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Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the
difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we
present a non-Abelian basis tensor gauge theory formalism. Unlike in the Abelian case, the map between the
ordinary gauge field and the basis tensor gauge field is nonlinear. To test the formalism, we compute the beta
function and the two-point function at the one-loop level in non-Abelian basis tensor gauge theory and show
that it reproduces the well-known results from the usual formulation of non-Abelian gauge theory.
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I. INTRODUCTION

The Standard Model (SM) of particle physics [1-10] is
usually formulated with gauge fields that transform inho-
mogeneously under the gauge group; i.e., they are con-
nections on principal bundles (see e.g., [11,12]). This
mechanism is used to construct covariant derivatives acting
on matter fields, which allows a simple recipe for con-
structing kinetic terms for local field theories living on
principal bundles. Gauge theories of this sort have a long
history (see e.g., [6,13-20]) and are very economical in
describing the physics locally at the cost of introducing
redundancies into the system. Despite this long history,
rewriting gauge theories in novel formalisms continue to
offer insights into both computational techniques and ideas
for physics beyond the SM (see e.g., [21-28]).

The work of [29] gives a reformulation of U(1) gauge
theories in analogy with the vierbein formalism of general
relativity. In that paper, it was shown that the vierbein
analog field G transforms homogeneously under the
U(1) gauge group and satisfies certain constraints, in
contrast with the ordinary formulation in which the gauge
field transforms inhomogeneously. The nonlinear map
between the ordinary A, field and G”; can be changed
to a linear relationship using a set of N unconstrained scalar
fields @, (x) in N dimensions.' The field theory of @, (x) is
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'In [29], we used upper indices to denote the components of
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called basis tensor gauge theory (BTGT), which can be
viewed as a theory of Wilson lines (e.g., [30-37] and
references therein) modeled by a particular symmetry that
is required to allow only couplings equivalent to ordinary
gauge theories. In [38], the Ward identities of the theory
were constructed and the theory was explicitly shown to be
one-loop stable.

In this work, we present a non-Abelian version of basis
tensor gauge theory. Just as in the Abelian case, the
interpretation of the basis tensor gauge field is similar to
a Wilson line. This means that the basis tensor field & (x) is
more nonlocal when expressed in terms of the ordinary
gauge potential AF. Unlike in the Abelian case, the map
between 65 (x) and A2 is nonlinear. A perturbation theory
can be defined in powers of @2 that allows us to have a finite
power expansion map between 64 and Af. Just as in the
Abelian case, we can impose a symmetry (BTGT sym-
metry) to eliminate charge violating couplings and enforce
positivity of the Hamiltonian.

As the map between ¢4 and A? is nonlinear, unlike in the
Abelian case, the choice of #4 variables to parametrize the
gauge manifold target space is not motivated by simplicity.
On the other hand, this motivation still exists since the
number of functional degrees of freedom (d.o.f.) between Af
theories and 02 theories naturally match without imposing
additional constraints on the vierbeinlike field that would
make it difficult to quantize. The basis choice is also a
natural generalization of the Abelian construction (i.e., both
are gauge group manifold target space fields), and it has the
same relationship with the Wilson line as in the Abelian case.
Furthermore, the BTGT symmetry representation that sta-
bilizes the theory (e.g., enforces charge conservation and
bounds the Hamiltonian from below) naturally generalizes
the Abelian theory’s representation.

To test the formalism we perturbatively compute the
p-function and find that it matches the usual result non-
Abelian gauge theory at one loop. We also compute the
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one-loop divergent contribution to the (A#(x)A*(y)) cor-
relator, where A,[f] is now treated as a local composite
operator. We find that before introducing the counterterms,
the divergence that is obtained using the 2 formalism is the
same as in the usual A} (x) formalism. This is an indication
that the UV structure of ordinary gauge theories are
faithfully reproduced by the non-Abelian BTGT theory.

The order of presentation is as follows. In Sec. II, we
present the definition of non-Abelian basis tensor gauge
theory. In Sec. III, we present the path integral formulation of
the BTGT theory. This includes the perturbative expansion
terms similar to what is done in nonlinear sigma models. To
check that the quantum formulation of BTGT is stable and
computable, in Sec. IV, we compute the -function explicitly
by renormalizing the two-point functions of the BTGT field
04, the ghost fields c¢, and the Occ vertex functions. In
Sec. V, we compute the two-point function (A7 (x)AZ(y)) at
one loop using the BTGT formalism. We check the trans-
versality of the divergent contribution consistent with gauge
invariance and check that introducing the appropriate
composite operator counterterms allow both (94 (x)0%(y))
and (A% (x)AZ(y)) to be finite. In Sec. VI, we make a
conjecture regarding what the relationship will be for the
infinite number of renormalization constants based on the
computations done in this paper. In Sec. VII, we present our
conclusions. In the Appendix A, we collect some of the less-
standard notations and conventions used in this paper. In
Appendix B, we derive the relationship between the non-
Abelian basis tensor field and the ordinary gauge field. In
Appendix C, we discuss the representations of gauge and
BTGT symmetry transformations. In Appendix D, we list
the Feynman rules for the theory.

II. NON-ABELIAN BTGT BASIS DEFINITION

In this section, we construct an explicit relationship
between the vierbein analog field G and ordinary non-
Abelian gauge field A. We will work with 4 spacetime
dimensions throughout this paper to maintain simplicity
and obvious physical relevance even though generaliza-
tions to different spacetime dimensions are straightforward.
All repeated indices will be summed unless specified
otherwise. For example, whenever one side of an equation
has indices specified, the other side of the equation may
have repeated indices that are not summed.

Given a field ¢ that is a complex scalar transforming
under gauge transformations as

¢ (x) = [9(x)]° ¢ (x), ()
[g(x)]*s = (M), (2)

where (T€)* are Hermitian generators of the gauge group
in representation R, we define a Lorentz tensor G?f) s that

exhibits the gauge group transformation property

(G (0] =[G (1) g™ (%)), (3)

such that G‘(’f) /jg[) is gauge invariant, where f is a basis index

that specifies a fixed direction in the gauge group repre-
sentation space. The requirement of rank 2 comes from
having enough functional d.o.f. to match the gauge field
functional d.o.f. as explained in [29]. More formally,
Gl (x) is a field that transforms as an R from the right

under the non-Abelian gauge group representation and as a
rank 2 Lorentz projection tensor. The index (f) in G‘(’f)/}

spans the dimension of the representation. Hence, G‘(’f) 5
contains 2 x 16D(R) real functional d.o.f. (in 4-spacetime
dimensions), where D(R) is the dimension of the repre-
sentation. The analogy with gravitational vierbeins (e,),
can be identified as follows (similar to the Abelian case of
[29]): the indices {f,a,f} are the analogs of the fictitious
Minkowski space index a of (e,) u» and the representation
of Eq. (3) is the analog of the diffeomorphism acting on the
p index of (e,),.

To reproduce ordinary gauge theory with G?f > We must
be able to path integrate over unconstrained functions that
match the number of d.o.f. in A,. This means that we must
eliminate the number of field d.o.f. either by imposing a
constraint through an introduction of an auxiliary field or
explicitly solving such a matching constraint. Since the
gauge field real functional d.o.f. necessary for constructing
covariant derivatives on fundamental representation fields
is 4D(A) [where D(A) is the dimension of the adjoint
representation], we need to eliminate 32D(R) —4D(A)
d.o.f. We can accomplish this by choosing the field

d.o.f. that represent G‘(”f)ﬂ to live on the target space of

the gauge manifold, which will cause the D(A) dimension
matching condition to be satisfied. We can then construct 4
such sets with the help of a projection tensor (just as in the
Abelian BTGT) to match 4D(A) d.of. in A,: the gauge
manifold target space fields are 0S¢ where a € {0,1,2,3}
and C € {1,2,...,D(A)}.

To find a map between Gf,, and 0S, define an

orthonormal set of spacetime-independent vectors (fé 7

for f € {1,...,dimR} that span the group representation
vector space such that the following completeness relation-
ship is satisfied:

oM = zf:‘fffrfik})' (4)

The &) are defined to be invariant under gauge
transformations.

In the spirit of the Abelian case of [29], the vierbein
analog in the non-Abelian gauge theory can be defined as

(G WFs) = & expl-il Ty 0. (3

085003-2



NON-ABELIAN BASIS TENSOR GAUGE THEORY

PHYS. REV. D 100, 085003 (2019)

Here the objects H* with a € {0,...,3} are 4 x 4 real
matrices that transform under Lorentz transformations as a
(1,1) tensor satisfying [H¢, H”] = 0, which satisfies the
completeness relationship

3
D o(H), =8, (6)
a=0

and the orthonormality condition

Tr(H*H?) = §* (7)

(just as in the Abelian case of [29]). These matrices can be
chosen to have the following orthonormal projection

property:
(Ha)”y(Hb)”,; = 5“b(H“)”ﬁ no sum on a (8)
and symmetry property
(trye = (1. o)

The fields 0¥ (x) are real scalar fields which transform
under gauge transformations as

U, —e'U, (10)

where
U, = exp [i04T4] (11)
[ =I875, (12)

The reason why @ is easier to work with than Gy (x) is
that it is unconstrained, similar to the z variable being easier
to work with compared to U(z) in sigma models [6].

There are several salient features to note regarding
Eq. (5). Given the representation identity

)CS

v = (9a) w5, (13)

if

wCTC - gly“T g™, (14)

where g,q; 18 the adjoint representation group element
(independent of the representation of g), we might naively
expect that 8% has its M index transforming as an adjoint.
However, this is not true because the transformation
property of O¥ is

&y (expl=ily (x) HTM])s
— &) (exp[=ify (x) H*TY]) 567" (x),  (15)

and not

& (exp [0 (x) HOTM )",
— & () (exp [0 () HOTM]) 557 (x)  (16)

in Eq. (5). Another aspect is that the index f in Eq. (5) runs
from 1 to dim(R) components in Gy, (x), but the number of
independent scalar field d.o.f. of G(y)(x) in terms of 8, is
the rank of the group times the spacetime dimension 4
(spanned by m € {0, ..., 3}). This is similar to the ordinary
gauge field having dim(R) components of the f index in
AM(TM)7% but counting in terms of A}/, the index M runs
through the rank of the group.

Another interesting relationship is the map between the
ordinary non-Abelian gauge field and |G (x)[5. As
shown in Appendix B, the relationship is

A, = i[G‘I“ﬁ] [8,,G,;ﬂ] (17)
where Gﬁﬂ are related to the basis tensor as

dim R

(Gl = & [Gippl™ (18)
7

We note that the relationship of U, and G% is
G, = [H"), U] (19)
according to Eq. (8). Owing to the projection property of

Eq. (8) in a conveniently normalized basis, the ordinary
non-Abelian gauge field can also be rewritten as

A, = iU,04U}, (20)
where
0y = (H)",0,. (21)

This can be seen simply by using Egs. (8) and (19);
Ay = i) U(H)PY " 0,(H) U} (22)
a b
=i) ) 8,(HY),U0,U; (23)
a b
=iy U,04UL. (24)

As discussed in Appendix B, the relationship between the
04 field and the ordinary non-Abelian gauge fields can be
written explicitly as
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AZ = (0L R (" — 1) a508),  (25)

c

where f7 is a structure constant matrix having the compo-
nents (/)48 = f/4B_The non-Abelian Eq. (25) reduces to
the Abelian case of [29] in the limit that the structure
constant matrix f — 0. Note that the map between 6% and A
differ by a minus sign compared to the original Abelian
BTGT paper [29] because the sign convention for € has
been flipped [see Eq. (23) of that paper and Eq. (5) above].?
As we see in this expression, one key difference between
the Abelian BTGT and the non-Abelian BTGT is that the
map between the ordinary gauge field A and the 6 field is
linear in the Abelian case and nonlinear in the non-Abelian
case. On the other hand, since 6% represents a solution to a
first order differential equation, it still does have the
interpretation of a type of object similar to a Wilson line.

As noted in [29], because gauge invariance is insufficient
to impose global charge conservation (unlike in the usual
gauge theory formulation), we must impose a new sym-
metry introduced in [29] called a BTGT symmetry. The
BTGT transformation in the non-Abelian case is

U, - Uge', (26)
7, = 787", (27)

where Z8 satisfies
(H“)’lﬂaﬂzg =0. (28)

Because this transformation will not transform the gauge
field variable when written in terms of the ordinary Al
basis, this transformation is independent of the usual gauge
transformations. Infinitesimally, Eqgs. (3) and (26) can be
rewritten as

B f-0, AB f-0, AB
593‘<exp[f-ea1—1> FB+<1—exp[—f-9a]> Zi
(29)

to linear order in I'? and ZZ, where (f - 0,)"N = fCMNgS.
The derivation of this linearized transformation is presented
in Appendix C. Finally, note that we can also write the

combined gauge and BTGT transformations acting on
G%(x) as

HI]Y, Gy = T (I, Gre 0T (30)
and

’Note that Ref. [29] uses the notation of having the basis tensor
index c of #¢ instead of #% as in Eq. (5).

Gul[Hf]ﬂy_)e—iZf(x)TBGﬂl[Hf],lue—iFC(x)TC. (31)

This means that it is convenient to write gauge invariant and
BTGT invariant fields in terms of (H“)” ,G%;(x) because of
these simple transformation properties.

III. PATH INTEGRAL FORMULATION

We define the quantized theory of G in this section
using a path integral over the ¢4 variable in this section.
To this end, we begin by writing down the BTGT and
gauge invariant action in terms of U, variable [defined in
Eq. (11)]. Next, we define a coupling constant expansion
that allows us to match perturbative gauge theory compu-
tations. Afterwards, we construct the path integral over 6.

A. Nonperturbative action

In this section, we construct the action for the basis
tensor field @2. Because of Eq. (25), any non-Abelian
gauge theory with finite powers of A, will map to a field
theory with an infinite power series in #X. In this section,
we construct the action of the usual Yang-Mills theory in
terms of 64,

Recall that A, is a BTGT transformation invariant (which
we will refer to as a BTGT invariant for short). Hence, we
can construct BTGT invariant objects involving just 64
fields if we work with our knowledge of the usual gauge
kinetic terms. Using Eq. (20), we can write the action in the
usual way as

-1
= ——- HY
£ 492T(R)Tr(F Fu: G2)

where the field strength is
F, =ilD, D, (33)

and the covariant derivative in terms of U, is
3 ~
D, =0,+> UUL. (34)
a=0

More explicitly, we can expand the field strength tensor as

3 3
F,, = i((?” S U U -0, Uﬁ,‘le)
a=0 a=0
3

+i Y [U00UL U LU (35)
a,b=0

When written in terms of components, we can identify
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L= 2_—912 (0,Ap M A% — 0, AL AM) — %fABC[?MA,’}AB”AC”
! ABC £AB,Cy AB AC A B2 4 C2
—@f JARRAAVACA (36)
with
i S
Al = ) ;Tr(TAUua;’U;,). (37)

Just as in the Abelian BTGT theory, we see that the theory
has a 4-derivative kinetic term structure, which begs the
question of whether the Hamiltonian is bounded from
below [39-43]. Just as in the Abelian case [29], the
Hamiltonian is indeed bounded from below because
the BTGT symmetry gives rise to only field dependence
on AM[U,].

The matter coupling can be written down by noting that
under BTGT transformations, we have

B, [(H ) ,Gyp) — e 41O, [(H/ ) .G (38)

This means we can construct a gauge, Lorentz, and BTGT
invariant combination

> (0, [(H )" ,,G™y,9]) 0, [(H ) (G y). (39)
7

It is easy to check using Eqgs. (19), (8), and (9) that this is
equivalent to the usual gauge coupling to matter D”qﬁTDﬂq’):

3 T
D¢'D,p = [6”4» + Y (H)2U,0,, UM]
a=0
3
x [aﬂqs + Z(Hb)‘ﬂUba,lUZd)]. (40)
b=0

We can of course write down a similar coupling for the
fermions charged under the non-Abelian gauge group:

3
b=0

We note that because of BTGT invariance, couplings of
the form

> G (G b) (42)
S

cannot be written down because they violate BTGT
symmetry. There exists gauge and BTGT invariant terms
of the form

> Tr(U,U) (43)

that we might worry about. However, owing to their group
representation structure, these are constants and will not
contribute nontrivially in flat spacetime.

B. Perturbative expansion

Written in terms of the 64 fields of Eq. (5), the
Lagrangian is a power series in @4. For perturbative
computations, we only require a consistent truncation in
the coupling constant. The usual perturbation theory
proceeds through the identification

Ay = A (44)

Motivated by this and a need to truncate the power series of
Eq. (5), we make the change of variables

05 — 904 (45)

and expand perturbatively about g — 0. However, given
that Egs. (44) and (45) match only to linear order in g, the
perturbative expansion of the A, theory with g — 0 will
match the perturbative expansion of 64 theory with g — 0
only if we deal with composite operators.

For example, if we want to match the A} — gA#
perturbation theory to #4 — gf4 perturbation theory to
quadratic order in g, we must make the identification

egf'ea - 1 ABNQ

~ 2 ~
~ 90503 + T fIT0005 + 06 (47)

at least to quadratic order in g. We explicitly then see a
quadratic field identification with Aﬂ. In this case, a two-
point function in A, becomes

(AL ()AZ(Y))

- §hj< (31000 + Lol coosi o) + ..

<(B0p) + 4705 ) + ) ). (49

Although this nonlinearity seems undesirable from the
perspective of matching to ordinary non-Abelian field
theory perturbative expansion in terms of A,‘:‘, there may
be an advantage since it allows us to map nontrivial
composite non-local operator correlators in the language
of A} field in terms of correlators of the elementary 6
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correlator. We will defer the exploration of this feature to a
future work.
The power series can be explicitly written as

Lowge =L+ Lo+ Lo+ =Y Lo (52)
n=2

eV — 1148 _ where
At = [gf—-e] A (49)
‘ ’ . . AP
= 5904 + 2 pABC (GagB)oc Loy = =5(00:02)5" <8ﬂ859€ - (1 - E) 8"8’11%)’
— YuYa 5 n’a)Va
2 i (53)
+ L pABE FPEQROG (9307 + O(g). (50)
L — g FABC(grdr oA (5P OB (5 6C
With the proper addition of the gauge fixing term, Ly g7 (019,03)(0,0,)(0;6¢)
Eq. (32) takes the form _ ngBC <aﬂ5262 _ (1 _ é) 8”5’;9‘2)
1 1 -
‘Cgauge = _ZFA'IWF;\L/ - z_é:aﬂA:}ayAz/}' (51) X (8,,((8595)95)) (54)
With Eq. (46) the gauge boson sector becomes and
2 ~ ~ ~ ~
Loy = =5 FEARFECD (5502 (D,05) (9209 (9169
2 ~ ~ ~
— T FEAR FECD (3101) (9,05) 0 ((9:0€)67)
2 ~ ~ ~ ~
— T EARFECD (0.0 — 04 D104) (9)05) (9;66)07
=& pengren (o,(Groon) - (11 )o,(@onen) ) or (D200
8 ! ¢
2 - 1 ~ ~
- & pran peco (aﬂa;eA - (1 - E) avaga;}) 0,(086S(3L0P)). (55)

If gauge fixing is accomplished using the Faddeev-Popov
procedure, we can write down the ghost Lagrangian coming
from the delta-function involving the AQ in the usual way:

Lghl == —8”Z’AD£BCB (56)
= —QHAEBY, B 4 g BCHTACEAS (57

where A{ is given in terms of 6 explicitly in Eq. (46). To
second order in g, the explicit expansion is

Loy = —0"¢10,c* + gf 1€ 0504048 €
2
g Aa —
+ EfABEfCDE(aﬂéf})Qf@”cch +0(g%). (58)
The ghost field couples to the gauge sector with quartic

and higher power couplings unlike in the usual vector
potential formalism. If we formulate the path integral

|
measure in terms of A, and view the path integral in terms

of 64 as a change of variables, then there will be additional
ghost contributions from

S5AA
DA = D8, det [Bﬂi(x)} , (59)
59nz,b <y )
where sz. » stands for functions that are not annihilated by

0
ﬂaxa’

(H) (60)

The functional determinant can be written as usual as a
Grassmannian integral yielding an additional ghost
Lagrangian:

Loy = diO47dy = di0,0,0d} = —(94d3) 07 dy - (61)

where we define the operator
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| 148 -
o8 — [ / dte’ggb'f} (1", 3,

: { AD
+[A th dse(l_”t-ge'fftnge“"gﬂh'«f} (H")" (0,67) (62)

2
g g Ab
— |:5AB + EfABCGg + ngECeg'fEBD91L7)1| aﬂ

! I AD _
+ [/ dt/ dse<1_“)’-‘19b'-ftgf3e”-"eh'f] (0,02) + 0(g*). (63)
0 0

We next work out the explicit Feynman rule factors.

1. Gauge propagator

The inverse of the propagator in momentum space can be
written as

vas(p) = O iLe)
~iVaj (k) = W;ﬁ—@

—i(k*ky) 5B (k,,/%’,j— (1 —é) —kjc,ﬁ> (65)

——i5*P <5abk2k*ak— <1 —é) (k*ak)(k*bk)> :
(66)

(64)

where we define the star product as
kl *ak2 = (Ha);wk’llklé' (67)

The gauge propagator A28 (k) is given implicitly by

|
the solution to which is

—isAB kx k
_IAQII; (k) ka* k — <5ab - (1 - 5) kz ) ’ (69)
where the ie is the solution Feynman propagator

pole prescription. If we assume a diagonal basis for H¢
and a Wick rotation to Euclidean space, then this can be
written as

—iAMB (k) =

_is"B k k
e (w-a-0%2). o

In position space the propagator can be written as

AP (x - y) =/%

2. Cubic gauge self-coupling

HEDAM(K).  (T1)

For Feynman rules with momenta satisfying

ZV k)ASE (k) = 585, (68)  ky+ko+k3=0, the vertex function iVAEC(k|, ky, k3) can
be written as
|
P (iLy)
iVABC (ky ko k 0 72
are (k1Ko k) = G008 (k1) 0C (k) (72
= ingBC{5bc(k2*bk3)k1*a(kz —k3) + Ogc (ki x cks)ky k), (ks — ky)
1
+ ap (ky % pkr ez x o (ky — ky) + §5abc [ktky o (ky = k3) 4 k3koxy (ks = ky)
1 1
+h3ksx o (ki — ko)) — 2 <1 - E) [Ope (ki > oky ) kg%, (ky = k3)
s ks = )+ Bk = )] . (73)
If we assume a diagonal basis for H¢, then we get
2 1
VA ko) = i (Y Vi bk + (1 1)V b konko) ) (74)
=1
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with
((,lb)(, (k1. ka k3) = +kiakapkse(Spe (kaq
VEzLa)c(khkz,kﬁ +%5abc(k%kla(k2a
Vi ks) = =5 (8 s

Setting £ = 1 with the Feynman gauge simplifies calcu-

lations because Vg b)c can be ignored. Tree level £-dependent

vertex terms are an interesting distinction from the usual
vector potential gauge theory. The numbering here is
organized according to powers of A, that contribute to
these 0, vertices in the following way:

JABCOP AN ABAC — V(1) (78)

0,AL AN — V) (79)

1 1
1 —= |orA2PAL > (1 == | VO, 80
< 6) e ( 5) (80)

3. Quartic gauge self-coupling

The quartic vertex (or four € vertex) can be written as

iVABCP (ky. ky. ks ky)
— O*(iLy:)
004 (ky)008 (ky) 06 (k3) 007 (k3)

(81)

ABCD
lg (Z Vi (i)abed

where we define 8 terms as

+(1- )Z viER,) s2)

1
VIR = = 3 S EP8ucBhalkixoks) (Kax k) + perms.
(83)
1
?ggzﬁd =- Ef’,}Bng&bcd(k] * (k3 + ky)) (ka*pk3)
+ perms. 84
p
1
Vi abed = _Ef BfEP8aca(ki*pka) (ky% k3) + perms.

(85)

- k3a) + 5ac(k3b

— k3,) + k3kog (k3

— k3p) + Backz ko, (ks

_klb)+5ab(klc_k26)) (75)

_kla) +k%k3a(k1a _kZa)) (76)

- kla) + 5abk%ck3a(kla - kZa))' (77)

[

1
V?Iigblzd +§f fCDéab(scd(kl*bk2)(k1*5k3) - perms.
(86)
1
Visabed = +§f PFEPSavcaky + k2)? (ki % qks) + perms.
(87)
1
Visabea = +8f23f}gD5abcdk%(kl*ak4) - perms. (88)
1
V?litflﬁd = _gngngéubécd(kl *a(kl +k2))(k3*"(kl +k2))
+ perms. (89)
1
VAR, = = 10 £GPl ) k) + perms,
(90)
Here we are using the notation f48 = fCAB = fABC for

convenience. The numbering here is organized according to
powers of A, that contribute to these 6, vertices in the
following way:

[P FEPAMAPALAY — V) (91)
fABCB”AA”AEAE — V(z) + V(3) + V(4) (92)
@,AfaﬂAA” = Visy+ Vi (93)

(1 - é) AR AL (1 - %) Voy+ V) (94

Let us consider the evaluation of the permutations in each
of these terms.

Consider first V(). Note that since ABCD =
BADC = CDAB = DCBA, we get a symmetry factor of
4. This means we can write
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V?B%)Cd = —ngf ( acl (kl*ak3)(k2*bk4) - 5ad5bc(k1*ak4)(k2*bk3))
— FESEP (BupBealky % oka) (k3% cky) = 84a8pc (ky* oka) (kakpks))
—f/éDf ( abOca (k1% oky) (ksx cky) = 84c0pa(kyx ks) (kaxpky)). (95)
If we assume a diagonal basis for H¢, this simplifies further to
Vﬁfﬁd —kiakopksckaa(FEEFEP (8ucOpa — Saadve) + F2C T 2P (8apBed — Saadpe)

+fE fE <5ab5cd - 5ac5bd))’

which takes on a form proportional to the quartic A, vertex
in the usual formalism. Similarly, we obtain other seven
terms of the quartic BTGT vertex by writing the rest of the
permutations. The full results can be found in Appendix D.

C. Generating function for BTGT

The generating function for A, correlators in the usual
formalism is given by the path integral

- / DADeDc exp (iS[A,E, c]+i / d4xJ-A>,

(97)

where

S[A, ¢, c] = /d“x(—%FﬁyFAﬂ”
- 2i§ (0-A)? - 8”Z’AD;‘BCB> (98)

is the Yang-Mills action with gauge fixing and ghosts.
Now make Aj (x) = A2[0(x)] a composite operator as

specified by Eq. (25). This change affects both the action

and the path measure. The generating function is now

_ / DODEDeDaADde S A0 & iSunl0.d.d)+i 1l d4xJ-A[€]’
(99)

where d, d are the additional ghosts defined in Eq. (61) and
the additional ghost action is Sgy = [ d*xLgp.

(96)

I

We will now construct a generating function for corre-
lators of A, and 6,,. We define K7 as a source for 64 and
define the new generating function as

Z|J.K]
_ / DODEDeDAD e A0 el +iSulodd+i [ax(-Alol+Kiod)
(100)

In this paper, Eq. (100) will be our definition of the
quantized theory and this will be used to calculate both
the 6, and A, correlators. The difference from the gen-
erating function of the A, formalism shown in Eq. (99) is
that A, is now a composite operator in terms of 6, fields
and the path integral is now over 6, instead of A,. We will
find through explicit computations below that Sgy»[6. d, d]
(the action describing the ghosts coming from the trans-
formation from Af to #4) does not contribute to the
divergent structure (in dimensional regularization) in the
processes that we compute in this paper. It would be
interesting to elucidate this decoupling in a future work.

For perturbative computations, we split apart the Yang-
Mills action Eq. (98) in the following way:

S[A[0], ¢, c] = Sin|Al6)], €, ¢] +/d4x£92, (101)

where L, is defined in Eq. (53). Then we can rewrite all
powers of @, higher than quadratic as functional derivatives
with respect to iK,. The generating function Eq. (100) can
then be written as

Z10.K] = / DODEDDID e S AOEcHiSwl0dd)+i [ dxr-al) i [ dx(Lp+K20)

_ / DeDeDaDd e S Al el +iSu ed.d i [ dtxral) / Doe’ [ d*x(L K402

— Nl [ dixral] / DeDeDadDd e Sl &.cl+iSgnlrd.d] i [ dxdt KA (x0)ARE (x=y)KE ()
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where N is a normalization constant. Equation (104) is
what was used to derive the Feynman rules of non-Abelian
BTGT, which are presented in Appendix D.

IV. BETA FUNCTION COMPUTATION

In this section, we show that the beta function at one loop
for non-Abelian BTGT is

(105)

which is the same result as the usual A, formalism of Yang
Mills theory. This lends support to the quantum consistency
of the formalism and its faithful representation of the usual
non-Abelian gauge theory perturbative content. This result
is achieved by computing the renormalization constants of
the counterterms of the 6, and ghost quadratic terms and
the 6,cc ghost-gauge vertex. The relevant terms in the
Lagrangian are

1 -
£3-32p(0,00% -

”;eg)aﬂézeg
1 a

— Z:00,80" ¢ + Z 2009 1BC0, A B DL6S.

(106)

These renormalization constants are computed in MS
with d = 4 — ¢ dimensional regularization to be

2

Zp =14 4C(A) -+ 0(g), (107)
8rce
1 92 4
Zee=1+5C(A) 5=+ 0(g"), (108)
2 8re
2 7
Zypee = 1 +ZC(A) =5+ O(g*), (109)
3 872¢

which implies Eq. (105) since

(D1)AB = 02 W %

(D3)i? = 0a ~

k k
02 ~ B AP OF

FIG. 1.

(Dc.t.)gle =

Z 0 11 2
gOcce g 4

= =1-—C + 0 . 110
g ;52 N 6 ( )Sﬂ . (9 ) ( )

In the following subsections, we compute Egs. (107)—
(109). We display a large amount of details since this BTGT
formalism is new and how the formalism works is one of the
main results of this paper. For convenience we choose the
Feynman gauge £ = 1 and we assume a diagonal basis for
(H*),: (H),, = Guaguag™® (no sum over a). We will be
using the minimal subtraction scheme and dimensional
regularization with d = 4 — ¢ to determine the renormaliza-
tion constants. We will also be using the shorthand

J= [

In the computation below, many zeros appear for the
following reasons. In dimensional regularization, we utilize

the identity
/ v 1
(271.) f’th

where n > 1, k are integers and where as is customary, we
do not distinguish raised or lowered indices on Kronecker
delta functions whenever contextually the Lorentzian
metric information is irrelevant. Other diagrams are zero
due to the antisymmetric nature of f48€. Yet other diagrams
are zero due to the identity

- 6ab) = 5(117

(111)

o Gk, (112)

Sap(1 — 8, =0. (113)

A. Computation of Z; and Zéoz

The relevant diagrams are defined in Fig. 1. It is
understood that when we write symbols such as D; without
indices, the implicit indices are understood be of the form
(Dy)AB (k). The 6, self-energy can be written as

4
TP (k) =Y (DA (k) + (D )ag (k). (114)

(DZ)be =

Self-energy diagrams for 9,,.
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1. 0 self-energy diagram 1
Diagram 1 in Fig. 1 is given by

1 igVACP (k, £))(=i5E6,, ) (—isPT 8., ) (i VBEF —k,—¢
g = [ 52 OV O i0T a0 ws)
cdef 4 fc(f + k) (l’ﬂd + kd)
2 2 2
_ 9 cacp gBCD acdkfvbcd( k,=?) 116
2 ;;/ 4Zf2f+k2f2(fd+kd) (116)
2 2 N
= 2C(4)5* Yy (D), (117)
i—1 j=1
where in the last line we define the subdiagrams . ) )
_l/ v kakpCe(€a + ka)*Navea (121)
i) 1 [ d¢ VY (kO (—k.—2) 2) Qa)* 4y (6 + k) ECCq + ka)?
(D7) ap :_/ 1 n ) 2
2 (2”) cd 4 (Lﬂ—'— k) fc(fd + kd)
1 a*¢ Y. N
118 :_k k / cd*Vabed 122
(118) 27" | 2a)* (¢ + k)? (122)
The sums over i and j in Eq. (117) only go from 1 to 2
because (1 —%) Vibl =0 in the Feynman gauge. In the  Where the numerator is
general R; gauge, the sums in Eq. (117) would go from 1 to
3. Due to the symmetry of the diagram, we also know that Navea = (=6ca(2€a + ko) + 8aa( + 2kc)
+ 8uc(Ca = ka))(=604(2€), + kp)
GiNAB 1y (i) BA
(Dl )ab (k) - (Dl )ba ( k) (119) + 517(1({‘. + 2]{‘) + 5hc(£d — kd)) (123)
which means there are only three independent terms to . .
compute in Eq. (117). Summing over ¢ and d yields
We start with
> Napea = 106,64 + 5€,ky, + Skot), = 2k K,y
(D(ll)) :l d*¢ acd(k f)vbcd( —k, l/ﬂ) «d ) )
Lo Jab Q) & 2+ k) (C g + kg)? + (€ +2k)* + (£ = k)*)du (124)
(120) and applying this to Eq. (122) gives
|
(1) 1 10,6, + 5 kp + 5k ), — 2k ky, + (€ + 2k)? + (€ — k)?)S,,
D =—kyk 12
Oy = 3haks | A (125)
1~ 10¢,¢, + 5¢,k, + 5k, ¢, — 2k, k, 42k + (€ =k)?)g.
:—k’;kz/ ulo £ 50k kG, — 2k (E 207+ (2= 0N (126)
2 ¢ (¢ +k)

The momentum integral of Eq. (126) is identical to the one that appears the usual non-Abelian A, formalism. We can
evaluate it using the usual Feynman parametrization technique to obtain

-, @*+ (5 =2x+ 23k} g, — (2 10—102kk
@y — —k’;k/ / d + (5 =2x +2x°)k*)g,, — (2+ x — 10x%) (127)
2 (27) [¢* + x(1 = x)k?)?
We are only interested in the divergent part, which in dimensional regularization with d =4 — ¢ is
19 11 j
div((D{") ) = ( 12K25,, — Fk2k2) — : (128)
€
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which has the same form numerically as the usual non-
Abelian A, formalism.
We now compute

2 1
(P, =1 / 4t <~ Vioa (ke OOV (k=)
D2 ) Q) O+ KL+ k)
(129)
d
N
:_/ dfd 2 zazb 2 (130)
4 ) 2r)ie* (¢ + k) a6, + k)
where the numerator is
Nap = (8ap = Dkpla(€o + ko) (28} + k)
X (kzka(2fa +k,) - fzfa(fa + 2k,)
—l—(f—l—k)z(fg—kﬁ)). (131)

The divergent part of Eq. (130) is

B —=

. 2.1 i
le((Dg ))ab) = (501) - l)kb <4k2k%,5ab %> =0.
(132)

This is identically zero because of Eq. (113). Due to the
symmetry of the diagram we also know that

div((D{"?),,) = 0. (133)
Finally, we compute
(D(ZZ)) :1/ d't acd(k f)vbcd(k l’ﬂ)
b =2 ) )t P+ P+ R
(134)

¢ ny(k.O)ny(k.t)
Sacd®
8Z acd b”d/ n) 2+ K2 g+ ky)>

(135)
1 ait ng(k,2)?
-5 a 136
8 “b/(Zn)dfz(f—i—k)zfﬁ(fa—i—ka)z (136)
where
n,(k,0) = k*k, (26, + k,) — *€ (¢, + 2k,)
+ (€ + k) (€5 - ka). (137)
The divergent part of Eq. (136) is
: 22 i (5
(D] )) = gy (300800 ). (139

After summing the contributions from the subdiagrams
given by Eqgs. (128), (132), (133), and (138), we find that
the divergent part of the first diagram is

div((Dy)AB) = C(A) =75 7 (49 iABK2K25,,,

11
—iSBR2R2 ).
877 \ 12 6 “b>

(139)

2. 0 self-energy diagram 2

The second diagram is given by

1 [ d*¢ —i5,.,66P
(D2)Af __/ 4 l §d2
@ 2] 2r)t4 22

Jivipep k.0
(140)

VABCC (k.—k.£.~C)

d4f la CC
/ ZZ : e ;

the seventh and eighth terms of Eq. (141) do not contribute
because £ = 1. The following identity is useful in evalu-
ating the divergent part of Eq. (141):

_ d*e eyl , 't 1
le(/(zﬂ_)4 foZ ):5Na06Nb0d1V</(2”)4f2Lﬂg>

(141)

(142)

iDE (=1
= S.00N,0 —{i;))l;ﬁ (5) (143)
= 8y, 08x,0 <— ﬁ) . (144)

Since Eq. (144) is zero in dimensional regularization unless
N, = N, =0, we ignore any term in the numerator of
Eq. (141) that has any positive power of ¢ to find the
divergence. We need to ignore any term that has k3 = +7
or k, = —¢ since they are proportional to 7.

The divergent part of the first four terms of Eq. (141)
vanishes due to either Lorentz invariance or Eq. (144). The
only nonzero divergent contributions come from the fifth
term, which is given by

VABCC

(syabec =07 féCchéabc[(kl+k3) (ki = k3) vo(ky = k4)

+(ky + kg)*(ky —ky), o (ky — k3)] (145)

1
ngcfgc%hc((kl)zklmkz + (k)2 (k1) o (k2))
(146)

1
— — S TECo IR, (147)
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FIG. 2. Ghost self-energy diagrams.
and the sixth term, given by
1
V?[ffbc“ = gf‘écfﬁcéabc (kikiva (ks = k) 4+ Kksua(ky = k) + K3kaua (ks — ki) + kikgua(ky
+k%kl*a(k3 - kZ) + kik4*a(k2 - k3) + k%k2*a(k4 - kl) + k%kS*a(kl - k4)]

1
- gfécfgcfsab(k%kua(—kz) + Kkpea(—ky) + K3kyoo(—ka) + K3kouo(—k1))

— k)

(148)

2 AC £BC 212 where
= 4SSOk, (149)

Applying the results from Eqs. (147) and (149) to

1
DI =(-1) [ VP k) AP (b
P

Eq. (141) yields the following divergent contribution: 1
x~APE(p)igVy ™ (=k.p.p+K) (152)
1 P :
: ABy _ _ 1 AB 27,2
Aiv(Da)f) = =5 C) g o (87048 (150 g @D (FPhky (p+0) (P (=) )
(27) PP(p+k)?
3. 0 self-energy diagram 3 (153)
The ghost-loop diagram 3 of Fig. 1 receives contr%g%% S e eBCDr dp (p+ k)# Py
tions from the ghosts of Eq. (57), which we label as D5 =g* fACD fBCED (—kakY) (22) 4w
and the ghosts of Eq. (61), which we label as D gth)‘ =PP
(154)
h1)\AB h2)\AB
(Da)af = (D)5 + (DY), (151) and
(k — k)fBPCs k—p—k
(Dgghz))ab _( 1 /f acd p) a(p+ )f bdc( p )*ap (155)
(pe+k)*p
? -k k 2k
= —g—C(A)5A35ab/ (pa a)(pa + a)(zpc;+ a)pa (156)
4 P (Pa +ka)’p
Using the usual Feynman parametrization, the integral of Eq. (154) becomes
d’p (p+k),p, i 2 1 1
= — [ dx|—-= 1 —x)k> = x(1 — x)k,k finit 157
[ G r e st =8 1 -k, ) + i 7
i 1 1 -
= 5 ( 12k G — gkﬂku) + finite (158)
and therefore
pleiyA 92 1 1
div((D¥ )a ) = i"BC(A) =5 = (12k2k25 b= k2k2> (159)

6
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The divergent part of Dgghz) in dimensional regulariza-
tion is zero because of Eq. (112) for n = 3:

div((DE)2%) = 0, (160)

As noted before, it is interesting that the ghosts arising from
transforming A7 to 62 do not contribute to the divergent
structure here. Combining these results, we conclude that

. # (1 1
div((Dy)4B) = i5ABC(A )gﬂ £<12k2k25ab+6k2k2>

(161)

This ghost contribution will be important for restoring the
transverse structure of the gauge boson propagator.

4. O self-energy diagram 4
Similar to diagram 3, diagram 4 of Fig. 1 describes ghost
contributions to the propagator. These however do not have
any external momenta flowing through the ghost lines. Just
as in diagram 3, this has a contribution coming from the
usual gauge-fixing ghost and the ghost associated with
transforming the field coordinates from A% to 64:

hl1)\AB h2)\AB
(Dy)AF = (D)L, + (DE)e,.  (162)

We find the first ghost contribution to be

h1)\AB d4P
o)y =1 [

. 1
i*Vay " (k. =k, p,p) - AP (p)

(2m)*
(163)
B gf fABEfCCE5 bzkapa
~ g [ or (164)
=0 (165)

and the second ghost contribution to be

( gh2

(D4 i Vansl (k. —k. p. p)

x lACD( p) (166)

_—ig

fACEfBCE(sabC((p+k) ap+ (P k) ap)
Pa

(167)

) 4 2
_ "YW cacE BCE § /d_pZP” 168

Using the identity Eq. (112), this also vanishes:

div((D{");,) = 0. (169)
Therefore, we conclude
div((Dy)2f) = 0 (170)

and thus there are no external momentum independent
ghost contribution to the divergent structure of the 6
propagator in dimensional regularization.

5. O self-energy counterterm

The counterterm diagram yields

(Do )AE = —igh® ((zaz )RS, — K2)

1
+3 <Z;92 - 1> kzkl%)

__igB ((zgz C1)RK26,, 4 (zégz _z92> kgkg) .
(172)

(171)

To have a finite self-energy, we require the divergent parts
of these diagrams to cancel out. The sum of Egs. (139),
(150), (161), and (170) is

4
. 5
dlv(zl (D );},f) is"BC(A )&T ; <4k2k25 b — 3k2k2>

(173)
and therefore the renormalization constants are
Z 1 7
e =1+4C(A) == (174)
8rle
and
7 92
Z%gz =1 +§C(A)%. (175)

It is interesting that despite the nontransversality of the
divergent part of the € propagator seen here, the divergent
part of the usual gauge field propagator when computed in
the BTGT formalism will maintain transversality, as we
will demonstrate below.

6. Comment on Zéez

Note that
ZHZ 5 g2 ZAZ
Z: = =14+-CA)——=Z, = 176
¢ Zéﬁ)z +3 ( )871'28 42 Z%Az ( )
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where Z,» is gauge kinetic renormalization constant in
the usual gauge theory formalism. This is a nontrivial
check of the theory. It shows that &z = Z:£x has the
same scaling behavior in BTGT as in the usual formal-
ism. It is interesting that while Z% 42 = 1 to all orders in g,

Z%(gz — 1 # 0. This does not indicate a violation of gauge

invariance because the gauge fixing parameter & (para-
metrizing the coefficient of the gauge fixing chosen to be
of the same form as in ordinary gauge theories with
Af — A4[0)) is still renormalized by the same renormal-
ization constant of Z: as in the ordinary gauge theory
formalism and Zg # Z 4.

Another nontrivial check of the formalism would be to
calculate Z g and Zé 4 and check that they satisfy

Z 5 g2

=1 C
Zlg93 +3 ( )871'28

+0(g*) =Z:, (177)

but we defer this to a future work.

B. Computation of Z;,

The renormalization constant Z;. is determined by the
ghost self-energy. The one loop diagrams that contribute to
the ghost self-energy are given in Fig. 2.

The first diagram in Fig. 2 is

( ) _ QZfCADfCDBZ/

2
+p-7
- 2CA5AB/4P
g () ffz(f+p)2

=Cep)le(Ce+pe)
2% £+ p)>

(178)

(179)

1 1
= 2C(A)6ABpZA dx(l—x)/q[q2+x(l_x>p2]2.
(180)

The divergent part of this is

aiv((D)) = - L ca) o (=igtp?). (181

4 )5+ k) (s +a) (Ve (k. 6) + V) (k. £))

The second diagram in Fig. 2 vanishes identically
because of the antisymmetric property of fC¢PE:

TPV ARG IDIC (GRS
5cd6CD
_922@‘, B¢, +C.)pe S (183)
=0. (184)
The counterterm diagram is given by
(Do )M = =i(Zee = 1)8"7 p?. (185)

In order to make the ghost self-energy finite, we find that

2

—+ 0(g*). (186)

1
Zee = 1+-C(A)-L_
8re

2
Note that Eq. (186) is the same result that is obtained in
the usual computation with Ay fields. This is most likely

part of a general result discussed in more detail in
Sec. IV D.

C. Computation of Z,,;,

Let us now compute the 6,-ghost interaction in our
continuing efforts to derive Eq. (105). The relevant dia-
grams are defined in Fig. 3.

One of the surprises in the computation below will be
that the first diagram D, of Fig. 3 vanishes. This is in
contrast with the case in which 65 is replaced by AZ.
Another interesting aspect of the computation will be that
diagrams D5 and D, each violate the BTGT symmetry in
the divergence, but their sum has a cancellation that thereby
preserves the BTGT symmetry.

1. Ghost-0 vertex diagrams 1 and 2
Diagram 1 in Fig. 3 is given by

(DI = g FEnpPoepery / & AT R, T (187)
= (0"),% + ()" (188)

where we have denoted the VE;;)f contributions as D(I") which we will evaluate separately. Through the identity
fAEF fEBD (FDC — _ ¢FE ¢ED (DF _%fABCC(A), (189)

the first contribution can be written as
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(D1)25¢ = (D2)3P¢ =
(D3)g B¢ = (Da)g B¢ =
(Ds)gP¢ = (De)aP¢ = 4
(Dc.t.)aABC =
FIG. 3. Ghost-@ vertex one loop diagrams.
( )ABC fABCC Z/ qu ff +kf)(ff +Qf) ae)f(k f) (190)
(4 k) + q)* ey + ky)?
——g—3fABCC(A)k /Qu(f"i_‘I)'(k_l’ﬂ)_(fa"i_‘h)Q'(Z’ﬂ+2k>+<2bﬂa+ka)Q'(f+Q) (191)
“ (¢ + k) (€ + q)? '

A divergence only occurs when the numerator is at #2 or higher powers in #. There are no terms higher than #> and therefore
the maximum degree of divergence is zero. This means that we can ignore the dependence on the external momenta in the
denominator:

) 3 ) £-q)t,—1%q,
a(0})1%) = = poccpan (| A0t ) (192)
__¢ 3,
— - L ek, (-5 (199)
= 2 C4) L (10", (194)
- 8 8”28 g aqa N

The second contribution to this diagram is

)
( )ABC fABCC Z/ eqe ff‘i_kf)(ff—i_qf)‘/aef(k f) (195)
2+ k) (€ + q)* 2ty + kp)?
1 3 rABC / (kzka<2fa+ka)_fzfa(fa+2ka>+(f+k)2(?’ﬂ3_ki»
=—q C(A Co(ly+ k) . 196
J91CA g, [ 2a(a+ k) (ot a0) PN P T (196)
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The divergent part evaluates to

div((D\);") = =

a
Summing these contributions together gives

3 3

aiv((D)7) = (+5 -3 ) ) o (17 *CH) 0.

8 8

(197)

(198)

The result of the diagram D, calculation with 62 replaced with A,’} is equivalent to Eq. (194) (see e.g., [44]). The
difference between this result and Eq. (198) is a manifestation of how @4 is different from A;‘.

Diagram 2 is given by

VIR (=t + p.q)VaPE (k. £ + k)VEEC(£ = p.£)

ABC 32/

_ g3 fFBD fADE fFECZ /

and the divergent part of this diagram is therefore

2

AV((D)37) = 45 C(A) Lo (i7" K,,).

(202)

The 1/8 coefficient here is obtained when we replace the ¢4
with A7 in the usual gauge theory.

2. Ghost-0 vertex diagram 3 and 4

Diagram 3 evaluates to

(D%)ABC

_ 93 (fa + ka)z_fq‘fff
?C(A)fABCkaA (I/ﬂ—F k)ZbﬁZ(l/ﬂ_ p>2 ’

_ /ZVADBE (k.—¢:q.¢+ p)VI"(¢:¢ + p.p)
-7 P2(¢ + p)?

(203)

3fADfBEfDECZ/ wilka +C4)qaC a4+ pa)

5252 f+]?>
(204-)
1 (f + k) (f + pa)
— 2 AC(A) FABC a al)t a\la a 205
49 ( )f Qaé /2(f+p)2f§ ( )

and after integrating, we find the divergent part is

(€ + kP26 = p)(¢r = ps)? )
~Cs + pp)arka(Ca + k) (s = ps)ts

(4 k)22 (¢ — p)* ¢y — py)? 200

(201)

[
2

1 g 1 1
1) = 1€ o 10 (ke + 32 ).

le(<D3 a 877; .

(206)
Diagram 4 evaluates to
(Da)a"¢

=g / > Vet (=3q.¢ + p)Vad " (k.65 + 4. p)
(¢ +q)°

(207)

~2494)04a(ka—=C4)(€a+q,)

3 fDBE fAD fEC / Z

2 (+q)* "
(208)
1 Cally—k)(Co+q4)
— P C(A) fAEC / o Falfa T 9a) (509
39 €A | 2+ q (209)
and the divergent part is
(D) = L () L (igr ) gk - 22,
¢ 4 8n’e ava
(210)

Even though the divergent parts of D5 and D, separately
lead to new counterterms that would violate BTGT and
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gauge invariance, their sum does not. The BTGT violating
term proportional to g2 cancels and we are left with

2

V(D)4 + (D3)379) = C(4) T (iaf 1<, k,).

(211)

This contribution does not have an analog in the ordinary
gauge theory formalism in which there is no quartic
coupling of the gauge sector to the ghosts.

3. Ghost-0 vertex diagram 5
Diagram 5 in Fig. 3 is given by

)ABCZQZ/V‘:}dDeE k 4 VDE;BC( £, f—l—kq,p)
¢ 2 2+ k)P, +C,)?

(k.€)q(2¢ 4+ k,)

ABC add qalsl gTKy
214
A Z/fz(ﬁrk)%ﬂ (Za+kg)? (214)
= (D)2 + (DP)a"C. (215)

We find that
div((D{)27) = o, (216)
2
aiv(D) = 2 C(4) L (igf " q,k,),  (217)
2 8n-¢e

and DS) =0 in the Feynman gauge. The total divergent
component of this diagram is thus

(212)
ADE DE _ 3 2
Oy LGB E IR G 20k i) = = ca) o ank). (218)
24~ )¢ CHE+K)>O(E,+1C,)? 2 8n’e
(213) Diagram 6 in Fig. 3 is
|
Vfl\dZD Bk, ¢, p.q)
6)ABC = = %Z/ f2f2 (219)
d
1 S BCO FDDAk £ FDADf_k
— _932/ llddqufF ( +fG G ( az—'_z ) +f ( )) (220)
127 = J, oty
— P FC ), [ o (221)
1277F ¢ ), 2
|
The divergent part turns out to be formalism. Thus, as mentioned at the beginning of this
section where we embarked on an explicit computation of
div((Dg)ABC) = +1C( A) 7 (igfABCq.k,). (222) the beta function, it is gratifying to see that the 64
3 8¢ formalism can be used to reproduce the perturbative results
A . . .
4. Counterterm and the conclusion of the explicit of the 4 for'mahsm. The true. physics advantagf.: of using
. . the non-Abelian BTGT formalism has yet to be discovered,
computation of the beta function ) . ; ) ‘ .
) but its existence is expected since simple correlators in 64
The counterterm is will map to nonlinear and nonlocal Aff correlators.
(Dc.t‘)/z.:BC ( gbce — 1)(lg Achaka) (223)

After summing the contributions from Egs. (198), (202),
(211), (218), and (222), we immediately find the renorm-
alization constant

2 2
Zygee = 1 +2C(A) =2—

0(g").
30 g2+ 0

(224)

Hence, we have finally accomplished our computation of
the Z, given by Eq. (110) using the non-Abelian BTGT

D. Callan-Symanzik equation and the beta function

Here we give another perspective on the beta function
computation which we have explicitly carried out in the
previous subsections. We expect the correlator (¥¥) to be
independent of the gauge formalism chosen for any matter or
ghost field ¥ because the change from the A, formalismto 8,
formalism does not depend on W. In other words, assuming

(225)
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and using the Callan-Symanzik equation

8 8 31nZ§ a aanl{ny ST\
8ln,u+ﬁ(g)8_g dlnp 9 Olnp (¥%¥) =0,

(226)

we infer that
BN (g) = 9 (g). (227)
zM =77, (228)

and

Zgy = Zigy- (229)

Even more generally, the anomalous dimension of any
matter or ghost field should be independent of the gauge
formalism.

V. COMPOSITE OPERATOR CORRELATOR

One of the key differences of non-Abelian BTGT from
Abelian BTGT is the appearance of the nonlinearity in the
map between the@? variable and the ordinary gauge field
A# variable. Hence, any Aj[6] correlator computation in
ordinary field theory turns into a composite operator
correlation computation beyond the leading order in the
coupling constant expansion. To demonstrate explicitly that
we can recover the gauge dynamics of A;‘ at the quantum
level using the non-Abelian BTGT formalism, we give in
this section an example of the requisite composite operator
renormalization. We will find that the transverse divergent
structure of the two-point function is recovered only after
including the composite operator renormalization, indicat-
ing the self-consistency of the formalism and that ordinary
gauge invariance is not spoiled by the nonlinear field
redefinition and the BTGT symmetry. We will also show
in this section that there is a sufficient number of counter-
term coefficients to preserve finiteness of both 64 and A2
correlators without spoiling the gauge and BTGT sym-
metries, lending further evidence that the 64 theory is a
consistent rewriting of the A//j theory.

More explicitly, define the two-point momentum space
Green’s function by

GAB(k) = / dxe=* (A (x) AB(0)) (230)

s 5 -
_ d4 —ik-x Z|J,K
/ T i6IRA (x) 67 (0) : ]J:O,K:O

(231)

where Z[J,K] is the generating function defined in
Eq. (100). The difference from the usual generating
function Eq. (99) is that A, is now a composite operator

in terms of @, fields and the path integral is now over 6,
instead of A,. Using dimensional regularization with
d =4 — ¢, we will demonstrate below that the divergent
part of the momentum space Green’s function for A, is
transverse and exactly the same as the typical formulation
before introducing counterterms,

. 5 g 1 9w k,k,

+ diV((Dc.z.l)ﬁf + (Dc.t.Z);\f + (Dc.t.S)ﬁyB)-
(232)

Furthermore, after introducing counterterms, we will find
that both (6765) and (A2Af) can be made finite without
changing the symmetries of the theory. The details of the
(A4Af) computation are presented below.

This calculation simplifies significantly when using the
Feynman gauge. This is due to the gauge propagator
becoming diagonal in the BTGT indices, which greatly
simplifies the sums.

A. Tree level

The tree-level diagram for the two-point A, correlator in
the Feynman gauge is

TE @@ TP = Y ik ) a8 1) (i)

a,b
(233)
) 5AB ]Ea]},(j
= —172 = (234)
5AB
=iy > (HY), (235)
.5AB
= —1 7 gl”/ (236)

as expected. The structure is essentially identical to Abelian
BTGT at this level of approximation.

B. Source operator terms

Next we consider the one-loop diagrams determining the
composite operator counterterms. The diagrams involved in
evaluating (A4A%) at one loop are shown in Fig. 4.

The first diagram in Fig. 4 is given by

2

i)\AB
(D) = (D)

i=1

(237)

where i runs through the two possible terms of the 8° vertex
and
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(D)AE = Ji 77
(Dg)ﬁB %vvww@

T 7
(Ds)AZ = Jif 77
(Desa)if = Jit B ® I7

(Des)B = Jit @ dnn® J2

(De)4B = Ji ®N®M® J7

(Des2)B = Jit @R J7

FIG. 4. Diagram to compute the A,[f] two-point correlator. The blob in Dy refers to all 1PT subdiagrams and is proportional to the 6,

self-energy. A further breakdown is shown in Fig. 5.

A)(SABZ/ dr

2%+ k)VY) (k) R

baa
) 238
2O C, + ko) (€ + k)2 k2K? (238)
The 6* vertex in Eq. (238) can be written as
Via (k. €) = kplu(Za + ko) (Bap = )26, + k). (239)

Vbaa(k f) 2 ah(kz (qu =+ ka) - f2fu(fa + Zka)

+ (£ + k(% —k2)) (240)

where there is no sum over a or b. Using Eq. (239), we find

(D) A)&ABZkzkz

/ di¢ (2f;; + k,‘j)fa(fb + k) (€, — k)
(2r)4 O2O(C, + k) (€ + k)?

(241)

5ABZI;§ ]]ilz’ (25 5ab8 5 —|—f1n1te>

(242)

= 0 + finite. (243)

From Eq. (240), we find

(D(12>);1f 9 5ABZ e ( 12k") + f1n1te>
(244)
~ e 7 ( PrE ) + finite.  (245)
2 8n’e k?
Adding up the contributions gives
div((D,)A) = —%C(A) 8;"[228 G(sAB %) (246)

The symmetry between diagrams 1 and 2 of Fig. 4 is given
{A,k} <> {B,—k}, and we can therefore conclude without
computation

aiv(Do)A) =~ C(a) L <1_5AB gk—) (247)

8ree \ i

The third diagram in Fig. 4 is given by

1
o =3 3 [
bb cd

1 =
x 7Ag‘f(f)lk’;

92
g Ebzkzkz/ bce

OSSR (E A+ )

iPVEECD (ks k. €, ~) L AT (K)

(248)

+ (G 1K)

20
(249)
T (g | e
=+3 C(A) Se 76“‘3 k—”z + finite. (250)
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Since the fourth diagram in Fig. 4 must be the same as
D; up to {A, k} <> {B,—k}, we can immediately write

V(D) = +3.C(4) 8;’; G(sAB %) (251)

Diagram 5 in Fig. 4 is
1 g\? [ di¢
D AB _ J R
ot =33) [
AP (=22 — o) PP (27 + RY)
2L+ k) () + ky)? '

(252)

This momentum integral does not UV diverge ford = 4:1i.e.
div((Ds)42) = 0. (253)

C. 0 self-energy diagrams

Diagram 6 in Fig. 4 is the sum of all 1PI sub-diagrams as
shown in Fig. 5. Using the results of Sec. [IVA, we have

2 5
div(IT*8 (k) = C(A) %W <4k2k§5ab - §k§k§> (254)

where T148(k) is the 6, self-energy. The divergent part of
diagram 6 is given by

div(D)) = 3 (—il?,‘j)%A;‘:},’(k)div(inﬁfﬁ/(k))

a,b.ad b
- -
x 7Af/f (k) (iky) (255)
kiky
= _ZW idiv(IT48 (k)) (256)
a,b a
2
g 1 G  Skk,
= c(/x)%;af”’f<4k—”z—§ 24 . (257)

As expected, the divergences of Fig. 5 are completely
canceled out by the renormalization constants Z, and Z i

that arise from D, 5 in Fig. 4.

D. Renormalization

Adding up the contributions from the six diagrams of
Fig. 4, given by Egs. (246), (247), (250), (251), (253), and
(257) gives the divergent part of the two-point A correlator
before renormalization:

. AB g 1
div((D; =C(A) "~
DD = C) g
G  Skk,
AB( | 34+=44 ) - K
(i) -3
(258)
5 7 1 9w kK
=ZC(A)S—-88( 5 - LX),
3 <)87Z2€i <k2 k4
(259)

It has the expected transverse property and the same
numerical value as in the usual A, formulation. While
the k, k, term receives a contribution from only diagram Dg,
the g, term receives contributions from six diagrams D,
through Dg.

Now we need to renormalize both 8, and the composite
operator A,[f] and show that both correlators are finite
without introducing any counterterms that spoil gauge
invariance, BTGT invariance, or Lorentz invariance. The
composite operator counterterms in the Lagrangian are of
the form

Loy D (Zsp—1)J%0500 + (Zyse2 — l)ngBcJAﬂg)Zegec
T (260)

and to preserve BTGT invariance the counterterms have to
obey certain relations given by

Zy Z VARY:
Z) =2l = T S (261
z), Zele ZZY

where we have defined Z; to be the ratio of the bare source
Jo to the renormalized source J: Jy = Z;J.

+ IR RIP 4 JA @nniiann® JP

FIG. 5. Breakdown of (DG)//jDB from Fig. 4; they are equivalent to the 0, self-energy diagrams of Fig. 1.
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The Z;, counterterm occurs in diagrams D, ; and D,
of Fig. 4, which evaluate to

1

and

~ ~ Ta 1 . b
(Dot} = S (=ilZyo - VE) - AR (262)  Peaal’ = D _(=ik) 7 A (R)(i(Zo — DE)) - (265)
ab 1 a.b
1548 ok
= Zn-1) 0 (263) P
a a = (Z]g - 1) (-l 79/“/) . (266)
5AB
= (Zp—1) (—i 5 g,w>, (264) . _
k Using the results of Sec. IVA, we find
|
' po ]
(De3)if = Z — ik~ AM (k) < 5B <(zgz — D)K*k25,;, + (zlﬂz - Zgz>k3k§,> (267)
l 1 ¢
abd b
] B/B Th
x — A7 (k)ik,
i
ki 7 5 7
= P25 i ( 4C(A) =5 k*k268,, — = C(A) = k2k? o(g* 268
5 g0 (4000 i =€) i) + 00 (268)
> 548 5k,k
g g/uz uv 4
=CA)LH—— (42 +Z ) 26
< )87[28 i ( k? 3k4>+0(g) (269)
The divergence of all these diagrams cancel to make the two-point A, correlator finite:
6
aiv (G (1) = div (Y (D)LY + (Ducr ) + (e + (D) (270
i~
7 gZ ] ) 5AB
=0. (272)

The renormalization constant Z, is therefore

gZ

7
Zjp=1+—-C(A) =5+ O(g"). (273)
6 8n-e
Using this, Eq. (107), and Eq. (261), we see that
71/2 5 7
770 =" —14+ZC(A)-2- =2z (274
J Z_]@ + 6 C( ) 87'[28 + 0(9 ) A2 ( )

The self-consistency of the renormalization, zéfz/z 70

Z,:%,

coupling in the usual A’ theory being of the form

equals is as expected from the external source

L; 2 JrAA (275)

[
where AQ are renormalized fields, while in the BTGT for-

mulation the source coupling is defined with a composite
operator renormalization constant Z, as seen in Eq. (260).

VI. COUNTERTERM PREDICTIONS AND
SLAVNOV-TAYLOR IDENTITIES

The Slavnov-Taylor identities have yet to be formally
derived or shown to exist for the BTGT formalism. This is
an interesting area for future study. The one-loop calcu-
lations done thus far show that g and ¢ scale as expected,
and A scales as expected when written as a composite
operator of 8. Assuming that the symmetries in BTGT are
preserved in a way similar to the explicitly computed
processes in this paper, we state in this section a set of
concrete generalizations for the one loop counterterm
factors for the 0" vertex.
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We expect the BTGT formulation of the Slavnov-Taylor
identities to show that the following holds:

Zgn—Zém = Zz_zzgz/z (I’l Z 2), (276)

Zivgog = Z7'Z07°Z00°  (n22),  (277)
nn/2

Zpgee = ZeeZiZ)) (n>0). (278)

Based on calculated value in Eq. (174), the predictions are

22+n 7
Zgn—Zem == 1 + 6 C(A) 871-26 + 0(94) (n Z 2),
(279)
124 n 7
Lot p2gn = 1 C(A o(g* >2),
cgor = 1+ ) D 0lg) (n22)
(280)
34+n 7 .
Zgneni.c == 1 + C(A)i‘l’ O(g ) (l’l Z 0).
6 8n-e
(281)

We have explicitly computed the n = 2 case of Eqgs. (279)
and (280) and also the n = 0 and n = 1 cases of Eq. (281).
An interesting and nontrivial check of BTGT in the future is
the n = 3 case of Egs. (279) and (280), which is given by
the triple gauge 6° vertex diagrams. Also of interest is the
n =2 case of Eq. (281), which corresponds to the 6#>¢c
vertex.

The factors Z,, Z: and Z;. are unchanged by the choice
of using either the BTGT field 6, or the vector potential A,
to describe the gauge boson sector. We could have started
by assuming that the following relations would hold:

11 7

(9) (4) 4
Z, =7, =1——C(A 0] , 282
g g 6 ( )871_28"‘ (g*) (282)
) _ ) 5 g s
Z., ' =7;""=1+=-C(A)—+0 s 283
& & + 3 (A) Sile + 0(g") (283)
1 2
729 = 7% — 1 1~ ca) L+ o(gh, (284)
2 8¢

where Z(9) is calculated in 6, formalism and Z“ in the A,
formalism. Therefore, Z. is the only a priori undetermined
parameter in Eqgs. (276), (277), and (281). Since we have
done four computations and there was only one a priori
undetermined parameter, we have done three independent
nontrivial checks of the gauge invariance of this theory at
one-loop level. This result gives us confidence that gauge
invariance in the BTGT formalism is preserved in pertur-
bation theory.

VII. CONCLUSIONS

We have constructed a non-Abelian basis tensor gauge
theory (BTGT) which gives an alternate formulation of
usual non-Abelian gauge theory in terms of the vierbein
analog for ordinary gauge bundles. For example, the basis
tensor that couples to matter transforming as N of SU(N)
has the representation N and has the Lorentz transformation
properties of a rank 2 projection tensor. To match the usual
gauge theory formalism, the basis tensor must satisfy
Eq. (17) and the couplings must be symmetric under a
nongauge symmetry called BTGT symmetry that is iden-
tical to the BTGT transformation of the Abelian case. To
have a simple match in the number of d.o.f. between the
ordinary gauge theory formalism and the BTGT formalism,
we have decided to choose the scalar fields 64 that
parametrize the basis tensor to be in the target space of
the gauge manifold just as in Abelian BTGT. As in the
Abelian BTGT case, the map between 6% is a nonlocal
functional of A/lf . More explicitly, 6, is a type of path-
ordered line integral of A,, and hence is related to Wilson
lines. However, unlike in the Abelian case, the map
between AE and 6% is nonlinear, where the nonlinearities
form a power series of the structure constants. This means
that any Aff correlator computation is a composite operator
correlator with respect to the 65 elementary field theory
requiring composite operator counterterms.

The Feynman rules for the one-loop order and O(g?)
computations were explicitly presented. We have tested non-
Abelian BTGT to one-loop and O(g?) (where g is the usual
gauge coupling), using &% are the elementary field d.o.f., by
computing the beta function of the gauge coupling and
finding it to be identical to the usual formulation. We have
also computed the gauge field 2-point function to the same
one-loop accuracy and found identical results as in the usual
gauge theory formulation. In particular, we found that the
UV divergent part of the correlator is transverse just as in the
usual gauge theory formulation. Furthermore, the composite
operator counterterms are sufficient to make both the Aff
correlator and 6 correlators finite.

Through these explicit computations, we have also given
several nontrivial checks that the renormalization constants
in the minimal subtraction scheme are identical to those of
the usual gauge theory formalism. Although we defer a
formal BRST construction for this theory to a future work,
the nontrivial checks indicate that there will be no insur-
mountable obstacles to its formulation.

Although the nonlinearities in the map between AE and
0S might make this choice of formalism seem unnecessarily
complicated, it is a natural choice from several consid-
erations. First, it leads to a natural match in the number of
functional d.o.f. of a gauge theory. Second, it is a
continuous deformation (as a function of group structure
constants) of a simple linear map in the case of Abelian
theories. Third, its semblance with nonlinear sigma-model
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parametrizations may allow several extensions of this work
using the techniques that have been developed for sigma
models. Fourth, the BTGT symmetry which stabilizes the
Hamiltonian and the gauge symmetry have elegant repre-
sentations given by Egs. (10) and (26). Note also that from
the perspective of having a nontrivial transformation that
may lead to new insights into the usual gauge theory
formulations, such nonlinear maps are more promising. On
the other hand, it is important to keep in mind, just as in the
usual sigma model parametrizations, this choice of using 8¢
is far from unique even though there is uniqueness of the
map between the vierbein-like field Gy (x)]75 (which 65
parametrizes) and the gauge field A, if we stipulate that the
gauged matter kinetic term be locally gauge equivalent to
that without a gauge field.

Many extensions of this work on BTGT theory beyond
explicit constructions of BRST formalism are self-evident.
To complete the tests of this formalism’s equivalence with
the usual Standard Model formulation, BTGT should also be
tested in the contexts of spontaneous symmetry breaking and
curved spacetime. Since this is a formalism most naturally
suited for exploring Wilson lines, it would be interesting to
reformulate the Fikonal phase re-summing soft gluonic
effects [45-49] in this formalism and investigate whether
any new insights or simplifications can arise. The enhanced
local nature of BTGT for dealing with nonlocal quantities
such as Wilson lines also suggests exploring its applications
in lattice gauge theory [50,51]. The gauge field representa-
tion i Uﬁ,‘j Uj; also is reminiscent of the sigma model
representation used in [52] to explore topological aspects
of the theories with spontaneously broken global sym-
metries. This suggests there may be a way to more
conveniently explore the topological aspects of gauge
theories using the BTGT formalism. The precise connection
between the generalized global symmetries of [53] and the
symmetries of BTGT remains to be clarified. For physics
beyond the standard model, it would be interesting to see if
the gauge fields can be interpreted as Nambu-Goldstone
bosons of a spontaneously broken theory since A, =

iU aé,‘j U} are suggestive of a sigma model.
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APPENDIX A: RELEVANT NOTATION

This section lists the various notations and conventions
used throughout this paper. The metric signature chosen
was

9w = diag<_’ +, -+, +) (Al)
If z//’(‘a) for a €{0,1,2,3} are 4 orthonormal Lorentz
4-vectors, we can write an explicit representation of the
projection tensors (H*)*, as

(Ha)”u = l//}(la)l//(a)ugua' (AZ)

The H* matrices are commutative.

Using these projection tensors (H)*,, we define the
following notation related to them. We define the tilde
notation as

Al = (HY)* A (A3)
to denote the contraction between H and any 4-vector A¥.
Note that A% = A because there is no covariant/contra-
variant distinction for the BTGT index unlike a Lorentz
index u. Also, we define the star product as

Ax,B = (H), A"B (A4)
for any two 4-vectors A* and B*. Using the tilde notation
defined above, we have the following identities:

Ax,B = A4B, = A,Bl = g, ALBY,. (A5)

We define the product of two Kronecker deltas as

Oube = OupOpe = 04cOpe = 040, TNO SUmM over a, b, c.

(A6)

moving to Euclideanized space via Wick rotation, we can
unambiguously define for any 4-vector p#

Pa =Wy Py (A7)
that satisfies
3
px.p=ps and Y p2=p>. (A8)
a=0

The group structure constant f42€ is defined by the Lie
bracket

[TA, TB] — ifABCTC (A9)

where T4 are basis elements of the Lie algebra such that
¢ are group elements for some function I (x). We take
the basis of generators such that f48¢ is completely
antisymmetric. Given this antisymmetry, we can define

without ambiguity the following:
AB — fC — fABC,

Note that f48 = fGA = fBC.

(A10)
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Note that Ref. [29] uses the notation of having the basis
tensor index ¢ of §¢ (with ¢ € {1,2,3,4}) instead of 6%
(with ¢ € {0,1,2,3}) as in Eq. (5). Also, the sign con-
vention for @ has been flipped between Eq. (23) of Ref. [29]
and Eq. (5).

In the Feynman diagrams, all momenta that flow into a
vertex are assigned a positive value.

APPENDIX B: THE RELATIONSHIP BETWEEN
NON-ABELIAN BASIS TENSOR AND
ORDINARY GAUGE FIELDS A,

Here we follow the equivalence-principlelike procedure
of [29] to construct the relationship of non-Abelian basis
tensor and the ordinary non-Abelian gauge field A, (x).

Start with a gauge frame such that the Lagrangian at
spacetime point x; looks like there is no gauge field (i.e.,
trivial Chern-Simons number vacuum):

Ly(x1) = 0,0°0"$* (x)).

We demand in this special gauge frame that the vierbeinlike
tensor field has the following value at point x;:

Gop(x1) = Sap(x1).

Upon making a gauge transformation to move to the
general frame, we have

(B1)

(B2)

p(x) = T (). (B3)
The gauge field in the new frame is
Dyb=5"'D,55"¢ (B4)
where
g = e0“0ITe, (BS)
Hence, we find
0up = 57'(9, — 1A, (B6)

where the right-hand side can be also be written in terms of

¢ as

0up =0, + 70,5 — ig™' A, (B7)
This implies
=157'0,5 - ig™' A5l (B3)
or equivalently
Ay (x) = =i[0,5(x1)]g ™ (x1) (B9)

which is pure gauge only at a single point x; and not for all
spacetime (just as in the Abelian construction).

We can use Eq. (B9) to find the map between G4 and
A,. Since G is defined to obey the transformation rule of

Eq. (3):

Gl p(x1) (1) = Gy p(x1)(x1) (B10)
where
$(x1) = gx1)P(x)). (B11)
This means
Glpp(x1) = Gy (x1)77" (1) (B12)

Similarly as in [29], choose 80,6‘(;) 5(x1) = 0. To solve for
the right-hand side of Eq. (B9), we take the derivative

[G(f)ﬂﬂ]m[a(lg]ml + [8(1G(f)/)’;4]m [g}ml =0. (B13)

Let
dimR

ks k x5
o% = Zf: )

where the &y are constant vectors in the group represen-
tation space. This allows us to rewrite Eq. (B13) as

(B14)

&[Gl [0ag)™ + £15)[0aGp )" [" =0 (B1S)
where
Eh1Gpl™ = [Gippl™ (B16)

Multiplying both sides by f?f) and summing, we find

> _Ehéin[Gal 0.9 —Z:‘f 104G (5™
f (B17)
to arrive at

Gy [0u9)" = ~[0.Gp™ g™ (BIY)

Require that the inverse of [Gp,]9" exists such that

[G=14)ba Gy = 5’1”5””. (B19)
Equation (B18) then becomes
(0.9 [77"" = = [GTH)P[0,Gp ). (B20)
After setting A = a, we sum over « to obtain
A, = i[G71)[0,Gy,] (B21)

where Eq. (B16) gives the explicit relationship to the basis
tensor as
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dim R

(G |7 = Z é?f) (Girpl™ (B22)
f

Equation (B21) can also be expressed in terms of derivative
of the basis tensor Gy, as

dim R

Aﬂ =i Z [G_la/j]bqgl(lf) [aaG(f)ﬁ/A]s (B23)
f

where one notes [G‘laﬂ]bqéf?f) is an object that satisfies the

identity
dim R
D (Gl (Gl = 676, (B24)
f

One can check that the non-Abelian basis tensor of
Eq. (5) satisfies Eq. (B19). Using the identity
d 1
Zrexp (o) = [ dyerp[(1-y)0()

dx
dO(x)
dx

for a matrix O, we can evaluate Eq. (B21) as

X

exp [yO(x)] (B25)

AR (x) = ST (([0LF771)CR (1" = 1)FBoc08)  (B26)

Cc

where f7 is a structure constant matrix having the compo-
nents (f7)AB = f/AB,

APPENDIX C: GAUGE AND BTGT
TRANSFORMS

In this Appendix, we derive an explicit expression for the
finite and linearized gauge and BTGT transforms of the 4
field. The key simplification occurs from the fact the 6}
parametrizes the group manifold. As a result U, = % has
a relatively simple transformation law governed by a first
order differential equation. The result is

U, - e"U,e%. (C1)
The BTGT symmetry can then be seen as a result of the
constant of integration. The BTGT symmetry in Eq. (C1)
can also be viewed as the symmetry inherent in the
covariant derivative as defined by

D,u() = ZUa(E)Z(UZ) (C2)

Let us start with the vector potential given by

(A =Y _(e®de ), = iy (U04UL),; (C3)

a a

where 0, = 02T* and U, = ¢'%. From now on the group
indexes i, j will be dropped and implied by matrix multi-
plication. In this Appendix, repeated lower-case Latin
indices will not be implicitly summed. Under an infini-
tesimal gauge transformation parametrized by I', we have

0AS = (H*) 6A, = [D4.T] = 94T — i[A4.T]

(C4)
where I' = 74T and D, = 9, — iA,,. In terms of U,, this is

8(iU,04U%) = 04T + [U, 04U, T (C5)

= U,04(UTU,)U}. (C6)
To first order in variations, unitarity implies sUL =
—UZéUa U} (which is equivalent to keeping all 64 real).
This can be used to reexpress the left-hand side of
Eq. (C6) as

8(U,05U%) = 8U, 04U, + U,04(8UL)  (CT)
= -U,0%(ULsU,)U;. (C8)

Combining Egs. (C6) and (C8), we arrive at the follow-
ing first order differential equation:

d4(=iULsU,) = 94(ULTU,). (C9)
The general solution to Eq. (C9) is
—iUysU, = UTU, +Z, (no sum over a), (C10)

where Z, is an infinitesimal zero mode that satisfies

EZZQ =0. (no sum over a). (C11)
Inhomogeneously transforming 6, by this zero mode is the
BTGT symmetry of Eq. (26).

Since —iU,8U,, is an element of the Lie algebra spanned
by T4 and U, is unitary, we choose the boundary
conditions of Eq. (C9) such that Z, = Z4T* for some real
components Z4 that each satisfy the zero mode equation.
Thus we have the result

—isU, U}, =T + U,Z,U}. (C12)
To solve for the components 564
—iSU U = —i5(ei%) e~ (C13)
(I . .
= / dte:50,,'1=1% = (C14)
0
(N :
= / dtei" 50 e~ (C15)
0
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..[[66,.6,].6,]..

1.0, (Cl6)

L

_ /‘ arS T 7o 7). 766

~ n!
- 657568 (C17)
where we made use of
e “Be® =1+ [B, (] +%[[B, Cl. (]
+é[[[B,C},C},C]+~-- (C18)
Note that
[TB,T¢] = TDfDB iTA(fC1)AB (C19)

[[TB, Tcl], TCZ] — i[TD, TCZ]fDBCI — iZTAfADCngBCI

— iZTA (fCQfCI)AB (CZO)
Using iteration it is straightforward to show that
[...[TB, T)...], TS| = i"TA(fC - - fC)AB (C21)
such that Eq. (C17) becomes
R 1 Sl "
_i P A B rCi .. pCyABgCr . oCuspB
isU, U, =T A dt;n'(f FEN)ABEST. .. 65568
L[t —1\AB
=T o0, C22
( f’ea > ‘ ( )
Another useful identity in solving for 664 is
U,Z, U} = ez, e it (C23)
=1
=Y —[[[1Z0.6,).64)...].6,] (C24)
n=0"""
=1
=T U 0 (C25)
an!
= TA(e/0)ABZE, (C26)

We can eliminate 74 from both Eqgs. (C22) and (C26) to

obtain
=N som _ pa
f : ga

From here, we can immediately solve for 564 as

-0, \AB -0, \AB
59‘2 = <ef'€u 1 e 4 m fo. (C28)

+ (ef0)ABZB. (C27)

Again, both T" and Z4 are infinitesimal parameters
in Eq. (C28).

Next, we will express the finite gauge and BTGT trans-
formations as a left and right multiplication of a group
element representation. Start by writing the condition for
oU, as

8U, = i(eTU, + U,eZ,) = e(iTU, + iU,Z,) (C29)

where we added ¢ to I' and Z to emphasize that the
transformation is infinitesimal. We can then rewrite the
infinitesimal transformation using the exponential map as

U,—> U,=U, +iel'U, +iU,eZ, (C30)
= (14 ieD)U,(1 + ieZ,) + O(€?) (C31)
= e U 6% + O(e?). (C32)

Next, if we apply the infinitesimal transformation twice, we
see

UZ — eiSFUﬁleiSZﬂ — eiereisTUaeieZaeiSZa — eZieFUaeQieza_
(C33)

Thus, we can then iterate this for N =
finite gauge transformation

1 times to obtain the

U, — e"U,e% (C34)

which gives an elegant finite gauge and BTGT trans-
formation expression. This can also be expressed as

u‘)a_)e elU,,ZU lé‘a_

(C35)

APPENDIX D: FEYNMAN RULES

The Feynman rules for non-Abelian BTGT are given in
the following figures. Figure 6 shows the propagators for
the gauge field 4 and ghost fields ¢* and d4. Figure 7
shows the first three 6" vertices that exist for all integer
n > 3. There are an infinite number of such vertices,
but they are suppressed by higher powers of the gauge
coupling g. The explicit form of the &> vertex is not given in
this paper because it was lengthy to show and was not
necessary for the computations shown in this paper. It can
be derived by expanding the Yang-Mills actions written in
terms of A[f] and keeping the 6° terms.

k AB kaky
0 B 0F = IABP () = T (sab—u— L
p
Al B _ 1AAB a1
¢ A%Z(p) = =64 —
o 1
Jf .................. de — 1AAB(p) 6ABF "
a

FIG. 6. Propagators.

085003-27



EDWARD E. BASSO and DANIEL J. H. CHUNG

PHYS. REV. D 100, 085003 (2019)

B
017
2

a

A S ky = igfABC (Zngg

f)fzg(? k1, ko, k3, ka) + (1

3

(klak2a k3) + (1 - > Va(l?c)(kl’k%k?)))

)z

35{25 kla kZ’ k37 k4))

FIG. 7. Gauge interaction vertices up to quartic order in 6.

=1
k3
0
07
Kk, YKo
0~ 9O =g (Z
kot ks
07
aA
?k =igfAB%, k¥
(_ZB ....................... ¢
< <
q p

_@6 AB £CD ~a kll'—k'll'
=5 wfE B Q,L( 1 %)

=ig®VABOPE (k) ko, ks; ¢, p)

FIG. 8. Ghost gauge vertices up to third order in 6.
0
‘9 ;ABCs -
GB e ? k ......... © o1 dabella (b =)
« <« ¢
q p

AB,C
2Vab€d b (k1,k2;9,p)

FIG.9. Additional ghost gauge vertices up to second order in 6.

Figure 8 shows the first three ghost gauge interaction
terms. Qualitatively, they are of the form V. ~ ¢"@"¢c for
alln > 1. Like in the case of Vg, there are an infinite number
of such vertices but are suppressed by higher power of g.

The composite operator A% [6] defined in Eq. (49) can be
computed using the vertices of Fig. 10. Renormalization leads
to the usual counter-term diagrams, given by Figs. 11 and 12.

1. Explicit vertex expressions

This section contains vertex expressions that were
defined in the Feynman rules figures. The #°cc vertex

VABCDE(kl,kZ,k3;C]) defined in Fig. 8 is

abc

V:?ZIECC DE ab(‘QﬂfDE (fFA BC(kl‘ kﬂ)
+SGPFE (K = 15) + fGEf 6" (K = KS)),
(D1)
TA(R) @ 0 = 4B
74
AL S S
ks g
0y
k2
T (k) P 05 =ig?VPOP (ko ks, Ka)
ky
07

FIG. 10. Composite operator vertices up to third order in 6.
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k k
04 ~~ BB OF =

p p
gA e PIITITTy B
p p
<
df .......... P d
FIG. 11.

1
—igAB ((292 — 1) (kK200 — k2Kk7) + i (Z%gz - 1) kgk,%)

= —i(Zg — 1)04Bp?

= —i(Zg4 — 1)6*P 64402

Quadratic counterterms.

. i 1
o Tk, = iggase (< 1) zv;bz gea-nv;:z)

k3
90
0y
ky Yk .
9&4 ! - OCC’ =1g ( 9264 -1) Z
ka& 73
07
0z
k
EB ....................... CC
- ——
q p
k
JA(k) Rrnenn 08
FIG. 12.

where the momenta are constrained to satisfy g = k;+
ky + k3 + p. The 0°dd vertex V47 -SP (ki ky; q. p) defined
in Fig. 9 with g =k, +k, + p is

Vﬁ[ljg[D _é ulndqﬂ( IgB CD(kM kg)
+ FECFEP (P = K5) + FRPFEC (P = KY)).
(D2)

The J6? vertex V' (ky. k3. ky) defined in Fig. 10 is

VAR = L 0,ca (PP 1P (R, — R4,) + FAC PP (R, — )
+ [P FEC (RS, — 15,)) (D3)
where the composite operator momentum is k = —k, —

ks — ky.

VABCD _ Z _ ABCD)
(i)abed 1 £9%04 (4)abed
i(Zgoce — 1)gf 4P, kl

= i(Zs0 — 1)64PK},

Interaction vertex counterterms.

2. Quartic vertex terms

Here, we are using the notation 6;.; = ,.0.4 Such as to
avoid confusion regarding summation. The quartic BTGT
gauge vertex in Fig. 7 is given by

6
i = e (3 VA kK ks )

i1
N3
+ (1 - E) Z V?,?g%?d(kh k. k3. k4)) (D4)
i—7

where the momenta k; must sum to zero. In a diagonal basis
for H“, the eight terms are given by

V??ngLd klak2bk3ck4d< 48 CD (5a05bd - 5ad5bc)
+ fgcfE (5uh50d - 5ad5b5)
+ ngfgc(éab5cd - 5ac5bd)) (DS)
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V?f;,f;ﬁd =- % {FEBFEP Bbeakra(ksq + kag)kap (ks — kap) + Sacakop(kap + kap)kia(kag — k3q)
Foapakac(kic + koo )kaa(kia = kaa) + Supckaa(kia + kaa)kza (k2o — k14)]
+ FE B Bpeakia(kaa + kaa)kap (kap = kap) + Sapaksc (kae 4 kae)kia(ksa = kaa)
+Bacakan (Kip + k3p)kaa(kia — ksa) + Sapckasa(kia + kza)kop (k3 — kip)]
+ fEP FE Bpeakia(kaa + k3a)kag(kaa = k3a) 4 Sapckac (kae + k3e)kia(ksa = kaa)
+Bacakan(kip + kap)kse(kie = Kae) + Sapaksc (ki + kae)kap(kap — kip)]} (Do)

Vi = %{féBng [Bucakivkankia(ksa = Kaa) + Obcakiakaakan (Kap — k3p)
+ Bapcksdkadksa(kia = kaa) + Sapakackackaa(koa — kia)]
+ LB [Bapakrcksckia (koo = kaa) + Speakiaksaksy (kap — kap)
+Oapckrakaakaa(kia = k3a) + Sacakopkapkaa(kza — ki4)]
+ fEP R [Bapekiakaakia (kg = k3a) + Spcakiakaakap (ksp — kap)
+Oapdkacksckaa(Kia = kaa) + Sacakapkspksa(kza — kia)]} (D7)

VABSbDLd = { CD5ub5cd[k1ak2a (klc - k2c)(k3c - k4c)
+k3ck4c(k1a = kaa)(ksa — ka4)]
+ FE B SacOpalkiaksa(kip — kap) (kap — kap)
+hapkap(kia = k3a) (kg = kag)]
+ [P FEPBaabpelkiakaa (kip = kap) (kap = k3p)
thapkap(kia = kaa) (kaa = k3a)} (D8)

V?l);acﬁ,d = 5abcd{ FBFEP (ky 4 ko) (ki — kog) (ksg — kag)
+ f?fcng(kl + k3)2(kla - k3a)(k2a - k4a)
+f12“ngC(k1 + k4)2<kla - k4a)(k2a - kBa)} (D9)

V?ﬁf;ﬁd 6abcd{f2"3ng[(k%klu - k%kZa)(le - k3a) + (k%kfvu - k421k4u)(k2u - kla)}
+ f?jcng[(k%kla - k%k?aa)(kéla - k2a) + (k%kZa - kézlkéla)(k?aa - kla)]
+ff]}ngC[(k%klu - k421k4u)(k3a - kZa) + (k%kZu - k§k3u)(k4u - kla)]} (D]O)

1
V??gbed =7 {ngngéubécd(kla - k2a)(kla + kZu)(k?ac - k4c)(klc + kZC)
+ fACfBD5ac5bd(k1a — k3,) (ki + k3a) (ko — kap,) (k1p + k3p)
+ 2P B8 0abpe (ki = kag) (kig + kag) (kap — ksp) (kyp + kap) } (D11)
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ABCD

VABCED = — L {F39 £ By K — k) + Bucahaa ko — i)
FOabakicksa(kaa = kia) + Sapekihaa(kia = k2a)]
+ [ LB [Bpeaktakin (kay = Kap) 4 Sapaki ksa(kag = kag)
+ Sacakipkaa(ksa = ki) + Sapckigkaa(kia = K3a)]
+ fEPFEC [Bpeaktokip (kap = kap) + Bapckigksa (ko — k3a)

+6acdk%bk2a(k4a - kla) + 5ahdk_%ck3a(kla - k4a)]}

(D12)
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