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A topological defect in the form of the Abrikosov-Nielsen-Olesen vortex is considered as a gauge-flux-
carrying tube that is impenetrable for quantum matter. The relativistic spinor matter field is quantized in the
vortex background in (2 + 1)-dimensional conical spacetime, which is a section orthogonal to the vortex
axis; the most general set of boundary conditions ensuring the impenetrability of the vortex core is
employed. We find the induced vacuum current circulating around the vortex and the induced vacuum
magnetic field strength pointing along the vortex axis. The requirement of finiteness and physical
plausibility for the total induced vacuum magnetic flux allows us to restrict the variety of admissible
boundary conditions. The dependence of the results on the transverse size of the vortex, as well as on the
vortex flux and the parameter of conicity, is elucidated. We discuss a significant distinction between the
cases of massive and massless quantum spinor matter.
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I. INTRODUCTION

Spontaneous breakdown of continuous symmetries can
give rise to topological defects with rather interesting
properties. A topological defect in three-dimensional space,
which is characterized by the nontrivial first homotopy
group, is known as the Abrikosov-Nielsen-Olesen (ANO)
vortex [1,2]. The vortex is described classically in terms of
a spin-zero (Higgs) field that condenses and a spin-one field
corresponding to the spontaneously broken gauge group;
the former field is coupled to the latter one in the minimal
way with constant &.,,4. Single valuedness of the con-
densate field and finiteness of the vortex energy implement
that the vortex flux is related to &4,

D= j{de(x) =27/ cona (1.1)

where V(x) is the vector potential of the spin-one gauge
field, and the integral is over a path enclosing the vortex
tube once (natural units 7= c = 1 are used). As some
amount of energy (mass) is stored in the core of a topological
defect, this core is a source of gravity. Such a source in the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019,/100(8)/085011(36)

085011-1

case of the linear ANO vortex makes the spatial region
outside the vortex core to be conical, i.e., with the deficit
angle equal to 87GM: the squared length element in the
outer region is

ds* = dr* + v7?rtde? + dz?, (1.2)

where

v=(1-4GM)7!, (1.3)
G is the gravitational constant, and M is the linear density of
mass stored in the core. The transverse size of the vortex core
is determined by the correlation length, and the quantity M is
of the order of the inverse correlation length squared. Since
constant GG is of order of the Planck length squared, the
effects of conicity, which are characterized by the value of
the deficit angle, are negligible for vortices in ordinary
superconductors. However, topological defects of the type of
ANO vortices may arise in a field that is seemingly rather
different from condensed matter physics—in cosmology and
high-energy physics. This was realized by Kibble [3,4] and
Vilenkin [5,6] (see also [7]), and, from the beginning of the
1980s, such topological defects are known under the name of
cosmic strings. Cosmic strings with the thickness of the
order of the Planck length are definitely ruled out by
astrophysical observations, but there remains a room for
cosmic strings with the thickness that is more than 3 orders
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larger than the Planck length (see, e.g., [8]), although the
direct evidence for their existence is lacking.

A recent development in material science also provides
an unexpected link between condensed matter and high-
energy physics, which is caused to a large extent by the
experimental discovery of graphene—a two-dimensional
crystalline allotrope formed by a monolayer of carbon
atoms [9]. Low-energy electronic excitations in graphene
are characterized by dispersion law which is the same as
that for Dirac fermions in relativistic field theory, with the
only distinction that the velocity of light is changed to the
Fermi velocity; see [10,11]. It is well established by now
that a sheet of graphene is always corrugated and covered
by ripples that can be either intrinsic or induced by
roughness of a substrate. A single topological defect
(disclination) warps a sheet of graphene, rolling it into a
nanocone, which is similar to the transverse section of a
spatial region out of a cosmic string; carbon nanocones
with deficit angles equal to Nyz/3 (N, =1,2,3,4,5, i.e.,
, % ,2,3,6) were observed experimentally (see [12,13]
and references therein). Moreover, theory also predicts
saddlelike nanocones with the deficit angle taking negative
values unbounded from below, N; = —1,-2, -3, ..., —o0,
1.e., 1/:%,%,%,...,0, which can be regarded as corre-
sponding to cosmic strings with negative mass density.
Note that nanoconical structures may arise as well in a
diverse set of condensed matter systems known as the two-
dimensional Dirac materials, ranging from honeycomb
crystalline allotropes (silicene and germanene [14], phos-
phorene [15]) to high-temperature cuprate superconductors
[16] and topological insulators [17].

While considering the effect of the ANO vortex on the
vacuum of quantum matter, the following two circum-
stances should be kept in mind. First, the phase with broken
symmetry exists outside the vortex core and the vacuum is
to be defined there. Hence, the quantum matter field does
not penetrate inside the core, obeying a boundary condition
at its side edge. Second, the impact of the ANO vortex on
quantum matter is through a vector potential of the vortex-
forming spin-one field, and the quantum matter field is
assumed to couple to this vector potential in the minimal
way with coupling constant é. Hence, the ANO vortex flux
has no effect on the surrounding matter in the framework of
classical theory, and such an effect, if it exists, is of a purely
quantum nature. This phenomenon should be understood as
a quantum-field-theoretical manifestation of the famous
Aharonov-Bohm effect [18] and is characterized by the
periodic dependence on the value of the vortex flux, ®
(1.1), with the period equal to London flux quantum 27/é.

A crucial task in the study of the effect of the ANO
vortex on the vacuum of quantum matter is to elucidate the
dependence on a boundary condition at the edge of the
vortex core. It seems reasonable to start from the most
general set of mathematically admissible boundary con-
ditions and then, after obtaining the outcoming effect, to

_6
v=s

restrict this set by physically motivated arguments. Another
task is to elucidate the dependence on the transverse size of
the vortex core. These two tasks will be thoroughly
scrutinized and solved in the course of the present
study by considering a somewhat simplified case of two-
dimensional space1 being the transverse section of a three-
dimensional spatial region out of the ANO vortex.

It should be noted that the current, the condensate, and
the energy-momentum tensor that are induced in the
vacuum of quantum relativistic spinor matter were consid-
ered in the above-described context in [20-22]. However, a
particular boundary condition was employed, and the issue
of a dependence of the results on the choice of admissible
boundary conditions remained undisclosed.

The current and the magnetic field strength, as well
as the energy density and the Casimir force, which are
induced in the vacuum of quantum relativistic scalar matter
at v =1 in a space of arbitrary dimension were con-
sidered in the above-described context in [23—-26]. In these
studies the Dirichlet boundary condition was employed;
a physical motivation herein is in the assumption of a
perfect reflection of quantum matter from the edge of the
vortex core.

In the case of quantum relativistic spinor matter,
neither the Dirichlet nor the Neumann boundary condi-
tion is admissible. A physically motivated demand is the
absence of the matter flux across the boundary. In (2 + 1)-
dimensional spacetime with a connected boundary, this
demand yields a one-parameter family of boundary con-
ditions; see Sec. IV below. Employing such boundary
conditions, we shall find the induced vacuum current and
the induced vacuum magnetic field strength; further physi-
cal arguments will be shown to remove an ambiguity in the
choice of boundary conditions.

In the next section we define the current and the
magnetic field that are induced in the vacuum of quantum
relativistic spinor matter in the background of the ANO
vortex of nonzero transverse size. In Sec. III we present the
complete set of solutions to the Dirac equation that is
relevant to the problem considered. In Sec. IV we choose
boundary conditions ensuring the absence of the matter
flux across the edge of the vortex core. The induced
vacuum current is obtained in Sec. V. In Sec. VI we
consider the induced vacuum magnetic field and its total
flux with the use of both analytical and numerical methods.
Finally, the results are summarized and discussed in
Sec. VII. Some details in the derivation of the expres-
sion for the induced vacuum current are given in the
Appendixes A and B. The case of the infinitely thin vortex

'Quantum-field-theoretical models in (2 + 1)-dimensional
spacetime play a role of toy models in particle physics and
may be relevant to real systems in condensed matter physics.
They exhibit a number of interesting features, such as fermion
number fractionization, parity violation, and flavor symmetry
breaking; for a review see [19].
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is reviewed in Appendix C. The results for massless
quantum spinor matter are presented in Appendix D.

II. PRELIMINARIES AND DEFINITION
OF PHYSICAL CHARACTERISTICS
OF THE VACUUM

The operator of the second-quantized spinor field is
presented as

v =Y e+ Y b,
E>0 E<0O
(2.1)

where aTE and ag (bjE and bg) are the spinor particle
(antiparticle) creation and destruction operators obeying the
anticommutation relations, y(x) is the solution to the
stationary Dirac equation,

Hyg(x) = Eyg(x), (2.2)

and symbol denotes summation over the discrete part

and integration (with a certain measure) over the continu-
ous part of the energy spectrum; ground state |vac) is
conventionally defined by relation

ag|vac) = bg|vac) = 0. (2.3)
In the case of the ANO vortex background, the Dirac
Hamiltonian takes the form

H=—ia- <a —ieV + %w) +pm, (2.4)
where o is the spin connection corresponding to conical

space (1.2). The current that is induced in the vacuum is
given by expression

j(x) = (vac|¥'(x, r)a¥(x, t)|vac)

1

:—Qisgn(EMZ(X)awE(X) (25)

[sgn(u) is the sign function, sgn(u) = +1 at u = 0]. The
magnetic field strength, By(x), is also induced in the
vacuum, as a consequence of the Maxwell equation,

0 x Bi(x) = ej(x), (2.6)
where the electromagnetic coupling constant, e, differs in

general from é. The total flux of the induced vacuum
magnetic field is

o, = / do - By(x). (2.7)

Since the vacuum of quantum matter exists outside the
ANO vortex core, as was already emphasized, an issue of
the choice of boundary conditions at the edge of the core is
of primary concern. Turning to this issue, let us note first
that (2.4) is not enough to define the Hamiltonian operator
rigorously in a mathematical sense. To define an operator in
an unambiguous way, one has to specify its domain of
definition. Let the set of functions y be the domain of
definition of operator H and the set of functions  be the
domain of definition of its adjoint, operator H'. Then the
operator is Hermitian (or symmetric in mathematical
parlance),

[ @xva ) = [ exvaav. @)
X X
if relation

—i/ do - lay =0 (2.9)
ox

is valid; here functions y(x) and (x) are defined in space
X with boundary dX. It is evident that condition (2.9) can be
satisfied by imposing different boundary conditions for y
and . But, a nontrivial task is to find a possibility that a
boundary condition for 7 is the same as that for y; then the
domain of definition of H' coincides with that of H, and
operator H is self-adjoint (for a review of the Weyl-von
Neumann theory of self-adjoint operators see [27,28]). The
action of a self-adjoint operator on functions belonging to
its domain of definition results in functions of the same
kind only, and a multiple action and functions of such an
operator, for instance, the resolvent and evolution oper-
ators, can consistently be defined. Thus, the requirement of
the self-adjointness of operator H (2.4) renders the most
general boundary condition at the edge of the vortex core
for the solution to the Dirac equation, wz(x).

Note also that relation (2.9), when applied to the solution
to the Dirac equation, yields

—i / do - yhoayy =0 (2.10)
oX
or
/da-j:O (2.11)
oX

with j(x) given by (2.5). If boundary 0X is connected, then
(2.11) is reduced to

n - jlyeox =0, (2.12)
where n is the unit normal that may be chosen as pointing

outward to X. The last relation signifies the impenetrability
of 0X; i.e., the matter field is confined to X.
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In the present paper we consider the vacuum polarization
effects in (2 + 1)-dimensional spacetime, which is a section
orthogonal to the ANO vortex axis, i.e., at z = const. The
irreducible representation of the Clifford algebra is chosen
in such a way that the Dirac matrices in flat (2 + 1)-
dimensional spacetime take the form
ag =0, p =0, (2.13)
where ¢!, 62, and o> are the Pauli matrices (a transition to
another inequivalent irreducible representation can be made
by changing he sign of f). In the background of the ANO
vortex, the only one component of the vector potential and
the spin connection is nonvanishing:

O v—1
= — =1

w,
¢ 27[’ 4

a,a,, (2.14)

4

and the Dirac Hamiltonian takes the form

N 1-v .ed
H-—l[a <d,+ P >+a¢<0¢—1§>} + pm,

(2.15)
where
( 0 e lf/') y<0 e—i(p>
ar =, = ’ g =Y . |
—ie'? 0 o 0
72
" (2.16)
Decomposing function y(x) as
fn(r, E)ei"‘/’ )
Y i 2.17
WE( ) nez(gn(r, E)el(”+l)(p ( )

(Z is the set of integer numbers), we present the Dirac
equation as a system of two first-order differential equa-
tions for radial functions:

|

{ {=0,+r7 [v(n—nc) =G} f,(r.E)=(E+m)g,(r.E) }

{0,477 (n=ne) +1=Gl}g,(r.E) = (E=m)f,(r.E)}
(2.18)

where

S Y AN
(2.19)

[|u|] is the integer part of quantity u (i.e., the integer that is
less than or equal to u), and {|u|} = u —[|u|] is the
fractional part of quantity u, 0 < {|u|} < 1.

Using (2.16) and (2.17), one gets j, = 0, and the only
component of the induced vacuum current,

] IEsgn
nez

is independent of the angular variable. The induced vacuum
magnetic field strength is directed along the vortex axis,

Vn(r, E)g,(r, E), (2.20)

o dr
mm:w/.7wwy (2.21)
with total flux
2m [
D =— drrBy(r), (2.22)
v

o
where it is assumed without a loss of generality that the

vortex core has the form of a tube of radius r.

III. SOLUTION TO THE DIRAC EQUATION

The solution to the system of equations, (2.18), is given
in terms of cylindrical functions. Let us define

(fn ) 1 \F ( T+ mIEsin(uy) o) u_alkr) + cos(uy), o) ¥ g (kr)] ) a
g’(qA) 2Vr sgn(E)y/1 - m/E[Sin(ﬂz(xlAll—G)JulH—G(kr) + COS(ML(/;\]rl—G)Yle—G(kr)]

where [ = n — n., and

e A

where I! =

( fﬁ,w) B ( VTHmIE[sin(,), o) ora(kr) + cos(uyy, o) Vg (kr) ) 52
—sgn(E)\/T=m/E[sin(u}) ;) ur1:6(kr) + cos(uy) )Y ur-1.6(kr)]

—n + n; here J,(u) and Y ,(u) are the Bessel and Neumann functions of order p, k = VE* — m?.
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In the case of v>1 and 0<F <3(1-1)

L(1-v) <G <0], the complete set of solutions to

'g‘l n<n.—1 QSLV)

(L= ()
9n nxn, gr(z/\) ’

In the case of v>1 and }(1+))<F<1 [1<G<
%(1—!—11)], the complete set of solutions to (2.18) is

given by
fa i
In n<n, a g,gv) ‘

L)
9n n>n.+1 g,(1/\) ’

One can note that both upper and lower components of each
mode consist of two terms: one (given by the Bessel
function) is vanishing and another one (given by the

Neumann function) is diverging in the limit of r — 0.
In the case of v>1 and 1(1-1)<F <i(1+1)
(0 <G < 1), there is a peculiar mode corresponding to
|

Gn,

Modes

(sr)

(1)
”2”c+l gi(lA)

n = n.. This mode can be composed either from the pair of
columns

( 1+ m/EJ_g(kr) )
sgn(E)\/1 —m/EJ,_g(kr)
1+ m/EY_g(kr) )

and (
sgn(E)\/1 —m/EY _g(kr)

or from the pair of columns

V1 +m/EJg(kr)
(—sgn(E)\/mJ_Hc(kr))
and ( \/mYG(kr) ) ;
e T - sk

both terms in the first variant have divergent upper
components, whereas both terms in the second variant
have divergent lower components. Instead of these variants
we choose the following form:

<fnc> :l\/g 1 ( V 1+ m/E[sin(u;_g)J _g(kr) + cos(u-g)J 6 (kr)] ) (3.5)
2Vx \/1 +sin(2u1-g) cos(Gx) \ sgn(E)/1 — m/E[sin(u_g)J1-(kr) = cos(u1_¢)J -1 (kr)]

(3.6)

(=)
Gn n<n.—1 g,(1v>

together with mode (3.5) comprise the set of all solutions with |E| > m in this case.

Inthecaseof j <v < landf(1—1) < F <

v

1 1

5(3=7) (1 =v < G <), the set of all solutions with |E| > m is also given

by (3.5) and (3.6). In the case of ; <v < land 0 < F <3(1 - 1) (1 —») < G < 1 -1/, there is an additional peculiar

mode:

gnc—l

Modes

-(%)
nzn il o)

()

<fnc—l ) 1 \/E 1 ( V1+m/Elsin(ui_,_g)J_—g(kr) + cos(ui_-g)J s (kr)] ) (3.7)
2Vx \/1 + sin(2u1_,_¢) SgH(E)W[Sin(ﬂl—y—c)fl—y—c(kr) = coS(p1—y—g ) —11u1(kr)]

(3.8)

(1)
a2\ gy

(ar)

together with modes (3.5) and (3.7) comprise the set of all solutions with |E| > m in this case. An additional peculiar mode
also appears in the case of ;1 <v<land1(3-1) < F<1p<G<3i(1+v):

gnc+1

<fnc+1 ) _ 1 \/; 1 ( V1 +m/E[sin(uy4y—g)J,—g(kr) + cos(pyy—g)I —p 6 (kr)] ) . (3.9)
2V a1+ sin(214,-6) \ sgn(E)y/T—=m/E[sin(11,-6)J 10— (kr) =08 (i14,-6) -1y 1.6 (k7))
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Modes
(h) _ (ff?)) <f>
Gn n>n.+2 g,(1/\) ’ 9n

together with modes (3.5) and (3.9) comprise the set of all
solutions with |E| > m in this case. In the case of 0 < v < §
there are two and more peculiar modes.

Certainly, the limit of » — 0 is of no sense for vortices of
nonzero transverse size. However, it is instructive to discuss
an infinitely thin vortex, and we shall touch upon this
subject in the rest of the section. Most of the modes in the
ro = 0 case are obtained by putting y,(,A) = ,uf)w =rx/2 in
(3.3),(3.4), (3.6), (3.8), and (3.10); these modes are regular
at r — 0. However, peculiar modes (3.5), (3.7), and (3.9)
cannot be made regular at r — 0; they are irregular
but square integrable. The latter circumstance requires a
quest for a self-adjoint extension, and the Weyl-von
Neumann theory of deficiency indices (see [27,28]) has to
be employed. In the case of v>1 and 1(1-1)<
F <1(1+41), as well as in the case of 1 <v <1 and
1(A=1) < F <4(3 —1), when there is one irregular mode,
the deficiency index is (1,1), and the one-parametric family
of self-adjoint extensions can be introduced with the use of
condition

(1)
n<n.—1 ggv)

(3.10)

lim(mr)® cos (G )f,h = —liné(mr)1 Gsin (Z) 4) Gn,»

r—0

(3.11)

where © is the self-adjoint extension parameter [29,30]. In
view of relations

o0 Sk -k
/ drer(kr)Jp(k’r)zy, p>-1, (3.12)
0 kk'
and
o 5(k— k')
drrd ,(kr)J_, (k'r) = cos(pn) ——=,
[ a0 = costom ™ S
-1<p<l, (3.13)

the modes are orthonormalized as the modes corresponding
to the continuous spectrum:

/ PGl (. ENfo(ro EY) + a1 E)gu(r. EY)]
S(k— k)
N

In addition, there is a bound state at cos ® < 0 with energy
Egq in the gap between the continuums, —m < Egg < m. Its
mode is

= % [1 + sgn(EE")] (3.14)

fnL 1 [u(m?—E%g)sin(Gr)
s T2\ T+ (2G-1)Egs/m
x( V1+Egs/mKg(r/m*—Ezg) >’ (3.15)
V1=Egs/mK,_(rv/ mz_E%s)

and the value of its energy is determined from relation

I'(l1-0G) 0 =
— _21—2G t —_ -,
rG) " <2 +4)

(1+ Epg/m)'=¢
(1- EBS/m>G
(3.16)

[(u) is the Euler gamma function, and K,(u) is the
Macdonald function of order p. The induced vacuum current
and other vacuum polarization effects were comprehensively
and exhaustively studied forv = 1in [31-35] and for carbon
nanocones in [36-39].

Inthe case of J<v<land 0 <F <f(1-1), 0or3<
v<1landj(3—-1) <F <1, and other cases, when there
are two irregular square integrable modes [of the kind
given by the pair of (3.5) and (3.7), or (3.5) and (3.9)], the
deficiency index is (2,2), and there are four self-adjoint
extension parameters. These cases remain unstudied yet.

IV. SELF-ADJOINTNESS AND CHOICE OF
BOUNDARY CONDITIONS

The Dirac Hamiltonian operator in the background
of the ANO vortex of nonzero radius r, is self-adjoint,
if condition

glay|,_, =0 (4.1)
is valid [see (2.8) and (2.9)] and sets of functions y and

coincide. Ergo, the quest is for a boundary condition in
the form

W'r:ro = Kllllr:r()? lZ‘,|r:r0 = Kli/'r:ro’ (42)
where K is a matrix (element of the Clifford algebra) which
without a loss of generality can be chosen to be Hermitian
and has to obey conditions

K.a], =0 (4.3)

and

K2 =1 (4.4)
One can simply go through four linearly independent
elements of the Clifford algebra in (2 4 1)-dimensional
spacetime, which is a section orthogonal to the ANO vortex
axis, and find
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K = ¢ \f + c,ipa” (4.5)
with real coefficients satisfying
A+ =1. (4.6)
Using obvious parametrization
c; = siné, ¢y, = cos b,
we finally obtain
K =ipa’e 0 (4.7)

Thus, boundary condition (4.2) with K given by (4.7) is
the most general boundary condition ensuring the self-
adjointness of the Dirac Hamiltonian operator in the

|

1(kr) —sin (§+5)(m — E)Y

background of the ANO vortex of nonzero radius r, in
transverse section z = const, and parameter € can be
interpreted as the self-adjoint extension parameter. Value
60 = 0 corresponds to the MIT bag boundary condition,
which was proposed long ago as the condition ensuring the
confinement of the matter field [40]. However, it should be
comprehended that a condition with an arbitrary value of 6
ensures the confinement equally as well as that with 6 = 0.

Imposing boundary condition (4.2) with matrix K (4.7)
on the solution to the Dirac equation, y(x) (2.17), we
obtain the condition for the modes,

cos (9 )fn(ro’ E) = —sin <§ 4)9;1(’0,15)’ (4.8)

which allows us to determine their coefficients:

(kro)

(A)) _ cos G+ 5)kY,_
(

tan(u,) =

4
—cos (§+25)kJ ,_y(krg) + sin (¢ +2)(m — E)J ,(kry)’ (4.9)
V) cos (g + %) (m + E)Y ,(kry) — sin ( DkY ,_y (krg)
)= oos @ +2)(m + E)J, (kro) +sin (S + D)k ,_ (krg)’ (4.10)
cos ( + kI -, (kro) + sin( +5)(m—E)J_,(kry) @11
g +5)kJ ,_1 (krg) + sin (g +5)(m—E) :

—cos (

J,(kry) '

Because of condition (4.8), in addition to the continuous spectrum, there is a bound state at cos < 0 forn = n. [v > 1 and

1-YHY<F<i(1+Y), or
[2§z/<1and (3

271'0

( /14 Egg/mKg(kry) )

9n,

\/ 1 —EBs/mKl G K'ro

nc$1
( ) \/ {mKG:I:z/ Kro K1 Gq:v(KrO)

gnm

+ EgslkroK7_ G0 (KT0) — KkroKg., (kro) +

( 1+ Egg/mKgy,(xry) )
vV 1 — Egg/mK,_ —-GFv K”o

I<v<Il,as well as forn=n.—1 [<v<land 0<F<i(l-1), or n=n.+1
- %) < F < 1]. The bound state modes are

)
(le;ﬁ) = o K (ko) K1 (k7o) + EpslkroK?_(kro) — kroK% (kr) + (2G = 1)K (kro) Ky g (kro)]} ™/

(4.12)

(2G £+ 20 — 1)K 4, (k70) K g, (k1) ]} /2

(4.13)

where k = \/m? — Elzgs. The bound state energy for n = n, is determined from relation

K _g(xry)

1+E35/m7_
I—EBs/m_

K¢ (xro)

(4.14)

2 4)

by changing G to G £ v in (4.14), one obtains the relation for n = n, F 1.
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Comparing the case of a vortex of nonzero transverse
size with that of an infinitely thin one, we conclude that in
the first case the total Hamiltonian is extended with the use
of the only one self-adjoint extension parameter, whereas in
the second case several partial Hamiltonians are extended,
and the number of self-adjoint extension parameters can be
zero (no need for extension, the operator is essentially self-
adjoint), one, four, etc. The values of the self-adjoint
extension parameters in the second case can be fixed from
the first case by limiting procedure r, — 0 [41]. The
nonpeculiar modes (p > 1) in this limit become regular
and independent of 6, since, as was already noted,

. T
fimye") = Ty =2
1 l1-bh<F<l@21).
©=<0, F=1 (=3,
-2, i< F<i(+h w21

The peculiar modes (0 <p < 1) in this limit become
irregular and square integrable, and

o L<pl0#ED, 0<p0=1).
hn%)up sgn(E)arctan[ i;%gtan(g+z)], p=1i.
ro—

0. p<i@#+3., p<1(0=-1.

(4.15)

Namely in this way, the condition of minimal irregularity
[31,32] is obtained, which in the case of the deficiency
index equal to (1,1) (i.e., only one peculiar mode) takes
the form

IG-1)<F<j (G<v<l),

(4.16)

), 3<F<iB-YH(d<v<).

V. INDUCED VACUUM CURRENT

We start with the case of v > 1and 5 (1 1) < F <1(1+1

Dyori<v<tlandi(l-1)<F<3(3

—1), when there is

one peculiar mode. Inserting the contribution of the appropriate modes [see (3.1), (3 2), (3.5), (3.6), and (4.12)] to (2.20),

we obtain
. .(1 .(2 (3
Jo(r) = J) (1) + i () + 5 (1), (5.1)
where
| rofe dkkR
r)=—— —_— Joici—g(kr)d y_g(kr) = J 1 q(kr)d ,— kr)l, 5.2
) 0 0 m;[ 1+1 G( ) IG( ) l+G( ) 11+G( )] ( )
ro [~ dkk? {
r cos? Py kr)Y _g(kr) = J - (kr)d ,_g(kr
() e A mqgﬂz Z ﬂul+1 G)[ 1r1-6kr)Y g (kr) = J 16 (kr)J g (kr)]
1.
+ 5Sm(zﬂz(,zAL—G)[Juz+1—G(k”)Yu1—G(k") + Y- (kr)J g (kr)]
=05y 6) [Yurro (kr) Yurr g (kr) = Juag (k)i g (kr)]
1.
— 5 sin@u({) o) Vs (kr) Y kr) + YDHG(kr)Jyl_HG(kr)J}, (5.3)

I / dkk?
Jo 4z 0 \/k2

sgn

—J_g(kr)J_i g (kr) = COt(ﬂl—G)JG(kr)J—l+G(kr)]

K2 [1 — sgn(cos 0)]sgn[tan (g

Z [tan(u1 ) + 2 cos(Gr) + cot(u; )]~ [tan(py )T (kr)J 1 _g(kr) + T (kr)J g (kr)

+5) + £ S K g (kr) Ky (k7)

K_g(kry)

_l’_
4rrgmKg(kro)K _g(kro) + Egs{kro[Ki_¢(kro)

= K& (xro)] +

T 26~ DKoo Ko (cr)] 54
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In Appendix A, the summation in (5.2) is performed, yielding

r ©  dgq®

222 ), [ —m2

_ m /oo du 1+ 1 e—Zmrcosh(u/Z)
(27)? | Jo cosh(u/2) 2mrcosh(u/2)

y sin(Gr) sinh(vu) sinh[(G — 1)u] — cos(Gr) sin(vrr) cosh[(G — 3)u]
cosh(vu) — cos(vr)

o) = 1_¢(ar)Ka(qr) = 16(ar) K _c(qr)]

27 A 1 . sin[(2G — 1) pz/u]
-= ; [1 + W(P”/V)} exp[—2mrsin(px/v)] sn(pa/v)

1
— z (1 + —> e—2mr COS(GH)(SIJ,ZN}’

v 2mr

(5.5)

where 1,(u) is the modified Bessel function of order p (p and N are the positive integers, J,,,, is the Kronecker symbol,

8pe =0 at @ # w, and §,,, = 1), while (5.3) is transformed to the following expression:

0 rofe dag?
JE/:)(V) = —;/ 7 —m? Z [Cﬁl_g(qr0>Kuz+1—G(qr)Kuz—G(Clr)
m —mTo

- Cmrc(qro)KDHG(qr)sz—HG(qrﬂ,

where
6(0) = {on, (00K, (0} an (5 4 5) + w1, (00K (0) = 1y (0K, (0]
ol (0)K, (1) cot (9 + Z) } [UK},@) tan (— + f) - 2mroK, (1)K, (v)
+ vK2_,(v) cot <§ + g)] R
and

—vl,_,()K,_; (v) tan (g + %) } {vl(,z,(v) cot <§ + %) +2mroK ,(v)K,,_ (v)

0 m\]|!
+vKﬁ_1(v)tan<§+Z>} ;

note that Cﬁfil_G(v)@;» Cilvlc(v) under simultaneous changes F — 1 — F and 0 — —0.

In Appendix B, j, (5.5) is transformed to the following expression:

10) =5 741 gtar)Ko(ar) ~ o(ar)K-olan
27 Jm \/m

—2C1_6(qro)Kg(qr)K _g(qr)].

where
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Cr-ol0) = {o|1-o(0) + 2 ko) K1) (5 + ) + mralf-o0)Ko)

~6(0Ks-0) = lie(®) + SO KK o (5 7)
”)]_1; (5.10)

X {vK%_dv)tan(%#—%) +2mroKg(v)K _g(v) + vKZ (v )cot(i 4

note that Cy_g(v) changes sign under simultaneous changes F — 1 — F and 6 — —0
Summing (5.5), (5.6), and (5.9), we obtain the final form for the induced vacuum current and express it in terms of F

instead of G [see (2.19)],

7 m © du ] —zmrcosn(u
Jolr) == (2r)? {A cosh(u/2) {1 + 2mrcosh(u/2)] e
cos [u(F — %)z sinh(vu) sinh [v(F — $)u] 4 sin [(F — §)x] sin(vr) cosh [v(F — 1) u]
cosh(vu) — cos(vr)

(lz/2]] .
2z { } : sin[(2F — 1) px]
-— 1 +———| exp[2mrsin(pr/v)| ———=—
v 5 2mrsin(pr/v) sin(pr/v)
+ 2 (<1)V sin @NFr) (14 —— )e2rs, 0
2N 2mr v
ro [ dqq
y(qro)Kiyp_y(qr) Ky oy (qr) + Z(qr. qro)]. (5.11)

_r e

where

A
=(w. v) = ;‘[ci(f_%;v)KW_HM<w>Kp<l_F+%)_%<w>
= o py (Kot WKy 4 9] (5.12)
The analysis in Appendix A is sufficient to consider cases when there are no peculiar modes. In the case of v > 1 and

0<F<3(1-1[(1-v)<G<0], we obtain

: m 0 du 1 —2mr cosh(u

Jo(r) = _(ZW{A cosh(u/2) [1 +2mrcosh(u/2)} el

8 cos[v(F — $)x] cosh[v(F + 1)u] — cos[v(F + 3)x)] cosh[v(F — 1)u]
cosh(vu) — cos(vr)

sin[(2F — 1) pz]

1 .
)} exp[—2mrsin(pr/v)] sin(pr/o)

2 i o
v £ 2mrs1n (pr/v
—|—i(—1)N sin(2NFr) 1—|—L e2mrs
N 2mr vaN

2
ro[e  dqq’ (A)
3 [Cy 2>(61"0)K% w(r-y (@) K1y po1)(gr) + Z(gr, gro))- (5.13)

1 (F-1
/q2_m2 v

In the case of v> 1 and § (1 +1) < F <1 [l <G <1(1+v)], we obtain
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m 0 du 1
j = 1 —2mrcosh(u/2)
Iolr) (27)? {/0 cosh(u/2) { * 2mrcosh(u/2)] ¢

» cos[v(F — )x] cosh[v(F — 3)u] — cos[u(F — 3)x)] cosh[v(F — 3)u]
cosh(vu) — cos(vr)

o W20
+ — Z 1+ ] exp[—2mrsin(px/v)]

v o { 2mrsin(pr/v)

7[ : 1 —zmr
—ﬁ(—l)N s1n(2NFJr)<1 —I—%)e 2 5M2N}

sin[(2F — 1) px]
sin(pr/v)

r dqq ()
L[ S Oy (K iy (47 Kicpy (47) = Sl ar) (5.14)

Note that both (5.13) and (5.14) consist of two parts: one [with a factor of m/(2x)?] is independent of 7, and another one
(with a factor of r/z?) is vanishing in the limit of r, — 0,

o) =3 + 3P, () = limj, (). (5.15)

ro—0

It is instructive to present result (5.11) in the same way; evidently, j((,,”) (r) then coincides with the current that is obtained by

imposing the condition of minimal irregularity in the case of an infinitely thin vortex [31,32]; see (3.11) and (4.16). We
obtain for the decomposition of (5.11) according to (5.15):

(a) m 1\ [ du 1 ~2mr cosh(u/2)
p — F—— 1 mr cosh(u
Jo (Nlrsiponsnn = Gy {Sgn< 2> /0 cosh(u/2) [ T 2mrcosh(u/2)|©
cos[v(F = H)x)| cosh[v(|F = 3| = 1)u] — cos[v(|F — 3| — 1)x] cosh[v(F — 1)u]

x cosh(vu) — cos(vr)
27 WA 1 _ sin[(2F — 1) pa]
* v pz::l [1 + o sin(pzr/u)] expl=2mrsin(pz/v)] sin(pz/v)
- % (=1)N sin(2NFr) (1 + ﬁ) e—z""&y,w}, (5.16)

(a) — m ® du 1 —2mrcosh(u/2)
_ 1 cos
Jo  (e#1/20-2n2 = F (2r)? {A cosh(u/2) { * 2mrcosh(u/2)}e
cos[v(F — $)z] cosh[(F — 5 + 1)u] — cos[v(F — 1 + 1)z cosh[v(F — §)u]
X
cosh(vu) — cos(vr)

F z—yﬂnjﬁ] {1 + m} exp[—2mrsin(px/v)) %;/lj)pﬂ]
+ % (=) sin(2NFx) (1 + ﬁ) e21rs, oy } (5.17)
jf/:”(r)lF:l/z:—szi;f mm\/%q:;{;se’ (5.18)
38 Olrarpossp == | wfq% L) ey (970 Ky (D) K ey (ar)+E(gr aro ), (5.19)
j((Pb>(r)|F>l/2,6¢ﬂ/2_L m\/;z’qc_]im (qro)K1+y (qr)Kl u(F )(611’) =X(gr, qro)], (5.20)
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0 L m(gqro)
(b) r dqq L(d-F)(qTo
Jo (Dpe1/2.0=t22 = m{ )K%JFU(F—%)(W)K%_D(F—%)(qr)

. Iv(l—F+l)il(61”0)
+ —== K, (gn) K gy _i(gr)
=1 |:Ky(l_p+é) %(qro) u! F+2)+2( v(I-F+1)-1

+
Iu(l+F—%)$%(q”0)

K14 r51(q70) K’/(H‘F—%H%(qr>Ky(l+F—%)—%(qr)]}7 (5.21)
wiHF=3)F3
and
(b sin@ [« dgq® —2qr( 2qry _ 0
.]l</l>(r)|F:l/2 = — 271_2 [n W q+mCOS€ Z Dl+ qr() Z,H%(qr)K,,[_%(qr) N (522)
where

Co(v) = {21)KD,+%(11)KDZ__(@) + mry 0059[ () + Kfl_%(v)] }
{vcos@[ l+1( )—i—Kfl_%(v)} [vcosé’(KzHl( )+K§l_%(v)) +4erKyl+%(v)Kyl_%(v)]

+ 4(v%sin0 + mzr%cos29)Kfl+%(v)Kfl_%(v)} , (5.23)

and the use is made of relations

1 1 (n)
—;COS |:IJ (F - E) ﬂ':| + C%—D(F—%)(U) = C%—I/(F—%) (524)
and
1 1 v)
;COS |:l/ <F - E) :| + Cl_,/( 1)(1)) = _C%-H/(F—%)(U)' (525)

It should be noted that the ry- 1ndependent part of the current in cases § (1 —1) < F <landj < F <3(1+1) (w>1), 0r
13-1)<F<jandj <F <3(3-1) (4 <v <1),is independent 0f9 if0 # +txn/2 [see (5.16)], whereas it depends on 6
if @ = +x/2 [see (5.17)]. The latter is distinct from cases of the absence of peculiar modes, when the ry-independent part of
the current is always independent of 0, see the first four lines in (5.13) and (5.14). Note also that limits ¥ — 1/2 and ro — 0
in general do not commute. Indeed, we obtain a discontinuity at F = 1/2, if limit r, — O is taken first,

= lim j(r)

= :l:izl(l (2mr), (5.20)
0442 F=(1/2)

lim  limj,(r)
O#£n/2 27

F—(1/2), ro—0

where the use is made of relation

m [ du 1
m 1 —2mrcosh(u/2) / = mK,(2 5.27
2% cosh(u/2) { +2mrcosh(u/2)}e \/q —m? = mki(@mr). 527

When the order of limits is reversed, then j((ph)(r)| 042 coNtributes, because of relation

lim ()
F*(l/z)i

in@® [ dgg? 2q(ro—r) 2w-1
=7 %Kl(Zmr) - sz 14 c +mO [mro <r0> } . (5.28)
O#+1/2 2r 27° Jm q* —m?*q + mcos 0 r
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which follows from particular cases of (5.24) and (5.25),

gsind

762(1r0
q+ mcos0

1
Cg%(‘l’o) =-_7
and

1 gsin@

o

e2qr0
7 g+ mcos6

Adding limg_,(; /5), jq(,,“)(r) \g#ﬂ/z to (5.28) and taking limit
ro — 0, we get

= jl(/)a>(”) ‘F:l/2,6¢i7r/2' (5.29)

O#+n/2

lim lim j,(r)
r0=0 F(1/2),

The limits do commute in special cases only:

0| r [e dqg® (sin(Fr)
r =——
Jo v=1 ﬂ,'2 . /qz_mz T
in(F
N {(ZF—I)Sm( )

where the use is made of (A17) and relation

o dqq

qrlKi_p(qr)

; cl_F<qro>] Ke(ar)K_e(ar) + Z(ar.aro)l,_, }

lim lim j,(7)

=1 li
F—1/2 rp—0 Yy J"’( )

ro—0 F—1/2

:jr(/r ( )lF:l/Z,H:ﬂ:;z/2

K,(2mr);

lo— +7/2 = |6=j:n:/2

=F—— (5.30)

22

the discontinuity at F = 1/2 is absent in these cases.

We can summarize our results for the current at
F #1/2 in cases when there is one peculiar mode:
@ J,(r)lp, /2.04-x2 1S given by the right-hand side of
(5.13) at 0 # —x/2, whereas j(,,(r)|F<l/2’9:_”/2 is given
by the right-hand side of (5.14) at 6 = —z/2, and
(i) Jo,(r)|pey J2.04z2 18 given by the right-hand side of
(5.14) at @ # n/2, whereas j,(r)| .| /5 o/, is given by the
right-hand side of (5.13) at @ = z/2. Note also relation

—Jjo (Dl _r o>

which holds in all cases considered in the present section.
In the case of v = 1 expression (5.11) takes the form

j(p(r>|1:,9 = (5'31)

- K7 (qr)]

(5.32)

K7 _r(qr) — K3 (qr)]

B

I —
" 472 Jy cosh(u/2) 2mr cosh(u/2)

:| e—2mr cosh(u/2)

« {tanh(u/Z) sinh [(F _ %) u] — (2F = 1) cosh [(F - %) u} } (5.33)

Decomposing (5.32) according to (5.15), we get

(a) r
era (r)|u=1,F;é1/2.€;é:tn/2 = sm (Fr)

¥ sgn(F —1) (RF =11 = DKar)K (a0}

. r
Jf(lfa)(r)|1/:l,F=;é1/2.6':iﬂ/2 =3 sin(Fr)

dag” {qr K24 (qr) — K3(qr)]

n NE =

(5.34)
® 2991 4r(K3.plar) - K(ar)
Vq? —m?
+(2F -1+ I)KF(qr)Kl_F(qr)}, (5.35)

(a)

(b)

. (b (b (b
Jo (r>|u:l.F:]/2 is given by (5.18), while J((ﬂ)(r)|u:l.F<l/2,9;é—/r/2’ Jé»)(r)|y:1,F>1/z.9;en/2’ J((ﬂ)(r>|u:l,F¢l/2,6‘::t7z/2’ and

Jo ()11 /> are obtained by putting v = 1 in (5.19), (5.20), (5.21), and (5.22), respectively.
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VL. INDUCED VACUUM MAGNETIC FIELD AND ITS FLUX

Inthecase of v > land (1 -1) < F <i(1+1),ori<v<landi(l-1) < F <$(3-1), we obtain the following
expression for By (2.21):

ve 1 0 du
B =—— - "7 a—2mrcosh(u/2)
1(r) 2(27)* r {/0 cosh?(u/2) ¢

. cos[v(F — 3)z] sinh(vu) sinh[v(F — })u] + sin[v(F — §)z] sin(vz) cosh[v(F — §)u]

cosh(vu) — cos(vr)

[lv/2]] .
2 2F —1
- —” exp[ “2mrsin(pr/v)] w n % (=) sin(zNFﬂ)e—Zmray,ZN}

3(qro)Kiyp1) (a7 ) Ky -y (gr') + Z(qr'. qro)]. (6.1)

e A

where X(w, v) is given by (5.12), while Cf,/\)(v), C,(,V)(v), and C|_g(v) are given by (5.7), (5.8), and (5.10), respectively.
Expression (6.1) can be decomposed as

Bi(r) =B (r) + B (r).  By"(r) = limBy(r). (62)

where

a a ve 1 «® du —zmr u
B| )(r)|F<l/2,6’;é—n:/2 = B )(r)|F>l/2,6’:n:/2 = —W;{A We 2mr cosh(x/2)

cos[v(F — §)x] cosh[v(F + 3)u] — cos[v(F + 3)x)] cosh[v(F — 1)u]

. cosh(vu) — cos(vr)
(lv/2l] :
2n . sin|(2F — 1)px 7 .
- 7 pgzl eXp[—Zmr Sln(pn'/l/)} W ﬁ(—l)N Sln(2NF7r)e_2mr5u,2N}, (63)

a a ve 1 0 du —2mr cosh(u
B )(r)|F>l/2,6‘;ﬁﬂ/2 = B| )(r)|F<1/z.9:_ﬂ/z = W;{/) cos?(u/2)° 2mr cosh(u/2)

cos[u(F — 3)x] cosh[v(F — 3)u] — cos[u(F —3)x)] cosh[v(F — 1)u]
X
cosh(vu) — cos(vr)
i (720) :
sin[2F = 1)pzn| = . omr
+ 7 ; eXp —2mr sm(pn'/ )] W - ﬁ (—1)N Sln(ZNFﬂ)e 2 51/,2N (64)
(@) vesing [~ dqq>  T(0,2qr)
B 1= . 6.5
I (r)‘F71/2 27 ), \/qurmcosﬁ (6.5)
and
F(Z, u) = /00 dyyz—le y
is the incomplete gamma function. The ry-dependent part of B(r) is given by
(v) __ve [® . [*_daq”
BI (r)‘F<1/2,6;é—n/2 - 77:2[ dr A \/m
Oy (00K sy 0Ky 07) + Zar'ar)| (6.6)
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) e /°° ,/°° dqq
B =— d B e
1 (NFs1/2.022)2 2/ r Y g

O oy )R ey (0K ey 07) = )| (67)

2 I T
ng)(r”F#l/Z.é):i;r/Z De/ / \/%{I;::éj:f(i:))l(w )(qr)K U(F—%)@Ir')
N [1 V(I—F+1)+ +1(gro)
— LK -ri1+1(qro)
Lroyzi(g o)
Kv(l+F (‘I”o)

Ko-rina(@r ) Kyg_pyy-1(gr’)

syl Koery )| | (63)

b vesind [~ dgq? e2d" — 1
B£ )(7”)’1::1/2:— \/ﬁ F(O’zqr)
q* —m? |q +mcosf

/ 2:: 11(qro) y,+%(qr’)K,,,_%(qr’)] ; (6.9)

and Cp1+ (v) is given by (5.23).

Inthecaseof v > land 0 < F < 5 (1 - —) the induced vacuum magnetic field is given by (6.2) with B( %) given by the
right-hand side of (6.3) and B§ ) given by the right-hand side of (6.6). In the case of v > 1 and (1 D) < F <1, the
induced vacuum magnetic field is given by (6.2) with Bﬁ“)
hand side of (6.7).

Turning to the total flux of the induced vacuum magnetic field, [see (2.22)], we present it as

given by the right-hand side of (6.4) and BEb) given by the right-

@ = 0\ + o, (6.10)
where

®§a) 2_71 drrB (r) d?%b) 2—ﬂ drB§b>(r). (6.11)
v v

ro ro

We obtain in the case of v > 1 and (1 -1) < F <l(1+1), ord<v<landi(l-1)<F<i(3-1,

) e 1 0 du 3 .
@%a |F<1/2,9¢—75/2 — (I)Ea)(r)|F>l/2.9:n/2 = —ga {A me 2mrg cosh(u/2)

cos[u(F —3)x| cosh[v(F + 3)u] — cos[v(F + 3)x)] cosh[v(F — §)u]

% cosh(vu) — cos(vr)

(le/2]] :
2r sin|(2F — 1)px T . o
_= E exp[—2mry sin(pz/v)] —s[i(n3(pﬂ/1)/) ] N (=1)V sin(2NFr)e™> 051/,2]\7}7 (6.12)

e 1 0 du _
‘DI |F>1/2 On/2 = ‘DE (M Fp<1/2.0-—r/2 :gg{A me 2mro cosh(u/2)

cos[v(F —})z] cosh[v(F —3)u] — cos[u(F — 3)x)] cosh[v(F — 1)u]

x cosh(vu) — cos(vr)
[lz/20] :
2r sin|(2F — 1)pn /2 . omr
+_ E eXp 2mr0 Sln(pﬂ/y)}w—ﬁ(—l)lv SIH(ZNFﬂ')C 2 051,,21\/}, (613)
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and

esind

0 dq 1
871 /n Vq* —m?q+mcosf

Oy = [T(2,2qry) — 42 RT(0, 2gr)]. (6.14)

In the case of v > 1 and 0 < F < %(1 —%), <I>§“) is given by the right-hand side of (6.12). In the case of v > 1 and

L1+ < F <1, @ is given by the right-hand side of (6.13).
As follows from (6.12)—(6.14), CDE'I) is damped exponentially at ry — oo. In the case of the opposite limit, i.e., at ry — 0,

all integrations in d)l(“) can be explicitly performed. It is straightforward to obtain

a 0
lim (D% >] = ——° arctan <tan—). (6.15)
ro—0 F=1/2 m 2

The analysis at F' # 1/2 requires more efforts. Let us consider first the case of v > 1 and present j((,,”) defined in (5.15) as

jfgia)(r)|%(1—%)<F<%,9;é—’2—’ = j!(ﬂa)(r)|%<F<%(l+%),9:’5‘ = J((/1a>(r)|0<F<%(1—l)

v

1 1
=00+ 0 =200 =g [ a1
Co 2mr

. sinh(vFz)
X exp [—Zmr\ / —smhz(z/Z)} Sinh(2/2) sih(22/2) (6.16)

and

7 er a8y 008 = Jo” (Dl tyeragoms = Jo (Dl y<rar

o (12, m 1 / [ 1
o r) + g (1) 87 27i Jc, 2mry/—sinh*(z/2)
sinh [v(1 — F)Z]

sinh(z/2) sinh(vz/2)’

X exp [—Zmr —sinhZ(z/z)} (6.17)

where j((/,l’l), j((/,l’2>, and j((/,l’3) are given by (A13), (A15), and (A18) in Appendix A and contour Cj, in the complex z plane is

depicted in Fig. 8. Consequently, we get

Bl(a)(’") |%(1—%)<F<%,6;é—5 = B§a>(”)\%<F<%(1+g),a=g = Bl(a)(r)\0<F<%(1_§)

Nz 1/ exp [-2mry/—sinh*(z/2)] sinh(vFz)
 167r27i Je, —sinh?(z/2) sinh(z/2) sinh(vz/2)’

(6.18)

BEQ)(F)|%<F<%(1+,{),6;&§ = Bga)(r)|%(1_bl)<F<%,9:—g = BEQ)(F)|%(]+%)<F<]

_wve 1 1. SXP [-2mry/—sinh?(z/2)] sinh[v(1 — F)Z] (6.19)
T T M6mr2ni)e, " /—sin’(z/2)  sinh(z/2)sinh(vz/2)’ ‘

lim & | = lim &} = lim @
ro—0 a-bh<r<toz—2 10 <F<i(1+)),0=% 10 0<F<i(1-1)
1 inh(vF
_ e dz sinh(vFz) (6.20)

16m2xi Jc,  sinh®(z/2) sinh(vz/2)’

and
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lim &) = lim & = lim ®*
ro—0 i<F<i(1+))0#%  10—0 a-bh<r<to=-2  r—0 1(+h<F<1
1 hlv(l1-F
e L[y s [( mLiid (6.21)
16m2xi Jc, ~ sinh®(z/2)sinh(vz/2)

Only a simple pole at z = 0 of the integrands contributes to the integrals in (6.20) and (6.21). Calculation of its residue

yields
lim,o®”|  —lim @ = lim @
W) <F<30#5 =0 I<F<i(1+h o=  r0—0 0<F<i(1-1)
e 1
=-——F|-(*+3) - 1*F? 6.22
Pl 43— (622)
and
lim @) = lim & = lim ®*
ro—0 i<F<i(1+h)0#z  r0—=0 -bh<r<to=-2  r—0 1(1+h<F<1
1
1— 3) - 6.23
— 1= 0243) =20 - PP, (6.23)

Considering the case of } <v <1 and j(!—
1(3—1) at F #1/2, we obtain that

1)< F<

2
lim & = lim @
ro—0 e-n<rF<toz—z  r—0 1<F<i(3-1).0=%
and
lim @ = lim @
ro=0 I<F<i3-1).0#£  r—0 1d-1)<F<lo=-z

are given by the right-hand sides of (6.22) and (6.23),
respectively. Note that lim, _, <I)§”) lo hir)2 is discontinuous
at F = 1/2 and its limiting values are independent of v:

limg_,(1/7), lim CI)()

ro—0 OF+r/2
= —11mF_,(1/2) lim q)( %) = ¢ (624)
ro—0 O#+7/2 16m
this is clearly a consequence of (5.26).
As for the remaining part of the total flux, <I>§ ), it can be
presented as
(b) *dr v N2 2
of) —ex [T -R). (629)
ro
provided that the following condition holds:
limjy (r)(r = ro)? = 0; (6.26)

r—ry

otherwise, the total flux diverges.
By performing a numerical analysis, we find that

quantity lim,_,,, I/rj,/,(r)(’:—oro)2 depends on 6, actually

|
being independent of other parameters (F, v, and mry);
see Fig. 1. As follows from this analysis, relation (6.26) is
fulfilled in cases 8 =0 and 6 =7 only. The case of
F = 1/2 needs a special comment, since, due to relation
(5.31), the current in this case is an odd function of 8.
Whereas the current and, consequently, the induced mag-
netic field with its flux vanish at € =0, they can be
nonvanishing if discontinuous at 8 = z. Indeed, periodicity
in @ with period 2z,

Jolpo12.0-0, = j(/’(r)|F:1/2,6':—ﬂ¢’ (6.27)
together with oddness in 6,

Jor—1y20-n, = =Jo(p_129——s,»  (6:28)
results in

j(ﬂ(r)|F:1/2.9:ni = _j(ﬂ(r)|F:1/2.9:ﬂ;' (6.29)

0 T2 v
0] ‘ "0

~0.01}
-0.02}
-0.03}
-0.04}
FIG. 1. (0)=lim,., vrj,(r)(5*)* is the same at

v=3/4,1,2,3,5,10; mry = 107,1073,1072,107", 1; and dif-

ferent values of F.
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Namely this is obtained from the appropriate formulas at

Oi|p_1/20-n.
F=1/2and 0 = ny:

= igim 20 [0(2, 2mrg) — Am2 300, 2mrg));  (6.32)
Jo (M) petj2on, = i%em%—ﬂ. (630)
in particular [cf. (6.15)],
As a consequence, we obtain ¢
eum rloi_fflo(l)l|F:1/2,a:;zi = i_m' (6.33)

Bi(r)|p=1/20-n, = :I:Z—ﬂezm’OF(O, 2mr) (6.31)

In the case of F # 1/2 continuity in @ is maintained, and
and the induced vacuum current in this case takes the form

m 1 ©  du 1
. gz — F—— 77 14— |e-2mrcosh(u/2)
er(”)|9=5$5 (271)2 {sgn( 2) A cosh(u/2) |: + 2erOSh(u/2):| e

cos [U(F — 3)x)] cosh [u(|F = 1| = 1)u] = cos [v(|F — 4| — 1)z] cosh [u(F — 1) u]
cosh(vu) — cos(vr)

sin[(2F — 1) px]

57 2] | .
[1 )} exp[—2mrsin(pz/v)) sin(pr/2)

2mrsin(pn/v

T v LY o o[ dqg®  [1] ()
_ﬂ(_l) sm(2NFﬂ)<1+2mr>e 5D_2N} { C2+D (qro)—C%_D(F_%>(qr0)

n = 2

1 +
—|—sgn<F—§> (C;LZ(F_)( ro) + C (qu))] K1+v )(qr)K‘ —u(F _%)(qr)

> +
Z 1+F__ + qr0>KD(l+F—%)+%(qr)KU([+F—%)—%(qr) - CI(/(Z>_F+%)+%(qro)KU(I—F+%)+%(qr)Kl/(l—F+%)—%(qr)] }’

where

CSF (v) = (oL, (0)K,(v) £ mro[L (1)K, (v) = L,y (0)K,(0)] = 01,y (1)K, (v)}

x [vK3(v) £ 2mroK,(v)K,_; (v) + va_l(v)] I

Consequently, we obtain the following expressions for the induced vacuum magnetic field:

ve 1 1 0 du
B o rr = 5 — F—— "  a—2mrcosh(u/2)
I(r)|9—7$5 2(27[)2 , {Sgn< 2) A COShZ(u/Z) e

 Cos W(F —)x)] cosh [u(|[F = 1| = 1)u] = cos [v(|F —%| — 1)z] cosh [u(F — 1) u]

]
cosh(vu) — cos(vr)

27 WA sin[2F = 1)pz] =

) S el e e | N i INF —2mr5
+— Z exp[—2mrsin(pr/v)] i (pr /) ZN( )N sin ( 7)e u,ZN}

(6.34)

(6.35)

e dgq* (1] a () [ WRES
/ gn Vi —m 2 { {Cﬁv plaro) = Choyipy(aro) +sgn| F =75 J(Cp iy (70)

Oy ) ooty (0 K oy () 4 YUy Ry alar K

F#1/2,

H’_/

B C((l) F+) )+1(qr0) y(l- F+%)+%(qr/)Ku(l—F%)—%(qr/)]

085011-18

v(I+F-})- é(qr’)

(6.36)



INDUCED VACUUM MAGNETIC FLUX IN QUANTUM SPINOR ... PHYS. REV. D 100, 085011 (2019)

and its flux,

e 1 1 0 du
Dlpser = —— F—— _“%  a—2mrycosh(u/2)
I|67§:F§ Szm {sgn( 2> A COSh3(u/2) e

508 [W(F = Y)m)] cosh [u(|F — 3| = 1)u] = cos [u(|F = 4| — 1)x] cosh [v(F — $)u]

cosh(vu) — cos(vr)

[lz/2]] :
2z Z sin|2F —1)pn] = . omr
+— - exp 2mr0 SIH(pﬂ/U)]M_m(_I)N Sin (2NF77,')C 2 06%2[\/}

e [ o dqq 1] +
+ —/ dr(r* - r(z)) { {CI&Z (qro) CE_Z(F_%)(C]”O)
ro

T vV q
+sgn<p_%><c$3w_)< o)+ €Ly (010D Kpir-p 0K ey

. +
Z A qm)KU<I+F_%>+%<qr)KmF_%)_%<qr>—c,E(,lﬂ%H;qro)KW_HM<qr>KU<z_F+%)_%<qr>}},

F#1 /2T (6.37)

With the use of relations (see [42])

o 1)2 d 2 1)2+,02
1dwwK/2,(w):E{—K,,(U)} R K/Z)(U),

dv

% dw v d
7R 0K 00) = K0 K = K 0) 0]

and the Schlifli contour integral representation for the Macdonald function,’

1
K — d wcoshz-!—pz’
o) 4isin(prm) / <«

the integration over r can be performed. As a result, we obtain the following representation for the induced vacuum
magnetic flux

e 1 1 = du
Drlyser = —— F—— _ " a—2mrocosh(u/2)

cos[v(F = Y)z)| cosh[u(|F = 3| = 1)u] — cos[v(|F — 3| — 1)x] cosh[v(F — })u]

x cosh(vu) — cos(vr)
[lz/2]] :
2r Z sin|2F - 1)prn| = . omr
+_ eXp 2mr0 Sln(pﬂ/ )]W—ﬁ(—l)]\] Sln(2NF7r)e 2 051/’21\]}

() ()
-y = ey

1
<,
O/nro 02 —m2r2 { { rHu(F
1 +
+sgn (F - E) (CE+I)J(F_1)(U) + Ci:_tj(p_é)(v)>:| D%er\F—% (v)

0

Z Sery Dy (0) = CL o (0D (0 >]}, F#1/2, (6.38)

“There are no poles in this case, and contour C, can be straightened to two horizontal lines at z = =ix.
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0.14} e 'm®d,
0.12}
0.10}
0.08}
0.06}
0.04}
0.02} 0=0

0010 0100 1 10

FIG. 2. The dimensionless induced flux, e~'m®;],_ sz, @S A

function of mry at v =1 and F = 0.7 (solid lines); the dashed
line corresponds to the case of mry = 0.

where
D,(v) = pK3(v) = (p = K41 (0)K -1 (v)
+o {Kp(v)dij)z(,,_lw) — K, (v)%zg,(v)] :
(6.39)

in particular,

I 1 1
lim @] :—L{F —sgn(F——)]
ro—0 O— :F% 6m 2 2 2

x {%‘”{j‘r ’F—%‘ —F(I—F)]},

F#1/2.

21N

0.06! e 'md,
0.04}
0.02}

—0.02f  Nge . ' F

~0.04} S
-0.06} @

e 'md;,
0.05¢

~0.05 /4
()

FIG. 3.

As follows from (5.31), j,(r)|x M and, conse-
2
quently, <I>I|F;é o=z%1 changes signs under F—-1-

To be more precise, the dimensionless induced vacuum
. -1 . ‘.

magnetic flux, e 'm®;]| F#lo=s3z 1S positive at F > 1 /2

and negative at F < 1/2; its absolute value increases

with the increase of v. Whereas @] F=16=0 vanishes,

e'm®y|p_yg,, is positive and e”'m®y|r_1o_, is neg-
ative, being of the same absolute value that is independent
of v; see (6.32). Continuity of the results in 8 is broken at
0 =nand F =1/2 only.

A more detailed analysis of the behavior of the induced
vacuum magnetic flux can be obtained with the use
of numerical computations. Taking F = 0.7 and v =1,
we calculate the dimensionless flux, e"m®1|9:%¢%, as a

function of mry; see Fig. 2. In the case of 8 =0, this
function decreases with the increase of mr,, becoming
vanishingly small (<1077) at mry > 1. On the contrary, in
the case of 0 = 7, this function increases at no allowance
with the increase of mr.

The dimensionless flux in the case of § = 0 at several
values of v, as well as of mr, is presented as a function of
F in Fig. 3. As mr, increases, the absolute value of this
function decreases as compared to the value at mry = 0,
becoming negligible in the vicinity of F = 1/2. However,
the vicinity is shrinked as v increases (this is also
demonstrated by Fig. 4), and the flux at mry>1 can
equal its value at mry = O for sufficiently large values of v,
unless F = 1/2.

0.06} € 'md,
0.04}
0.02}

-0.02}
—004f T
-0.06} (b)

1
0151 € m®,

0.10}
0.05¢

-0.05¢
-0.10¢
-0.15¢

The dimensionless induced flux at & = 0 as a function of F in the cases of mry = 0 (solid line), mry = 107> (dotted line),

ro = 1073 (dash-dotted line), and mr, = 1072 (dashed line): (a) v = 3/4, (b) v = 1, (c) v = 2, and (d) v = 4. The point at F = 1/2

corresponds to the case of mry = 0.

085011-20



INDUCED VACUUM MAGNETIC FLUX IN QUANTUM SPINOR ...

PHYS. REV. D 100, 085011 (2019)

0.15¢
0.10¢
0.05}

-0.05¢
-0.10¢
-0.15¢

FIG. 4. The dimensionless induced flux at & = 0 as a function
of F in the cases of mry =0 (solid lines) and mry, = 1073
(dashed lines).

The dimensionless flux in the case of 6 =7z at
several values of v, as well as of mr, is presented as a
function of F on Fig. 5. In the case of % <v <2 the
absolute value of this function increases with the
increase of mry; see Figs. 5(a) and 5(b). However,
in the case of v > 2, the increase takes place in the
vicinity of F = 1/2 and, otherwise, there is a decrease;
see Figs. 5(c) and 5(d) [this is also demonstrated by
Fig. 6(a)]. Note that the flux at large values of mr
fails to depend on v (lines corresponding to different

values of v merge together) at least in the case of
% < v <4; see Fig. 6(b).

VII. SUMMARY AND DISCUSSION

In the present paper, we have studied the impact of
boundary conditions at the edge of the ANO vortex core
on the vacuum polarization effects in quantum relativistic
spinor matter in two-dimensional space. The most gen-
eral boundary condition that is compatible with the self-
adjointness of the energy operator in first-quantized theory,
Dirac Hamiltonian (2.15), is [see (4.2) and (4.7)]

(I = ipa e Yy, =0, (7.1)
where 0 is the self-adjoint extension parameter. This con-
dition is also the most general one ensuring the impen-
etrability of the vortex core edge, i.e., the confinement
of the matter field to the region out of the vortex core. We
find that a current circulating in the vacuum around the
vortex is given by expression (5.11) in the case of v > 1 and
11-H)<F<Ji(1+Y), or J<v<1 and 1(1-1)<
F <3(3-1); it is given by expression (5.13) in the case
of v>1and 0 <F <1(1-1)and by expression (5.14)
in the case of v>1 and (1 +1) <F <1. At large

1
v

0.21 e 'md, 2t e 'md, .
0.1} T
T2 ~02 04 06 08 10
N N F
-0.1y TN
-0.2¢ T (b)
0.2t e*1m®1 -~ 0.2} e*'lm(DI
0.1}
\~. 02 04
0.1} N~ /
~0.2} T d

FIG. 5.

The dimensionless induced flux at § = z as a function of F in the cases of mry = 0 (solid line), mry = 1073 (dotted line),

mry = 107! (dash-dotted line), and mry = 1 (dashed line): (a) v =1, (b) v =2, (c) v = 3, and (d) v = 4. The points at F = 1/2
correspond to @ = 7, (positive values) and to § = z_ (negative values), with the absolute values increasing with the increase of mr.
The point in the case of mr, = 107> (or less) actually coincides with the point in the case of mr, = 0; moreover, in cases mr, = 1073,
the points at F = 1/2 coincide with the end points of the appropriate curves at F # 1/2.
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1
02l € m®,

0.1

-0.1¢

—02! (@)

—1
02l € m®,
0.1}
0.4
-0.1¢f ~~ .
-0.2} (b)

FIG. 6. The dimensionless induced flux at @ = z as a function of F: (a) mr, = 0 (solid lines) and mr, = 10! (dashed lines), and

(b) mry = 0 (solid lines) and mry =5 (dashed line).

distances from the vortex, r — oo, the current decreases
exponentially as

\/m/rexp(=2mr), %§y<2, F;é%
%exp[—Zmrsin(n/y)L v>2, F#35,
Vm/rexp(=2mr), v>4%, F=1

whereas it decreases as 1/r in the case of massless spinor
matter; see Appendix D.

As a manifestation of the Aharonov-Bohm effect, the
current is periodic in the value of the vortex flux, ®@; i.e., it
depends on F and not on n, [see (2.19)]; moreover, it
changes sign under simultaneous changes F — 1 — F and
60 — —0 [see (5.31)]. One can introduce the charge con-
jugation transformation with the vortex flux changing
its sign,

C: ® - -, E - —E, Y o gl (7.2)
The boundary condition for a conjugated wave function
differs from (7.1):

(I —ipa e )e'y*|,_, =0.

r=ry

(7.3)

By requiring invariance of the boundary condition under
such a charge conjugation, one restricts the values of the
self-adjoint extension parameter to ¢ = 7 F 7. In the latter
case the current changes sign under change F — 1 — F;
i.e., it is odd, as well as periodic in the value of the vortex
flux. Consequently, it vanishes at 6 =0 and F = 1/2,
while it is discontinuous in 8 at 6 =7 and F =1/2
[see (6.30)].

It is appropriate here to discuss the dependence on the
transverse size of the vortex core and the limiting procedure
as this size tends to zero, ro — 0. For this task it is

instructive to decompose the current into ry-independent,

jf/,a), and ry-dependent, jf,,b), pieces [see (5.15)—(5.22)]; the

ro-dependent piece vanishes at r, — 0. It should be noted
that, in the case of the infinitely thin (r, = 0) vortex, the

Dirac Hamiltonian is essentially self-adjoint for v > 1 and
either 0 < F <4 (1—1) or }(1+1) < F < 1; otherwise,
there emerges the self-adjoint extension problem with one,
or four, or more parameters. One self-adjoint extension
parameter, ©, appears for v >1 and (1 —%) <F<
1 +h, or for f<v<1and J(:-1)<F<i(3-1).
The results for v > 1 and 0 < F < 1, as well as for % <
v<land §(1-1)<F <}(3-1), are comprehensively
presented in Appendix C. The value of ® can be fixed by
limiting procedure ry — O starting from the ry > O case.
In this way, the condition of minimal irregularity in the
ro = 0 case is obtained in the form of (4.16). If this
condition is supplemented with the requirements of invari-
ance under charge conjugation (7.2) and continuity in 6,
then it takes the form of (4.16) with 6 =0 at F = 1/2;
namely in the latter form it was first proposed in [31,32].

As a consequence of the Maxwell equation, the magnetic
field strength is also induced in the vacuum, pointing along
the vortex axis; the relevant expressions in the case of the
most general boundary condition, (7.1), are given by (6.1)—
(6.9). This allows us to consider the total magnetic flux
which is induced in the vacuum. As follows from our
numerical analysis, the latter is finite at 0 = % F g only, but
otherwise, it is divergent. Thus, the physical condition that
the induced vacuum magnetic flux be finite corresponds to
the requirement of invariance under charge conjugation
(7.2). The flux for boundary conditions maintaining the
charge conjugation invariance is given at F # 1/2 by
expression (6.38), it vanishes at @ = 0 and F = 1/2, and
it is nonvanishing and discontinuous in @ at @ = 7 and F =
1/2 [see (6.32)]. The flux in the case of ry =0 is
discontinuous at F = 1/2; moreover, its absolute value
at @ =z and F = 1/2 [see (6.33)] is twice as large as its
absolute value at @ = 7 in the limit F — 1/2 [see (6.24)].
The case of an infinitely thin vortex is an idealization that is
inappropriate to physics reality, since, as has already been
noted in the Introduction, the transverse size of the vortex,
1o, is of the order of the correlation length. In the case of
ro > 0, the differences in behavior of the flux at & = 0 and
at @ = 7 are comprehensively illustrated by Figs. 2-6.
Whereas the flux at & = 0 decreases in its absolute value
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with the increase of ry, the flux at @ =z in general
increases at no allowance in its absolute value with the
increase of ry (although there is a moderate decrease in
vicinities of F = 0 and F = 1 atv > 2). Such a behavior of
the flux, as that at & =&, can hardly be regarded as
physical. Quantity ry! is identified with the energy scale
of spontaneous symmetry breaking, i.e., the mass of the
corresponding Higgs particle. It looks rather unlikely that a
topological defect influences the surrounding quantum
matter with the matter particle mass, m, exceeding the
Higgs particle mass, mg.g; the more unlikely is the
unrestricted growth of this influence with the increase of
quotient m/mcy,q. The influence of a topological defect on
the surrounding quantum matter at m.y,q > m looks much
more physically plausible. Namely this situation is realized
in the case of quantum scalar matter obeying the Dirichlet
boundary condition at the vortex edge (see [23-26]).

We conclude that, although we have solved the problem
analytically with the use of the most general set of
boundary conditions ensuring the impenetrability of the
vortex core, the analysis of the behavior of the induced
vacuum magnetic flux allows us to restrict the variety of
admissible boundary conditions. The requirement of the
flux to be finite, which is equivalent to the requirement of
invariance under charge conjugation (7.2), restricts the
values of the self-adjoint extension parameter to 6 = 5 F 7.
The further requirement of physical plausibility of the finite
flux behavior, which is equivalent to the formal require-
ment of continuity in the dependence on 6, yields 6 = 0. As
long as the transverse size of the vortex is taken into
account, the induced vacuum effects at § =0 are con-
tinuous in F and vanishing at F = 1/2. At this point we
would like to emphasize the crucial distinction between
the cases of massive and massless quantum spinor matter.
The latter case requires an introduction of the maximal
size of the system, r,,. We discover that, for r,, > r,
(in conformance to the reality), the induced vacuum effects

|

J,(iz) = ei/”’/ZIp(z),
1,(—z) =71 ,(z),

one can obtain

. . 2
Y,(iz) = 1e‘/’”/21p(z) - ;e"””/zKp(z),

K,(—2) ="K (z) —inl ,(z),

for both @ = 0 and 0 = # are physically plausible; more-
over, they coincide, being independent of the transverse
size of the vortex [see (D15) and (D16) in Appendix D].
Because of this distinction, the results in the massless case
are discontinuous at F = 1/2 with a jump, which is
independent of v [see (D19)]. Note in this respect that
the current and the magnetic field that are induced in the
vacuum of quantum scalar matter under the Dirichlet
boundary condition are continuous in F and vanishing at
F = 1/2 even in the ry = 0 case (see [43-45]). In contrast
to this, the emergence of a peculiar mode in the solution to
the Dirac equation (see Sec. III) leads to a discontinuity
of the results at F = 1/2. For massive quantum spinor
matter, the discontinuity is present in the r, = 0 case, but is
eliminated by a choice of the physically motivated boun-
dary condition in the ry > 0 case. The discontinuity
nonetheless stays on for massless quantum spinor matter.
It would be interesting to perform a similar study for other
characteristics of the vacuum, for instance, for the induced
vacuum energy-momentum tensor.
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APPENDIX A: CONTRIBUTION OF
NONPECULIAR MODES TO THE CURRENT

Using relations (see, e.g., [46])

- <argz <m/2,

- <argz <0,

Ty (k) (kr) = = [ (<ikr)K y (—ikr) — 1,y (<ikr)K, (=ikr)

2

+1,(ikr)K,

2

J(kr)Y ,_y(kr) + Y, (kr)J ,_y (kr) = .

2i .
Y, (kr)Y ,_y(kr) = J,(kr)J .-y (kr) = —5 [e™7K ,(—ikr)K

N}

_1(ikr) =1, (ikr)K ,(ikr)], (A1)
[e_i/’”Kp(—ikr) K, i (—ikr) + eip”Kp (ikr)K ,_, (ikr)], (A2)
o1 (—ikr) — ei/’”K/, (ikr)K ,_ (ikr)]. (A3)

With the help of these relations, j,(,,l) (5.2) and jq(f ) (5.3) are presented as
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(1) dkk? & : : . ,
p = 1 _g(—ikr)K, _g(—ikr) — I;_c(—ikr)K ;1 _g(—ikr
0) =~y | e D -6k Kot (347) L) 1 - k)
= LG (=ikr)Ky_yy6(=ikr) + 1oy y 6 (=ikr) K g (—ikr)] (A4)
and
= Z Z u1+1 ol lmc(r)) (A5)
sgn(E) =1
where
P L [Cos 2y ST L G H")z”} (<ikr)K,,i (~ikr) (A6)
’ o VIE+m? (ViZ)»-t 2 (ViZ)»

and it is implied that ,u/(,A) and ,uﬁ,v), determined by relations

(4.9) and (4.10), depend on V2 instead of k. The integral
over real k can be transformed into the integral over a
contour circumventing anticlockwise the positive imagi-
nary semiaxis in the complex & plane. It is evident in the
case of j,(,}) that the latter contour is reduced to a contour
circumventing a part of the positive imaginary semiaxis
(see Fig. 7). As a result, we get

(1) r dqq®
q ) v Ku
Jo (I") 2”2/ mz I+1-G ql") - G(qr)

—1_6(qr)Ky—6(qr) = Liic(qr) K, —146(qr)

+ Lii16(qr)Kua(gr)], (A7)
which can be decomposed as
, 1. ro [ dqq’
i) =5+ i) -5 | =
n q —m
{ 6(qr)Ki-g(qr)
1
5 U1-6 G — g 1-G
+5h-6(ar)Kg(qr) = I(ar)Ki-g(qr)] ¢
(A8)

A ®

im

B I B e

FIG. 7. The integral over real k in (A4) is transformed into the
integral over a contour in the complex k plane.

(1,1 1 e dqq
() = /

1 r r
l E lvn—G]| q ) vn— G(q )
V q ”l 2neZ

1 ©  dqq®
2 " /qz_ 2
d °°dy

dqy

(——y) D Tineg(y)  (A9)

nez

and

1 [ q
2 /,1 Vi —m?
X Z(l/l’l - G)I\pn—G\ (C]l")KW,_G(C]r)

nez
g*r
Y
2” / m / < 2y )
x D _(vn=G)lug(y). (A10)
nez
Using the Schlifli contour integral representation,
1 (y) L dzevcoshz—/)z — _L dZeyCOShZ+/)z
’ 27i 271 Jc. )
we obtain
1 1
1 dzeyeoshz=Gz __ ~
%; o) =2 U e, [—ew
— / dzeycoshz—Gz e—vz:|
c_ 1 —e*”
_ L[ peeoncCoShl(G =5 e
4xi Jc, sinh(vz/2) ' v’
(A11)
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Y
Y

(a)

-7 -7

(b)

FIG. 8. Complex z plane with simple poles indicated by crosses: (a) contours C, and C_, and (b) contour Cj.

where contours C, C_, and C, in the complex z plane are shown in Fig. 8. The vertical segments of contours C,, C_, and
C, are infinitesimally close to the imaginary axis, not coinciding with it in order to avoid simple poles of the integrand at
z=0 and z = +2ipx/v (p is the positive integer, 1 < p < [|v/2]]). Contour C, circumvents poles out of the origin
(existing at v > 2), whereas the contribution of the pole at the origin (existing at v # 0) is explicitly separated in (Al1).
Substituting (A11) into (A9), we change integration variable y — v = y(gr)~2? and take a derivative,

0y = 22 dag” [, 1 K _ L augsinn(zy2) |sinh?(e/2) SO =y,
w0 =5 [ [ [ e |5y 2matrsini(er2) sm /) TS a)
Integrating over ¢ and v, we get
(an,y . m1 / { 1 } [ .1 cosh[(G —%)z]
j r)y=——— dz|1+ exp|—2mr4/—sinh“(z/2 } _ =
o (1) 8727 J, 2mr+/—sinh2(z/2) P (2/2) sinh(vz/2)
_ m2 /00 aull + 1 e-2mrcosh(u/2) sin(Gr) cosh[(G — v)u] — sin[(G — v)z] cosh(Gu)
(27)* Lo 2mrcosh(u/2) cosh(vu) — cos(vr
(lv/2)
2n e 2mrsinpn/v) cos(2G pr/v) + 1+i =27 cos(Gr)b, oy ¢ (A13)
2mrsin(pr/v) v 2mr v

p=l1

where the finite sum over integer p and the last term with the Kronecker 6 symbol (N is the positive integer) are due to a
contribution of simple poles on the imaginary axis out of the origin.
In a similar way we calculate the sum in (A10):

D wn=G)lyugy) = % {i": Loimi-6(¥) = Lii-6 (¥ io: Lur1i6(y) = L 1+G(Y)}}

nezZ =1 1=0
sinh [(G —$)z]
sinh(vz/2)

=2 dzey coshz ginh(z)

Al4
4 ( )

Substituting (A14) into (A10) and integrating over ¢ and y, we get

coth(z/2) sinh [(G —%)z]

92 = m 1 / dz [1 +2 - 1 (z/Z)} exp [—Zmr —sinhz(z/Z)}

871' 27 _31nh2 Sinh(uz/2)
__m i /00 auli+ 1 e=2mreosh(u/2) tanh (u/2) sin(Gr) sinh [(G — v)u| — sin[(G — v) ] sinh(Gu)
(27)* Lo 2mrcosh(u/2) cosh(vu) — cos(vr)
27 2] 1 srsin(pn/o)
_ = 1 —2mrsin(pr/v t in(2 ) Al5
v 2 { 2mrsin(p7r/u)} e cot(pr/v) sin( Gpﬂ/v)} (Al5)
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As a result, we obtain the following expression for jf,,l) (A7):

(1) S ® du 1 —2mrcosh(u/2)
= — 1 cos|
e ) (27)° {/0 cosh(u/2) [ +2mrcosh(u/2)]e

y sin(Gr) cosh [(G — v — 3)u] — sin[(G — v)x] cosh [(G — §)u]
cosh(vu) — cos(vr)

2n & 1 : sin[(2G = 1)pz/v] = LN .

#2031 S 2 sntp) " SR (1 e oG |
r o0 2 i v/

_ \/% {Sln(ﬂG )KG((]F)K1—G((]F) + % [li_g(gr)Ks(gr) — IG(qr)Kl_G(qr)]}_ (A16)

Note that J(,, [see (5.2) or (A7)] changes sign under substitution G — 1 — G. In view of this one gets

©  dgq® rcm/ du 1 1
K — — _cosh|lG—-= 1+— | e—2mrcosh(u/2) Al7
e o olanKi-alar) =2 | Cohura) K 2)”” +2mrcosh(u/2)]e (A17)
Defining
4y = —m 1 / dz{1+ ! }exp [—Zmrq/—sinhz(z/Z)}
87 2ni 2mr+/—sinh*(z/2)
cosh[(G-1)z]  msin(Gr) [~  du 1 1
= h G—-= 14— —2mrcosh(u/2)’ AlS8
x sinh(z/2) (2r)? A cosh(u/Z)COS 2)" +2mrcosh(u/2) ¢ (A18)

we can present (A16) as

e dqq

(L) (1.2 (1.3)

with j,"’, jo ™, and j, ' given by (Al13), (Al5), and (A18), respectively. Using the latter relation, we finally
obtain (5.5).

Turning now to j((,,z) (AS), we obtain by deforming the integration contour to circumvent the positive imaginary semiaxis
in the complex k plane

i (1) =y )+ 7y () = gy (1) =5 _[I-6(gr)Ko(ar) = Ia(ar)Ki—6(qr)]  (A19)

m d 2 .
’I;A/V)(r) - _2_:53{ 9 [e‘p”cos (/42 )) + e 7 cos? (y,(,A_/V>)

;em sin(2u/") +;e 07 gin (245 ))}Kp(q K

© dgq®
r ﬂ—l(‘]”)"‘/ 5
m \q*—m?

. 1 1
—ie7¥"cos? (,u,(f_/v)) +3 err s1n(2,u(A/v )+ 5 e7iom s1n(2,u(A/v))} K,(qr)K,_, (qr)}, (A20)

[16‘/’”cos2 (u,, (n/ v))

(A/V) V)

where p, | and pp - (") are determined by relations

0 « 2 . . . (0 = 2
tan(yy)) = {COS <§ + Z) q |:;eilp”K/;—l (qro) F llp—l(qro)] + sin <§ + Z) (m—A) [—

eiilpr(qu) + iI/J(qu)
T

« [—cos <§ 4> 1 (qro) +sin <§+Z> (m— AT (qro)}_l, (A21)
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0 = 2 .. .
tan(,u/(),vi)) = {cos <§ + Z) (m+A) [;ei‘/’”l(p(qro) + 1Ip(qr0)}
. (0 =& 2 . .

—+ sin (E—FZ)q[;ei/’ Kﬂ_l(qro) F llp_1<qr0):| }

X {cos <§ + %) (m + A)I,(gry) — sin <§ + %) al -, (qro)} N (A22)

and

A sgn(E)\/m? — ¢?, g <m, (A23)
Fisgn(E)\/q*> —m?, q>m.
In view of relation
Zeﬂ/’” {cosz(,u;gév)) ¥ %sin(ZM;fi/v))] =0, (A24)
I

the first integral in (A20) vanishes, and, as in the case of j{(,,l), only the integral over a contour depicted on Fig. 7 contributes;

namely the latter is given by the second integral in (A20). In view of relation

. 1
Z Z et [:I:i cos? (yf()géw) +3 sin(ZIuI()XV))} =225 (gro), (A25)
sgn(E) =+

where Cﬁ(f\)(v) and Cﬁ,v)(v) are given by (5.7) and (5.8), we get

(A/V) rofe dqg® v
Y () === | =" (gro)K,(gr)K -1 (qr). (A26)
sgn(E) T Im oy q2 - m?

As a consequence of (AS5) and (A26), we obtain (5.6).

APPENDIX B: CONTRIBUTION OF PECULIAR MODES TO THE CURRENT

Similar to that in the beginning of Appendix A, one can obtain

Jo(kr) g kr) = T (k) _y (k) = = 5_ {97 g (~ikr) + €0 _g(=ikr)]K g (~ikn)
— [e79" 1 _(=ikr) + €91y o (=ikr)| K (~ikr)
+ (€767 15 (ikr) + €971 _g(ikr)| K _g(ikr)
= [&97 1 _g(ikr) + €971y (ikr)] K g (ikr)}. (B1)

With the help of (A1) and (B1), ;) (5.4) is presented as
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(3) r dkk2 1
r)=-— [tan( + 2cos(Gr) + cot
10 =3 | s > lun(in-g) + 200s(Gr) + cotn-o)]

sgn(E

x {tan<m_G>[11_G<—ikr>1<c<—ikr> g (=ikn)K g (—ikr)]

(—ik)%© L @ " e (VIZ)26 " i
s et ) + i Lotk Ko(cite) = |5 etk + R otk

¢ K1 (—ikr) = cot(r_o) T o(—ikr) Ky (~ikr) - 1_]+G<—ikr>KG<—ikr>]}

K2 [1 — sgn(cos #)]sgn|tan (g +I) + KI]((,G(xro) ]

(xro)

* dmro mK g (xkro)Ky_g(kro) + Egs{kro[Ki_g(xry) — Kg(xkro)] + (2G = 1)K (xkro) K _g(kro)}

(B2)

and it is implied that y¢;_;, as determined by (4.11), depends on v/ k? instead of k. The integral over real k can be transformed
into the integral over a contour circumventing anticlockwise the positive imaginary semiaxis in the complex k plane. The
latter contour is reduced to a contour consisting of two parts: one encircling a simple pole emerging at cos € < 0 and another

one circumventing a part of the positive imaginary semiaxis (see Fig. 9). The contribution of the pole cancels out the last
term in (B2), and for the remaining part we get

) =" / ) /’"L Z 2 llan(k1-g.5) +2cos(Gr) + cotlg..)]

x {[tan(u_g, £) + eﬁGﬂ][ll—G(Q”)KG(‘I”) —1_(qr)K,-¢(qr)]

— [cot(pi_g. £) + T [I5(qr)K\_g(qr) — I_1.6(qr)Kg(qr)]}
e dqq

e [1, ~o(qrKe(ar) — I6(qr)Ky-c(qr)

G t +2 Gr) — cot
sm( 77) o(gNKy1_a(qr) Z Z an(u, - Gi) isin(Gr) — cot(p—g +) ’ (B3)
2 s tan(p;_g 1) + 2cos(Gr) + cot(p;_g.+)
where
TG ©O8 G+2%qlg(gro) —sin (§+ %) (m £isgn(E)\/q* = m*)I_1,6(qro)
tan(u—g+) = e 7 = : (B4)
—cos (§+5)ql_c(qro) + sin (§+%)(m £ isgn(E)\/q* — m*)1,_g(gro)
The sum in (B3) is reduced to the form
Z Ztaﬂ Hi- Gi :l: 21 Sln(Gﬂ') — COt(/’tl—G,i)
sen(E tan(u; g +) + 2 cos(Gr) + cot(p; ¢ =)
- Z |:e:FlGﬂ hi _ 1) _ eilGﬂ(h;l _ 1) N efiGn(h; _ 1) ﬂ:l‘Gﬂ'(h _ 1)
e:FlGﬂ ]’l + ) + eilG”(hil + ]) e$1G7Z(h:F + 1) + eilGn(h:Fl + )
_ 4(hyh_—1) (B5)
hih_+h +h_+1’

where

_cos@+ alglar) = sin§+m £ iy =) r.g(am) .
== 0, x s 2 : (B6)
—cos (§+%5)ql_g(qro) +sin (§+5)(m £iv/q* — m*),_g(qro)

It is straightforward to get
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A 4(hih_—1) 4z
= C

(B7)

where C;_g(v) is given by (5.10). Substituting (B7) into
(B3), we obtain (5.9).

APPENDIX C: CASE OF THE INFINITELY

m THIN VORTEX
Cx) K e
We present here the results for the case of the infinitely
I thin ANO vortex (i.e., rg = 0).

In the case of v>1 and 0 < F <§(1—-1), partial
FIG. 9. The integral over real k in (B2) is transformed into the  Hamiltonians with all n are essentially self-adjoint [defi-
integral over a contour in the complex  plane. ciency indices equal (0,0)], and the modes are given by

(3.3) with 4" = 40" = 7/2. We obtain

m 0 du 1
] =—— - 1 +-_- —2mrcosh(u/2)
Iolr) (27)* {A cosh(u/2) [ +2mr<:osh(u/2) ¢

cos [u(F — 3)x] cosh [u(F + J)u] — cos[v(F + §)x)] cosh [v(F = Y)u] 2z /2] 1

* cosh(vu) — cos(vr) v p=i { * 2mr sin(pﬂ/y)]

x exp[—2mrsin(pz/v)] %+% (=1)N sin (2NFr) <1 + ﬁ) e‘z’”ré,,,z,v}, (C1)
(" = - ve 1{/00 du o-2mrcosh(uy2) SO [V(F = Y)x] cosh [u(F + )u] — cos[v(F + §)m)] cosh [U(F — )u]
! 2(27)?r | Jo cosh?(u/2) cosh(vu) — cos(vr)

—7” ; exp[—2mrsin(pr/v)] w + %\7 (=1)V sin (2NFﬂ)e‘2m’5,,,2N}, (C2)

and
@, = —éFB (W2 +3) - uze} . (C3)

In the case of v > 1 and % (1+ %) < F < 1, partial Hamiltonians with all n are essentially self-adjoint as well, and the
modes are given by (3.4) with ,u,(,A) = ,ul(,v) = x/2. We obtain

m © du 1
j = 1 —2mrcosh(u/2)
Jol?) (27)? {/0 cosh(u/2) [ * 2mrcosh(u/2)]e

cos [U(F —3)x] cosh [V(F —3)u] — cos[u(F —3)x)| cosh [u(F = Hu] 2z (lv/2] |
. coch(uu) — cos(er) 2 { + zm—@ﬂ/)]

x exp[—2mrsin(pr/v)] % - % (=1)Nsin (2NFr) (1 + ﬁ) e, oy }’ (C4)

Z2R! ©  du omreosh(u/2) €08 [W(F —})z] cosh [u(F = 3)u] — cos[u(F —3)x)] cosh [v(F — §)u]
1(r) = m; {A We cosh(vu) — cos(vr)
27 W2 ) sin[2F — l)pz] =« . —omr
t ; exp[~2mrsin(pz/v)| — - 55— (a) TN (=1)¥ sin (2NFr)e™> 5D,ZN}, (C5)
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and

l(y2+3)—u2(1 - F)?|. (C6)

O, =
- 4

(1-F)

6m
In the case of v > 1 and 1 (1 -1) < F <1(1+1) (0 <G < 1), as well as in the case of J<v <1l and J(1-1) <

F<3$(3-1) (1-v<G <v), the deficiency index for a partial Hamiltonian with n = n, equals (2.1), and the one-

parametric family of self-adjoint extensions is introduced via condition (3.11). The modes corresponding to the continuous

spectrum (|E| > m) are given by (3.6) with M/(,A) = ,ufgv) = /2 and (3.5) with p,_g determined from relation

-m/E)°T(1 - r
tan(u,_g) = sgn(E) ((11 - rﬁfE))II:(‘}F(G(;) 2!-2G tan (% +Z>' (C7)

In addition, there is a bound state at cos ® < 0 with the mode given by (3.15) and the energy (|Egg| < m) determined from
relation (3.16). We obtain

. . m «© du 1 —2mrcosh(u/2)
Jor) = (27)? {/0 cosh(u/2) [1 i 2mrcosh(u/2)}e

" cos[v(F — $)z] sinh(vu) sinh[v(F — §)u] + sin[v(F — §)x] sin(vz) cosh[v(F — 3)u]
cosh(vu) — cos(vr)

[le/2] .
2n { ] ) sin[(2F — 1) px]
-— 1 + —————— | exp[-2mrsin(pr/v)| ——F——~—
v 2mrsin(pr/v) sin(pz/v)
: 1 —2mr
+ﬁ< I)NSIH(ZNFH) <1 +%>e 2 6D.2N}
o[ dqq’ q
et ) L ) (c8)
q - m

ve 1 0 du
B — - —2mrcosh(u/2)
1(r) 2(27)*r {A cosh?(u/2) ©

y cos[v(F — 4)z] sinh(vu) sinh[v(F — })u] + sin[v(F — )z sin(vx) cosh[v(F — 1) u]

cosh(vu) — cos(vr)

(lz/2]] : _
—2— Z exp| 2mrs1n(pﬂ/u)]ms[if2+m ﬁ(

Y e P -

—1)N sin(2NFr)e "5, 5y }

and

e 2T =L ) ) B

where

v(2F— 1)T[z v(F-3)] © | 1\ _ (1\-u(2F- 1)1"[2+v( )] z

1 | ()" Jran(G+5) - (3™ cot (§ +1%)

C(t) = ~cos [v(F—§>7r} ’ e ) GG De-ur ) Y (c
(

yper=) TetEan @ 41) 42 4 (g0r-Y ?gf:w feot(§+9)

Under the condition of minimal irregularity [see (4.16)], we obtain
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m 1 0 du 1
) S Fol 1 —2mrcosh(u/2)
.](/)(V)|F;éi (271_)2 {Sgn< 2) A Cosh(u/z) |: + 2mI"COSh(u/2):|e

08 [W(F —3)r] cosh [u(|F —%| — 1)u] — cos [u(|F = 3| = 1)x] cosh [v(F — 3)u]
cosh(vu) — cos(vr)

0 [lv/2]]
+2r Z )} exp[—2mrsin(pz/v)]

o
v o [ 2mrsin(pr/v

T . 1 —Zimr
_ﬁ(_l)N sin (2NF'r) (l —l—%)e 2 5»,2N}’

sin[(2F — 1) px]
sin(pr/v)

sin [~ dgg* e 2ar

J(p(r)lpz%:_zﬂl . \/mq-|—mcos€’

ve 1 1 © du
BI(”)F;%ZW;{SgH<F—E ; me
cos [U(F — 3)x] cosh [v(|F — 4| = 1)u] — cos [u(|F — 1| = 1)x] cosh [U(F — 3)u]

—2mrcosh(u/2)

% cosh(vu) — cos(vr)
|Z2]) :
2 . sin|(2F - 1)pr| =n . omr
+7 eXp[—Zmr Sln(pﬂ'/l/)] W - ﬁ (—l)N S1n (ZNFJT)e 2 51/’21\/},

p=l1

vesind [~ dqq* T(0,2qr)

222 V@ —m?rq+mcos@’

[ !

and

e 0
‘I’1|p:% = - marctan tani )

APPENDIX D: CASE OF MASSLESS QUANTUM SPINOR MATTER

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

We present here the results for the case of massless quantum spinor matter in the background of the ANO vortex of

nonzero transverse size.

Inthe case of > 1 and }(1-) < F<l(1+orj<v<landi(l-1)<F <31(3-1), we obtain

1 I{ZH[U/Z]sin[(ZF—l)pﬂ] P du

: L sImiter — )pr —1)V §in(2NF7)8, oy — |
](/)(r)‘F<§*9¢_7 227)*r | v Pt sin?(pr/v) ZN( ¥ sin( 7)8u2n A

. 08 [V(F = )x] cosh [u(F + $)u] — cos[v(F + 3)r)] cosh [u(F — %)u]}
cosh(vu) — cos(vr)

rofo d
- ;A dqq LZ; CI(/(AI)_H%H%(qu)|mZOK,,(,_FJr%H%(qr)Ky<,_F+%)_%(qr)

- C%LF_%H%(‘I’”O)‘ Ky(l+F—%)+%(qr)Ku(HF—%)—%(qr)] )

1 m=0
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(le/2]]
, 1 2r sin[2F —1)pz] = , ©  du
L SRS = P X (_1)Nsin(2NFa)s, ——
J¢<r)|F>E"9#7 2(2x)? { vo= sm X(pr/v) 2N( )" sin vz +A cosh?(u/2)
cos [V(F —3)x] cosh [V(F —3)u] — cos[u(F — 3)x)] cosh [v(F — })u]
X
cosh(vu) — cos(vr)
r )
—;A dqq Lzl:c I-F )11 (gro)| :OKD(I—F+%)+%(qr)Ku(l—F-F%)—%(qr)
- Coilyryalaro) |mZOKW_%<qr>Ky(l+F_%>_%<qr>} : (D2)
) 1 2”[\v/2\] sin[(2F — 1)pn| ( 1) sin(2NFz)8 /oo du
r | = A, ., < ~ar S v NS YAEE
R 2027)%r | v 4= sin 2(pr/v) o T o cosh’(u/2)

2

 cos [V(F —3)x] cosh [v(F — 3 + 1)u] — cos[v(F — & 1)x)] cosh [V(F —3)u]
cosh(vu) — cos(vr)
Lru(F )(qr0)
— : Ky yryy(qr)Ksymoy(gr
i el o e
N [1 V(I-F+1)£) (qro)
=1 Ku(l—F+7 %(Q’”o)
Iu(l+F—%):F%(qr0)
KV(I+F—%)¢%(‘]”O)

Ku(l—F+7)+%(qr)Ku(l—m%)—%(qr)

Kuer-ya)Kugeryyan)| | 03)

and

. sin @ 1
ol == o |

e oty / 003 Curlan)l, Ko@) Kur-sar)|- (D4)

It should be noted that the current is invariant under transformation 0 — x — @. Thus the current is continuous in 8, and its
values at @ = 0 and 0 = =z coincide, in particular,

j(p(r)|F:%_9:0 = jzp(r)lpz%,():” =0. (DS)

Since a piece of j,(r) is proportional to r~!, the corresponding piece of B;(r) is also proportional to 7~!. Consequently, flux
@, [see (2.22)] is given by an integral that is linearly divergent at r — oo. Therefore, we have no choice but to introduce
cutoff r,, > r and the restricted flux,

2 rmax
Qi) = = drrBy(r), (D6)

where, as a consequence of (D1)—(D4),
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(le/2]] o
ve (1 1 2r sin[2F — 1)pz| = ) /00 du
B SR (e NI TP T W sin2NFR)S, 0y — | ——e
I(r)|F<%.€;é—7 2<2ﬂ)2 (r rmax){l/ P Sinz(pﬂ/v) ZN( ) Sln( ﬂ) v.2N 0 COSh2(M/2)
cos [U(F —3)x] cosh [U(F + 1)u] — cos[u(F + §)x)] cosh [u(F — §)u]
x
cosh(vu) — cos(vr)
ve [rmx o 2
_F/r d”’A dqq Lz; CI(J(A[>_F+%)+%(qu>|mZOKIJ(l—F-F%)—F%(qr/)Kl/(l—F-'r%)—%(qr/)
-2 ciz,LF_Mm)|mzoKy<l+F_%>+%<qr’>Kp<z+F_%)_%<qr'>] : (D7)
By(r) ve (1 1 Zﬂ[‘b/zl]sin[(ZF—l)pﬂ] n (—1) sin(2NF)3 +/oo du
r e — ————————(=1)"sin —_—
)| F>L oz 2222 \r  rma) v — sin?(pz/v) N )O2N o cosh?(u/2)
cos [U(F — 3)x| cosh [U(F —3)u] — cos[v(F — 3)x)] cosh [u(F — 1)u]
X
cosh(vu) — cos(vr)
ve [rmx o -
_;/ d"//) dqq [Z Cl(,?l)_F+%)+%(qr0)|m70KV(l—F+%)+%(qr/)Ku(l—FJr%)—%(qr/)
r =1 -
;C I+F-} qu)' ZOKV(H»F—E)Jr%(qr/)Kp(l+F—5)—é(qr/):|1 (DS)
By(r) ve (1 1 Zﬂ[ll'z/zzl]sin[(ZF—l)pﬂ] T (=) sin(2NFx)5 /oo du
r = [——— — ———————(=1)"sin —_—
WFR0=5 7 202 \r ~ rmax ) | v 4= sin*(pa/v) 2N )ovan F o cosh?(u/2)
cos [U(F — 3)x] cosh [V(F — 5 + 1)u] — cos[v(F — § & 1)x)] cosh [U(F — 3)u]
X
cosh(vu) — cos(vr)
max 7$I_/ )(qro)
/ dr’ / dqq{ Kpruiry (@70) Kyiyyroy(ar)Kiypoy(gr)
1 +1(qr0)
v(I-F+3) 0 /
+ —Ky___qub_l_lqr
; |:KL/(I—F+—) _(6]7’0) (1 F+2)+2( ) (I-F+3) 2( )
1 1(qro)
v(I+F-H)F3\9470 /
SR K I K 1(qr , D9
i LA Lyt )|} (D9)
and
0|1 1
(ot yesm2 L(iony Ly (o
2 (2#)* |ro r To Fimax
s [™ar | dqq;éyz+%<qro>|mOKw%(qr/)Kyl_%(qr')]. (D10)

In the case of v>1 and 0 < F <3(1—v), j,(r) is
given by the right-hand side of (D1) and By(r) is given by
the right-hand side of (D7). In the case of v > 1 and

0(0) = fimers, () (272

r—ry ro

and compare it in Fig. 10 with the appropriate quantity in

1(1+v) <F <1, j,(r) is given by the right-hand side of
(D2) and By(r) is given by the right-hand side of (D8).

Turning now to flux @y, . (D6), we numerically
calculate quantity

the case of the massive spinor field (see Sec. VI). Note that
®(0) in the massless case is strictly symmetric with respect
to point = z/2 (location of the inverted peak in Fig. 10),
whereas @(0) in the massive case is not symmetric, although
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this asymmetry is so slight that it is not visible in Figs. 1 ® 0 /2 n 0
and 10. Note also that coefficients C ,(,A)(qro)| O=tr)2>
\ p . .
C;(, )(qro)\azin/z, and C/,(qr0)|0:ﬂ/2 in the massive case ~001!
coincide with those in the massless case, and the differences . ,
in the values of w(@) are due to different measures of .02l AN /
integration in the massive and massless cases. As follows ' N\ /
from the behavior of w(0), the induced vacuum magnetic AN ,/'
flux, either @; (2.22) in the massive case or @y, ) (D6)inthe -0.03} R\ 7
massless case, is finite at § =0 and € = 7 only, with N I,’I
coinciding values at these points in the latter case. Thus _0.04l NS
we obtain :
_ _ FIG. 10. w(0) in the case of the massless spinor field (solid line)
@yr,,,,) 0=5F% 0, F=1/2, (D11) and in the case of the massive spinor field (dashed line).
and

lle/2]] o
(Fmax —70)* [ 1 sin[2F —1)pz] 1 . N 1 /°° du
Umax Z70)” J 2 —— _(=1)Vsin(2NFn)s Foo)— [T
£ Fimax dv e~ sin?(pz/v) 16N (=1)7sin(2NFm)o, oy + sgn 2)8rn )y cosh®(u/2)

 Cos [W(F —3)x)]cosh [u(|F = | = 1)u] — cos [u(|F — 5| — 1)x] cosh [u(F — 1)u]
cosh(vu) —cos(vr)

e 0 Ll L0 (0) 1 (0) (0)
+EFOA dv{i {C%H(F_%)(v) - C%_D(F_%)(v) + sgn F_E C%H(F_%)(v) + C%_U(F_%)(v)

(0) "o [ ~0) (0) T (0) (0) T
X D%+D‘F—%l (”’ > + Z |:Cz/(l+F—%)+%(U)Du(lJrF—%H% (U’ ) B Cv(l—FJr%)Jr%(U)Dy(Z—F+%)+% <”’ )} }

F#1/2, o - o max(D12)
where
) (0) = [1,(0)K, (v) = L,y (V)K 1 (0)][K3(0) + K2 (0)] ! (D13)
and
D (039) = PR(0) = (= D, s(0)K s (1) + 0 K, (0) £ Ko 0

o] ) -ve (25
SCEANORNONO)

Retaining only the terms that are maximally divergent in the limit of r,,, — oo, we get

@y

rmax) 9:’2—'17—2’

/2]
1 2F -1 1 1\ 1 [e
—er {_ 3 sin|( 2 (—=1)V sin(2NF7)3, y + sgn ( P _) s / du
0

4v 4= sin’(pm/v) 16N 2)8x ) cosh®(u)2)

X

cos [U(F —)r)] cosh [u(|F — 1| = 1)u] — cos [u(|F — 1| = 1)x] cosh [v(F — 1)u]
cosh(vu) — cos(vr) }
+ O(erg), F#1/2. (D15)
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Thus, we obtain the following relation between current j,,(r)

sensible case of 7, > ry:

Ve (r)lg_gps = —
’ =371 Fmax — 7

where flux @y is given by (D15).

rmax) |9:%$%

In particular, we get in the case of v =1

qD](’max) |y:179:f2_!q:771 4
and
/ — rmax B
e]¢<r>|p:1,9:§:pg ., 1(”)|y:1,9:g¢
max
r> ro.

The last relation for the current was obtained in [47] in the
ro = 0 case under the condition of minimal irregularity
with requirements of the charge conjugation invariance and
continuity in @ [see (10.6) in this reference where the
definition of the current differs by an extra r~']. Note a
discontinuity at F = 1/2, which is independent of v,

e
lim j = t—, > 7. D19
piy, o opsg = £z >0 (DI9)

| 9:’2—’¢

Br(r)|e=§¢g =

=¢ Fmax tan(F)

. and magnetic field strength By(r) |9=,2_,¢§ in the physically

14
ﬂrmax’,‘@I(rmax)b:%:F’z—” r>=> ro, (D16)
1 1
F=SI\|F=5|=1)+0er) (D17)
2 2
e 1 1
—tan(Fn)|F —=|| |[F—=| -1
oy () 2'(‘ 2‘ )
(D18)

|

This is distinct from the case of quantum scalar matter under
the Dirichlet boundary condition, when the current that is
induced in the vacuum by the infinitely thin vortex is con-
tinuous and vanishing at F = 1/2 [43-45]; see the appro-
priate expression from these references at m = 0 and v = 1:

) e 1\2
e](/'(r)|scalar,Dirichlet = _mtan(F”) <F - 5) : (D20)
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