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We point out that charge conjugation and coordinate reflection symmetries do not commute with the
center symmetry of SUðNÞ Yang-Mills (YM) theory when N > 2. As a result, for generic values of the θ
angle, the group of discrete 0-form symmetries of YM theory on, e.g., the spacetime manifold R3 × S1

includes the dihedral group D2N , which is non-Abelian for N > 2. At θ ¼ π, the non-Abelian factor in the
symmetry group is enhanced to D4N due to discrete ’t Hooft anomaly considerations. We illustrate these
results in YM theory as well as in a simple quantum mechanical model, where we study representation
theory as a function of the θ angle.
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I. INTRODUCTION

Internal symmetries are a familiar feature in quantum field
theory with many established properties. For example,
places where symmetry realizations change can be associ-
ated with the emergence of gapless excitations. Often, the
realizations of internal symmetries are constrained by
’t Hooft anomaly matching. Additionally, in relativistic
quantum field theories (QFTs), the Coleman-Mandula theo-
rem [1] implies that continuous internal symmetries commute
with the Poincaré group so that the full symmetry group of the
theory, G, is a direct product: G ¼ GPoincare ×Ginternal.
All of these features are illustrated in QCD. QCD with

N ≥ 3 colors has a Ginternal ¼ ½SUðNFÞV × SUðNFÞA ×
Uð1ÞQ�=ðZNF

× ZNÞ flavor symmetry in the chiral limit
where mq ¼ 0, and GQCD ¼ GPoincare ×Ginternal. The
SUðNFÞA part of the internal symmetry group has a
’t Hooft anomaly. This can be used to argue that when
mq ¼ 0 the low-energy effective theory describing fluctua-
tions about the thermodynamic ground state must include
some gapless degrees of freedom. For some values of NF
andN, these gapless degrees of freedom are associated with
spontaneous breaking of the SUðNFÞA symmetry.
Here, our focus will be on pure SUðNÞ Yang-Mills (YM)

theory

S¼ 1

4g2

Z
d4xFa

μνFaμνþi
θ

16π2

Z
d4xϵμνρσFa

μνFa
ρσ; ð1:1Þ

with μ; ν ¼ 1;…; 4 and a ¼ 1;…; N. Pure YM theory has
no conventional internal symmetries which would act on
local operators. It has long been known, however, that it
does have a subtler type of internal symmetry, Ginternal ¼
ZN center symmetry [2–5]. Center symmetry acts non-
trivially on certain line operators, but it does not act on local
operators. In the language of Ref. [6], center symmetry is a
“1-form symmetry,” which can be contrasted with, e.g., the
chiral symmetry of QCD, which is a “0-form symmetry” of
which the natural charged objects are local operators. It
turns out that, just as with more familiar 0-form sym-
metries, center symmetry can participate in ’t Hooft
anomalies [7]. In particular, there is a mixed ’t Hooft
anomaly between center symmetry and CP symmetry at
θ ¼ π for even N and a closely related notion of “global
inconsistency” for odd N [7,8].
If the conclusions of the Coleman-Mandula theorem

were to apply to center symmetry, then center symmetry
would commute withGPoincare. However, one cannot appeal
to this theorem for two reasons. First, the Coleman-
Mandula theorem is derived for continuous internal sym-
metries, while the center symmetry of SUðNÞ YM theory is
discrete. Second, the Coleman-Mandula theorem follows
from working out the constraints of symmetries on the
S-matrix for relativistic particle scattering, while the
charged objects for center symmetry are associated to
stringlike extended operators. Indeed, we find that for pure
SUðNÞ YM theory on R3;1 the full symmetry group GYM is
generally not a direct product:

GYM ≠ GPoincare × Ginternal: ð1:2Þ
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In particular, when N ≥ 3 center symmetry transformations
do not commute with a simultaneous transformation of
parity and time reversal, PT, or with charge conjugationC.1

PT, C, and center transformations are symmetries of YM
theory for all values of g and θ, so these two symmetries
generate a discrete non-Abelian subgroup of Gdisc

YM ⊂ GYM

for N ≥ 3. However, we will see that the nature of Gdisc
YM

depends on θ.
We will show that when SUðNÞ YM theory is compac-

tified onR3 × S1 the discrete 0-form symmetries fit into the
group

Gdiscrete
YM ¼

8>><
>>:

D2N × Z2 × Z2 θ ¼ 0 mod 2π

D4N × Z2 × Z2 θ ¼ π mod 2π

D2N otherwise:

ð1:3Þ

Here, D2N is the dihedral group of symmetries of a regular
planar N-gon. The dihedral group involves the 0-form part
of center symmetry, which acts on Wilson loops which
wind around S1, as well as charge conjugation. TheZ2×Z2

factors are related to parity and time-reversal symmetries.
Compactification on a circle simplifies the discussion but is
not essential; see Sec. II for a discussion concerning the
symmetries on R4.
The rest of the paper is concerned with illustrating how

these symmetries behave in two different calculable set-
tings. First, we discuss a simple quantum-mechanical toy
model in Sec. III, where many of the ideas can be
appreciated in the simplest possible context. In Sec. IV,
we then explore the symmetries of a calculable deformation
of YM theory obtained by a compactification on a small
circle with stabilized center symmetry. This semiclassically
calculable regime was uncovered in Ref. [10] and inten-
sively explored in related works; see, e.g., Refs. [9,11–42].
A comparison of the symmetries between our quantum
mechanical (QM) toy model and SUðNÞ YM theory is

given in Fig. 1. Our results are summarized in Sec. V and
end with some Appendixes with details on some of our
calculations.
In a companion paper [43], we further explore the

vacuum properties of the deformed YM theory as a
function of θ.

II. NON-ABELIAN GLOBAL SYMMETRY
OF YM THEORY

In this section, we argue that the discrete part of the
symmetry group of YM theory Gdiscrete

YM includes the
dihedral group D2N . This involves showing that center
symmetry does not commute with charge conjugation C.
Equivalently, center symmetry does not commute with PT
symmetry; our discussion below will only explicitly refer to
C for simplicity.
Since center symmetry does not act on any local

operators, a nontrivial check of the symmetry group
generated by center symmetry and charge conjugation will
involve consideration of line operators. For simplicity of
exposition, we work in Euclidean space. We will first
discuss the symmetries on R3 × S1 and then comment on
the generalization to R4.
First, take spacetime to be R3 × S1, with S1 the x4

direction. The 0-form part of center symmetry acts non-
trivially on “Polyakov loops”—Wilson loops wrapping the
circle trΩ ¼ trP expði H dx4A4Þ, which are local with
respect to R3. The action of center symmetry is2

FIG. 1. A summary of the symmetries of SUðNÞ YM theory (right) and of a related TN toy model from quantum mechanics (left), as a
function of θ.

1This was noted but not explored in Ref. [9].

2To seewhere this transformation rule comes from, let us define
gauge transformations to be periodic on S1, as is appropriate for
an SUðNÞ gauge theory. Then, consider a “gauge transformation”
gðx4; xÞ that is aperiodic by an element of the center of SUðNÞ,
gðx4 þ L; xÞ ¼ e2πi=Ngðx4; xÞ. Under this not-quite-gauge trans-
formation, Aμ → gAμg† − ig†∂μg, which implies the transforma-
tion rule (2.1). If instead one chooses to view center-aperiodic
transformations g as genuine gauge transformations, onewould be
working with SUðNÞ=ZN gauge theory. In SUðNÞ=ZN gauge
theory, Eq. (2.1) would be a gauge transformation, and trΩ would
not be a gauge-invariant operator.
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S · trΩ ¼ ωtrΩ; ð2:1Þ

where the exponent of ω ¼ e2πi=N is the charge of trΩ and
we have denoted the operator implementing center sym-
metry transformations by S. Of course, SN ¼ 1.
The theory is invariant under charge conjugation sym-

metry C at an arbitrary θ angle since the topological term
respects C. Charge conjugation maps C ∶ Ω → Ω† ¼ Ω−1

so that C2 ¼ 1. Let us now work out the group obeyed by S
and C. One can then verify that

C · S · C · trΩ ¼ S−1 · trΩ: ð2:2Þ

Thus, C and S do not commute. In fact, they obey the
defining relations of the dihedral group of symmetries of a
regular planar N-gon,

D2N ¼ fS; CjSN ¼ 1; C2 ¼ 1; CSC ¼ S−1g: ð2:3Þ

At θ ¼ 0, YM theory has parityP ∶ xj → −xj, j ¼ 1, 2, 3
and x4-reflection R ∶ x4 → L − x4 symmetries. There is
also an SOð3Þ Lorentz symmetry associated with the non-
compact directions. It is easy to see that center symmetry
also does not commute with R because its behavior
when acting on trΩ is analogous to charge conjugation,
R · trΩ ¼ trΩ−1. But ½S;P� ¼ ½C;R� ¼ ½C;P� ¼ 0. How-
ever, while R and P are manifestly symmetries at θ ¼ 0,
they are not symmetries for generic θ ≠ 0, π.
At θ ¼ π, there is either a mixed ’t Hooft anomaly or a

global inconsistency between center and CP symmetries
[7], depending on whether N is even or odd. Assuming that
center symmetry is not spontaneously broken for all θ,
when there is mixed ’t Hooft anomaly at θ ¼ π, there are
two possibilities for the vacuum structure: (1) CP is
spontaneously broken, or (2) there is a nontrivial topo-
logical field theory which matches the anomaly in the IR
limit. A global inconsistency condition at θ ¼ π is slightly
weaker and, in addition to the two options above, can also
be satisfied if there are phase transitions away from θ ¼ 0,
π [7,8].
Especially for large N, spontaneous breaking of CP at

θ ¼ π seems like the most probable way these anomaly/
inconsistency conditions would be satisfied, and we assume
this is the case in writing expressions in the R4 limit. On
R3 × S1, CP breaking can be shown explicitly. We dem-
onstrate that the anomaly/global inconsistency conditions
at θ ¼ π imprint themselves on the symmetry group by
leading to a central extension. So, at θ ¼ π, the discrete
global symmetry contains a factor ofD4N , the double-cover
of D2N .

3 Taken together, these considerations imply the
claim from the Introduction in (1.3).

Note that the dihedral group D4 is isomorphic to the
Abelian group Z2 × Z2, but D2N is non-Abelian for all
N > 2. So, when N ¼ 2, the discrete symmetry group of
YM theory is Abelian for θ ≠ π and becomes non-Abelian
only when θ ¼ π. However, for all N > 2, Gdiscrete

YM is non-
Abelian for all θ, and the group of 0-form symmetries S, P,
R, C will be shown to take the form (1.3).
We now turn our attention to R4. Here, it is helpful to

adopt the language of Ref. [6], in which center symmetry is
viewed as a p-form symmetry with p ¼ 1. The charges of
p-form symmetries are measured by integrating conserved
d − p − 1 currents on closed d − p − 1-dimensional mani-
folds and are associated to charges of operators supported
on manifolds of dimension p. The charge of such an
operator is nonzero when its world volume manifold has
nonvanishing linking number with some d − p − 1-dimen-
sional manifold where one puts the operator generating the
symmetry.
In the case of 1-form center symmetry, the basic charged

operators are Wilson lines with appropriate topological
properties. In particular, consider an open Wilson line
defined on a curve γ of which the ends go off to infinity in
different directions, for instance, along x4 → �∞. One can
think of such a line operatorΩðγÞ as being associated with a
probe fundamental quark-antiquark pair with separation
taken to infinity, with, e.g., the quark going to x4 → þ∞
and the antiquark going to x4 → −∞. We note that if the x4
direction is compactified to S1 this open Wilson line
becomes precisely the Polyakov loop considered earlier.
Since the Polyakov loop is a local operator inR3, the center
symmetry acting on the Polyakov loop can be thought of as
a 0-form symmetry from the perspective of an effective
field theory (EFT)onR3. But even in an EFTonR3, there is
a 1-form center symmetry acting on Wilson loops in R3.
So, it is useful to keep track of the fact that center symmetry
is most generally defined as 1-form symmetry.
For our purposes, it will be useful to associate the

operator generating the 1-form center symmetry with the
closed two-dimensional surface Σ2 which spans the x1-x2
plane. In this case, center symmetry acts on trΩðγÞ as [6]

S · trΩðγÞ ¼ ωlðγ;Σ2ÞtrΩðγÞ ¼ ωþ1trΩðγÞ; ð2:4Þ

where lðγ;Σ2Þ is the linking number of γ with Σ2 [6],
which is þ1 in the case above.
Now, consider charge conjugation. This symmetry inter-

changes quarks and antiquarks, so it acts on ΩðγÞ as

C · trΩðγÞ ¼ trΩðγÞ† ¼ trΩðγ−1Þ; ð2:5Þ

so C flips the orientation of γ. Flipping the orientation
of γ flips the sign of the linking number of γ with Σ2,
lð−γ;Σ2Þ ¼ −lðγ;Σ2Þ. The operator group then follows as
before,

3The fact that the symmetry group of SUð2Þ YM theory
involves a D8 factor at θ ¼ π was discussed in Ref. [7].
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C · S · C · trΩðγÞ ¼ ω−1trΩðγÞ ¼ S−1 · trΩðγÞ: ð2:6Þ

Thus, C and S do not commute on R4. It is also easy to see
that S does not commute with R, the θ ¼ 0, π symmetry
operator which now maps x4 → −x4.
Rather trivially, symmetries of quantum systems can be

associated with groups because, given some state jψi in
Hilbert space which transforms nontrivially under a sym-
metry, one can verify that the symmetry action obeys the
group axioms. In our case, choosing jψi ¼ trΩj0i, our
remarks above imply that the actions of the C and S
transformations obey the group axioms and combine into
the symmetry group D2N . Nevertheless, we are dealing
with the somewhat unusual situation of considering the
combination of a 0-form symmetry and a 1-form symmetry.
Recently, Refs. [44,45], in which it is argued that the
general algebraic structure appropriate to discuss the
mixture of 0-form and 1-form symmetries is a “2-group”
[46], appeared (see also, e.g., Ref. [47]).4

A. Physical consequences

We now comment on some physical consequences of the
existence of the dihedral non-Abelian symmetry in SUðNÞ
YM theory. The fact that charge conjugation and center
symmetry do not commute means that the associated
charge operators cannot be simultaneously diagonalized.
This means that if one considers a state that transforms
nontrivially under both center and charge conjugation
symmetry one cannot simultaneously specify its center
symmetry and charge conjugation quantum numbers. Of
course, this means that the existence of the D2N symmetry
does not imprint itself on the correlation functions of local
operators. One must consider correlation functions of
appropriate line operators to see the symmetry.
For example, consider SUðNÞ YM theory with N > 2 on

R3 × S1. Finite-energy states transforming under center
symmetry can be built out of Wilson loops wrapping S1.
Then, one can consider scattering amplitudes involving
such states, for example at θ ¼ 0. Suppose we choose to
specify the center labels of the states. Then, the fact that one
cannot simultaneously specify the center and charge con-
jugation quantum numbers—which is due to the existence
of the D2N symmetry—means that one has to sum over the
C quantum numbers for both incoming and outgoing states
in computing the scattering amplitudes.
At high temperature, center symmetry is spontaneously

broken in pure YM theory. It would be interesting to
understand the physical implications of the noncommuta-
tivity of center symmetry and, e.g., PT symmetry in this
setting.

III. DIHEDRAL SYMMETRIES IN A QUANTUM
MECHANICAL MODEL

As a warm-up for studying the symmetries and dynamics
of SUðNÞ gauge theory as a function of θ, we will first
consider the QM system of a particle on a circle,
qðtÞ ¼ qðtÞ þ 2π, in the presence of a potential with N
degenerate minima. This class of models is referred to as
TN models in Ref. [24], in which their nonperturbative
properties were examined semiclassically. The Euclidean
action of the model is

STN
ðg;θÞ¼ 1

g2

Z
dt

�
1

2
_q2− cosðNqÞ

�
− i

θ

2π

Z
dt _q: ð3:1Þ

The potential has N degenerate minima at qn ¼ 2πn
N ,

n ¼ 0; 1;…N − 1. But the system does not have N
degenerate ground states; tunneling/instanton effects
typically lift the degeneracies seen in perturbation theory.
However, this does not mean that the ground state is
always unique. For some values of θ, it turns out to be
doubly degenerate. We discuss the ground state structure
below from a perspective that we will find useful in YM
theory.
Analogies between the one-dimensional TN model and

four-dimensional SUðNÞ YM theory were previously
explored in Ref. [24], and a detailed analysis of the
symmetries of a very closely related model appears in
Ref. [48]. The discussion in Sec. III A thus has overlap with
Ref. [48], but the subsequent representation-theoretic
perspective presented in Sec. III B is new. A discussion
of the symmetries of the T2 model as a function of θ
appears in an Appendix of Ref. [49], but our focus will be
on features that appear once N > 2. Also, a discussion of ’t
Hooft anomalies from the path integral perspective is given
in Appendix A. The material in this Appendix closely
follows the presentation of Ref. [48], and we include it here
for completeness.

A. Symmetry group as a function of θ

Consider the symmetry group of the TN theory.
Classically, there is a shift symmetry S as well as “charge
conjugation” C and “time-reversal” T symmetries acting as

S∶ q → q − 2π=N ð3:2Þ

C∶ q → −q ð3:3Þ

T ∶ t → −t: ð3:4Þ

In the quantum theory, the shift symmetry can represented
by the operator

S ¼ e
2πi
N p̂; ð3:5Þ

4We are grateful to K. Jensen and S. Gukov for discussions on
this point.
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where p̂ is the momentum operator obeying the canonical
commutation relation ½q̂; p̂� ¼ i. As befits a symmetry
operator, S commutes with the Hamiltonian

Ĥ ¼ 1

2

�
p̂ −

θ

2π

�
2

− cosðNq̂Þ: ð3:6Þ

Demanding that T and C leave the Hamiltonian invariant
in, e.g., the coordinate basis, one sees that for θ ¼ 0 the T
and C symmetries both act by sending p̂ → −p̂, while at
θ ¼ π, the T and C symmetries both act by sending
p̂ → −p̂þ 1. Thus, e.g., T p̂T −1 ¼ −p̂ at θ ¼ 0, but
T p̂T −1 ¼ −p̂þ 1 at θ ¼ π. One can check that at both
θ ¼ 0 and θ ¼ π the C and T operators commute,

½T ; C� ¼ 0: ð3:7Þ

In Minkowski space, time reversal is an antiunitary
operation, so in addition to sending t → −t, T acts by
complex conjugation T iT −1 ¼ −i, in contrast to C, which
is unitary. One can check that this implies that ½T ;S� ¼ 0 in
Minkowski space.
C does not commute with S at θ ¼ 0. To see this, note the

lowest-lying states of the system can be thought of as being
associated with nodeless wave functions jqni localized near
the N minima. These states are called Wannier states. From
jqni, one can build states with good quantum numbers jki
under S by a discrete Fourier transform,

jki ¼ 1ffiffiffiffi
N

p
XN−1

n¼0

ω−nkjqni: ð3:8Þ

The states jki are called Bloch states. Then,

Sjki ¼ ωkjki; ð3:9Þ

with jki ¼ jk mod Ni. Then, one can check that

Cjki ¼
� jN − ki θ ¼ 0

jN − kþ 1i θ ¼ π
: ð3:10Þ

As a result, at θ ¼ 0, the symmetry operators obey the
group

CSC−1 ¼ S−1: ð3:11Þ

Given that T 2 ¼ C2 ¼ 1, the complete symmetry group is
isomorphic to

Gθ¼0
TN

¼ D2N × Z2: ð3:12Þ

On the other hand, at θ ¼ π, we instead obtain

CSC−1 ¼ ω−1S−1: ð3:13Þ

The appearance of the factor ω−1 on the right-hand side
means that the group is not closed in terms of C, T , and S.
This is a symmetry-group-level indication of a ’t Hooft
anomaly or global inconsistency between these sym-
metries. As a result, one of these symmetries must be
spontaneously broken at θ ¼ π, or there must be a phase
transition at some θ between 0 and π.5

One can try to redefine the operators to get a closed
group, for example, by S̃ ≡ ωpS. We will refer to p as a
Chern-Simons coefficient, since this is how it appears in a
path integral description of this system; see Refs. [7,48] and
Appendix A. This will not spoil the relation S̃N ¼ 1 so long
as p ∈ Z mod N. With such a redefinition, Eq. (3.13)
becomes

CS̃C−1 ¼ ω2p−1S̃−1: ð3:14Þ

To keep (3.14) isomorphic to (3.11) requires 2p − 1 ¼
0 mod N.
Now, consider the case of odd and evenN separately. For

even N, there is no solution to 2p − 1 ¼ 0 mod N for
p ∈ Z. Nevertheless, we can get a closed group by taking
p ¼ 1=2. In the path integral description, this gives a
Chern-Simons term with an improperly quantized coeffi-
cient. This is associated with a mixed ’t Hooft anomaly. In
the operator description, the choice p ¼ 1=2 gives

CS̃C−1 ¼ S̃−1: ð3:15Þ

But now the operator S̃ satisfies

S̃N ¼ −1; S̃2N ¼ 1: ð3:16Þ

As a result, the symmetry group is now isomorphic to
D4N × Z2, the central extension of D2N × Z2.

6 The central
extension is the operator-group realization of the anomaly.
For odd N ¼ 2m − 1, 2p − 1 ¼ 0 mod N is satisfied

with the choice p ¼ ðN þ 1Þ=2. Hence, if we define
S̃ ≡ ωðNþ1Þ=2S, this also reduces to (3.15) since

S̃N ¼ ωðNþ1ÞN=2SN ¼ ω2mN=2ðωNÞm ¼ 1: ð3:17Þ

5To decide which of these two symmetries are “actually”
broken, it is helpful to note that there is no way to explicitly break
T at θ ¼ k ¼ 0 while preserving S. But if we change the
potential V ¼ cos½Nq� → cos½Nðqþ αÞ�, then for any fixed
α ≠ 0, the C symmetry q → −q is explicitly broken, but S and
T are preserved. One can then verify that these T and S remain
globally inconsistent at θ ¼ π so that one of them must be broken,
and this turns out to be T [48]. Then, taking α to 0, we conclude
that it is the T symmetry which is spontaneously broken at θ ¼ π
in our variant of the TN model defined by (3.1).

6One can think of D4N as the spin group of D2N , in the sense
that under a 2π shift of q (which is a rotation in target space)
states go to minus themselves and only go back to themselves
under a 4π shift.
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However, if we insist on preserving the D2N × Z2 sym-
metry at θ ¼ 0, then we must choose the value of
Chern-Simons coefficient to be p ¼ 0 (i.e., the original
operator definition). This is the manifestation of the
inconsistency condition and results in a centrally extended
group, D4N × Z2 at θ ¼ π.
Collecting our results, the symmetry group of the TN

model as a function of θ is isomorphic to

GTN
¼

8<
:

D2N × Z2 θ ¼ 0

D4N × Z2 θ ¼ π

ZN otherwise:

ð3:18Þ

B. Representations of the dihedral group
for θ= 0 and θ= π

We now explain how the states of the TN model fit into
the representations of the dihedral group. The value of this
discussion is that it relies on the symmetry-group structure,
rather than the underlying physics, and thus can later be
applied almost verbatim to the YM case.
One can construct the N-dimensional representation

of a dihedral group based on the behavior of the N vacua
of the TN model under the action of charge conjugation
(equivalently, time-reversal) and ZN shift symmetry. The
decomposition of this representation into irreducible rep-
resentations (irreps) will show us the form of the energy
spectrum and provide us another means to see how the
degeneracy of the ground state changes between θ ¼ 0 and
π. For both D2N and D4N , we find results consistent with
the operator analysis above.
Let us start by briefly reviewing a few properties of

dihedral groups. A more detailed review and discussion of
our results are given in Appendix B. We will work with a
standard presentation of the dihedral group D2M, which is
given by

D2M ¼ fr; sjrM ¼ s2 ¼ 1; srs−1 ¼ r−1g: ð3:19Þ

The representations of this group differ for even and oddM,
so we will consider the two cases separately in what
follows.
Below, we will consider the representations which

correspond to the low-lying states of the TN model, i.e.,
the N low-lying Bloch states jki, for the cases of even and
oddN. Our goal is to understand the representation of theN
low-lying states. The results are visually summarized in
Figs. 2 and 3, which plot the energies of these states as a
function of the θ angle, and are compatible with mixed
anomalies/global inconsistencies as well as semiclassics.

1. Even N

For M ¼ N ¼ 2k, the kþ 3 conjugacy classes are

f1g; fr�1g; fr�2g;…; fr�ðk−1Þg; frkg;
fsr2bjb ¼ 1;…; kg; fsr2b−1jb ¼ 1;…; kg; ð3:20Þ

where the number of elements in the conjugacy classes is
given by

f1; 2; 2;…; 2|fflfflfflfflffl{zfflfflfflfflffl}
k−1

; 1; k; kg: ð3:21Þ

A character table for the representations of D2M is given in
Table I.
At θ ¼ 0, the N low-lying states labeled by jki transform

under the action of D2N group elements. The conjugacy
classes and number of elements in each class are given by
(3.20) and (3.21) with M ¼ N. It is straightforward to
construct the N-dimensional representation associated with
N low-lying states under the actions of S and C. S simply
introduces a vacuum-dependent phase to each of the states,
while C permutes them. The characters corresponding to
the conjugacy classes listed in (3.21) are

FIG. 2. An illustration of the energy levels of the TN model for N ¼ 5 and N ¼ 6. At θ ¼ 0, the ground state is unique and fits into the
one-dimensionalA1 representation ofD2N , while the excited states fit into either the Ek representations (which are all two dimensional)
or the B1 representation, which is one dimensional. At θ ¼ π, on the other hand, the ground state is always in the two-dimensional Ẽ1

representation of D4N .
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χθ¼0
even ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

k−1

; 0; 2; 0g: ð3:22Þ

Character orthogonality then gives the decomposition in
terms of irreps,

Rθ¼0
even ¼ A1 ⊕ E1 ⊕ E2 ⊕ … ⊕ Ek−1 ⊕ B1; ð3:23Þ

where A1 and B1 are one-dimensional irreps and Ei is a
two-dimensional irrep (a doublet).A1 represents the unique
ground state of this system which transforms trivially under
all group operations.
At θ ¼ π, per our results of the previous subsection, the

symmetry group is now D4N. However, we should still
construct an N-dimensional representations which tells us
how the N vacua now transform under this centrally
extended group. The characters of this representation are

χθ¼π
even ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

N−1

;−N; 0; 0g: ð3:24Þ

The decomposition in terms of irreps is now given by

Rθ¼π
even ¼ Ẽ1 ⊕ Ẽ3 ⊕ … ⊕ Ẽ2k−1; ð3:25Þ

(with Ẽi now irreps of D4N). The fact that the ground state
exhibits twofold degeneracy in this simple quantum
mechanics example is a manifestation of the ’t Hooft
anomaly between ZN and Z2 and is tied with the sponta-
neous breaking of the Z2 symmetry.

2. Odd N

For odd M ¼ 2kþ 1, the kþ 2 conjugacy classes are

f1g; fr�1g; fr�2g;…; fr�kg; fsrbjb ¼ 1;…;Mg; ð3:26Þ

where the number of elements in each conjugacy class is
now

f1; 2; 2;…; 2|fflfflfflfflffl{zfflfflfflfflffl}
k

; Ng: ð3:27Þ

The corresponding character table is given in Table II.
At θ ¼ 0, the N low-lying states transform under the

action of D2N ¼ D2ð2kþ1Þ group elements. The characters
of the N-dimensional representation are given by

FIG. 3. A sketch of how the states of the TN model with N ¼ 5 and θ ¼ 0 and θ ¼ π fit into the dihedral group D10 and D20

representations. The Bloch states jki are defined in (3.8).

TABLE I. Character table for D2M ¼ D2ð2kÞ. Here, cn ¼ cosð2πnM Þ. The first row shows the number of elements in
the respective conjugacy classes.

1f1g 2fr�1g 2fr�2g � � � 2fr�ðk−1Þg 1frkg kfsr2bg kfsr2b−1g
A1 1 1 1 � � � 1 1 1 1
A2 1 1 1 � � � 1 1 −1 −1
B1 1 −1 1 � � � ð−1Þk−1 ð−1Þk 1 −1
B2 1 −1 1 � � � ð−1Þk−1 ð−1Þk −1 1
E1 2 2c1 2c2 � � � 2ck−1 2ck 0 0
E2 2 2c2 2c4 � � � 2c2k−2 2c2k 0 0
� � � � � � � � � � � � � � � � � � � � � � � � � � �
Ek−1 2 2ck−1 2c2k−2 � � � 2cðk−1Þ2 2cðk−1Þk 0 0
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χθ¼0
odd ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

k

; 1g: ð3:28Þ

In this case, the decomposition is given by

Rθ¼0
odd ¼ A1 ⊕ E1 ⊕ E2 ⊕ … ⊕ Ek; ð3:29Þ

where A1 is again a one-dimensional irrep and Ei are 2
two-dimensional irreps of D2N with odd N. A1 again
represents the unique ground state of this system at θ ¼ 0.
For the TN model with odd N, there is a global

inconsistency condition at θ ¼ π between S and T (or
C). As a result, the vacuum cannot remain trivial, which
indicates either a nontrivial vacuum or a phase transition
between θ ¼ 0 and π. We will assume that the incon-
sistency implies the former such that the N low-lying states
transform under the action of D4N ¼ D2ð4kþ2Þ. This is the
group that will give rise to the twofold degenerate ground
state we find as a result of the global inconsistency
condition. We also assume the central extension comes
about in the same manner as the even N case, where
S̃ ≡ ω1=2S. Semiclassical instanton analysis [24] and
numerical diagonalization of (3.1) found in, e.g.,
Ref. [48] support the resulting degeneracies and θ depend-
ence from this assumption.
At θ ¼ π, the N low-lying states transform under the

action of D4N ¼ D2ð4kþ2Þ group elements. The characters
of the conjugacy classes in this case are

χθ¼π
odd ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

N−1

;−N; 1;−1g; ð3:30Þ

and the corresponding decomposition is

Rθ¼π
odd ¼ Ẽ1 ⊕ Ẽ3 ⊕ … ⊕ Ẽ2k−1 ⊕ B̃1: ð3:31Þ

Ẽ1 denotes the ground state and exhibits twofold degen-
eracy. Other Ẽ states are excited states, and B̃1 is the
highest-energy state (of the low-lying states), which is a
singlet.

IV. DIHEDRAL SYMMETRIES IN YANG-MILLS
THEORY ON R3 × S1

We would now like to illustrate Eq. (1.3) by explicitly
looking at symmetry properties of the vacua and excitations
of Yang-Mills theory. As is well known, SUðNÞ YM theory
on R4 is asymptotically free and as such becomes strongly
coupled at energy scales small compared to the inverse
strong scale, Λ−1. Hence, methods of studying the explicit
vacuum structure of the theory are limited. Instead, we
choose to study YM theory onR3 × S1, with a circle size of
L. In this system, the vacuum dynamics are calculable via
weak-coupling methods, specifically in the limit where
NLΛ ≪ 1 and center symmetry is preserved. There has
been significant evidence [9,11–42] that YM depends
smoothly on the parameter NLΛ, and hence it is conjec-
tured that one can recover results for the theory onR4 in the
large L limit. We will begin by briefly reviewing such a
system. Those concerned only with our analysis of the
vacuum can skip to Sec. IV B.

A. Weak-coupling setup

Consider pure SUðNÞ Yang-Mills theory on R3 × S1.
For small S1, it is known that the ZN center symmetry is
spontaneously broken [4,5], while for large S1, the sym-
metry is expected to be restored. The order parameter for
the associated phase transition is the expectation value of
the trace of powers of

ΩðxμÞ ¼ P exp

�
i
Z

L

0

dx4A4ðxμ; x4Þ
�
; ð4:1Þ

where we have changed conventions slightly and will
henceforth use μ, ν ¼ 1, 2, 3. At large L, htrΩki ¼ 0 for
k ≠ 0 mod N, while at small L, htrΩi ≠ 0. However, if one
is not interested in interpreting S1 as a Euclidean thermal
circle, this phase transition can be avoided by “center-
stabilizing” deformations. One example of such a defor-
mation is the addition of NF > 1 massive Majorana adjoint
fermions with massma ≲ 1=ðNLÞ [19]. Another example is
the addition of a double-trace deformation [10]. With either
deformation, it is believed that center symmetry is then
preserved for all L, with the benefit that at small L the
physics becomes analytically calculable.
We choose to explore the behavior of the symmetries in

the center-symmetric phase of the theory that follows from
either of deformations referenced above. At small L, where
quantum fluctuations become small, the holonomy takes
the form

hΩi¼ω−ðN−1Þ=2diagð1;ω;…;ωN−1Þ; ω¼ e2πi=N; ð4:2Þ

up to gauge transformations.
Wewill analyze the theory at distances large compared to

L, where the systemcan be described by a three-dimensional

TABLE II. Character table for D2M ¼ D2ð2kþ1Þ. Here,
cm ¼ cosð2πmM Þ.

1f1g 2fr�1g 2fr�2g � � � 2fr�kg Nfsr2bg
A1 1 1 1 � � � 1 1
A2 1 1 1 � � � 1 −1
E1 2 2c1 2c2 � � � 2ck 0
E2 2 2c2 2c4 � � � 2c2k 0
� � � � � � � � � � � � � � � � � � � � �
Ek 2 2ck 2c2k � � � 2ck2 0
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(3D) EFT. From (4.1), the holonomy eigenvalues above
imply that (in a standard gauge-fixed sense) hA4i ≠ 0, which
acts as an adjoint Higgs field in the 3D EFT and breaks the
gauge group down to Uð1ÞN−1. The lightest W-bosons have
the tree-level mass

mW ≡ 2π

NL
: ð4:3Þ

So, when mW ≫ Λ—equivalently, when NLΛ ≪ 1—the
gauge coupling stops running at the scalemW , and the long-
distance 3DEFT becomesweakly coupled.We focus on this
tractable limit for the remainder of this paper.
The lightest fields in the 3D EFT are the Uð1ÞN−1 gauge

bosons, the “photons.” It is useful to note that the associated
field strength operators Fa

μν, a ¼ 1;…; N − 1, have a
gauge-invariant four-dimensional interpolating operator
representation given by

Fa
μνðxμÞ∼

1

N
1

L

Z
dx4

XN−1

q¼1

ω−qatrΩqðxμÞFμνðx4;xμÞ; ð4:4Þ

with Fμν the 3D part of the SUðNÞ non-Abelian field
strength. This representation makes it clear that the “color”
index can actually be thought of as the discrete Fourier
transform of the winding number of a topologically non-
trivial state.
In terms of these fields, the tree-level action of the 3D

EFT can be written as

Stree ¼
L
4g2

Z
d3x

XN
a¼1

Fa
μνFaμν: ð4:5Þ

For later notational convenience, we have introduced a
fictitious Nth photon in writing this expression. This extra
field can be thought of as the diagonal component of a
UðNÞ field strength and exactly decouples from the
physical adjoint fields in our system. Using Eq. (4.4),
one can show that center symmetry acts as

S∶ Fa
μν → Faþ1

μν : ð4:6Þ

In order to analyze the nonperturabtive dynamics of our
system, we follow Refs. [10,50] and rewrite (4.5) by
dualizing the photon, trading Fa

μν for a pseudoscalar field
σa via the relation

Fa
μν ≡ λ

4π2
ϵμνρ∂ρσa; λ ¼ g2N: ð4:7Þ

This allows us to rewrite (4.5) as

Stree;dual ¼ λmW

Z
d3x

XN
a¼1

ð∂μσ
aÞð∂μσaÞ

≡ λmW

Z
d3xð∂μσ⃗Þ2; ð4:8Þ

where we have defined the N-component vector of dual
photon fields σ⃗ ¼ ðσ1;…; σNÞ.
The dual photons in (4.8) have no potential to all orders

in perturbation theory. So, there is no mass gap in
perturbation theory. However, the theory has finite-action
field configurations that generate a nonperturbative poten-
tial for σ⃗. In Appendix C, we review the finite-action
solutions of this theory with the smallest action. They come
in N distinct types and are usually called monopole
instantons. They carry topological charge QT ¼ 1=N,
action S0 ¼ 8π2=λ, and magnetic charges associated to
the simple (co)roots α⃗a of the affine extension of the suðNÞ
Lie algebra. For more details on the nonperturbation
solutions and their transformations under the symmetries
of the theory, see Appendix C.
As explained in Ref. [10], summing over the contribu-

tions of the monopole-instanton solutions to the path
integral using a dilute-gas approximation (which is well
justified when NLΛ ≪ 1) produces a potential for the dual
photons, so that

Sσ⃗ ¼
Z

d3x½λmWð∂μσ⃗Þ2 þ Vðσ⃗Þ�; ð4:9Þ

where the nonperturbative potential is given by

Vðσ⃗Þ ¼ −
A
λ2

m3
We

−S0
XN
a¼1

cos

�
α⃗a · σ⃗ þ θ

N

�
þ…: ð4:10Þ

The “…” represent higher-order contributions which we
will neglect here. Here, A > 0 is an Oð1Þ scheme-
dependent dimensionless constant which will not be
important in what follows. The monopole-generated poten-
tial depends on the θ angle because the monopole instan-
tons have nonvanishing topological charge.
We now show how the YM symmetry group in (1.3) acts

in the EFT associated to (4.9).

B. Extrema and symmetries as a function of θ

We now begin our analysis of the vacuum structure of
(4.9), with the leading-order potential explicitly shown in
(4.10). The dual photon fields live in the weight lattice of
suðNÞ. The potential has N extrema in the unit cell of the
weight lattice at

σ⃗k ¼
2πk
N

ρ⃗; with ρ⃗≡XN−1

i¼1

μ⃗i: ð4:11Þ
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where k ¼ 0;…; N − 1. Here, μ⃗i are the SUðNÞ funda-
mental root vectors and satisfy α⃗i · μ⃗j ¼ δij, and ρ⃗ is the
Weyl vector satisfying α⃗i · ρ⃗ ¼ 1 for i ¼ 1;…; N − 1 and
α⃗N · ρ⃗ ¼ 1 − N. For example, in a basis where
ðαaÞb ¼ δa;b − δaþ1;b, 1 ≤ a < N, σ⃗k takes the form

σ⃗k ¼
2πk
N

ðN;N − 1;…; 2; 1Þ: ð4:12Þ

The nonperturbative 3D energy density evaluated at each of
these extrema is

Vk ≡ Vðσ⃗ ¼ σ⃗kÞ

¼ −N
A
λ2

m3
We

−S0 cos

�
2πkþ θ

N

�
þOðe−2S0Þ: ð4:13Þ

For any given θ, the integer k labeling the globally stable
ground state is determined by minimizing (4.13). The
metastable states of the system will correspond to the
subset of extrema with positive curvature in all directions in
σ⃗ space. On any fixed branch, the physics is periodic in
2πN. However, the k that minimizes Vk depends on θ.
Thus, just from the form of (4.13), one can see that as θ
varies in ½0; 2πÞ the value of k associated with the minimal
energy extremumwill change in such a way that the physics
of the complete system in its ground state has a θ
periodicity of 2π. However, the observables are nonanalytic
functions of θ, which is associated with jumps in the value
of k which minimize the ground state energy density. This
is consistent with Witten’s conjectured picture [51,52] for
the θ dependence of YM theory. Earlier discussions of how
2π periodicity emerges in the present context were pre-
sented in, e.g., Refs. [10,22,24–26,33,39].
Let us now understand how center and coordinate

reflection symmetries act on the extrema of (4.11). To do
this, it is useful to work out how these transformations act in
compactified YM theory more generally; see Appendix C
and also Ref. [9]. Here, we will focus on reflections of
the compactified coordinate R, charge conjugation C,
and (0-form) center transformations S. The EFT on
R3 × S1 is built from the dual photon fields σa, and
the action of these transformations which follows from
(4.4) and (4.6) is

S∶ σa → σaþ1 ð4:14Þ

C∶ σa → −σN−aþ1 ð4:15Þ

R∶ σa →

� σN−aþ1; θ ¼ 0

σN−aþ1 −
2πðN−aþ1Þ

N ; θ ¼ π:
ð4:16Þ

Looking at the form of the effective action (4.9), it is clear
that S and C are symmetries for any θ, as one would expect.
The R coordinate-reflection transformation is a symmetry

only if θ ¼ 0 or θ ¼ π. Note that when acting on α⃗a · σ⃗ at
θ ¼ π the reflection symmetry transformation gives

R∶ ðα⃗a · σ⃗Þ → −α⃗N−a · σ⃗ −
2π

N
: ð4:17Þ

The resulting shift in the phase of monopole operators is
necessary because a coordinate reflection must be accom-
panied by a 2π shift in the θ angle to be a symmetry of the
theory.
One can now easily work out the symmetry group. To do

so, consider the action of the symmetry transformations on
an operator of the form eiσa . It can be checked that
C−1SC ¼ S−1, corresponding to a D2N symmetry group,
just as one would expect from the general arguments in
Sec. II. For the R and S symmetries, we obtain

R−1SR ¼
�
S−1; θ ¼ 0

ωS−1; θ ¼ π:
ð4:18Þ

This corresponds to aD2N group for θ ¼ 0 and aD4N group
for θ ¼ π. As in our discussion of the TN model, for even
N, we interpret the θ ¼ π commutation relations in (4.18)
to imply the existence of a mixed ’t Hooft anomaly between
center and time-reversal symmetries, while for odd N, we
interpret them to imply a global inconsistency between
these symmetries. In total, we find precisely the expected 0-
form symmetries of (1.3), reproduced here for convenience,

Gdiscrete
YM ¼

8<
:

D2N × Z2 × Z2 θ ¼ 0 mod 2π

D4N × Z2 × Z2 θ ¼ π mod 2π

D2N otherwise:

ð4:19Þ

Note that a benefit of our approach is that we get a simple
picture for how the mixed center-CP ’t Hooft anomaly of
Ref. [7] arises (as a central extension of the symmetry
group, just like in toy QM examples). Moreover, given that
we work in a regime where the dynamics is calculable, we
can fully determine the vacuum structure. On the other
hand, the general nature of the considerations of Ref. [7]
have their own benefits. In particular, they are valid
regardless of the strength of the coupling in the system.
We explore further features of the vacuum structure of
(4.10) and higher-order corrections in a companion
paper [43].
Turning back to the symmetry transformations of the

extrema of the potential, we find that R acts as

R∶ σ⃗k →

�
σ⃗−k θ ¼ 0

σ⃗−kþ1 θ ¼ π;
ð4:20Þ

while the center transformation rule is

S∶ σ⃗k → σ⃗k þ
2πk
N

c⃗; ð4:21Þ
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where the N vector c⃗ obeys the relations

α⃗a · c⃗ ¼
8<
:

−N a ¼ 1

0 1 < a < N

N a ¼ N:

ð4:22Þ

For example, in the basis of Eq. (4.12), c⃗ ¼
ð1; 1;…; 1; 1 − NÞ. The condition that SN · σ⃗k ¼ σ⃗k is
related to the periodicity of the σa fields and the quantization
of the coefficient of c⃗ in (4.21).

V. CONCLUSIONS

We have examined the global symmetries and ground
state properties of SUðNÞ YM theory as a function of the
topological θ angle. The global symmetries were argued to
include non-Abelian discrete groups—specifically, dihe-
dral groups—for all θ when N ≥ 3 due to a noncommu-
tativity between center symmetry and charge conjugation.
We then examined the vacuum structure of YM theory as a
function of θ. First, we warmed up by considering a simple
quantum mechanics example of which the symmetries also
include dihedral groups. We then used the technique of
adiabatic circle compactification of YM theory on R3 × S1

to illustrate the symmetry structure and some ground state
properties in a systematically calculable setting.
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APPENDIX A: PATH INTEGRAL FORMULATION
OF THE TN MODEL

In this Appendix, we consider the path integral descrip-
tion of anomalies and global inconsistency conditions in
the quantum-mechanical TN model. Our exposition is
based on Ref. [48]; see also Ref. [7].
A mixed ’t Hooft anomaly is when G ¼ G1 × G2 and

gauging of one of the symmetries results in the loss of the
other. This motivates turning on a background gauge field
associated to S. S is a discrete 0-form ZN symmetry, and
gauging it involves coupling the TN model to a topological

field theory [53,54]. For this, it turns out that it is most
efficient to work with two background gauge fields A and
B, where A is 1-form and B is 0-form, related by a
constraint induced by some Lagrange multiplier field F.
The action of the TN model with background fields
associated to S is

STN
ðA;B; g; θ; pÞ ¼ 1

g2

Z �
1

2
ðdqþ AÞ2 − cosðNqþ BÞ

�

−
iθ
2π

Z
ðdqþ AÞ ðA1Þ

þi
Z

F∧ðdB−NAÞþip
Z

A; ðA2Þ

and the partition function is

ZTN
ðA; B; g; θ; pÞ ¼

Z
d½q�d½F�e−STN ðA;B;g;θ;pÞ: ðA3Þ

Note that integrating out F enforces the on-shell identity
dB ¼ NA. The (background) 0-form gauge transformation
properties are

q → q − λ ðA4Þ

B → Bþ Nλ ðA5Þ

A → Aþ dλ ðA6Þ

F → F: ðA7Þ

One can check that the action is invariant under these
gauge transformations as long as the coefficient of the
one-dimensional Chern-Simons term p is an integer.
The integer p can be interpreted as a hidden parameter
in the theory in addition to the obvious parameters g, θ, and
to define the theory for any value of the background fields,
we must specify all three parameters g, θ, p.
The fact that the action (A2) is gauge invariant means

that there is no direct ’t Hooft anomaly for S. However,
since the system has additional discrete symmetries at
θ ¼ 0 and π, these points of parameter space are potentially
problematic and should be checked for mixed ’t Hooft
anomalies.
At θ ¼ 0, it is easy to check that, as long as

2p ¼ 0 mod N, C and T are symmetries with the trans-
formation rules

C∶ ft → þt; q → −q; A → −A;B → −B;F → −Fg ðA8Þ

T ∶ ft→ −t; q→þq;A→ −A;B→þB;F→ −Fg: ðA9Þ
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At θ ¼ π, on the other hand, the C and T transformations
are symmetries as long as 2p − 1 ¼ 0 mod N.
The θ ¼ 0 symmetry condition 2p ¼ 0 mod N can

always be satisfied without violating the integrality of p
by setting p ¼ 0 (or N=2 for even N). But the θ ¼ π
symmetry condition 2p − 1 ¼ 0 mod N has much stronger
consequences. For even N, it cannot be satisfied at all with
integer p. This can be interpreted as a mixed ’t Hooft
anomaly between the discrete shift symmetry and both C
and T . Consequently, either one of the C and T symmetries
must be spontaneously broken, or the shift symmetry S
must be broken.
For odd N, the θ ¼ π symmetry condition can be

satisfied by. e.g., p ¼ ðN − 1Þ=2, so one can preserve C
and T . This means that with appropriate choices of p one
can preserve C and T at either θ ¼ 0 or θ ¼ π. But the
values of the discrete parameter p necessary to keep C and
T symmetries at θ ¼ 0 and θ ¼ π are not the same. So, if
one defines the theory with a fixed choice of p which
preserves C and T symmetries at θ ¼ 0, then one cannot
trivially maintain all three discrete symmetries C, T , and S
at θ ¼ π. The simplest possibility is that one of these
symmetries should be spontaneously broken at θ ¼ π. In
this sense, there is always a global inconsistency between
the C and T symmetries and the S symmetry for anyN > 1,
but there is the slightly stronger condition of a mixed
’t Hooft anomaly for even N.
Of course, this is a simple QM system, so one can back

up the claims of the preceding paragraphs and verify the
degeneracy of the ground states by either diagonalizing the
Hamiltonian numerically or solving it semiclassically.
Indeed, at θ ¼ π, time-reversal/charge conjugation breaks
spontaneously for all N > 1.

APPENDIX B: REPRESENTATIONS OF THE
DIHEDRAL GROUP

In order to find the decomposition of states in terms of
irreducible representation, we calculate the character asso-
ciated with the conjugacy classes of D2N . Recall that the
character of a group element g in a representation R is given
by χRðgÞ ¼ trDRðgÞ, with DRðgÞ the group element g in
representation R. Expressing this character in terms of
characters of the irreducible representations via orthogon-
ality relations then allows us to find the decomposition
of R.

1. Even N: TN = 2k model

To find the characters, we want to find the general form
of the N-dimensional representation, R, corresponding to
how the N translation eigenstates (Bloch states) jki trans-
form under S ¼ s and C ¼ r. For example, in the N ¼ 4
case, which corresponds to D8 and k ¼ 2, using (3.9) and
(3.10) gives

r¼

0
BBB@
ω−1

ω−2

ω−3

ω−4

1
CCCA; s¼

0
BBB@

1

1

1

1

1
CCCA: ðB1Þ

Generalizing the form of r and s above, it is straightforward
to find the characters for arbitrary N. Note that nonzero
contributions to a transformation’s character correspond to
states which are mapped back to themselves under such a
transformation. Identifying such states will often be a
useful tool in finding characters for arbitrary N.
Obviously the identity element has character N. The
generalization of r to arbitrary N is a diagonal matrix with
all Nth roots of unity, and as such the trr ¼ 0. This also
holds for rm for any m ¼ 1;…; N − 1, since rm correspond
to the N= gcd ðN;mÞth roots of unity.
We see that s maps precisely two minima back to

themselves, and so it will have character 2. This holds for
arbitrary N ¼ 2k since there will always be two elements
where N − p mod N ¼ p, namely N

2
¼ k and N. For the

N ¼ 4 case, sr2 also maps two minima back to themselves
and hence also has character 2. This follows more easily
from the fact all members of a conjugacy class have the same
character, and hence if the character of s is 2, so, too, must
fsr2bg be. However, sr and sr3 have character 0, since the
two nonzero diagonal elements of s will always pick out
elements of r2mþ1 which are π out of phase on the unit circle
(i.e.,ω−2 andω−4 forN ¼ 4 andm ¼ 0 case). Explicitly, the
nonzero elements correspond to the Nth and N

2
th positions,

and the Nth position is always 12mþ1 ¼ 1, and the N
2
th

position is ω−ðN=2Þð2mþ1Þ ¼ ω−Nm−N=2 ¼ ω−N=2 ¼ −1.
Hence, the characters of the conjugacy classes (3.21) for
arbitrary N ¼ 2k are

χθ¼0
even ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

k−1

; 0; 2; 0g: ðB2Þ

The general character table for D2N is given in, e.g.,
Ref. [55]. We can use character orthogonality to find the
decomposition of a representation. Namely, for a given
representation R with characters χR, the number of a given
irrep R1 with characters χR1

is given by

1

n

XK
i¼1

siχRχR1
¼ of a R1 irrep in arbitrary representation;

ðB3Þ
where n is the number of elements in the group (i.e., 2N for
D2N), K is the number of conjugacy classes, and si is the
size of the ith conjugacy class. Since the only nonzero
terms in the character table are those corresponding to
classes f1g and fsr2bg, it is straightforward to perform the
projections and find the decomposition of (3.23).
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At θ ¼ π, the N low-lying states transform under the
action of D4N group elements (so, now k ¼ N). The
conjugacy classes and number of elements in each class
are again given by (3.20) and (3.21), but now,
2N ¼ M ¼ k. The representation here is slightly more
complicated because we need to find the N-dimensional
representation of D4N . However, a natural definition is
motivated by our definition S̃ ¼ ω1=2S, so we can take r̃ ¼
ω1=2r where r is the N-dimensional representation of D2N .
The form of s follows from (3.10). For example, for N ¼ 4,
the N-dimensional representation given by

r̃¼

0
BBB@
ω−1=2

ω−3=2

ω−5=2

ω−7=2

1
CCCA; s̃¼

0
BBB@

1

1

1

1

1
CCCA

ðB4Þ
does the trick.
Once more, generalization to arbitrary N is not difficult.

The identity again has χI ¼ N; meanwhile, all r̃ still have
χ ¼ 0 (since shifting the roots of unity uniformly by ω1=2

does not change their cancellation) with the exception
of r̃2N ¼ −1, which has character −N. Now, s maps
jpi → jN − pþ 1i, and hence no elements are mapped
back to themselves corresponding to zero character.
Multiplication of s̃ by any combination of r̃ does not
change the location of nonzero elements, so any combi-
nation s̃r̃i for i ¼ 1;…; 2N also has zero trace. Thus, the
characters are

χθ¼π
even ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

N−1

;−N; 0; 0g: ðB5Þ

Once more, for the decomposition, it is only the
nonzero components we should worry about, this time
corresponding to the 1-element conjugacy classes f1g and
fr2Ng. Using Table I, c2Nð2m−1Þ ¼ −1, and c2Nð2mÞ ¼ 1,
the decomposition in terms of irreducible characters
yields (3.25).

2. Odd N: TN = 2k+ 1 model

The N-dimensional representation follows in a very
similar manner as before. For example, N ¼ 5 yields

r¼

0
BBBBB@

ω−1

ω−2

ω−3

ω−4

ω−5

1
CCCCCA; s¼

0
BBBBB@

1

1

1

1

1

1
CCCCCA:

ðB6Þ

The characters for rm with m ¼ 1;…; N − 1 follow
similarly. The primary difference here is the fact that s
will only bring a single element back to itself, and this is
unchanged when multiplying by any power of r since the
Nth diagonal position will always be ω−Nm ¼ 1. Hence, the
characters are given by

χθ¼0
odd ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

k

; 1g: ðB7Þ

The characters for arbitrary odd N are given in Table II.
Using the orthogonality of characters (B3) for the nonzero
elements, we find Eq. (3.29).
For θ ¼ π, we found a global inconsistency condition,

which implied the group was centrally extended to
D4N¼2ð4kþ2Þ. Note this has switched us from conjugacy
classes of the form (3.20) withM ¼ 2N instead of those of
(3.26), so we should use the character table of Table I.
Building anN-dimensional representation forD4N from the
N-dimensional representation of D2N follows in an analo-
gous manner as before. For N ¼ 5,

r̃¼ω1=2

0
BBBBB@

ω−1

ω−2

ω−3

ω−4

ω−5

1
CCCCCA; s¼

0
BBBBB@

1

1

1

1

1

1
CCCCCA:

ðB8Þ

Again, the identity and r̃2N yieldN and −N, respectively.
We see from the above representation that s will map one
element back to itself. This generalizes for sr2b with b ¼
1;…; 2kþ 1 since this element will always be that which
corresponds to ω1=2−ðNþ1Þ=2 and

ω½1=2−ðNþ1Þ=2�m ¼ ω−Nm=2 ¼
�
1 m even

−1 m odd
:

Hence, the characters of the conjugacy classes are

χθ¼π
odd ¼ fN; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}

N−1

;−N; 1;−1g: ðB9Þ

The character orthogonality takes slightly more work but
follows in a similar manner. Using Table I, ð−1ÞN ¼
ð−1Þ2kþ1 ¼ −1, c2Nð2m−1Þ ¼ −1, and c2Nð2mÞ ¼ 1, the
decomposition of (3.31) is found.

APPENDIX C: DISCRETE SYMMETRIES
OF YM ON R3 × S1

In this Appendix, we investigate the discrete symmetries
of deformed YM in greater detail and justify why CP is
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indeed the symmetry which interchanges extrema with the
same Vk. Since the potential from which we derive these
symmetries is a result of a nonperturbative dilute gas
summation of monopole-instanton solutions, this neces-
sarily requires a closer investigation of how such solutions
transform under discrete symmetries. For completeness, we
first review the monopole-instanton solutions of deformed
YM. We then investigate how the degenerate extrema are
related to one another and see how discrete symmetries act
on these solutions.

1. Monopole-instanton solutions

Monopole-instanton solutions are found using the usual
Bogomol'nyi-Prasad-Sommerfield trick on the Euclidean
action (4.5) [23]. For simplicity, suppose N ¼ 2. Then, we
can express the action in terms of the chromoelectric
and chromomagnetic fields from the non-Abelian field
strengths (recall that x4 is the compact direction and μ,
ν ¼ 1, 2, 3)

Ea
μ ¼ Fa

μ4 ¼ Dba
μ Ab

4 Ba
μ ¼

1

2
ϵμνρFa

νρ ðC1Þ

with Dba
μ ¼∂μδabþϵabcAc

μ and Fa
μν ¼ ∂iμAa

ν − ∂νAa
μ þ

ϵabcAb
μAc

ν, and so (4.5) with a nonzero θ-term becomes

Stree ¼
L
2g2

Z
d3xðEa

μ ∓Ba
μÞ2þ

�
iθL
16π2

� L
g2

�Z
d3xEa

μBaμ;

ðC2Þ
where the top (bottom) corresponds to the monopole
(antimonopole) solution. We see the monopole and anti-
monopole then satisfy

Ea
μ ¼ �Ba

μ ⇔ Fa
MN ¼ �F̃a

MN ðC3Þ

with M;N ¼ 1, 2, 3, 4. The monopole solutions carry
magnetic and topological charge, defined by

QT ∼
Z

d3xEa
μBaμ; Qa

M ∼
Z

d2xn̂μBa
μ: ðC4Þ

The standard R4 monopole solutions which arise from
(C3) can be constructed such that they are independent of

one spacetime coordinate and thus have the properties of
pseudoparticles (codimension 1). When we dimensionally
reduce from R3 × S1 to R3, as long as we choose the
compactified direction to correspond to the direction in
which our monopole solutions are independent, we will end
up with a “monopole-instanton solution” (codimension 0).
Monopole/antimonopole (instanton) solutions derived in
this way are x4 independent. It is also possible to find
x4-dependent solutions with the same action by allowing
�1 units of Kaluza-Klein momentum [56,57]. This results
in a total of N monopole solutions with action
S0 ≡ 8π2=g2N, magnetic charge α⃗a, topological charge
1=N, and N antimonopoles with opposite magnetic and
topological charges.

2. Monopole transformation properties

We now consider how the monopole and antimonopole
solutions are changed under discrete transformations.
This will allow us to understand how the Abelian σa
fields transform and ultimately the behavior of σ⃗k
under these symmetries. Our results are summarized in
Table III.
The monopole and antimonopole solutions are flipped

under a parity transformation in R3, which we will denote
Pxμ . This takes xμ → −xμ and Aμ → −Aμ, which flips the
E-field but not the B-field. However, because of the n̂μ in
the definition of Qa

M (C4), which must also flip under Pxμ,
this transformation does flip the magnetic charge. Note that
a flip of the magnetic charge of the monopoles is equivalent
to a transformation of σ⃗ → −σ⃗. Hence, since both magnetic
and topological charge are flipped, this amounts to an
interchange of monopoles and antimonopoles. Since
the θ-term is proportional to QT , this is a symmetry at
only θ ¼ 0 and θ ¼ π. At θ ¼ 0, the invariance is trivial
since the topological charge has no effect on the path
integral. However, at θ ¼ π, the symmetry must be accom-
panied by a 2π shift of θ. We can implement such a shift via
our σa variables by defining the action of Pxμ to be θ

dependent,

Pxμ∶ σa →

�−σa θ ¼ 0

−σa þ 2πðN−aþ1Þ
N θ ¼ π:

ðC5Þ

TABLE III. Various discrete symmetries and how they transform Qa
M ∼

R
d2xn̂μBa

μ and QT ∼
R
d3xEa

μBa
μ. A “þ”

sign denotes the charge is unchanged under the corresponding transformation, while a “−” sign indicates a flip in
sign.

Transformation Definition QM QT Holonomy eigenvalues

Pxμ xμ → −xμ, Aμ → −Aμ − − Unchanged
Pt x3 → −x3, A3 → −A3 − − Unchanged
R x4 → −x4, A4 → −A4 þ − a → N − aþ 1
C AM → −AM − þ a → N − aþ 1
CPR xM → −xM þ þ Unchanged

AITKEN, CHERMAN, and ÜNSAL PHYS. REV. D 100, 085004 (2019)

085004-14



Similarly, consider the parity transformation in a single
direction7 ofR3, which we will take to be x3 and denote Pt.
This takes x3 → −x3 and A3 → −A3 and hence flips B1, B2,
and E3 but leaves the other components of the electric and
magnetic field untouched. Since this flips each of the three
terms showing up in the topological charge, the net effect is
to flip the total topological charge. Additionally, since this
flips n̂3 → −n̂3, this also flips all three terms showing up in
the magnetic charge and hence takes Qa

M → −Qa
M. Thus,

the net effect of Pt is identical to that of Pxμ , just as one
would expect. We will collectively refer to the two non-
compact parity transformations as P.
Charge conjugation takes AM → −AM, which from (C2)

flips both the electric and magnetic fields. As such, the
magnetic charges of the monopoles are flipped, but the
topological charges are unchanged. The symmetry thus
leaves the θ-term untouched, and hence this symmetry
persists for all θ. However, from our definition of the

holonomy in (4.2), Ω is also affected charge conjugation.
More specifically, charge conjugation has the net effect of
rearranging the holonomy eigenvalues. In order to leave the
theory unchanged, we define charge conjugation to be
accompanied by rearrangement of the holonomy eigenval-
ues so that the net effect of the transformation is to leave the
holonomy unchanged (see Ref. [9] for more details). At the
level of the monopoles, the rearranging of said eigenvalues
interchanges monopole labels as a → N − aþ 1. The com-
bined effect of rearranging labels and flipping the charge
means charge conjugation acts on σa as σa → −σN−aþ1.
Finally, consider the transformation which takes

x4 → L − x4 and A4 → −A4, which we call R. From
(C1), this flips the E-field but not the B-field and hence
takes Qa

M → Qa
M and QT → −QT . However, since a flip in

the compact direction transforms A4, it will also affect the
holonomy in the same way that charge conjugation acted.
Hence, we will also define the R transformation to come
with a → N − aþ 1 relabeling [9]. As with the P trans-
formations, since R flips the topological charge, we must
accompany the transformation at θ ¼ π with an appropriate
shift,

R∶ σa →

� σN−aþ1 θ ¼ 0

σN−aþ1 −
2πðN−aþ1Þ

N θ ¼ π:
ðC6Þ

[1] S. R. Coleman and J. Mandula, All possible symmetries of
the S matrix, Phys. Rev. 159, 1251 (1967).

[2] A. M. Polyakov, Thermal properties of gauge fields and
quark liberation, Phys. Lett. 72B, 477 (1978).

[3] L. Susskind, Lattice models of quark confinement at high
temperature, Phys. Rev. D 20, 2610 (1979).

[4] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, QCD and
instantons at finite temperature, Rev. Mod. Phys. 53, 43
(1981).

[5] N. Weiss, The Wilson line in finite temperature gauge
theories, Phys. Rev. D 25, 2667 (1982).

[6] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[7] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal, and temperature, J. High Energy Phys.
05 (2017) 091.

[8] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifunda-
mental gauge theories at finite topological angles, J. High
Energy Phys. 06 (2017) 102.

[9] K. Aitken, A. Cherman, E. Poppitz, and L. G. Yaffe, QCD
on a small circle, Phys. Rev. D 96, 096022 (2017).

[10] M. Unsal and L. G. Yaffe, Center-stabilized Yang-Mills
theory: Confinement and large N volume independence,
Phys. Rev. D 78, 065035 (2008).

[11] M. Unsal, Abelian Duality, Confinement, and Chiral
Symmetry Breaking in QCD(adj), Phys. Rev. Lett. 100,
032005 (2008).

[12] M. Unsal, Magnetic bion condensation: A new mechanism
of confinement and mass gap in four dimensions, Phys.
Rev. D 80, 065001 (2009).

[13] M. Shifman and M. Unsal, QCD-like theories on
R(3) x S(1): A smooth journey from small to large r(S(1))
with double-trace deformations, Phys. Rev. D 78, 065004
(2008).

[14] M. Shifman and M. Unsal, On Yang-Mills theories with
chiral matter at strong coupling, Phys. Rev. D 79, 105010
(2009).

[15] M. Shifman andM.Unsal,Multiflavor QCD* onR(3) x S(1):
Studying transition from Abelian to non-Abelian confine-
ment, Phys. Lett. B 681, 491 (2009).

[16] G. Cossu and M. D’Elia, Finite size phase transitions in
QCD with adjoint fermions, J. High Energy Phys. 07 (2009)
048.

[17] J. C. Myers and M. C. Ogilvie, Phase diagrams of SU(N)
gauge theories with fermions in various representations,
J. High Energy Phys. 07 (2009) 095.

[18] D. Simic and M. Unsal, Deconfinement in Yang-Mills
theory through toroidal compactification with deformation,
Phys. Rev. D 85, 105027 (2012).

7It is tempting to identify this direction as “time” to match the
existing literature. But the considerations here can be phrased in
Euclidean space, and all one needs to derive, e.g., anomalies is to
consider reflections which involve an odd number of directions.
So, an identification of x4 with time is possible but not necessary.
In particular, we find it helpful to think of the x4 direction as a
spatial one.

DIHEDRAL SYMMETRY IN SUðNÞ YANG-MILLS THEORY PHYS. REV. D 100, 085004 (2019)

085004-15

https://doi.org/10.1103/PhysRev.159.1251
https://doi.org/10.1016/0370-2693(78)90737-2
https://doi.org/10.1103/PhysRevD.20.2610
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/PhysRevD.25.2667
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP06(2017)102
https://doi.org/10.1007/JHEP06(2017)102
https://doi.org/10.1103/PhysRevD.96.096022
https://doi.org/10.1103/PhysRevD.78.065035
https://doi.org/10.1103/PhysRevLett.100.032005
https://doi.org/10.1103/PhysRevLett.100.032005
https://doi.org/10.1103/PhysRevD.80.065001
https://doi.org/10.1103/PhysRevD.80.065001
https://doi.org/10.1103/PhysRevD.78.065004
https://doi.org/10.1103/PhysRevD.78.065004
https://doi.org/10.1103/PhysRevD.79.105010
https://doi.org/10.1103/PhysRevD.79.105010
https://doi.org/10.1016/j.physletb.2009.10.060
https://doi.org/10.1088/1126-6708/2009/07/048
https://doi.org/10.1088/1126-6708/2009/07/048
https://doi.org/10.1088/1126-6708/2009/07/095
https://doi.org/10.1103/PhysRevD.85.105027


[19] M. Unsal and L. G. Yaffe, Large-N volume independence in
conformal and confining gauge theories, J. High Energy
Phys. 08 (2010) 030.

[20] T. Azeyanagi, M. Hanada, M. Unsal, and R. Yacoby, Large-
N reduction in QCD-like theories with massive adjoint
fermions, Phys. Rev. D 82, 125013 (2010).

[21] H. Vairinhos, Phase transitions in center-stabilized lattice
gauge theories, Proc. Sci., LATTICE2011 (2011) 252.

[22] E. Thomas and A. R. Zhitnitsky, Topological susceptibility
and contact term in QCD. A toy model, Phys. Rev. D 85,
044039 (2012).

[23] M.M. Anber, E. Poppitz, and M. Unsal, 2d affine XY-spin
model/4d gauge theory duality and deconfinement, J. High
Energy Phys. 04 (2012) 040.

[24] M. Unsal, Theta dependence, sign problems and topological
interference, Phys. Rev. D 86, 105012 (2012).

[25] E. Poppitz, T. Schäfer, and M. Unsal, Continuity, deconfine-
ment, and (super) Yang-Mills theory, J. High Energy Phys.
10 (2012) 115.

[26] E. Poppitz, T. Schäfer, and M. Ünsal, Universal mechanism
of (semi-classical) deconfinement and theta-dependence for
all simple groups, J. High Energy Phys. 03 (2013) 087.

[27] P. C. Argyres and M. Unsal, The semi-classical expansion
and resurgence in gauge theories: New perturbative, in-
stanton, bion, and renormalon effects, J. High Energy Phys.
08 (2012) 063.

[28] P. Argyres and M. Unsal, A Semiclassical Realization of
Infrared Renormalons, Phys. Rev. Lett. 109, 121601 (2012).

[29] M.M. Anber, S. Collier, E. Poppitz, S. Strimas-Mackey, and
B. Teeple, Deconfinement in N ¼ 1 super Yang-Mills
theory on R3 × S1 via dual-Coulomb gas and “affine”
XY-model, J. High Energy Phys. 11 (2013) 142.

[30] G. Cossu, H. Hatanaka, Y. Hosotani, and J.-I. Noaki,
Polyakov loops and the Hosotani mechanism on the lattice,
Phys. Rev. D 89, 094509 (2014).

[31] M.M. Anber, E. Poppitz, and B. Teeple, Deconfinement and
continuity between thermal and (super) Yang-Mills theory
for all gauge groups, J. High Energy Phys. 09 (2014) 040.

[32] G. Bergner and S. Piemonte, Compactified N ¼ 1 super-
symmetric Yang-Mills theory on the lattice: Continuity and
the disappearance of the deconfinement transition, J. High
Energy Phys. 12 (2014) 133.

[33] A. Bhoonah, E. Thomas, and A. R. Zhitnitsky, Metastable
vacuum decay and θ dependence in gauge theory. Deformed
QCD as a toy model, Nucl. Phys. B890, 30 (2014).

[34] X. Li and M. B. Voloshin, Metastable vacuum decay in
center-stabilized Yang-Mills theory at large N, Phys. Rev. D
90, 105028 (2014).

[35] M.M. Anber, E. Poppitz, and T. Sulejmanpasic, Strings
from domain walls in supersymmetric Yang-Mills theory
and adjoint QCD, Phys. Rev. D 92, 021701 (2015).

[36] M.M. Anber and E. Poppitz, On the global structure of
deformed Yang-Mills theory and QCD(adj) on R3 × S1,
J. High Energy Phys. 10 (2015) 051.

[37] T. Misumi and T. Kanazawa, Adjoint QCD on R3 × S1 with
twisted fermionic boundary conditions, J. High Energy
Phys. 06 (2014) 181.

[38] A. Cherman, T. Schäfer, and M. Ünsal, Chiral Lagrangian
from Duality and Monopole Operators in Compactified
QCD, Phys. Rev. Lett. 117, 081601 (2016).

[39] M.M. Anber and A. R. Zhitnitsky, Oblique Confinement at
θ ≠ 0 in weakly coupled gauge theories with deformations,
Phys. Rev. D 96, 074022 (2017).

[40] M.M. Anber and L. Vincent-Genod, Classification of
compactified suðNcÞ gauge theories with fermions in all
representations, J. High Energy Phys. 12 (2017) 028.

[41] M.M. Anber and V. Pellizzani, On the representation (in)
dependence of k-strings in pure Yang-Mills theory via
supersymmetry, Phys. Rev. D 96, 114015 (2017).

[42] M.M. Anber and E. Poppitz, New nonperturbative scales
and glueballs in confining supersymmetric gauge theories,
J. High Energy Phys. 03 (2018) 052.

[43] K. Aitken, A. Cherman, and M. Ünsal, Vacuum structure of
Yang-Mills theory as a function of θ, J. High Energy Phys.
09 (2018) 030.

[44] C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring
2-group global symmetries, J. High Energy Phys. 02 (2019)
184.

[45] F. Benini, C. Cordova, and P.-S. Hsin, On 2-group global
symmetries and their anomalies, J. High Energy Phys. 03
(2019) 118.

[46] J. C. Baez and A. D. Lauda, Higher-dimensional algebra V:
2-Groups, arXiv:math/0307200.

[47] A. Kapustin and R. Thorngren, Higher symmetry and
gapped phases of gauge theories, arXiv:1309.4721.

[48] Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft
anomaly, and level crossing in quantum mechanics, Prog.
Theor. Exp. Phys. 2017, 113B05 (2017).

[49] D. Gaiotto, Z. Komargodski, and N. Seiberg, Time-reversal
breaking in QCD4, walls, and dualities in 2þ 1 dimensions,
J. High Energy Phys. 01 (2018) 110.

[50] A. M. Polyakov, Quark confinement and topology of gauge
groups, Nucl. Phys. B120, 429 (1977).

[51] E. Witten, Instantons, the quark model, and the 1/n
expansion, Nucl. Phys. B149, 285 (1979).

[52] E. Witten, Theta Dependence in the Large N Limit of
Four-Dimensional Gauge Theories, Phys. Rev. Lett. 81,
2862 (1998).

[53] T. Banks and N. Seiberg, Symmetries and strings in field
theory and gravity, Phys. Rev. D 83, 084019 (2011).

[54] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFTand
duality, J. High Energy Phys. 04 (2014) 001.

[55] P. Ramond, Group Theory: A Physicist’s Survey
(Cambridge University Press, Cambridge, England, 2010).

[56] K.-M. Lee and P. Yi, Monopoles and instantons on partially
compactified D-branes, Phys. Rev. D 56, 3711 (1997).

[57] T. C. Kraan and P. van Baal, Periodic instantons with
nontrivial holonomy, Nucl. Phys. B533, 627 (1998).

AITKEN, CHERMAN, and ÜNSAL PHYS. REV. D 100, 085004 (2019)

085004-16

https://doi.org/10.1007/JHEP08(2010)030
https://doi.org/10.1007/JHEP08(2010)030
https://doi.org/10.1103/PhysRevD.82.125013
https://doi.org/10.1103/PhysRevD.85.044039
https://doi.org/10.1103/PhysRevD.85.044039
https://doi.org/10.1007/JHEP04(2012)040
https://doi.org/10.1007/JHEP04(2012)040
https://doi.org/10.1103/PhysRevD.86.105012
https://doi.org/10.1007/JHEP10(2012)115
https://doi.org/10.1007/JHEP10(2012)115
https://doi.org/10.1007/JHEP03(2013)087
https://doi.org/10.1007/JHEP08(2012)063
https://doi.org/10.1007/JHEP08(2012)063
https://doi.org/10.1103/PhysRevLett.109.121601
https://doi.org/10.1007/JHEP11(2013)142
https://doi.org/10.1103/PhysRevD.89.094509
https://doi.org/10.1007/JHEP09(2014)040
https://doi.org/10.1007/JHEP12(2014)133
https://doi.org/10.1007/JHEP12(2014)133
https://doi.org/10.1016/j.nuclphysb.2014.11.007
https://doi.org/10.1103/PhysRevD.90.105028
https://doi.org/10.1103/PhysRevD.90.105028
https://doi.org/10.1103/PhysRevD.92.021701
https://doi.org/10.1007/JHEP10(2015)051
https://doi.org/10.1007/JHEP06(2014)181
https://doi.org/10.1007/JHEP06(2014)181
https://doi.org/10.1103/PhysRevLett.117.081601
https://doi.org/10.1103/PhysRevD.96.074022
https://doi.org/10.1007/JHEP12(2017)028
https://doi.org/10.1103/PhysRevD.96.114015
https://doi.org/10.1007/JHEP03(2018)052
https://doi.org/10.1007/JHEP09(2018)030
https://doi.org/10.1007/JHEP09(2018)030
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP03(2019)118
https://doi.org/10.1007/JHEP03(2019)118
https://arXiv.org/abs/math/0307200
https://arXiv.org/abs/1309.4721
https://doi.org/10.1093/ptep/ptx148
https://doi.org/10.1093/ptep/ptx148
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(79)90243-8
https://doi.org/10.1103/PhysRevLett.81.2862
https://doi.org/10.1103/PhysRevLett.81.2862
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1103/PhysRevD.56.3711
https://doi.org/10.1016/S0550-3213(98)00590-2

