

Case 3. G-symmetry-breaking K-gauge gapped boundary: SRE/LRE bulk/bdry.

e.g., Sec. 3.4 and Appendix A.2.4 of Ref. [53], and Sec. 7.1 of Ref. [12].

Thus below what we aim to examine is whether a proposal of Case 2 associated with Eq. (8.17) is in fact the Case 3 in

disguise, when K is dynamically gauged, as

B%Z, - B%Z, » B%Z,
(Dynamical /emergent (Global Symmetry (8.18)
gaugeable 2y [1) Symmetry '

Z, two-cochain b field)

spontaneously broken?)

Concretely, we propose a Z, gauge theory [as a candidate IR theory of the UV SU(2) YM] which has Z, ;) global symmetry
and saturates the "t Hooft anomaly Eq. (8.12). We will find that the Z,|;; global symmetry is spontaneously broken.

We consider the 4d Z,-gauge TQFT

/[Db] [Da] exp <i7r A/ﬂ béa + ip(5&)>

:/[Db][DEz]exp(iﬂ/A/I4b5&—i—&&iz&). (8.19)

Here [[Db][Da] means we sum over the Z, valued two-
cochain b € C?(M,Z,) and Z, valued one-cochain
@€ C'(M,Z,). The first term is the standard BF term
of discrete gauge theory, while the second term is the 4d
analogue of the Dijkgraaf-Witten—type action [12]. We also
refer to it as the twisting term. Integrating out b enforces a
to be a Z, valued cocycle, and hence the twisting term
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1P(sa) =16asa =aaaa mod 2 is time-reversal sym-
metric. To match the anomaly from 5d SPTs in Eq. (8.12),
we couple to background fields B and w, (T M), as follows:

/ wb(63~ B~ Kywi (TM)?) + 5 P(6a~ B).  (820)

Summing over the Z, valued two-cochain b enforces the
gauge bundle constraint:

da = B+ K,w;(TM)?>mod 2. (8.21)
Notice that under the gauge transformation of the back-
ground field B — B+ 64, we demand a — a+ 1. It is
obvious that the action Eq. (8.20) is gauge invariant.
However, due to the gauge bundle constraint Eq. (8.21),
the twisting term §P(6a — B) is no longer 0 or 7z mod 27;
hence it is not time-reversal invariant, and Eq. (8.20) is not
well defined on an unorientable manifold. To make sense of
the theory on an unorientable manifold, we use the same
idea in Sec. Il where we promote the twisting term to a 5d
integral,

7 oisa— B — | sassa) 4 " spsa 1"
A 3oPoa-B)= A 5 0ab(6a) + 5 5Boa + 7 5P(8B)

= ﬂ'/ BSq'B + Sq*>Sq'B
MS

+K1W1 (TM)ZSqlB, (822)
where we have used £ §P(B) = n(BSq'B + Sq*Sq' B) and
the gauge bundle constraint Eq. (8.21). Thus when we
couple theory to the background field B and formulate it on
an unorientable manifold, only the 4d—5d coupled system is
well defined,

/[Db] [Da) exp <i7z A/ﬂ zb(6a — B — Kyw(TM)?)

+ iﬂ'/ BSq'B + Sq*Sq'B + Klwl(TM)ZSqlB> :
M5
(8.23)

Indeed, the 5d integral implies that the Z, gauge theory
saturates the anomaly Eq. (8.12). Let us comment on the
dynamics of the above 4d Z, gauge theory. The fact that a
transforms as @ — @+ A under one-form background
gauge transformation B — B+ 61 suggests that the

Wilson line
exp (iﬂ' }{ Zl)

has charge 1 under Z, ;. In a TQFT, any genuine line
operators are tensionless, and thus the expectation does not

(8.24)

satisfy area law. Since exp(iz § @) is a genuine line
operator, it obeys a perimeter law, and it spontaneously
breaks the Z, |;; one-form symmetry.

We comment that in Sec. 7 of Ref. [13], similar argu-
ments have been used to show that the zero-form Z, global
symmetry of a 2d TQFT is spontaneously broken. In the 2d
theory, there is a scalar ¢ with charge 1 under Z, zero-form
global symmetry. In the 2d TQFT, ¢ has a nontrivial
expectational value. Thus the Z, zero-form symmetry is
spontaneously broken. See Ref. [13] for more details.

The fact that the dynamical Z, gauge theory we
constructed spontaneously breaks the one-form Z; j;; sym-
metry is consistent with the conclusion pointed out by
Cordova and Ohmori (see [84,85]) where the authors
showed the impossibility of having any Z7 x Zy 1y Sym-
metric anomalous gapped 4d TQFT saturating the 4d
higher anomaly of 5d SPTs Eq. (8.12).

IX. CONCLUSIONS, DISCUSSIONS,
AND DYNAMICS

(1) Summary—In this work, we proved (physically via
the quantum field theory method) that 4d time-
reversal symmetric pure YMs of an SU(2) gauge
group with a second-Chern-class topological term at
0 = r [i.e., SU(2),_, YM] have new higher "t Hooft
anomalies in 4d, given by a 5d topological term
Eq. (2.38) and Eq. (2.61):

ﬂ/ (BUSqQ'B+Sq?Sq'B + K \w(TM)* U Sq'B
M5

+ K,Sq' (wo(TM) U B)).

The 5d term BSq'B+Sq*Sq'B + K,w,(TM)?Sq'B
is a 5d bordism invariant (or equivalently 5d iTQFT/
SPTs/counterterm) that specifies the 4d 't Hooft
anomaly. However, the 5d term K,Sq' (w,(TM)B) is
not a 5d bordism invariant but only a 4d WZW-like
counterterm; thus strictly speaking it does not
indicate any 4d 't Hooft anomaly. We found
that there are at least four siblings of SU(2),_,
YM with bosonic UV completion, labeled by
(K1, K,) € (Z,, Z,). Their higher "t Hooft anoma-
lies of generalized global symmetries indicate that
4d SU(2)y—, YM, in order to realize all global
symmetries locally, necessarily couple to 5d higher
symmetry-protected topological states (SPTs, as
invertible TQFTs [iTQFTs], as 5d one-form-center-
symmetry-protected interacting “topological super-
conductors” in condensed matter).

We explored various 4d Yang-Mills gauge the-
ories living as boundary conditions of 5d gapped
short-/long-range entangled (SRE/LRE) topo-
logical states. We revisited 4d SU(2),_, YM-5d
SRE-higher-SPTs coupled systems [5,8]. Follow
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5d time-reversal 4d

and 1-form Z;[l] (2)g—r YM

higher-SPT's
tible TQFT)
(a)

Weyl’s gauge principle, by dynamically gauging
the one-form center symmetry, we transformed a 5d
bulk SRE SPTs into an LRE symmetry-enriched
topologically ordered state (SETs); thus we ob-
tained the 4d SO(3),_, YM-5d LRE-higher-SETs
coupled system with dynamical higher-form gauge
fields. We illustrate such 4d-5d systems schemati-
cally in Fig. 1 and Fig. 16.

The 4d SO(3) YM has a @ periodicity 6 ~ 6 +
4z on a spin manifold, and 0 ~60+ 87 on a
nonspin manifold. Since time-reversal symmetry
is preserved if and only if & — —0 is identified,
thus SO(3),_, YM explicitly breaks the time-
reversal symmetry. In the right-hand side (b) of
Fig. 1 and Fig. 16, we actually have a 5d SETs
whose 4d boundary explicitly breaks time-reversal
symmetry.

Applying the tool introduced in [12], we derive
new exotic anyonic statistics of extended objects
such as two world sheet of strings and three world
volume of branes, which physically characterize the
5d SETs. We discover new triple and quadruple
link invariants associated with the underlying 5d
higher-gauge TQFT, hinting at a new intrinsic
relation between nonsupersymmetric 4d pure YM
and topological links in 5d.

(2) Appearances of mod 2 anomalies—We note

that the anomaly associated with the 5d term
exp(iz ['w3(TM)B) has also appeared in the context
of an adjoint QCD, theory [55,86-88]. The
exp(iz ['wo(TM)w;(TM)) has also appeared as a
new SU(2) anomaly in the SU(2) gauge theory [57].
All these anomalies and all our anomalies in Eq. (2.61)
are mod 2 nonperturbative global anomalies, such as
the SU(2) anomalies [56,57].

(3) Mathematical relation between 5d and 4d bordism

groups.—Mathematically there seems to be an
amusing relation between (1) gauging the SU(2)
gauge bundle/connection under the coupling of 4d
YM with 4d SPTs (4d bordism invariants of Qf")
with G’ derived from a group extension Eq. (3.2),

(b)

“

5d time-reversal
2-form gauge
higher-SETs
(TQFT)

FIG. 16. An alternative illustration of Fig. 1: Various 4d Yang-Mills gauge theories live as the boundary conditions of certain 5d
invertible TQFT (iTQFT) or 5d TQFT, in order to realize YM’s (higher) global symmetries locally.

1 ->SU2)—>G —-0(d) - 1;

and (2) some of the 5d bordism invariants given by
Q9(B?Z,) = Z3. We provide the computations of
bordism groups and topological invariants in Ap-
pendix. It will be illuminating to explore this relation
further in the future.

Classes of 4d SU(2),_, YM.—In Ref. [38], it was
noted that the Pin* and Pin~ versions of the above
group extensions G’ = Pin* x, SU(2) and G’ =
Pin~ x, SU(2) provide two different SPTs vacua
after dynamically gauging the SU(2) symmetry to
give rise to two distinct 4d SU(2),_, YM theories.
Although Ref. [38] suggested that the Pin™ and Pin~
of 4d SU(2),_, YM are secretly indistinguishable
by correlators of local operators on orientable space-
times or by gapped SPT states, they can be distin-
guished on nonorientable spacetimes or potentially
by correlators of extended operators.

In this work, we have shown that Pin™ and Pin~ of
4d SU(2),_, YM indeed have distinct new higher t
Hooft anomalies, given by Eq. (2.38) and Eq. (2.61),
with (K{,K,)=(0,1) and (K,K,) = (1,1), re-
spectively. Thus we confirm that Pin* and Pin~ of
4d SU(2),_, YM live in distinct Hilbert spaces, and
thus they are indeed distinct vacua.

More generally, in this work, we propose a
classification 4d SU(2),_, YM with a bosonic
UV completion (e.g., on a lattice with bosonic
degrees of freedom) and without fermionic parity
symmetry Z%. We propose that a classification can
all be obtained from dynamically gauging the SU(2)
normal subgroup of 4d G’ SPTs where G’ is given by
Eq. (3.2): 1 - SU(2) » G’ - O(d) - 1, i.e., fol-
low [38] by coupling the 4d G’ SPTs to a pure 4d
SU2) YM theory and dynamically gauge their
SU(2) (see Sec. III).*® Other than the Pint and

%6 Although we mainly focus on 4d SU(2),_, YM here, this gauge
principle works for more general 4d SU(2) YM, or equivalently 4d
SU(2)-gauge quantum spin liquids in condensed matter.
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Pin~ cases, this extension Eq. (3.2) includes two more cases: G’ = O(d) x SU(2) and E(d) xz, SU(2). In summary, in
terms of the ungauged 4d SPTs, we have the symmetry group G’ [38,41]:

O(d) x SU(2) [bosonic, relatesto (K1, K,) = (0,0)],
E(d) xz, SU(2) [bosonic, relates to (K, K,) = (1,0)],
A
G = Pin® xzr SU(Z) [fermionic, relatesto (K, K,) = (0, 1)], (0-1)
(2)

Pin~ xzr SU(2) [fermionic, relatesto (K, K5) = (1,1)].

The global symmetries of SPTs for the first two cases implications as quantum spin liquids. Time-reversal
g y p q pin liq
are purely bosonic since they do not contain Z7%; the symmetric U(1) gauge theories as quantum spin
later two cases are fermionic since they do contain Z5 liquids [30] have been explored and classified based
[the Z} is shared by Pin and by the center of SU(2)]: on the quantum numbers of gapped electric and
(a) Before gauging (see Fig. 17), the 4d SPTs are magnetic  excitations (Wilson and ’t Hooft line
well-defined 4d topological terms/bordism invar- operators).m Refs. [63,64]; see also recent works
iants that can live on 4d with fully local on-site [89,90]. Time-reversal symmetric SU(N) gauge the-
symmetry without the need of an extra 5d bulk. ories as quantum spin liquids have been explored in
(b) After gauging the SU(2) normal subgroup of G’ [38]. We will leave additional interpretations of our
symmetry of these SPTs [see Fig. 16(a)], there is results of non-Abelian SU(2) gauge theories in the
an emergent one-form center Z§ 4 Symmetry. context of quantum spin liquids for a future work.

(6) Relations of link invariants and braiding statistics in
various dimensions—We have applied the tools
developed in [12] to compute link invariants of 5d
higher-gauge TQFTsin Sec. IV. We anticipate a precise
mathematical formulation of this 5d higher-gauge
TQFT requires a certain higher category theory. We
remark that several link invariants that we find here in
5d have dimensional reduction analogy to 4d and 3d,
such that the dimensional reduced link configurations
in 4d and 3d are related to what had been studied in
[11,12] and references therein.
Fate of IR dynamics of gauge theories, UV completion,
and lattice regularizations at 0 = g.—For the 4d-5d
systems that we explore (schematically in Fig. 1 and
Fig. 16), we mainly focus on their four siblings as the
UV theories. We do not yet know the IR fate of their
dynamics of these strongly coupled gauge theories
given at UV. However, given the potentially complete 't
Hooft anomalies in Eq. (2.38) and Eq. (2.61) (at zero
temperature), we can constrain the IR dynamics by UV-
IR anomaly matching. The consequence of anomaly
matching implies that the IR theories must be at least
one of the following scenarios:
(i) Time-reversal ZI symmetry broken (spontane-
ously or explicitly): The conventional standard
lore suggests the twofold Z1-breaking degen-

erate ground states [5].

FIG. 17. The 4d time-reversal and SU(2) symmetric-protected (ii) One-form center Z¢ ,, symmetry broken (spon-
topological states (SPTs) can be defined as 4d iTQFTs/bordism 1]

invariants. Their symmetries can be realized locally in 4d, without
the need to an extra dimensional 5d system. Gauging SU(2)

After gauging SU(2), all four systems become
bosonic without Z symmetry. We obtain new
theories: 4d SU(2),_, YM as boundary con-
ditions of 5d iTQFT in order to realize all global
symmetries locally.

(c) Furthermore, after gauging this Zf ;; symmetry
of the 4d SU(2),_, YM and 5d 1T(5i3T coupled
system [see Fig. 16(b)], we obtain new theories:
4d SO(3),_, YM as boundary conditions of
5d TQFT.

(5) Quantum spin liquids in condensed matter—Strong 7)
coupled gauge theories have condensed matter

" (NoiTQFT,
v No SPTs)

taneously or explicitly) as deconfinement:
(2-1) One-form Z§ S ]—breakmg and deconfined

symmetry of this 4d SPTs renders the 4d—5d coupled system in TQFTs, ie., topological order in con-
Fig. 16(a). Further gauging Z§ ) symmetry of the whole system densed matter. A Z, gauge theory with
in Fig. 16(a) renders the 4d—5d coupled system in Fig. 16(b). See the one-form symmetry spontaneously
remark 4 of Sec. 9 for details. broken has been proposed in Sec. VIII D.
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(2-i1) One-form ZS.[I]—breaking and deconfined
gapless theories or deconfined CFTs.

(iii) One-form symmetry unbroken as confinement:
(3-1) One-form symmetry-extended invertible

TQFT: This exotic scenario is discussed
in Sec. VIIIC. In Sec. VIII C, one-form
Z, ) symmetry is extended to Z, ;) in
order to trivialize, and thus saturate, the
anomaly.

(3-ii)) One-form symmetry-preserving TQFT:
Cordova and Ohmori [84,85] have proved
the nonexistence of TQFTs preserving
both the one-form symmetry and time-
reversal symmetry while saturating the 4d
SU(N),_, YM’s anomaly. This is consis-
tent with Sec. VIII D’s analysis, which
results in the previous phase of (2-i).

(iv) Full symmetry-preserving gapless theory
(CFT): This is a fairly exotic case which seems
to be less likely to happen.

Let us comment more on the recent Cordova-Ohmori’s result
[84,85] which rules out the one-form and time-reversal
symmetry-preserving gapped phases for 4d SU(N),_, YM,
namely the phase of (3-ii). To recall, although in Sec. VIII C,
we show the phase of (3-i) one-form symmetry-extended
invertible TQFT can be constructed, butin reality, such phases
are unlikely to happen [54] and should be only regarded as an
intermediate step to construct the phase of (3-ii) one-form
symmetry-preserving TQFT. Furthermore, we show in
Sec. VIII D that dynamically gauging the extended symmetry
of symmetry-extended invertible TQFT (of Sec. VIIIC)
results in the spontaneous symmetry-breaking phases, instead
of the symmetry-preserving gapped phases. Thus our Sec. VIII
is consistent with [84,85]. |

The fate of any of the four scenarios of IR phases above is
meant to match the anomaly (or match the Lieb-Schultz-
Mattis—type of theorem in condensed matter physics). Since
we have the four siblings of 4d SU(2),_, YM at UV, labeled
by (Ki,K,) € (Z,,7,), we can discuss each of their IR
dynamics. We leave more systematic discussions of the IR
dynamics for a future work.

(a) 4dSU(2),_, YMwith (K,K,)=(0,0) and (1,0):
For (K{,K,) = (0,0) or (1,0) with K, = 0, we
see that [,;s BSq'B +Sq*Sq'B + K ,w, (TM)? x
Sq'B = [y 3w (TM)P(B) + K,w,(TM)*Sq'B
(or schematically ~ [,,s 7BB+ K,7°B) van-
ishes on 5d orientable manifolds. In other words,
if ZI symmetry is spontaneously or explicitly
broken, we can match the anomaly at IR. This
means that when K, = 0, the O(d) x SU(2) and
E(d) xz, SU(2) versions of 4d SU(2),_, YM in
Eq. (9.1) can indeed flow to the ZI-breaking
scenario (1) at IR.

(b) 4d SU(2),_, YM with (K{,K,)=(0,1) and
(1,1): For (K,K,)=(0,1) or (1,1) with
K, =1, we see that K, [,,;5 Sq' (w2(TM)B) is
nonzero if M’ has a boundary, and this
Jus Sa' (wo(TM)B) term does not vanish even
if we restrict to orientable manifolds. In other
words, even if we break Z symmetry (sponta-
neously or explicitly), the [ Sq'(w,(TM)B) still
can suffer from background gauge variance. In
this case, we should define the physical 4d theory
to include not only Z,,, y\[M*: B, w;(TM)]
given in Eq. (2.37) but also the 4d counterterm
J'Sq' (w,(TM)B), which combine to

L), ymlMYBow(TM)] = 2§, yy[M*: B.w;(TM)] 'eXp<iﬂ/K25q1(Wz(TM)B)>- (9.2)

+counterterms

The intrinsic 5d theory thus contains only the 5d bordism invariant/SPTs/ATQFT,"

L3y [M7: B w;(TM)] = exp <iﬂ /M BSq'B +Sq’Sq'B + Kw, (TM)ZSqlB> :

(9.3)

In fact, in Sec. VIII, we construct the 4d boundary based on the scenario (3) above as a boundary TQFT with a lattice
spacetime path integral or a lattice Hamiltonian regularization; in this case, the full spacetime partition function

Z[M] of the 4d-5d system can be explicitly computed as a number (by following Sec. 9 of [54]).

7 Alternatively, if we instead interpret the background gauge variance of J'Sq" (wo(TM)B) as a 4d higher "t Hooft anomaly (rather
than just a 4d counterterm), then it has a consequence on 4d SU(2),_, YM dynamics. This means that when K, = 1, the Pin"(d) x
SU(2) and Pin~(d) xz, SU(2) versions of 4d SU(2),_, YM in Eq. (9.1) cannot flow merely to the Z1-breaking scenario (1) at IR.
However, scenarios (2), (3), and (4) are still possible IR fates. It seems that scenario (2) with Z‘z".m breaking with deconfinement (due to
the perimeter law of the Wilson loop) can be the most likely outcome. Scenario (2-ii) for Pin* (d) x SU(2) and Pin~(d) xz, SU(2)
versions of 4d SU(2),_, YM are proposed in [38] as two distinct versions of deconfined gapless theories or deconfined CFTs: In this
work, we show that these two siblings are indeed distinct theories with different Hilbert spaces at UV, due to their distinct 4d anomalies
differed by a 5d invariant [,,s K;w,(TM)*Sq'B ~ [,,s K;7°B. However, we will see that interpreting [,,s Sq' (w,(7M)B) as a 4d higher
't Hooft anomaly will lead to a rather bizarre and strong constraint on the dynamics of 4d SU(2),_, YM; see footnote 47.

085012-55



ZHEYAN WAN, JUVEN WANG, and YUNQIN ZHENG

PHYS. REV. D 100, 085012 (2019)

We will revisit other issues of dynamics in the future.

(8) Refinement and modification of Yang-Mills exist-
ence and mass gap problem at @ = 0.— The original
statement of the Clay Math Millennium Prize Prob-
lem [3] is “Prove that for any compact simple gauge
group G, a nontrivial quantum Yang-Mills theory
exists on R* and has a mass gap A > 0.” It seems that
in addition to the specification of gauge group G and
topological term ¢ [, Tr(F A F) with 6 = 0, we
may also need to specify the data (K,K,) €
(Z,,7,) for Kramers single/doublet and bosonic/
fermionic statistics for a quantum number of Wilson
lines W,, as we did in Eq. (2.25) and Eq. (2.37), say
for 4d SU(2),_, YM. The data (K, K,) € (Z,,7Z,)
may have been ignored in the past.

Here are possible outcomes for four siblings
(KviZ) (S (Zz,Zz) of 4d SU(2>9=0 YM. Notice
that the transition from the vacua of 4d SU(2),_, YM
to 4d SU(2),_, YM must break Z! in between
0<0<m.

(a) 4d SU(2),_, YM (K;,K;) = (0,0) and (1,0):
Since the anomalies associated with 4d
SU(2)y_, YM with (K,K,)=(0,0) and
(1,0) can be removed by Z breaking, therefore
4d SU(2)p_9 YM (K;,K,) = (0,0) and (1,0)
can have no ’t Hooft anomaly; thus it can be
trivially gapped as a trivial vacuum.

(b) 4d SU(2),_, YM with (K;,K;) =(0,1) and
(1,1): These two siblings only differ from the
trivially gapped vacuum of the previous two
siblings, (K, K,) = (0,0) and (1,0), by the 4d
counterterm [ K,Sq' (w,(TM)B).**

O(d) x SU(2) [bosonic, relatesto (K, K,) =
SU(2) [bosonic, relatesto (K, K,) =

E(d) x
G =

It will be enlightening to contemplate more conse-
quences of their IR dynamics for these four siblings
(Kl, Kz) (S (ZQ, Zz) of 4d SU(2) YM.
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APPENDIX: COMPUTATION
OF BORDISM GROUPS

In this appendix, we compute the bordism groups QdG/
where G’ is a solution of all possible extensions of

1 ->SU_2)—>G - 0(d) -1

given by Eq. (9.1)

(0,0) in Appendix A.1,
(1,0)]in Appendix A.2,
(0, 1)] in Appendix A.3,

(2)
Pin® xzr SU(2) [fermionic, relatesto (K, K,) =
(2)

Pin~ xzr SU(2) [fermionic, relates to (K, K5) = (1,1)]in Appendix A.4.

The bordism groups and their bordism invariants (topological invariants and SPTs) are used in the main text, for example,
Q¢ , in Sec. IIl. We also compute QO_.(B2Z,), used in Sec. II, in Appendix A 5.

Eollow the earlier footnote 46: if we instead interpret the background gauge variance of f Sq! (w,(TM)B) as a 4d hlgher t Hooft
anomaly (rather than just a 4d counterterm), then it has a consequence on 4d SU(2),_, YM dynamics also. Notice that [ Sq' (w,(TM)B)
survive without ZZ protection; therefore if there is an “anomaly” [ Sq'(w,(TM)B) at @ = x, then it remains for all 0 < 6 < x including
at @ = 0. The only way to saturate the if anomaly of | K,Sq!(w,(TM)B) for SU(2),_, YM is breaking the one-form symmetry. If so,
this means that SU(2),_, YM with the fermionic Wilson line (i.e., K, = 1) has one-form symmetry spontaneously broken thus
deconfined, which cannot be trivially gapped nor a trivial vacuum. In this case, if 4d SU(2),_, YM with K, = 1 is still gapped as the
conventional wisdom goes, they belong to the scenarios:

(i) (2-i) One-form Z§ 0 -breaking and deconfined TQFTs, i.e., topological order.
This deconfined scenario seems to be too exotic for SU(2)9 0 YM merely with the fermionic Wilson line. Therefore, our canonical
interpretation with f Sq! (w,(TM)B) being a 4d counterterm in 4d YM [see the main text around Eq. (9.2)] avoids leading to this bizarre
deconfinement scenario for SU(2),_, YM.
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In the two subsections Appendix A3 and A4, we will
encounter the A4, (1) module structure due to the appearance
of MSpin in the decomposition of MT (Pin* x5, SU(2)).

Readers can find the introduction to this computation in
Refs. [10,38,41]. For a short summary of the concepts and
terminology used here, the readers may consult a succinct
summary in Appendix B of [38]. For readers who are not
familiar with the details of mathematical calculations, we
will help by stating the results explicitly.

1. Bordism group of O x SU(2): QSXSU(Z)

We first notice that MT(O x SU(2)) =MO ABSU(2)_,
where A is the smash product and SU(2), is the disjoint
union of the topological space SU(2) and a point. MTH is
the Madsen-Tillmann spectrum of the group H, and MH is
the Thom spectrum of the group H. By the Adams spectral
sequence, we have

Ext{ (H"(MO A BSU(2),.2,).2,) = Q2% (A1)
The mod 2 cohomology of Thom spectrum MO is
H*(MO,ZZ) =A ® Q, (AZ)

where Q = Z,[y,, y4, Y5, Y6, Vs, - -] is the unoriented bord-
ism ring and Q* is the Z,-linear dual of Q. Here y; are
manifold generators; for example, y, = RP?, y, = RP*,
and ys is Wu manifold SU(3)/SO(3).

On the other hand, H*(MO, Z,) = Z,[w, w,, w3, ...]U,
where U is the Thom class of the virtual bundle (of
dimension 0) over BO which is the colimit of E, — n.
Here E,, is the universal n bundle over BO(n), and w; is the
ith Stiefel-Whitney class of the virtual bundle (of dimen-
sion 0) over BO. Note that the pullback of the virtual bundle
(of dimension 0) over BO along the map g: M — BO is just
TM — d where M is a d-dimensional manifold, 7M is the
tangent bundle of M, and g is given by the O structure on
M. We will not distinguish w; and w;(TM).

By Thom’s result, two manifolds are unorientedly bordant
if and only if they have identical sets of Stiefel-Whitney
characteristic numbers. The nonvanishing Stiefel-Whitney
numbers of y, = RP? are w2 and wi, the nonvanishing
Stiefel-Whitney numbers of y5 = RP? x RP? are w3 and
w,, the nonvanishing Stiefel-Whitney numbers of y, = RP*
are w} and wy, and the only nonvanishing Stiefel-Whitney
number of Wu manifold SU(3)/SO( ) is waws. Soy; = w?
orwy, (¥3)* = w3, y; = wi, ¥t = wyw, etc., where y; is the
Z,-linear dual of y; € Q. Below we choose y; = w1 by
default, and this is reasonable since Sq*(x;_,) =
(wy + w?)x,4_, on the d manifold by the Wu formula. Since

H*(BSU(2), Z,)

= ey, (A3)

by the Kiinneth formula, we get

H*(MO A BSU(2)..Z,)
— H*(MO. Z,) ® H*(BSU(2). Z,)

- Az @ 22./42 @ 324./42 @ ZSAQ @ ctc. (A4)

Here X" A, is the nth iterated shift of the graded algebra A,.
OxSUQ2) _ 3 Q0st( ) _ 7
2> 2-

OxSU
The bordism invariants of €, @ _ 73 are wi, w3,

and ¢, mod 2. Namely, in physws terms, the topological
OSUD) are w, (TM)*, w,(TM)?,

In summary we have €,

invariants/SPTs from Q,
and ¢, mod 2.
The bordism invariant of QOXSU(Z) =27, iS wyhws.

Namely, in physics terms, the topological invariants/
SPTs from QOXSU 2 are wo (TM)w3(TM).

2. Bordism group of E x, SU(2): Q E"ZZSU< )

From the short exact sequence

1-SO—-E-27Z,—1, (A5)
we derive the short exact sequence
1 - SO = E xz, SU(2) = Z, xz,SU(2) = 1. (A6)

Hence MT(E xz, SU(2)) = MSO A Z*MT(Spin(3)x
Z4) = MSO A Z3MTPin* (3) = MSO A Z73MSpin(3) A
X2MZ, = MO A ~*MSpin(3), where A is the smash
product, ¥ is the suspension, MTH is the Madsen-
Tillmann spectrum of the group H, and MH is the Thom
spectrum of the group H.

By the Adams spectral sequence,

Exz,SU(2)

Extj (H'(MO A X7MSU(2). 2,). 2,) = Q.

(A7)
Since

H*(Z4MSU(2), Z,) = Z5[c,]U. (A8)

where U is the Thom class, by the Kiinneth formula,

H* (MO A £*MSU(2), Z,)

= H*(MO, Z,) @ H*(Z*MSU(2), Z,)

—A4HLeTA4HLSTLOTAL® - (A9)
Hence we have QE 28U _ =73, QEXZZSU( ) = Z,.
EXZZSU( ) 4

The bordism invariants of Q, = 73 are w}, w3,
and ¢, mod2. Namely, in physws terms, the topological

invariants/SPTs from Q 2% ke wi(TM)*, wy(TM)?,
and ¢, mod 2. Since the constraint wi (TM)* = w,(Vgo(3))
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is satisfied, let f, denote the Bockstein homomorphism
associated with the extension Z—Z—Z,. Then
W3(Vso(3)) = ﬁzwz(Vso(a)) = ﬁzwl(TM>2 =
$2Sq'wi(TM) = 0 where W3(Vgq(3)) is the third integral
Stiefel-Whitney class of Vo(3) and we have used the fact that
$>Sq" = 0. Hence Vo3 lifts to a Spin‘(3) = U(2) bundle
V), where ¢, = cz(VU(z)) is the second Chern class
of VU(Z)'

L . Exz,SU(2
The bordism invariants of €2 *2,SU@) are w,ws. Namely,

in physics terms, the topological invariants/SPTs from

Q75 are oy (TM)ws (TM).

3. Bordism group of Pin* x,, SU(2): QZin+xZZSU(2)

Since there is a homotopy pullback square

BH —~ BPin" x BSO(3)

| |

BO x BSO(3) —Z— BO x BSO(3)
lpTl,V

BO

0
w2+ BQZ2

where f maps (V,W) to (V-W+3, W), we have
MTH = MTPin* A 23MSO(3) = MSpin A Z3MO(3).
By the Adams spectral sequence,

in+
Ext{. (H(MSpin A 32MO(3),2,), Z,) = Qi 2%,

(A10)
The mod 2 cohomology of Thom spectrum M Spin is

H (MSpin. Z,) = A, ®u1) {Z: ®@ M}, (All)

where M is a graded A,(1) module with the degree i
homogeneous part M; = 0 for i < 8. Here A, (1) stands for
the subalgebra of A, generated by Sq' and Sq?.

For t — s < 8, we can identify the E, page with

EthZ\tz(l)(I'I*+3 (MO(3),25), 2,). (A12)

For other details and the computation of the A,(1)
module structure and Adams chart, please consult
Refs. [38,41]. We can extract the bordism group and their
bordism invariants from [38].

4. Bordism group of Pin~ x,, SU(2): @, %"

Since there is a homotopy pullback square
BH —=—— BPin~ x BSO(3)

| |

BO x BSO(3) —— BO x BSO(3)
lPTLV

BO

wg—i—w%—i—O B2Z
2

where f maps (V,W) to (V—W+3,W), we have
MTH = MTPin~ A 23MSO(3) = MSpin A Z°MTO(3).
By the Adams spectral sequence,

S pyE : Pin~x7,SU(2)
ExtAlz(H (MSpin A 23MTO(3),7,).7,) = Q,_, .
(A13)
For t — s < 8, we can identify the E, page with
Exti’é(l) (H*3(MTO(3),2,), Z,). (A14)

For other details and the computation of the A,(1)
module structure and Adams chart, please consult
Refs. [38,41]. We can extract the bordism group and their
bordism invariants from [38].

5. Bordism group of O x 73 ,: QP(B*Z,)

By the Adams spectral sequence,

Exty (H'(MO A (B°Z,),.2,).2,) = Q2 (B*Z,).
(A15)

Since H*(B2Z,, Z,) = Z,[x,, x3, X5, X9, ...] where x, is
the generator of H?(B?Z,, Z,), x3 = Sq'x,, x5 = Sq’x3,
X9 = Sq*xs, etc., so by the Kiinneth formula,

H* (MO A (B*Z,),..Z,)
— H*(MO, Z,) ® H*(B*Z,, Z,)
= A ® Z5[y2.Y4.Y5. Y61 Vs -] @ Z3[x5, X3, X5, X, ...
=4 @224 @A Q4T A AT A .
(A16)
Hence we have QF(B2Z,) = 73, Q9(B*7,) = Z3.
The bordism invariants of Qf(B%Z,) = Z3 are x3, wf,

2. Namely, in physics terms, the topo-

wix,, and w3.
logical ~invariants/SPTs from Qf(B?Z,) are B2,

wi(TM)*, w (TM)?B, and w,(TM)>.
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The bordism invariants of QY (B>Z,) = Z3 are x,x3, xs,
wixs, and wows. Namely, in physics terms, the topological
invariants/SPTs from Q9(B%Z,) are BSq'B, Sq*Sq'B,

w1 (TM)*Sq'B, and w,(TM)w;(TM). Readers can find
more detailed discussions and calculations of the cobord-
ism theory of higher symmetries in Ref. [10].
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