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In this work we examine a system consisting of a confined one-dimensional arrangement of atoms that
we describe by using the 2-dimensional CPN−1 model, restricted to an interval and at finite temperature.
We develop a method to obtain the bulk and boundary parts of the one-loop effective action as a function of
the effective mass of the fluctuations. The formalism has the advantage of allowing for a systematic
analysis of a large class of boundary conditions and to model the (adiabatic) response of the ground state to
changes in the boundary conditions. In the case of periodic boundary conditions, we find that
inhomogeneous phases are disfavored for intervals of large size. Away from periodic boundary conditions,
our numerical results show that the ground state has a generic crystal-like structure that can be modulated
by variations of the boundary conditions. The results presented here could be relevant for experimental
implementations of nonlinear sigma models and could be tested by lattice numerical simulations.
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I. INTRODUCTION

A remarkable framework linking high energy with
atomic physics has been growing, thanks to exceptional
developments in cold atoms [1]. The connections are often
sparked by the possibility of implementing quantum
field theoretical models used in high energy physics with
atomic lattices at low temperature and cleverly designed
atomic traps [2]. An example recently discussed is that of
alkaline-earth atoms with SUðNÞ spins arranged on a two-
dimensional bipartite square lattice (with the transverse
direction much smaller than the longitudinal one) [3]. One
of the many interesting features of this setup is that its
continuum low-energy limit is a known toy model for
QCD, the CPN−1 model, a (1þ 1)-dimensional field theory
consisting of N complex scalar fields subject to a constraint
[4–7]. Despite the apparent simplicity, the CPN−1 model
has a very complex vacuum structure featuring asymptotic
freedom, dynamical mass generation, and confinement,
making it an attractive tool to simulate complex physics at a
reduced theoretical and computational cost. While it should
come as no surprise that the CPN−1 model emerges from a

SUðNÞ spin model (see, for example, Refs. [8,9]), a
realization with cold atoms provides a concrete possibility
of this correspondence, testable in experiments.
A one-dimensional realization of a finite string of atoms,

like that ofRef. [3], provides territory for both the condensed
matter and the high energy physicist to explore fundamental
aspects of the phase structure of cold atomic lattices on one
side, and the properties of the underlying continuum field
theory (in the present case, the CPN−1 model confined to an
interval) on the other. In fact, the latter has been at the center
of recent discussions revolving around the nature of the
ground state, the role of boundary conditions, and the
possibility that the ground state may develop spatial varia-
tions [10–22]. These issues become interesting, and cer-
tainly more amusing, in the original formulation of the
model: If we recall that CPN−1 is a (1þ 1)-dimensional
model defined on the infinite line, then a well-known result
[23] prohibits the existence of (and therefore the transition
to) a massless phase.While the existence of inhomogeneous
phases is to be generically expected when the model is
restricted to an interval, it is less obviouswhether there is any
natural choice of boundary behavior allowing for spatially
constant phases [11]. The simplest choice of periodic
boundary conditions leads, unsurprisingly, to a spatially
constantmassive ground state for intervals of large size, with
a transition to a massless phase predicted, in the leading
large-N approximation, when the interval shrinks to a
small enough size. The similarity between finite size and
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temperature effects, that in the case of periodic boundary
conditions manifests itself as an exact modular symmetry
fsize ↔ inverse temperatureg, does indeed suggest that a
transition might take place, possibly as an artifact of the
large-N approximation, occurring below a certain critical
size [10]. On the basis of the no-go theorem of Ref. [23],
such a massless phase may be discarded a posteriori as
nonphysical, leaving, as the only alternative, a spatially
constant massive phase (see Ref. [24]). An intriguing
possibility has been discussed recently in Ref. [22], where
the surprising circumstance of a spatially inhomogeneous
ground state has been entertained, still within the original
version of the model (in the absence of boundaries or
external fields). A different viewpoint has been indicated
in Ref. [19], where the appearance of a massless phase is
precluded by a logarithmic behavior emerging after com-
plete integration over the (constant) background fields.
An additional piece to the story comes from the large-N

volume independence of theCPN−1modelwith the temporal
direction compactified to a circle [25]. With twisted boun-
dary conditions imposed on the fields and a special choice of
twists selected, it is only the ground state that contributes to
the partition function at any compact radii, leading to
observables independent of the radius of compactification
and eliminating the possibility of a transition occurring for
circles of small enough size. The impossibility of a transition
induced by finite size effects then follows inevitably from
the large-large-N volume independence; however, it is not
evident what happens, in general, beyond the specific choice
of boundary conditions.
These conclusions leave the nature of the ground state

(and the role of boundary conditions) obfuscated, and our
goal here is to reexamine the CPN−1 model in the presence
of boundaries and with finite temperature effects included.
The setup we have in mind consists of a string of atoms
sandwiched between two impurities or constrained by
optical traps that we assume can, in principle, be tuned
locally near the end points of the string and act as external
forcing for the boundary conditions (see Ref. [26] for an
introduction on how defects can be introduced in optical
lattice systems). Then, we expect that changes in the
boundary conditions will induce deformations in the
ground state of the system: It is these deformations that
we are after. Beyond the case of periodic boundary
conditions, the inevitable complication one needs to
address is to allow for a spatially dependent effective
mass. To deal with this issue, we adopt (and adapt to
the present problem) a formulation of the effective action
based on zeta function regularization and heat-kernel
techniques (see Refs. [27,28]) from which we obtain the
effective action in the form of a derivative expansion for the
effective mass. The advantage of this approach is its
generality, which allows us to treat, in a unified way, a
large class of boundary conditions, of which periodic or
Dirichlet are special cases.

II. BASICS

The classical action of the CPN−1 model is

S ¼
Z

dxdt½j∂μnij2 þ λðr − jnij2Þ� ð1Þ

where ni with i ¼ 1;…; N are N complex scalar fields.
Imposing gauge invariance on the model allows one to set
any nondynamical gauge field to zero. The quantity λ,
which we call the mass gap function, is a Lagrange multi-
plier that enforces the condition jnij2 ¼ r. Finally, r defines
the coupling constant g by the expression r ¼ 4π=g2. Here,
we stick to the large-N expansion and choose to separate
the fields ni into a classical background plus a quantum
fluctuation:

n1 ¼ σ; ni ¼ δφi; for i ¼ 2;…; N: ð2Þ

We restrict the background to the interval x ∈ ½0;l�, thus
effectively forcing the fields to obey, at the end points,
certain boundary conditions that we leave, for the moment,
unspecified. We assume σ, the “Higgs” field, and λ to be
real and time-independent functions of the spatial coor-
dinate only. Whenever spatially constant configurations for
λ and σ are admissible, the solution λ ¼ 0 and σ ≠ 0 defines
a massless (or Higgs) phase, while λ ≠ 0 and σ ¼ 0 defines
a massive (or confining) phase.
Performing the following coordinate transformation,

x → x̃ ¼ x=l; t → t̃ ¼ t=l; ð3Þ

we can rescale the length of the interval to unity. Setting
λ̂ ¼ l2λ, performing a Wick rotation, and choosing the
background fields as in (2), we arrive at the following
expression for the one-loop effective action (at large N),

SE
eff ¼

Z
β=l

0

dτ̃
Z

1

0

dx̃
��∂σ

∂x̃
�

2

þ λ̂ðjσj2 − rÞ
�

þ ðN − 1ÞTr ln ð−□þ λ̂Þ; ð4Þ

with □ ¼ −∂2=∂ τ̃2 − ∂2=∂x̃2. Notice we assume that both
σ and λ̂ are functions of x̃ only. At finite temperature

Tr ln ð−□þ λ̂Þ →
X∞
n¼−∞

ln det

� ∂2

∂x̃2 þ l2ω2
n þ λ̂

�
ð5Þ

where ωn ¼ 2πn=β, T ¼ 2π=β. The right-hand side of (5)
is a divergent quantity, which can be regularized using zeta
function regularization (see e.g., Refs. [29–34]). If we write

� ∂2

∂x̃2 þ λ̂

�
fk ¼ p2

kfk ð6Þ
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we can define the following zeta function, suitable for the
regularization of (5):

ζðsÞ ¼
X∞
k¼0

X∞
n¼−∞

ðp2
k þ l2ω2

nÞ−s; ð7Þ

which is well defined for ReðsÞ > 1=2 and can be analyti-
cally continued to the semiplane ReðsÞ ≤ 1=2 as a mero-
morphic function with isolated simple poles [29–34]. After
performing the analytic continuation, the effective action is
written as

SE
eff ¼ β

Z
l

0

dx
��∂σ

∂x
�

2

þ λðjσj2 − rÞ
�
− ðN − 1Þζ0ð0Þ:

ð8Þ

III. DERIVATIVE EXPANSION OF THE
EFFECTIVE ACTION

The expression (8) is only formal, as the boundary
conditions have not been specified, and a renormalization
scheme must be used to correct the diverging terms coming
from the summation in (5). Our approach consists in
recasting the zeta function (7) in the following form
(see [28]):

ζðsÞ ¼ ϑffiffiffiffiffiffi
4π

p 1

ΓðsÞ
Z

∞

0

dt

t3=2−s
KðtÞ

�
1þ 2

X∞
n¼1

e−
β2n2

4l2t

�
ð9Þ

where ϑ ¼ β=l and KðtÞ ¼ P
k e

−tp2
k . The function KðtÞ is

the integrated heat kernel of the second order differential
operator defined in (6). For the moment, information on the
boundary conditions is encoded in the eigenvalues pk.
A derivative expansion of the effective action can be read
off from the small-t expansion of the heat kernel (density),
which we can express in the form

K̂ðx̃; tÞ ¼ 1ffiffiffiffiffiffiffi
4πt

p
X∞
k¼0

ck=2ðx̃Þtk=2: ð10Þ

The quantity K̂ðx̃; tÞ is related to KðtÞ by spatial integra-
tion. The coefficients ck=2 depend on the function λ̂ and its
derivatives, but not on t. The coefficients ck=2ðx̃Þ have the
same “dimension” (here the word dimension refers to the
number of powers of λ̂ and of x̃), as ½λ̂�k=2 and comprise a
volume plus a boundary contribution for coefficients of
integer order and a pure boundary term for coefficients of
half-integer order [29–34]. The first few coefficients are as

follows: c0ðx̃Þ ¼ 1; c1
2
ðx̃Þ ¼ b

ð1
2
Þ

0 ; c1ðx̃Þ ¼ −λ̂þ bð1Þ0 , where

the contributions b
ðk
2
Þ

n correspond to the boundary parts and

have the form b
ðk
2
Þ

n ¼ u
ðk
2
Þ

n=2δðx̃Þ þ v
ðk
2
Þ

n=2δðx̃ − 1Þ, with u
ðk
2
Þ

n=2

and v
ðk
2
Þ

n=2 being numbers solely dependent on the type of

boundary conditions. Assuming that boundary conditions

are imposed symmetrically, u
ðk
2
Þ

n=2 ¼ v
ðk
2
Þ

n=2. Although expres-
sions of such coefficients quickly become cumbersome,
partial simplification can be achieved in specific cases.
Moreover, we notice that there are terms in the heat-kernel
coefficients that are independent of λ̂ and can, therefore, be
dropped since they contribute neither to the effective
equation nor to the boundary conditions. For example,

b
ð1
2
Þ

0 , bð1Þ0 , b
ð3
2
Þ

0 , etc. are all irrelevant to our problem. In the
case of periodic boundary conditions, all the coefficients

bðk=2Þn are identically zero. The volume contribution to the
coefficients can be found in a number of references (see, for
example, [35,36]), while the boundary contributions can
only be partly retrieved from the literature (for instance, in
Ref. [35] for the case of Dirichlet and Neumann boundary
conditions and Ref. [36] for more general boundary
conditions). The heat-kernel coefficients c2, c5=2, c3 have
been computed here for the case of separated boundary
conditions for the first time.
A lengthy calculation leads to the following expression

for the derivative expansion of the effective action truncated
up to order 6, after rescaling everything back to the original
variables1:

SE
eff ¼ β

Z
l=2

−l=2
dx

��
dσ
dx

�
2

þ λðjσj2 − rÞ þ L
�
; ð11Þ

where we have defined L ¼ ðN − 1ÞðL0 þ L1 þ L2Þ with

L0 ¼ a0 þ a2λþ a4λ2 þ a6λ3 þ…

L1 ¼ ν1

�∂λ
∂x

�
2

þ ν2
∂2λ

∂x2 þ ν3
∂4λ

∂x4 þ…

L2 ¼ ξ0 þ ξ1λþ ξ2l2λ2 þ ξ3l
∂λ
∂xþ ξ4lβ2λ

∂λ
∂x

þ ξ5l2β2
�∂λ
∂x

�
2

þ ξ6l2
∂2λ

∂x2 þ ξ7l3
∂3λ

∂x3 þ…

where the coefficients ξn are functions of the dimensionless
ratio ϑ ¼ β=l that defines our expansion parameter (rel-
evant explicit expressions are reported in the Appendix).
The above terms isolate the powers of the mass gap
function in L0 from its derivatives in L1 and from the
boundary terms in L2. The functional form of the above
expansion can be obtained directly by dimensional con-
siderations. We should remark that the mixed-derivative
expansion is built into the heat-kernel expansion and
excludes the possibility of the ground state rapidly varying
in space. While this is a limitation of the present approach,

1Notice that we have rescaled everything back to the original
variables after a shift x → x − l=2; without performing this
coordinate shift, the limit x → ∞ would return the case of the
semi-infinite interval ½0;∞g.
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we expect any rapidly varying solution to have higher free
energy.
In our scheme the divergences are encoded in the

coefficients a0, ξ0, and a2 and respectively renormalize
the vacuum energy in the bulk and on the boundary, and the
coupling constant r. Also, a0, ξ0 do not depend on λ and
therefore change neither the effective equations nor the
boundary conditions. Explicit expressions of the volume
and boundary coefficients up to order 6 are reported in the
Appendix. Renormalizing to zero the vacuum energy in the
bulk and on the boundary (results will not depend on this
choice) and noticing that the terms proportional to ν2 and ν3
are total derivatives, which disappear after partial integra-
tion (since we are assuming boundary conditions to be
imposed symmetrically), we obtain the energy density
functional Ω ¼ Ωvol þΩbnd, where

Ωvol ¼
�
jσj2 − rren þ

ðN − 1Þ
2π

log

�
β

l

��
λ

−
ζð3Þ
16π3

β2λ2 þ ζð5Þ
256π5

β4
�
λ3 þ 1

2

�
dλ
dx

�
2
�

ð12Þ

corresponds to the volume contribution, with −rren ¼ −rþ
ðN − 1Þ½γE

4π −
1
4π logð ε

8π2
Þ� the renormalized coupling. The

quantity Ωbnd
eff corresponds to the boundary action

Ωbnd
eff ¼

�
ξ̂1λþ ξ̂2l2λ2 þ ξ̂3l

∂λ
∂xþ ξ̂4lβ2λ

∂λ
∂x

þ ξ̂5l2β2
�∂λ
∂x

�
2

þ ξ̂6l2
∂2λ

∂x2 þ ξ̂7l3
∂3λ

∂x3 þ…

�

× ΔlðxÞ; ð13Þ

where we have factored out ΔlðxÞ ¼ δðx=l − 1=2Þ þ
δðx=lþ 1=2Þ and the hatted quantities ξ̂i correspond to
the ξi with the factor ΔlðxÞ removed. The expansion (12)
allows us to easily anticipate, within the validity of our
approximation, the character of the ground state and
how this depends on the external conditions (in the present
case, temperature, interval size, and type of boundary
conditions).

IV. SOLUTIONS AND BOUNDARY CONDITIONS

As a first step, we vary l at fixed temperature, ignoring
the boundary contribution to the energy density functional
and dropping the derivative term in (12). This situation
corresponds to the case of periodic boundary conditions.
Then, the thermodynamic potential, including terms up
to sixth order, takes the following form: Ψeff ¼ a2λþ
a4λ2 þ a6λ3. The coefficient a6 ¼ ζð5Þ

256π5
β4 is positive,

guaranteeing boundedness of the potential from below.
The coefficient a4 ¼ − ζð3Þ

32π3
β2 is negative, signaling an

eventual first order phase transition when a4 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffija2a6j

p
,

where a2 ¼ jσj2 − rren þ ðN−1Þ
2π log ðβ=lÞ. Assuming σ ¼ 0,

the critical point is located at βcrit ¼ l exp ð−2πðrren þ
ζ2ð3Þ=ð8πζð5ÞÞÞ=ðN − 1ÞÞ. When a4 < 2

ffiffiffiffiffiffiffiffiffiffiffiffija2a6j
p

, the
minimum of the potential occurs for λ ≠ 0, leading to a
massive constant ground state. When the length scale is
decreased below the above critical point, up to a4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij3a2a6j
p

, then the potential develops two minima, one
corresponding to λ ≠ 0 and one, at lower energy, corre-
sponding to λ ¼ 0. While the latter would not be physical
as can be argued by invoking the no-go theorem of
Ref. [23], the former would be, in principle, admissible.
In the case of periodic boundary conditions, Ref. [19]
observed that a logarithmic dependence of the energy as a
function of an effective constant radius emerges once full
integration over the constant modes in the path integral is
carried out. It is this logarithmic behavior that would
remove the zero mode and block the transition to a massless
phase. While we can conclude that for periodic boundary
conditions and large values of l inhomogeneous ground
states are disfavored, in the present approach a mechanism
that removes the unwanted massless mode remains to
be found.
Here, the focus is on the model confined to an interval

with general boundary conditions. In this case, we can no
longer ignore the boundary contributions (since, rather than
the potential, one needs to extremize the effective action;
see, for instance, Refs. [31,37]). To address this problem,
we restrict ourselves to the small σ regime; to lowest order,
we ignore its contribution to the effective equations and
proceed by solving numerically for λ. Although these
equations can be, with some effort, integrated exactly with
the solutions expressed in terms of combinations of Jacobi
elliptic functions, here we prefer to proceed numerically as
it allows for an easier way to browse through the parameter
space and the boundary conditions. Within our framework,
the boundary conditions, so far left unspecified, can be
determined from the boundary action in terms of the

coefficients bðjÞi . In other words, specifying the boundary

conditions fixes the coefficients bðkÞi that, in turn, fix the
boundary action and the behavior of the λ at the end points
(if one ignores higher derivative terms in the boundary
action, the boundary conditions for λ are, in general, of
mixed-Robin form). Rather than focusing on specific
choices of boundary conditions, our numeric approach
allows us to browse through the solutions, changing the
external parameters and the coefficients defining the
boundary conditions. In practice, the numerical solutions
are found by reducing the nonlinear second order equation
of motion for λ into two coupled nonlinear first order
equations (this approach is also tested by finding the
solution directly via solving the second order problem).
The (two-parameter family of) boundary conditions is
implemented by fixing the value λ− ≡ λð−l=2Þ at the left
boundary and by changing the derivative λ0− ≡ λ0ð−l=2Þ at
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the same point until the solution attains the same value
at the right boundary (the numerical tolerance is set
to λ− − λþ ¼ 10−3). Once the numerical solutions are
found, the free energy is evaluated numerically. The code
returns the lowest energy configuration, compatible with
the boundary conditions. The boundary conditions can be
changed and the procedure repeated. While numerically we
can only explore a finite part of the parameter space (and
therefore we cannot exclude that other solutions exist
outside the considered parameter region), we generically
find the ground state characterized by a number of
oscillations that we can modulate by changing the param-
eters and the values of the boundary conditions. It is
tempting to conjecture this crystal-like structure of the
ground state to be generic. Figure 1 shows a sample of the
solutions (we plot the normalized value λ̆≡ λ−jλj

jλj , with jλj
representing the amplitude of the solution for various
values of the parameters).

V. CONCLUSIONS

Starting with the CPN−1 model confined to an interval of
size l, we have obtained a derivative expansion of the energy
density functional at one loop in the presence of a general,
two-parameter family of boundary conditions. This setup
can be used to model a one-dimensional bounded arrange-
ment of atoms, and changes in the boundary conditions
could be induced by the presence of impurities or by locally
modulated optical traps. The general results for the bulk and
boundary parts of the energy density functional are given, the
latter in terms of numerical coefficients that encode the
nature of the boundary conditions and can be varied
according to the physical setup.
This approach has the advantage of allowing for an

immediate inspection of some of the properties of the
ground state.
We have considered a general two-parameter family of

boundary conditions, which we assumed to be imposed

symmetrically. Physically, what we have in mind is to force
external changes in the boundary conditions which, in turn,
would cause deformations in the ground state. The response
to such changes is investigated by numerically finding the
solutions for the mass gap function λ. These solutions have
been constructed for a range of parameters and boundary
conditions. Our results show that the ground state is
inhomogeneous, with a typical crystal-like structure that
depends on the imposed boundary conditions and the value
of the parameters. The situation is reminiscent of what
happens in the Gross-Neveu model at finite density, and it is
tempting to conjecture that a similar phase structure can be
induced here by modulations in the boundary conditions
(see Ref. [38]).
The results presented here could be relevant in imple-

mentations of the CPN−1 model with alkaline-earth atoms
in optical lattices of the kind discussed in Ref. [3].
Experimental verifications and lattice simulations could
provide a way to verify the existence of spatial modulations
in the ground state. Both the approach and the results can be
contrasted with other results derived, in the absence of
boundaries, for the Gross-Neveu or Nambu-Jona-Lasinio
models (see Refs. [28,39,40]) and for the Oð3Þ nonlinear
sigma model (see Ref. [41]). Especially interesting are the
examples discussed in Ref. [41] for the Oð3Þ nonlinear
sigma model where a comparison with experimental
observations of the Haldane gap in the one-dimensional
phase of CsNiCI3 and of NENP (a Heisenberg anti-
ferromagnet with isolated Ni2þ chains; see Ref. [42])
has been carried out and for which qualitative agreement
has been indicated. In these cases too, with boundaries
enforced, the same kind of modulations in the ground state
are expected to emerge.
Numerical lattice simulations of the CPN−1 model have

been actively pursued in the past (see, for example,
Refs. [43–50]). Extending the lattice approach to the case
treated here (see Ref. [51] for such an attempt) could shed
light on some of the questions discussed in this paper and,
in particular, reveal the role of corrections to the large-N
approximation.
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APPENDIX: HEAT-KERNEL COEFFICIENTS

In this appendix we provide the reader with the coef-
ficients of the small-t asymptotic expansion of the trace of
the heat kernel associated with a one-dimensional Laplace
operator of the form given in Eq. (6) in the main text, acting
on suitable functions over the interval [0, 1]. The method
used to compute these coefficients for general boundary
conditions can be found in Ref. [36]. Here we give the
coefficients for the case of general separated boundary
conditions. These conditions can be written as

A1fkð0Þ − A2f0kð0Þ ¼ 0;

B1fkð1Þ − B2f0kð1Þ ¼ 0; ðA1Þ

where fðxÞ are functions belonging to the domain of the
Laplace operator given in Eq. (6) (see main text) and the
coefficients Ai and Bi satisfy the constraints ðA1; A2Þ ≠
ð0; 0Þ and ðB1; B2Þ ≠ ð0; 0Þ. Following the results detailed
in Ref. [36], it is not difficult to obtain the following heat-
kernel coefficients associated with the Laplace operator in
Eq. (6) (see main text) endowed with the boundary
conditions (A1),

c0ðx̃Þ ¼ 1;

c1
2
ðx̃Þ ¼ b

ð1
2
Þ

0 ;

c1ðx̃Þ ¼ −λ̂þ bð1Þ0 ;

c3
2
ðx̃Þ ¼ b

ð3
2
Þ

0 þ λ̂b
ð3
2
Þ

1 ;

c2ðx̃Þ ¼
1

2
λ̂2 −

1

6

∂2λ̂

∂x̃2 þ bð2Þ0 þ bð2Þ1 λ̂þ bð2Þ2

∂λ̂
∂x̃ ;

c5
2
ðx̃Þ ¼ b

ð5
2
Þ

0 þ b
ð5
2
Þ

1 λ̂þ b
ð5
2
Þ

2 λ̂2 þ b
ð5
2
Þ

3

∂λ̂
∂x̃þ b

ð5
2
Þ

4

∂2λ̂

∂x̃2 ;

c3ðx̃Þ ¼ −
1

6
λ̂3 þ 1

12

�∂λ̂
∂x̃

�2

þ 1

6
λ̂
∂2λ̂

∂x̃2 −
1

60

∂4λ̂

∂x̃4

þ bð3Þ0 þ bð3Þ1 λ̂þ bð3Þ2 λ̂2 þ bð3Þ3

∂λ̂
∂x̃þ bð3Þ4

∂2λ̂

∂x̃2
þ bð3Þ5 λ̂

∂λ̂
∂x̃þ bð3Þ6

∂3λ̂

∂x̃3 : ðA2Þ

While the volume part of the heat-kernel coefficients is
universal, the boundary part depends explicitly on the
boundary conditions imposed on the system. Since we want
to provide formulas for the boundary part of the heat-kernel
coefficients which are valid for any type of separated
boundary condition (A1), we need to introduce a number
of functions which will allow us to present a unified

treatment of all separated boundary conditions. To this
end we introduce the following projector:

πx̃ ¼
�
1 if x̃ ¼ 0

0 if x̃ ≠ 0;
ðA3Þ

and the functions χðx̃Þ and Sðx̃Þ, defined on the boundary of
the interval [0, 1], having the values

χð0Þ ¼ 1 − 2πA2
;

χð1Þ ¼ 1 − 2πB2
; ðA4Þ

and

Sð0Þ ¼ ð1 − πA2
ÞA1

A2

;

Sð1Þ ¼ ð1 − πB2
ÞB1

B2

: ðA5Þ

Lastly, we have Π�ðx̃Þ defined as

Π�ðx̃Þ ¼
1

2
ð1þ χðx̃ÞÞ: ðA6Þ

By further introducing the generalized function Δðx̃Þ ¼
δðx̃Þ þ δðx̃ − 1Þ, one can find

b
ð1
2
Þ

0 ¼ 1

4
χðx̃ÞΔðx̃Þ;

bð1Þ0 ¼ 2Sðx̃ÞΔðx̃Þ;

b
ð3
2
Þ

0 ¼ 1

2
S2ðx̃ÞΔðx̃Þ; b

ð3
2
Þ

1 ¼ b
ð1
2
Þ

0

bð2Þ0 ¼ −
4

3
S3ðx̃ÞΔðx̃Þ; bð2Þ1 ¼ bð1Þ0

bð2Þ2 ¼ 1

3
½2Πþðx̃Þ−Π−ðx̃Þ�Δðx̃Þ;

b
ð5
2
Þ

0 ¼ 1

4
S4ðx̃ÞΔðx̃Þ; b

ð5
2
Þ

1 ¼ −bð
3
2
Þ

0 ; b
ð5
2
Þ

2 ¼ 1

2
b
ð1
2
Þ

0

b
ð5
2
Þ

3 ¼ −
1

8
bð1Þ0 ; b

ð5
2
Þ

4 ¼ −
1

4
b
ð1
2
Þ

0 ;

bð3Þ0 ¼ −
8

15
S5ðx̃ÞΔðx̃Þ; bð3Þ1 ¼ −bð2Þ0 ; bð3Þ2 ¼ −

1

2
bð1Þ0 ;

bð3Þ3 ¼ 4

3
b
ð3
2
Þ

0 ; bð3Þ4 ¼ 1

6
bð1Þ0 ; bð3Þ5 ¼ −bð2Þ2 ;

bð3Þ6 ¼ 1

30
½7Πþðx̃Þ þ 12Π−ðx̃Þ�Δðx̃Þ:

The coefficients appearing in the derivative expansion of
the effective action [see expressions after Eq. (12) in the
main text] are

FLACHI, FUCCI, NITTA, TAKADA, and YOSHII PHYS. REV. D 100, 085006 (2019)

085006-6



a0 ¼ −
1

8πε
−
π

3
ϑ−2;

a1 ¼
γE
4π

þ 1

2π
log

�
ϑ

4π

�
2

−
1

4π
logð2εÞ;

a2 ¼ −
ζð3Þ
32π3

β2;

a3 ¼
ζð5Þ
256π5

β4;

ν1 ¼
ζð5Þ
512π5

β4;

ν2 ¼
ζð3Þ
32π3

β2;

ν3 ¼
ζð5Þ
512π5

β4;

and

ξ1 ¼ −
bð3=2Þ1 ϑ

24
ffiffiffi
π

p −
ζð3Þ
16π3

bð2Þ1 ϑ2 −
bð5=2Þ1 ϑ3

1440
ffiffiffi
π

p −
3ζð5Þ
128π5

bð3Þ1 ϑ4;

ξ2 ¼ −
1

1440
ffiffiffi
π

p bð5=2Þ2 ϑ3 −
3ζð5Þ
128π5

bð3Þ2 ϑ4;

ξ3 ¼ −
ζð3Þ
16π3

bð2Þ2 ϑ2 −
1

1440
ffiffiffi
π

p bð5=2Þ3 ϑ3;

ξ4 ¼ −
3ζð5Þ
128π5

bð3Þ5 ϑ2;

ξ5 ¼ −
3ζð5Þ
128π5

bð3Þ3 ϑ2;

ξ6 ¼ −
1

1440
ffiffiffi
π

p bð5=2Þ4 ϑ3 −
3ζð5Þ
128π5

bð3Þ4 ϑ4;

ξ7 ¼ −
3ζð5Þ
128π5

bð3Þ6 ϑ4:
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