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We give a Lagrangian description of an electric charge in a field sourced by a continuous magnetic
monopole distribution. The description is made possible thanks to a doubling of the configuration space.
The Legendre transform of the nonrelativistic Lagrangian agrees with the Hamiltonian description given
recently by Kupriyanov and Szabo [Phys. Rev. D 98, 045005 (2018)]. The covariant relativistic version of
the Lagrangian is shown to introduce a new gauge symmetry, in addition to standard reparametrizations.
The generalization of the system to open strings coupled to a magnetic monopole distribution is also given,
as is the generalization to particles in a non-Abelian gauge field which does not satisfy Bianchi identities in
some region of the space-time.
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I. INTRODUCTION

It is well known that a local Lagrangian description for
an electric charge in the presence of fields sourced by an
electric charge distribution requires the introduction of
potentials on the configuration space, introducing unphys-
ical, or gauge, degrees of freedom (d.o.f.) in the field
theory. If the field is sourced by a magnetic monopole, the
description can be modified by changing the topology of
the underlying configuration space; see, e.g., Refs. [1,2].
On the other hand, this procedure has no obvious extension
when the fields are sourced by a continuous distribution of
magnetic charge. In that case, auxiliary d.o.f. can be added,
possibly introducing additional local symmetries. One
possibility is to introduce another set of potentials follow-
ing work of Zwanziger [3]. Another approach is to enlarge
the phase space for the electric charge, and this was done
recently by Kupriyanov and Szabo [4]. The result has
implications for certain nongeometric string theories and
their quantization, which leads to nonassociative algebras;
see, e.g., Refs. [5–13].

The analysis of Ref. [4] for the electric charge in a field
sourced by magnetic monopole distribution is performed
in the Hamiltonian setting. The formulation is made
possible thanks to the doubling of the number of phase
space variables.1 In this paper, we give the corresponding
Lagrangian description. It naturally requires doubling the
number of configuration space variables. So, here, if Q
denotes the original configuration space, one introduces
another copy, Q̃, and writes down dynamics on Q × Q̃.
While the motion on the two spaces, in general, cannot be
separated, the Lorentz force equations are recovered when
projecting down to Q. The procedure of doubling the
configuration space has a wide range of applications and
actually was used long ago in the description of quantum
dissipative systems [16–20]. The description in Ref. [4] is
nonrelativistic. Here, in addition to giving the associated
nonrelativistic Lagrangian, we extend the procedure to
the case of a covariant relativistic particle as well as to
particles coupled to non-Abelian gauge fields that do not
necessarily satisfy the Bianchi identity in a region of space-
time. For a further generalization, we consider the case of
an open string coupled to a smooth distribution of magnetic
monopoles.
The outline of this article is as follows. In Sec. II, we

write down the Lagrangian for a nonrelativistic charged
particle in the presence of a magnetic field of which the
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1The introduction of auxiliary d.o.f. to the phase space has
been used in the past for a number of different purposes. For
example, in Refs. [14,15], it was found helpful for handling
systems of second-class constraints.
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divergence field is continuous and nonvanishing in a
finite volume of space and show that the corresponding
Hamiltonian description is that of Ref. [4]. The relativistic
generalization is given in Sec. III. Starting with a fully
covariant treatment, we obtain a new time-dependent
symmetry, in addition to standard reparametrization invari-
ance. The new gauge symmetry mixes Q̃ with Q. Gauge-
fixing constraints can be imposed on the phase space in
order to recover the Poisson structure of the nonrelativistic
treatment on the resulting constrained submanifold. Further
extensions of the system are considered in Sec. IV. In
Sec. IVA, we write down the action for a particle coupled
to a non-Abelian gauge field which does not satisfy Bianchi
identity in some region of space-time, whereas in Sec. IV B,
we generalize to field theory, by considering an open string
coupled to a magnetic monopole distribution, again violating
Bianchi identity. In both cases, we get a doubling of the
configuration space variables (which in the case of the
particle in a non-Abelian gauge field includes variables
living in an internal space) as well as a doubling of the
number of gauge symmetries. We note that the doubling of
the number of world sheet d.o.f. of the string is also the
starting point of Double Field Theory, introduced by Hull
and Zwiebach [21] and further investigated by many authors
[22–27], in order to deal with the T-duality invariance of the
strings dynamics. This has its geometric counterpart in
generalized and double geometry (see, e.g., Refs. [28,29]
and [30–34], respectively). Moreover, the doubling of
configuration space has also been related to Drinfel’d
doubles in the context of Lie groups dynamics [35–39]
with interesting implications for the mathematical and
physical interpretation of the auxiliary variables.

II. NONRELATIVISTIC TREATMENT

We begin with a nonrelativistic charged particle on R3 in
the presence of a continuous magnetic monopole distribu-
tion. Say that the particle has mass m and charge e with
coordinates and velocities ðxi; _xiÞ spanning TR3. It inter-
acts with a magnetic field B⃗ðxÞ of nonvanishing divergence
∇⃗ · B⃗ðxÞ ¼ ρMðxÞ. In such a case, it is possible to show that
the dynamics of the particle, described by the equations of
motion

mẍi ¼ eϵijk _xjBkðxÞ; ð2:1Þ

cannot be given by a Lagrangian formulation on the tangent
space TR3 because a vector potential for the magnetic field
generated by the smooth monopoles distribution cannot be
defined, even locally. (A detailed discussion of this issue
will appear in Ref. [40].) On the other hand, a Lagrangian
description is possible if one enlarges the configuration
space to R3 × R̃3, and this description leads to Kupriyanov
and Szabo’s Hamiltonian formulation [4]. For this, one

extends the tangent space to TðR3 × R̃3Þ ≃ TR3 × ˜TR3.

We parametrize ˜TR3 by ðx̃i; _̃xiÞ, i ¼ 1; 2; 3. A straightfor-
ward calculation shows that the Lagrangian function

L ¼ m_xi _̃xi þ eϵijkBkðxÞx̃i _xj ð2:2Þ

correctly reproduces Eq. (2.1), together with an equation of
motion for the auxiliary d.o.f. x̃i,

m ̈x̃i ¼ eϵijk _̃xjBkðxÞ þ e

�
ϵjkl

∂
∂xi Bk − ϵikl

∂
∂xj Bk

�
_xjx̃l;

ð2:3Þ

which are not decoupled from the motion of the physical
d.o.f. Here, we do not ascribe any physical significance to
the auxiliary dynamics. There are analogous d.o.f. for
dissipative systems, and they are associated with the
environment. Since our system does not dissipate energy,
the same interpretation does not obviously follow. The
Lagrangian (2.2) can easily be extended to include electric
fields. This, along with the relativistic generalization, is
done in the following section.
In passing to the Hamiltonian formalism, we denote the

momenta conjugate to xi and x̃i by

pi ¼ m _̃xi − eϵijkx̃jBkðxÞ
p̃i ¼ m_xi; ð2:4Þ

respectively. Along with xi and x̃i, they span the 12-

dimensional phase space T�ðR3 × gR3Þ. The nonvanishing
Poisson brackets are

fxi; pjg ¼ fx̃i; p̃jg ¼ δij: ð2:5Þ

Instead of the canonical momenta (2.4), one can define

πi ¼ pi þ eϵijkx̃jBkðxÞ π̃i ¼ p̃i; ð2:6Þ

which have the nonvanishing Poisson brackets:

fxi; πjg ¼ fx̃i; π̃jg ¼ δij

fπi; π̃jg ¼ eϵijkBk

fπi; πjg ¼ e

�
ϵjkl

∂
∂xi Bk − ϵikl

∂
∂xj Bk

�
x̃l: ð2:7Þ

The Hamiltonian when expressed in these variables is

H ¼ 1

m
π̃iπi: ð2:8Þ

Equations (2.7) and (2.8) are in agreement with the
Hamiltonian formulation in Ref. [4].
Concerning the issue of the lack of a lower bound for H,

one can follow the perspective in Ref. [41], in which a very

G. MARMO et al. PHYS. REV. D 100, 085007 (2019)

085007-2



similar Hamiltonian dynamics is derived. Namely, while it
is true that H generates temporal evolution, it cannot be
regarded as a classical observable of the particle. Rather,
such observables should be functions of only the particle’s
coordinates xi and its velocities π̃i=m, the dynamics of
which is obtained from their Poisson brackets with H,

_xi ¼ fxi; Hg ¼ 1

m
π̃i

_̃πi ¼ fπ̃i; Hg ¼ e
m
ϵijkπ̃jBk: ð2:9Þ

The usual expression for the energy, 1
2m π̃iπ̃i, is, of course,

an observable, which is positive definite and a constant of
motion.

III. RELATIVISTIC COVARIANT TREATMENT

The extension of the Lagrangian dynamics of the
previous section can straightforwardly be made to a
covariant relativistic system. In the usual treatment of a
covariant relativistic particle, written on TR4, one obtains
a first-class constraint in the Hamiltonian formulation,
which generates reparametrizations. Here, we find that
the relativistic action for a charged particle in a continuous
magnetic monopole distribution, which is now written on

TR4 × gTR4, yields an additional first-class constraint,
generating a new gauge symmetry. When projecting the
Hamiltonian dynamics onto the constrained submanifold of
the phase space, and taking the nonrelativistic limit, we
recover the Hamiltonian description of Ref. [4].
As stated above, our action for the charged particle in a

continuous magnetic monopole distribution is written on

TR4 × gTR4. Let us parametrize TR4 by space-time coor-

dinates and velocity 4-vectors ðxμ; _xμÞ and gTR4 by
ðx̃μ; _̃xμÞ; μ ¼ 0, 1, 2, 3. So, here, we have included two
“time” coordinates, x0 and x̃0. Now, the dot denotes the
derivative with respect to some variable τ which para-

metrizes the particle world line inR4 × fR4. The action for a
charged particle in an electromagnetic field FμνðxÞ, which
does not in general satisfy the Bianchi identity ∂

∂xμ Fνρ þ
∂
∂xν Fρμ þ ∂

∂xρ Fμν ¼ 0 is2

S ¼
Z

dτ

�
m

_xμ _̃x
μffiffiffiffiffiffiffiffiffiffiffiffi

−_xν _xν
p þ eFμνðxÞx̃μ _xν þ a

ffiffiffiffiffiffiffiffiffiffiffiffi
−_xν _xν

p �
;

ð3:1Þ

where a is an arbitrary constant. Note that dynamics on the
physical subspace R4 results from variations of S with
respect to x̃μ. Therefore, the equations of motion on the
physical subspace R4 are unaffected by the presence of
the third term in the Lagrangian (although the dynamics

on R4 × fR4 gets modified by this term). Indices μ; ν;…
are raised and lowered with the Lorentz metric
η ¼ diagð−1; 1; 1; 1Þ.
The action is invariant under Lorentz transformations

and arbitrary reparametrizations of τ, τ → τ0 ¼ fðτÞ. The
action is also invariant under a local transformation that
mixes R̃4 with R4,

xμ → xμ x̃μ → x̃μ þ ϵðτÞ_xμffiffiffiffiffiffiffiffiffiffiffiffi
−_xν _xν

p ; ð3:2Þ

for an arbitrary real function ϵðτÞ. The first term in the
integrand of (3.1) changes by a τ derivative under (3.2),
while the remaining terms in the integrand are invariant.
The existence of such an additional gauge symmetry was
to be expected, since it, along with the reparametrization
symmetry, reduces the total number of gauge-invariant
d.o.f. to 6, in agreement with the nonrelativistic system
discussed in the previous section. The gauge symmetry
(3.2) means that there will be a corresponding first-class
constraint in the Hamiltonian description of the theory, as
we shall discuss. For the case of rigid transformations (3.2),
i.e., where ϵ is independent of τ, the associated Nöther
charge is the mass m.
Upon extremizing the action with respect to arbitrary

variations δx̃μ of x̃μ, we recover the standard Lorentz force
equation on TR4,

_̃pμ ¼ eFμνðxÞ_xν; ð3:3Þ

while arbitrary variations δxμ of xμ lead to

_pμ ¼ e
∂Fρσ

∂xμ x̃ρ _xσ: ð3:4Þ

pμ and p̃μ are the momenta canonically conjugate to xμ and
x̃μ, respectively,

pμ ¼
m

ð−_xρ _xρÞ3=2
ð_xμ _̃xν − _xν _̃xμÞ_xν − eFμνx̃ν −

a_xμffiffiffiffiffiffiffiffiffiffiffiffi
−_xν _xν

p

p̃μ ¼
m_xμffiffiffiffiffiffiffiffiffiffiffiffi
−_xν _xν

p : ð3:5Þ

The momenta pμ and p̃μ, along with coordinates xμ and
x̃μ, parametrize a 16-dimensional phase space, which we
denote simply by T�Q. xμ, x̃μ, pμ, and p̃μ satisfy canonical
Poisson brackets relations, the nonvanishing ones being

fxμ; pνg ¼ fx̃μ; p̃νg ¼ δμν : ð3:6Þ

2If one prefers not to deal with square roots in the action, one
can introduce yet another auxiliary d.o.f., or einbein, EðτÞ, and
replace the first term in the integrand of (3.1) by
1
2
m_xμ _̃x

μð1E − E
ð_xν _xνÞÞ, The action (3.1) can then be recovered upon

eliminating E via its equation of motion.
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p̃μ satisfies the usual mass shell constraint

Φ1 ¼ p̃μp̃μ þm2 ≈ 0; ð3:7Þ

where ≈ means “weakly” zero in the sense of Dirac.
Another constraint is

Φ2 ¼ pμp̃μ þ eFμνðxÞp̃μx̃ν ≈ 0; ð3:8Þ

where from now on we set the arbitrary coefficient a equal
to zero.
The 3-momenta πi and π̃i of the previous section can

easily be generalized to 4-vectors according to

πμ ¼ pμ þ eFμνðxÞx̃ν π̃μ ¼ p̃μ: ð3:9Þ

Their nonvanishing Poisson brackets are

fxμ; πνg ¼ fx̃μ; π̃νg ¼ δμν

fπμ; π̃νg ¼ eFμν

fπμ; πνg ¼ −e
� ∂
∂xμ Fνρ þ

∂
∂xν Fρμ

�
x̃ρ: ð3:10Þ

Then, the constraints (3.7) and (3.8) take the simple form

Φ1 ¼ π̃μπ̃
μ þm2 ≈ 0 Φ2 ¼ πμπ̃

μ ≈ 0: ð3:11Þ

From (3.10), one has fΦ1;Φ2g ¼ 0, and therefore Φ1 and
Φ2 form a first-class set of constraints. They generate the
two gauge (i.e., τ-dependent) transformations on T�Q.
Unlike in the standard covariant treatment of a relativistic
particle, the mass shell constraint Φ1 does not generate
reparametrizations. Φ1 instead generates the transforma-
tions (3.2), while a linear combination of Φ1 and Φ2

generates reparametrizations. After imposing (3.7) and
(3.8) on T�Q, one ends up with a gauge-invariant subspace
that is 12 dimensional, which is in agreement with the
dimensionality of the nonrelativistic phase space.
Alternatively, one can introduce two additional con-

straints on T�Q which fix the two time coordinates x0 and
x̃0 and thus break the gauge symmetries. The set of all
four constraints would then form a second-class set, again
yielding a 12-dimensional reduced phase space, which
we denote by T�Q. The dynamics on the reduced phase
space is then determined from Dirac brackets and some
Hamiltonian H. We choose H to be

H ¼ p0 ¼ π0 − eF0iðxÞx̃i: ð3:12Þ

p0 differs from π0 in the presence of an electric field. The
latter can be expressed as a function of the spatial momenta
πi and π̃i, i ¼ 1, 2, 3, after solving the constraints (3.11).
The result is

π0 ¼
πiπ̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π̃2j þm2

q : ð3:13Þ

π0 correctly reduces to the nonrelativistic Hamiltonian (2.8)
in the limit π̃2j ≪ m2.
In addition to recovering the nonrelativistic Hamiltonian

of the previous section, the gauge-fixing constraints,
which we denote by Φ3 ≈ 0 and Φ4 ≈ 0, can be chosen
such that the Dirac brackets on T�Q agree with the
Poisson brackets (2.7) of the nonrelativistic treatment. For
this, take

Φ3 ¼ x0 − gðτÞ Φ4 ¼ x̃0 − hðτÞ; ð3:14Þ

where g and h are unspecified functions of the proper
time. By definition, the Dirac brackets between two
functions A and B of the phase space coordinates are
given by

fA; BgDB ¼ fA; Bg −
X4
a;b¼1

fA;ΦagM−1
abfΦb; Bg; ð3:15Þ

where M−1 is the inverse of the matrix M with elements
Mab ¼ fΦa;Φbg; a; b ¼ 1;…; 4. From the constraints
(3.11) and (3.14), we get

M−1 ¼ 1

2ðπ̃0Þ2

0
BBB@

0 0 −π0 π̃0

0 0 2π̃0 0

π0 −2π̃0 0 0

−π̃0 0 0 0

1
CCCA: ð3:16Þ

Substituting into (3.15) gives

fA; BgDB ¼ fA; Bg − 1

2ðπ̃0Þ2 ðπ
0ðfA; x0gfπ̃μπ̃μ; Bg

− fB; x0gfπ̃μπ̃μ; AgÞ
−π̃0ðfA; x̃0gfπ̃μπ̃μ; Bg − fB; x̃0gfπ̃μπ̃μ; AgÞ
− 2π̃0ðfA; x0gfπ̃μπμ; Bg − fB; x0gfπ̃μπμ; AgÞÞ:

ð3:17Þ

It shows that the Dirac brackets fA;BgDB and their
corresponding Poisson brackets fA;Bg are equal if both
functions A and B are independent of π0 and π̃0. We need
to evaluate the Dirac brackets on the constrained subsur-

face, which we take to be TR3 × gTR3, parametrized by
xi, x̃i, πi, and π̃i, i ¼ 1, 2, 3. It is then sufficient to
compute their Poisson brackets. The nonvanishing

Poisson brackets of the coordinates of TR3 × gTR3 are
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fxi; πjg ¼ fx̃i; π̃jg ¼ δij

fπi; π̃jg ¼ eϵijkBk

fπi; πjg ¼ e

�
ϵjkl

∂
∂xi Bk − ϵikl

∂
∂xj Bk

�
x̃l

þ e

� ∂
∂xi Ej −

∂
∂xj Ei

�
hðτÞ; ð3:18Þ

where Fij ¼ ϵijkBk, F0i ¼ Ei, and we have imposed the
constraint Φ4 ¼ 0. These Poisson brackets agree with
those of the nonrelativistic treatment (2.7) in the absence
of the electric field.

IV. FURTHER EXTENSIONS

Here, we extend the dynamics of the previous sections
to 1) the case of a particle coupled to a non-Abelian gauge
field violating Bianchi identities and 2) the case of an
open string coupled to a smooth distribution of magnetic
monopoles. Of course, another extension would be the
combination of both of these two cases, i.e., where an open
string interacts with a non-Abelian gauge field that does
not satisfy the Bianchi identities in some region of the
space-time. We shall not consider that here.

A. Particle in a non-Abelian magnetic
monopole distribution

Here, we replace the underlying Abelian gauge group of
the previous sections, with an N-dimensional non-Abelian
Lie groupG. We take it to be compact and connected with a
simple Lie algebra. Given a unitary representation Γ of G,
let tA, A ¼ 1; 2;…N span the corresponding representation
Γ̄ of the Lie algebra, satisfying t†A ¼ tA, TrtAtB ¼ δAB,
and ½tA; tB� ¼ icABCtC, cABC being totally antisymmetric
structure constants. In Yang-Mills field theory, the field
strengths now take values in Γ̄, FμνðxÞ ¼ fAμνðxÞtA. A
particle interacting with a Yang-Mills field carries d.o.f.
IðτÞ associated with the non-Abelian charge, in addition to
space-time coordinates xμðτÞ. These new d.o.f. live in the
internal space Γ̄, IðτÞ ¼ IAðτÞtA. Under gauge transforma-
tions, IðτÞ transforms as a vector in the adjoint representa-
tion of G, just as the field strengths FμνðxÞ do, i.e.,
IðτÞ → hðτÞIðτÞhðτÞ†, hðτÞ ∈ Γ.
The standard equations of motion for a particle in a non-

Abelian gauge field were given long ago by Wong [42].
They consist of two sets of coupled equations. One set is a
straightforward generalization of the Lorentz force law

_̃pμ ¼ TrðFμνðxÞIðτÞÞ_xν; ð4:1Þ

where p̃μ is again given in (3.5). The other set consists of
first-order equations describing the precession of IðτÞ in the
internal space Γ̄. Yang-Mills potentials are required in order
to write these equations in a gauge-covariant way.

The Wong equations were derived from action principles
using a number of different approaches. The Yang-Mills
potentials again play a vital role in all of the Lagrangian
descriptions. In the approach of coadjoint orbits, one takes
the configuration space to beQ ¼ R4 × Γ and writes [2,43]

IðτÞ ¼ gðτÞKgðτÞ†; ð4:2Þ
where gðτÞ takes values in Γ and K is a fixed direction in Γ̄.
Under gauge transformations, gðτÞ transforms with the left
action of the group, gðτÞ → hðτÞgðτÞ, hðτÞ ∈ Γ. The two
sets of Wong equations result from variations of the action
with respect to gðτÞ and xμðτÞ.
Now, in the spirit of Ref. [4], we imagine that there is a

region of space-time where the Bianchi identity does not
hold, and so the usual expression for the field strengths in
terms of the Yang-Mills potentials is not valid. So, we
cannot utilize the known actions which yield Wong’s
equations, as they require the existence of the potentials.
We can instead try a generalization of (3.1), which doubles
the number of space-time coordinates. This appears, how-
ever, to be insufficient. To have a gauge-invariant descrip-
tion for the particle, we claim that it is necessary to double
the number of internal variables as well. Thus, we double
the entire configuration space, Q → Q × Q̃. Proceeding
along the lines of the coadjoint orbits approach, we take Q̃
to be another copy of R4 × Γ. Let us denote all the
dynamical variables in this case to be xμðτÞ, x̃μðτÞ, gðτÞ,
and g̃ðτÞ, where both gðτÞ and g̃ðτÞ take values in Γ and
gauge transformation with the left action of the group,
gðτÞ → hðτÞgðτÞ, g̃ðτÞ → hðτÞg̃ðτÞ, hðτÞ ∈ Γ.
We now propose the gauge-invariant action for the

particle

S ¼
Z

dτ

�
TrKgðτÞ† _gðτÞ − TrIðτÞ _̃gðτÞg̃ðτÞ†

þm
_xμ _̃x

μffiffiffiffiffiffiffiffiffiffiffiffi
−_xν _xν

p þ TrðFμνðxÞIðτÞÞx̃μ _xν
�
; ð4:3Þ

where IðτÞ is defined in (4.2). To see that the action is
gauge invariant, we note that the first two terms in the
integrand can be combined as TrKgðτÞ†g̃ðτÞ d

dτ ðg̃ðτÞ†gðτÞÞ,
g̃ðτÞ†gðτÞ being gauge invariant. Variations of x̃μ in the
action yield the Wong equation (4.1). Variations of xμ in
the action give a new set of equations defining motion on
the enlarged configuration space

_pμ ¼ Tr
�∂Fρσ

∂xμ IðτÞ
�
x̃ρ _xσ;

where pμ ¼
m

ð−_xρ _xρÞ3=2
ð_xμ _̃xν − _xν _̃xμÞ_xν − TrðFμνIðτÞÞx̃ν:

ð4:4Þ
These equations are the non-Abelian analogs of (3.4). The
remaining equations of motion result from variations of the
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gðτÞ and g̃ðτÞ and describe motion in Γ × Γ. Infinitesimal
variations of gðτÞ and g̃ðτÞ may be performed as follows:
for g̃ðτÞ, it is simpler to consider variations resulting from
the right action on the group, δg̃ðτÞ ¼ ig̃ðτÞϵ̃ðτÞ, ϵ̃ðτÞ ∈ Γ̄.
The action (4.3) is stationary with respect to these varia-
tions when

d
dτ

ðg̃ðτÞIðτÞg̃ðτÞ†Þ ¼ 0; ð4:5Þ

thus stating that g̃ðτÞIðτÞg̃ðτÞ† is a constant of the motion.
For gðτÞ, consider variations resulting from the left action
on the group, δgðτÞ ¼ iϵðτÞgðτÞ, ϵðτÞ ∈ Γ̄. These variations
lead to the equations of motion

_IðτÞ ¼ ½IðτÞ; _̃gðτÞg̃ðτÞ† − FμνðxÞx̃μ _xν�: ð4:6Þ
The consistency of both (4.5) and (4.6) leads to the
following constraint on the motion:

½IðτÞ; FμνðxÞ�x̃μ _xν ¼ 0: ð4:7Þ
This condition on TQ × TQ̃ is a feature of the non-Abelian
gauge theory and is absent from the Abelian gauge theory.

B. Open string coupled to a magnetic
monopole distribution

Finally, we generalize the case of a particle interacting
with a smooth magnetic monopole distribution to that of a
string interacting with the same monopole distribution. Just
as we doubled the number of particle coordinates in the
previous sections, we now double the number of string
coordinates. We note that a doubling of the world sheet
coordinates of the string, originally limited to the compac-
tified coordinates, also occurs in the context of Double
Field Theory [22], with the original purpose of making the
invariance of the dynamics under T duality a manifest
symmetry of the action. The approach has been further
extended to strings propagating in so called nongeometric
backgrounds [11,12,44,45], which leads to quasi-Posson
brackets, violating the Jacobi identity. The resolution
involves a doubling of the world sheet coordinates, similar
to what happens in the case under study.
Whereas the configuration space for a Nambu-Goto

string moving in d dimensions is Rd, which can have an

indefinite signature, here we take it to be Rd × fRd. Denote

the string coordinates for Rd and fRd by xμðσÞ and x̃μðσÞ,
μ ¼ 0; 1;…; d − 1, respectively, where σ ¼ ðσ0; σ1Þ para-
metrizes the string world sheet, M. σ0 is assumed to be a
timelike parameter, and σ1 is assumed to be a spatial
parameter. In addition to writing down the induced metric g
on TRd,

gab ¼ ∂axμ∂bxμ; ð4:8Þ

where ∂a ¼ ∂
∂σa, a;b;… ¼ 0; 1, we define a nonsymmetric

matrix g̃ on TRd × gTRd,

g̃ab ¼ ∂axμ∂bx̃μ: ð4:9Þ

For the free string action, we propose replacing the usual
Nambu-Goto action by

S0 ¼
1

2πα0

Z
M

d2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gabg̃ab; ð4:10Þ

where gab denote matrix elements of g−1 and α0 is the string
constant.
The action (4.10), together with the interaction term

given below, is a natural generalization of the point-particle
action Eq. (3.1) because:

(i) Just as with the case of the relativistic point-particle
action in Sec. III, it is relativistically covariant.

(ii) Just as with the case of the relativistic point-particle
action in Sec. III, there is a new gauge symmetry, in
addition to reparametrizations, σa → σ0a ¼ faðσÞ,
leading to new first-class constraints in the Hamil-
tonian formalism. This new gauge symmetry mixes
R̃d with Rd. Infinitesimal variations are given by

δxμ ¼ 0 δx̃μ ¼ ϵaðσÞ∂axμffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ; ð4:11Þ

where ϵaðσÞ are arbitrary functions of σ, which we
assume vanish at the string boundaries. This is the
natural generalization of the τ-dependent symmetry
transformation (3.2) for the relativistic point particle.
Invariance of S0 under variations (4.11) follows from

δS0 ¼
1

2πα0

Z
M

d2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gab∂axμ∂b

�
ϵc∂cxμffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
�

¼ 1

2πα0

Z
M

d2σgab
�
gac∂bϵ

c þ ∂axμ∂b∂cxμϵc −
∂b det g
2 det g

gacϵc
�

¼ 1

2πα0

Z
M

d2σ

�
∂cϵ

c þ gab
�
∂axμ∂b∂cxμ −

1

2
∂cgab

�
ϵc
�

¼ 1

2πα0

Z
∂M

dσaϵa; ð4:12Þ
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which vanishes upon requiring ϵaj∂M ¼ 0.
(iii) The action (4.10) leads to the standard string dynam-

ics when projecting the equations of motion to Rd.
Excluding for the moment interactions, variations of
the action S0 with respect to x̃μðσÞ away from the
boundary ∂M give the equations of motion

∂ap̃a
μ ¼ 0; p̃a

μ ¼
1

2πα0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gab∂bxμ: ð4:13Þ

These are the equations of motion for a Nambu string.
In addition to recovering the usual string equations on
Rd, variations of S0 with respect to xμðσÞ lead to
another set of the equation of motion on Rd × R̃d:

∂apa
μ ¼ 0;

pa
μ ¼ 1

2πα0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
fðgabgcd − gadgbc − gacgbdÞ

× g̃cd∂bxμ þ gab∂bx̃μg: ð4:14Þ

Of course, Eq. (4.10) can be used for both a closed string
and an open string. We now include interactions with the
electromagnetic field. They occur at the boundaries of an
open string and are standardly expressed in terms of the
electromagnetic potential, which again is not possible in the
presence of a continuous magnetic monopole charge
distribution. So, here, we take instead

SI ¼ e
Z
∂M

dσaFμνðxÞx̃μ∂axν; ð4:15Þ

where FμνðxÞ is not required to satisfy the Bianchi identity
in a finite volume of Rd. We take −∞ < σ0 < ∞,
0 < σ1 < π, with σ1 ¼ 0; π denoting the spatial boundaries
of the string. Then, the boundary equations of motion
resulting from variations of x̃μðσÞ in the total action
S ¼ S0 þ SI are

ðp̃1
μ þ eFμνðxÞ∂0xνÞjσ1¼0;π ¼ 0; ð4:16Þ

which are the usual conditions in Rd. The boundary
equations of motion resulting from variations of xμðσÞ in
the total action S ¼ S0 þ SI give some new conditions in
Rd × R̃d,

�
p1
μ þ e

� ∂
∂xμ Fρσ þ

∂
∂xσ Fμρ

�
x̃ρ∂0xσ þ eFμν∂0x̃ν

�����
σ1¼0;π

¼ 0: ð4:17Þ

In the Hamiltonian formulation of the system, πμ ¼ p0
μ

and π̃μ ¼ p̃0
μ are canonically conjugate to xμ and x̃μ,

respectively, having equal-time Poisson brackets

fxμðσ0; σ1Þ; πνðσ0; σ01Þg ¼ fx̃μðσ0; σ1Þ; π̃νðσ0; σ01Þg
¼ δμνδðσ1 − σ01Þ; ð4:18Þ

for 0 < σ1, σ01 < π, with all other equal-time Poisson
brackets equal to zero. The canonical momenta are subject
to the four constraints:

Φ1 ¼ π̃μπ̃
μ þ 1

ð2πα0Þ2 ∂1xμ∂1xμ ≈ 0

Φ2 ¼ π̃μ∂1xμ ≈ 0

Φ3 ¼ πμπ̃
μ þ 1

ð2πα0Þ2 ∂1xμ∂1x̃μ ≈ 0

Φ4 ¼ πμ∂1xμ þ π̃μ∂1x̃μ ≈ 0: ð4:19Þ
It can be verified that they form a first-class set. Φ1 and Φ2

generate the local symmetry transformations (4.11), while
linear combinations of the four constraints generate
reparametrizations.

V. CONCLUSIONS

We have considered the problem of the existence of a
Lagrangian description for the motion of a charged
particle in the presence of a smooth distribution of
magnetic monopoles. The magnetic field does not admit
a potential on the physical configuration space. Auxiliary
variables are employed in order to solve the problem,
following a procedure commonly used to deal with
dissipative dynamics. This is the Lagrangian counterpart
of the Hamiltonian problem, addressed in Ref. [4], in
which the Bianchi identity–violating magnetic field
entails a quasi-Poisson algebra on the physical phase
space which does not satisfy Jacobi identity unless one
doubles the number of d.o.f. The problem was further
extended to the relativistic case as well as the non-Abelian
case. In the last section, we performed the generalization
of the relativistic point-particle action (3.1) to that of an
open-string interacting, once again, with a Bianchi iden-
tity–violating magnetic field. To circumvent the problem
of the lack of a potential vector, the world sheet d.o.f. were
doubled analogously to the case in double field theory.
Many interesting issues can be addressed, such as a
possible relationship with double field theory or the
quantization problem, which relates Jacobi violation to
nonassociativity of the quantum algebra. We plan to
investigate these aspects in a forthcoming publication.
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