
 

Conformal vacuum and the fluctuation-dissipation theorem
in a de Sitter universe and black hole spacetimes

Ashmita Das,1,* Surojit Dalui,1,† Chandramouli Chowdhury ,2,‡ and Bibhas Ranjan Majhi 1,§

1Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
2International Centre for Theoretical Sciences, Bengaluru, North Karnataka 560089, India

(Received 30 June 2019; published 11 October 2019)

In the studies of quantum field theory in curved spacetime, the ambiguous concept of the vacuum state
and the particle content is a longstanding debatable aspect. So far it is well known to us that in the
background of the curved spacetime, some privileged class of observers detect particle production in the
suitably chosen vacuum states of the quantum matter fields. In this work we aim to study the characteristics
behavior of these produced particles in the background of the de Sitter (dS) Friedmann-Lamaître-
Robertson-Walker (FLRW) Universe (both for (1þ 1) and (3þ 1) dimensions) and (1þ 1)-dimensional
Schwarzschild black hole (BH) spacetime, from the point of view of the respective privileged class of
observers. Here the analysis is confined to the observers who perceive particle excitations in the conformal
vacuum. We consider some test particles in the thermal bath of the produced particles and calculate the
correlation function of the fluctuation of the random force as exerted by the produced quanta on the test
particles. We obtain that the correlation function abides by the fluctuation-dissipation theorem, which in
turn signifies that the test particles execute Brownian-like motion in the thermal bath of the produced
quanta.
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I. INTRODUCTION

In quantum field theory (QFT), the proper description of
physical vacuum is an interesting and longstanding ques-
tion. Probably the most straightforward answer to this
question is, “the vacuum is a no particle state” [1].
However, since 1970, consistent development of the studies
related to the observer dependence in QFT is suggesting
that the quantum measuring process, plays the most crucial
role to describe a no/many-particle state [1]. For instance,
an inertial measuring device, i.e., a detector/observer
records no particle excitations in the Minkowski vacuum
of a quantum field whereas a uniformly accelerated detector
records particle excitations from the same vacuum state
[2,3]. Therefore the state of the motion of the detecting
device is a significant factor in describing a physical
vacuum and is subject of consistent interest in theoretical
as well as experimental physics, since decades. However,
for Minkowski spacetime, there is a conventional descrip-
tion of the vacuum state, where the vacuum is defined with
respect to all the inertial measuring devices. On the other
hand in the curved spacetime, there are many possibilities
of the vacuum states corresponding to a quantum field, and

therefore one cannot define a unique vacuum state of the
field [1,4]. Therefore, physicists have almost agreed that for
a proper formulation of QFT in curved spacetime, we need
to discard the search for the notion of a unique vacuum state
and build up the formalism on the basis of the specific
choice of vacuum states. After selecting the specific
vacuum state, one can indeed obtain the Hilbert space
representation of the states, and subsequently define the
Fock space and the field operator, with respect to the choice
of the vacuum state. The different choices of vacuum state
produce different theoretical outcomes, and hence in the
studies of QFT in the curved background, the choice of the
vacuum state is of utter significance [1,4].
The search for a unique description of vacuum is

associated with the fact that the notion of particle content
in QFT is an observer-dependent concept. The state of
motion of the observer/detecting device, which is employed
to detect the particle excitations, plays the most crucial role
to define the idea of particle content in a state impeccably.
Even in the Minkowski spacetime, without the precise
knowledge of the detecting device, the concept of particle
content in a state is not accurately defined [1–3]. Therefore,
with time, the studies of the detection of particles with
respect to the different conditions of detecting device,
became much more popular than searching for the proper
notion of particle concept in QFT. Several pioneering
attempts have been accomplished in the literature [2,3,
5–11] to examine the phenomena of particle production
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from a specific choice of vacuum state, with respect to the
particular observer, in curved and as well as flat spacetime.
The important aspect of these works is the presence of the
“privileged class of observers,” which can detect particle
production from the certain “vacuum states.” In this context
some recent developments can be found in [12–20].
With the progress of these investigations of particle

production, some authors have taken further initiatives to
address a spontaneous question in this context that, “how
these produced particles behave, with respect to the
particular observer who is detecting their existence?”
[21–23]. The authors of [21], have investigated the random
motion of a moving mirror, which is immersed in a thermal
bath of massless scalar particles. They have calculated the
mean radiation reaction force on the mirror as exerted by
the scalar particles and the correlation function of the
fluctuations in the force about the mean value. From the
obtained correlation function, they have established that in
the nonrelativistic limit the motion of the moving mirror is
dictated by the fluctuation-dissipation theorem (FDT) [24].
Subsequently, in [22], it has been shown that, from the
perspective of a uniformly accelerated observer the test
particles which are released in the thermal bath of produced
particles in the Minkowski vacuum of a massless scalar
field, execute Brownian-like motion due to the random
force exerted on it by the produced particles. They also
have shown that the correlation function of the fluctuations
in the random force follow FDT.
Until now the quest for understanding the nature of the

produced quanta have been largely restricted to the back-
ground of the flat spacetime, whereas limited analyses have
been carried out to comprehend the nature of the motion of
the produced quanta in curved spacetime. Although, in
curved spacetime, the phenomena of observer-dependent
particle production (in a certain choice of vacuum state of a
quantum field) is a well-recognized phenomena [3,5–11].
For example, it is established in literature that in the
background of the spatially flat de Sitter FLRW spacetime
a comoving observer detects quanta of radiation from the
conformal vacuum of the scalar field. Similarly in the
(1þ 1)-dimensional Schwarzschild spacetime a static
Schwarzschild observer records particle creation in the
Unruh and Kruskal vacuum states (see [1] for further
references). In other words, one can comment that the
privileged class of observers will conclude the existence of
thermal spectrum from certain vacuum states, as they are
capable to detect the quanta of the field from the corre-
sponding vacuum state.
In this manuscript, we consider the phenomena of particle

production in a particular vacuum state in curved spacetime
and aim to analyse the behavior of the produced particles
from the perspective of the privileged class of observers.
We choose two important classes of curved backgrounds:
one is homogenous, isotropic and exponentially inflati-
onary Universe (both (1þ 1) and (3þ 1)-dimensional),

represented by the de Sitter FLRW metric and static black-
hole (BH) spacetime, represented by (1þ 1)-dimensional
Schwarzschild spacetime. Note that all of these spacetimes
are conformally flat. As a quantummatter field, we consider
the simplest of all, i.e., a massless scalar field, minimally
coupled with the curvature scalar of the background
spacetime.
For certain cases, particle production (in a specific

choice of vacuum state) can be intuitively interpreted
(by a particular class of observers) as if the produced
particles are immersed in a thermal bath of a specific
temperature. This temperature comes out to be the function
of the parameters of the corresponding curved spacetime.
Now, to study the behavior of the produced quanta of the
field in the curved spacetime, we drop some test particles in
the thermal bath of the produced particles. In principle, one
can find the force exerted by all the produced particles on
the test particles. Subsequently, determining the exerted
force on the test particles, one can proceed to solve the
force equations [22]. This would naturally lead to solving a
large number of differential equations due to the plethora of
produced particles in the thermal bath. In these circum-
stances, the idea of using statistical calculations may turn
out to be helpful [21,22].
Thus, at first, we define the force as exerted by the

produced quanta of the scalar field (which are basically the
produced particles in the thermal bath) on the test
particle. Due to a large number of the produced particles,
one can indeed realize that the force exerted by them
on the test particle is random by nature. In a phenomeno-
logical fashion, we identify this random force in terms of
the stress-energy tensor of the quantum scalar field.
Subsequently, we compute the fluctuations in the random
force and find the force-force correlation function. This
correlation function is evaluated with respect to the specific
vacuum state (where they were produced) and measured by
the particular class of observer. Our purpose of finding the
force-force correlation function is to understand the
impacts of the produced scalar quanta on the test particles
at different points in the thermal bath. This allows one to
draw some inference about the dynamics of the produced
particles.
With this setup, we obtain that in curved spacetime, the

correlation function of the fluctuations in the random force
follows the FDT. Therefore to the eyes of the observer (who
observes the particle production), the test particle released
in the thermal bath will execute Brownian-like motion, due
to its interaction with the produced particles. As the
correlation function of the fluctuations in the random force
obeys the FDT, the produced particles themselves start to
execute Brownian-like motion in the thermal bath. We also
calculate the dissipative coefficient corresponding to all the
cases which we have discussed in this manuscript. We
mention that the functional form of the dissipative force
corresponding to these systems is not known to us.
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Therefore finding the dissipative coefficient of the system,
in turn, may help us to build up the Langevin equation for
these kinds of setup, which we will discuss elsewhere. In
this regard, we mention that in the case of BH, Candelas
and Sciama [25] showed that the two-point correlation
function for the gravitational shear satisfies fluctuation-
dissipation theorem. Another work [23] can be brought in
this context where the author has generalized Starobinsky’s
seminal results on stochastic inflation by implementing the
effective action of scalar field fluctuations with wave-
lengths larger than the de Sitter curvature radius. As a
consequence, the infrared dynamics of a light in de Sitter
spacetime can be interpreted as Brownian motion in a
medium with a specific de Sitter temperature whereas we
shall see that our present picture is completely different
from this.
We organize our paper as follows. In Sec. II, we

introduce the concepts of conformal vacuum states and
the observers for both the curved spacetimes and review the
phenomena of particle production in curved background
briefly. Subsequently, in Sec. III, we develop the method-
ology of our work, where we define the force and the
correlation function of the fluctuations of the force. In
the next section, we implement the methodology to find the
correlation function of the fluctuation of the random force.
Then we analyse the property of the obtained correlation
function corresponding to the dS FLRW, Schwarzschild
BH spacetimes in Sec. V. Section VI contains the analysis
to find the dissipative coefficients corresponding to the
curved spacetimes of our interest. Finally, we conclude our
work in Sec. VII. Five appendices are provided for the ease
of our readers, where we explicitly calculate the renormal-
ized expectation value of the components of the stress-
energy tensor. These analyses are undoubtedly significant
in the context of the particle production in a specific
vacuum state of a quantum field in curved spacetime. Also,
an Appendix has been added at the end to summarize our
various notations. Remember that the signature of our
spacetimes is ðþ;−;−;−Þ through out the paper.

II. CONFORMAL VACUUM AND THE CONCEPT
OF PARTICLE FOR CONFORMALLY

MINKOWSKI SPACETIMES

This section will be dedicated to discussing the notion of
conformal vacuum and particle production for a class of
conformally flat spacetimes. We shall indicate the observ-
ers (frames) which are relevant to the present context as we
go along. Although such a discussion exists in literature, we
briefly review the relevant portions here. We shall find that
this section will act as the backbone of our main goal and
thereby initialise the flow of the paper. Moreover, it will
make the paper self-sufficient to a reader. For a more
elaborate discussion of these topics, we refer the reader
to [1].

A. Conformal vacuum and Green functions

It is well discussed in literature [1,4–7,15] that, if a
curved spacetime possesses some geometrical symmetries,
a particular vacuum state and mode solutions of field
equations and particle states can be defined in that curved
spacetime. In this context, one of the promising candidates
is a curved spacetime with conformal symmetry where in
particular, the spacetime is conformally Minkowski (con-
formally flat). Our aim here is to understand the definition
of vacuum and how the Green functions corresponding to
the curved spacetime can be evaluated by knowing those of
Minkowski spacetime. Note that this analysis is valid for
massless scalar fields only.
We start with a massless scalar field ϕðxÞ, nonminimally

coupled to the scalar curvature of a general curved
spacetime, as ξRϕ2, where, ξ is the coupling strength of
the scalar field to the Ricci scalar, R. R is defined with
respect to the original metric gab. Here ða; bÞ (i.e., the Latin
alphabets in lower case), stand for all the spacetime
coordinates x≡ ðt; x̄Þ. We perform a general conformal
transformation of the metric gab, as following,

gabðxÞ → g0abðxÞ ¼ Ω2ðxÞgabðxÞ; ð2:1Þ

where ΩðxÞ is known as the conformal factor. Due to this,
the determinant of the metric tensor, inverse metric,
curvature scalar, will modify accordingly [1]:ffiffiffiffi
g0

p
¼ ½ΩðxÞ�D ffiffiffi

g
p

; g0ab ¼ ΩðxÞ−2gab;
R0 ¼ ΩðxÞ−2Rþ ðD − 1ÞðD − 4ÞΩ−4Ω;aΩ;bgab

þ 2ðD − 1ÞΩ−3Ω;abgab; ð2:2Þ

where D stands for the number of spacetime dimensions.
The conformal transformation of the spacetime metric also
affects the scalar field present in this curved spacetime.
Therefore, to obtain a canonical kinetic term for the scalar
field, the field itself has to be redefined through a conformal
transformation, as,

ϕðxÞ → ϕ0ðxÞ ¼ Ωð2−DÞ=2ðxÞϕðxÞ; ð2:3Þ

along with the other changes as described in Eqs. (2.2).
Now, if we impose that the action for a massless, non-
minimally coupled scalar field, has to be invariant under the
conformal transformation [as in Eq. (2.1)], the nonminimal
coupling strength can be uniquely fixed as,

ξ ¼ D − 2

4ðD − 1Þ ; ð2:4Þ

which vanishes for the special case D ¼ 2.
In this present work, we consider that due to the

conformal transformation, the original metric gab trans-
forms to that of Minkowski spacetime as follows,
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gabðxÞ → Ω−2ðxÞgab ¼ ηab ≡ g0ab; ð2:5Þ

where ηab symbolizes the metric corresponding to
Minkowski spacetime. For a transformed metric (which
is that of Minkowski spacetime), the modified scalar
curvature becomes trivial and is, R0 ¼ 0 and the other
quantities follow the changes as described in Eq. (2.2) with
Ω replaced byΩ−1. Similarly, the scalar get modified due to
the conformal transformation as,

ϕ0ðxÞ ¼ ΩðD−2Þ=2ðxÞϕðxÞ: ð2:6Þ

Here the scalar field ϕðxÞ corresponds to the original metric
background (i.e., gab) and we denote uk̄ðxÞ as the positive
frequency mode solutions of the corresponding field. The
positive frequency mode solutions uk̄ðxÞ will also remain
the same for the conformally transformed scalar field ϕ0ðxÞ
[1]. Consequently, the creation and the annihilation oper-
ators (a†

k̄
and ak̄) become the same for both the fields.

Furthermore the vacuum state, defined by ak̄j0i ¼ 0, also
becomes a unique choice of vacuum state for both ϕ and ϕ0
[1,5–7]. Therefore, for the field ϕðxÞ, one can define a
suitable vacuum state which emerges naturally due to the
conformal symmetry of the curved spacetime, and popu-
larly known as the “conformal vacuum” (denoted as, j0i).
In this connection we mention that the Green function
Dðx; x0Þ of the massless scalar field, as evaluated with
respect to the conformal vacuum of the scalar field in the
conformally flat spacetime gab ¼ Ω2ηab, is related to that
(DMðx; x0Þ) for a massless scalar field located in its
Minkowski vacuum (denoted as, j0Mi) in flat Minkowski
spacetime [1]. In general, this relation can be written as,

Dðx; x0Þ ¼ Ωð2−DÞ=2ðxÞDMðx; x0ÞΩð2−DÞ=2ðx0Þ: ð2:7Þ

Later we shall use this relation to find the required Green’s
function for a spacetimewhich connected to the Minkowski
spacetime through a conformal factor.

B. Classic examples of the conformally flat spacetime

Here we shall introduce the examples of curved space-
times which can be expressed as conformally flat spacetime
by going into a new coordinate system. We briefly explain
particular examples which are relevant for our main
analysis.
(1þ 1)-dimensional FLRW Universe: We initiate with

(1þ 1)-dimensional spatially flat FLRW spacetime. The
(1þ 1)-dimensional field theories provide significant pre-
dictions to formulate QFT in higher dimensions due to the
analogy between the (1þ 1) and (3þ 1)-dimensional QFT
[1]. Upon using the conformal transformation as, η ¼R
t
0

dt0
aðt0Þ and Ω ¼ aðηÞ, the (1þ 1)-dimensional FLRW

metric reduces to the conformally flat to Minkowski
spacetime as,

ds2ð2Þ ¼ dt2 − a2ðtÞ½dx2� ⟶
η¼
R

t

0

dt0
aðt0Þ
a2ðηÞðdη2 − dx2Þ; ð2:8Þ

where aðtÞ is the scale factor of the Universe and η is
known as the conformal time. It is evident from Eq. (2.6)
and Eq. (2.7) that for D ¼ 2, there is no contribution from
the conformal factor, appearing in the transformation of the
scalar field and as well as the Green function. Therefore the
scalar field remain same as the original metric background
and the Green function Dðx; x0Þ turns out to be same as the
Green function DMðx; x0Þ, in (1þ 1)-dimensional space-
time. This type of metric has been considered earlier in
several situations to study the particle production phenom-
enology (e.g., see [1]; also see Sec. 3.1 of [26] for a
recent study).
(3þ 1)-dimensional FLRW Universe: Another example

of the curved spacetime with conformal symmetry is the
(3þ 1)-dimensional spatially flat FLRW metric. After
performing the conformal transformation as in the previous
case, the (3þ 1)-dimensional FLRW metric reads as:

ds2 ¼ dt2 − a2ðtÞ½dx2 þ dy2 þ dz2�

⟶
η¼
R

t

0

dt0
aðt0Þ
a2ðηÞðdη2 − dx2 − dy2 − dz2Þ: ð2:9Þ

For D ¼ 4, the scalar field transforms under conformal
transformation as, ϕ0ðxÞ ¼ ΩðxÞϕðxÞ and the modification
in the Green function becomes,

Dðx; x0Þ ¼ Ω−1ðxÞDMðx; x0ÞΩ−1ðx0Þ: ð2:10Þ
(1þ 1)-dimensional Schwarzschild BH: We urge to cite

(1þ 1)-dimensional Schwarzschild spacetime, as another
example of curved spacetime which can be re-
duced to conformally flat to Minkowski spacetime. The
Schwarzschild metric can be written in its usual form as,

ds2S ¼
�
1 −

rs
r

�
dt2 −

�
1 −

rs
r

�
−1

dr2: ð2:11Þ

Here, rs ¼ 2M is the Schwarzschild radius and M is the
mass of the BH. Performing the coordinate transformation
as, r� ¼ rþ rs ln ð rrs − 1Þ, the above metric reduces to the
conformally flat metric to Minkowski spacetime with the
coordinates ðt; r�Þ. Further performing another coordinate
transformation as,

ū ¼ −4Me−
u
4M; v̄ ¼ 4Me

v
4M ð2:12Þ

the metric reduces to the following form,

ds2K ¼ rs
r
e−

r
rsdū dv̄: ð2:13Þ

Here, tþ r� ¼ v, t − r� ¼ u are the null coordinates. In the
two-dimensional Schwarzschild spacetime, the scalar field
will remain unchanged under the conformal transformation
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and the Green functionDðx; x0Þ comes out to be same as the
Green functionDMðx; x0Þ. Same metric as in Eq. (2.13), has
also been considered in [1] to study the phenomena of
particle production in different vacuum states.
Note that here we shall discuss (1þ 1)-dimensional

situation for both FLRWand BH spacetimes. These models
have been considered purposefully. There are a couple of
reasons for this. First of all, (1þ 1)-dimensional cases are
simple and analytically solvable. Second, as far as particle
production and thermal behavior of field modes are con-
cerned (like temperature), this study almost complementary
to the system in actual higher dimensions. Therefore, the
outcomes in (1þ 1)-dimensional spacetimes also provide a
close understanding of the results of higher-dimensional
spacetimes. For example, it is well known that in the
derivation of Hawking radiation, it is very hard to define the
wave functions corresponding to a quantum matter field in
the spacetime geometry of a collapsing body. Therefore, to
define the mode functions of the field, a two-dimensional
spherically symmetric spacetime metric is considered in
order to depict a shrinking ball of matter [1]. It is stated in
[1], that working with two-dimensional spacetime is also
beneficial in terms of the renormalizability of the theory at
all spacetime points. Similarly, the phenomena of particle
production and the origin of thermal bath in a particular
choice of vacuum state can be realized in a simplified
manner in the background of (1þ 1)-dimensional cosmo-
logical spacetimes such as FLRWmetric as in Eq. (2.8) [1].
So it is obvious that (1þ 1)-dimensional studies require
special attention, and indeed this has been the case from the
very beginning of the quantum field theory in curved
spacetime. Two-dimensional Schwarzschild case has been
extensively studied starting from particle production to
Hawking radiation (e.g., see [27]). In this regard, it may be
mentioned that the Schwarzschild metric (2.11), can be
obtained as a solution of dimensionally reduced dilaton
theory from (3þ 1) to (1þ 1) dimensions [28]. Moreover,
there is a physical justification of considering a metric like
(2.11), which is as follows. It is well known that the theory
of fields in the background of (3þ 1)-dimensional space-
time reduces to conformal theory on an effectively (1þ 1)-
dimensional background of the form identical to (2.11)
[29–32], in the near horizon region. Incidentally, this
effective metric is sufficient to study the emission of the
particle from the horizon [30,31], since the emission of the
particle, in general, is a near horizon phenomenon. These
utilities and simplicity of (1þ 1)-dimensional theories,
have led us to investigate the behavior of the produced
particles in the thermal bath, by considering (1þ 1)-
dimensional spacetime as our model background. Of
course, investigations in (3þ 1)-dimensional spacetime
will lead to more detailed information about the system
which we leave for the future. As a beginning, here we
concentrate on some simple situations. In this regard, it
may be worthwhile to point out that there are other types of

BH solutions existing in (1þ 1) dimensions [33–35] whose
thermal behavior can also be investigated similar to our
approach.

C. Relevant observers and particle detection

So far we have discussed that the conformal vacuum is a
natural choice of vacuum state in conformally flat curved
spacetime. However, one needs to be more careful before
jumping to any conclusion as, it is nowhere mentioned in
the above discussion, that what is the state of motion of the
measuring device which is employed to detect the particle
states. Here we shall discuss the same for the above three
spacetimes.

1. de Sitter universe

In the literature [1,5–7,11,15] a “privileged class of
observers” have been defined in the FLRW spacetime,
known as comoving observer. Comoving observers see the
homogenous and isotropic expansion of the Universe with
respect to their proper reference frame, where the comoving
coordinates are represented by (t, x̄). The particle produc-
tion in the conformal vacuum can be established by
implementing the idea of the monopole interaction of a
point-like Unruh-DeWitt detector and a scalar field, located
in its Minkowski vacuum [1,3,36]. Due to this monopole
interaction, the power spectrum/response function of the
comoving detector turns out to be related to the two-point
correlation function of the scalar field, i.e., the positive
frequency Wightman function Gþðx; x0Þ, evaluated with
respect to the conformal vacuum of the field [1,8,10]. For
the dS Universe, the scale factor of the Universe is
aðtÞ ¼ et=αd , where αd ¼ H−1, is known as the inverse
Hubble expansion rate. The conformal and the comoving
time is related as: η ¼ −αde−t=αd and ΩðxÞ ¼ aðηÞ ¼ αd=η.
In (1þ 1) dimension the positive frequency Wightman

function corresponding to the massless scalar field in
conformally flat spacetime becomes,

Gþ
ð2Þðη; x; η0; x0Þ ¼ −

1

4π
log ½ðη − η0Þ2 − ðx̄ − x̄0Þ2�: ð2:14Þ

Similarly, from Eq. (2.10), the positive frequency
Wightman function for (3þ 1)-dimensional FLRW space-
time turns out to be,

Gþðx; x0Þ ¼ −ηη0

4π2α2d½ðΔη − iϵÞ2 − jΔx̄j2� ; ð2:15Þ

where we use the known expression for the Green function
with respect to the Minkowski vacuum of a massless scalar
filed in Minkowski flat spacetime, which in (3þ 1)
dimension varies as, ∼ − 1

4π2½ðΔη−iϵÞ2−jΔx̄j2� and for (1þ 1)

dimension is same as that of the Eq. (2.14).
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The response function has to be evaluated with respect to
the proper frame of the comoving detector. Therefore, we
consider, jΔx̄j ¼ x̄ − x̄0 ¼ constant ¼ 0, and in the back-
ground of FLRW spacetime, the proper time (τ) of the
comoving detector coincides with the coordinate time (t).
Therefore, one finds the response function per unit time of
the comoving detector in both the (1þ 1) and (3þ 1)
dimensions varies as [1],

F ðΔEÞ ∼ g
e2παdΔE − 1

; ð2:16Þ

where g is a prefactor, which in (1þ 1) dimensions
becomes 1

ΔE [see chapter 4 of [37] for detail discussions]
and in (3þ 1) it is given by ΔE

2π , with ΔE is the difference in
the initial and the final energy eigenvalue of the comoving
detector. Therefore a comoving detector in the dS Universe
detects thermal spectrum (i.e., particle excitations) in the
conformal vacuum of the scalar field in conformally flat
spacetime. The temperature of the bath, T, is related to the
curved space parameters as, T ¼ 1

2παd
, where the Boltzmann

constant (kB), Plank’s constant (ℏ) and velocity of light (c)
are set to be 1. Additionally, we mention that the above
observation can also be realized by calculating either the
vacuum expectation value of the number operator or the
vacuum expectation value of the time-time component (i.e.,
Ttt) of the energy-momentum tensor of the corresponding
quantum field, with respect to the conformal vacuum. For
completeness, we evaluate the renormalized expectation
value of the Tt

t component of the stress-energy tensor with
respect to the conformal vacuum in Appendix A. Indeed,
we obtain a nonzero finite energy density corresponding to
this temperature, which signifies the particle production in
the conformal vacuum from the point of view of a
comoving observer.

2. (1+ 1)-dimensional Schwarzschild spacetime

We consider a massless quantum scalar field in the
background of (1þ 1)-dimensional Schwarzschild space-
time where, as similar to the FLRW spacetime, some
vacuum states of the quantum field emerge naturally.
These vacuum states are known as, Boulware vacuum
(j0is), Kruskal vacuum (j0iK), and Unruh vacuum (j0iU)
[1]. For a detailed discussion of the emergence of these
vacuum states and its significance, we refer our readers to
[1]. These vacuum states act as the conformal vacuum in
the present discussion in their respective coordinate sys-
tems; i.e., j0is in ðu; vÞ, j0iK in ðū; v̄Þ, and j0iU in ðū; vÞ.
Proceeding similarly as in the last section, one can study
further the behavior of these vacuum states with respect to a
particular observer by using the technique of detector-field
interaction.
Following the discussion for Schwarzschild spacetime as

in Sec. II B, the positive frequency Wightman functions,
evaluated with respect to the Boulware, Kruskal, and Unruh
vacuum states can be written as [1],

Gþ
s ðx; x0Þ ¼ −

1

4π
ln½ðΔu − iϵÞðΔv − iϵÞ�; ð2:17Þ

Gþ
Kðx; x0Þ ¼ −

1

4π
ln½ðΔū − iϵÞðΔv̄ − iϵÞ�; ð2:18Þ

Gþ
Uðx; x0Þ ¼ −

1

4π
ln½ðΔū − iϵÞðΔv − iϵÞ�: ð2:19Þ

Consider the trajectory of a particle detector to be constant
r, say r ¼ R. The proper time in this frame is dτ ¼
ð1 − 2M

R Þ1=2dt. The response function of the detector, while
the quantum scalar field is located at j0is, reduces to zero,
i.e., the detector records no particle excitations in the
Boulware vacuum state. The response function per unit
time of the detector in case of the scalar field at Unruh
vacuum and Kruskal vacuum turns out to be thermal by
nature, as similar to Eq. (2.16). The temperature of the
thermal bath becomes, TU ¼ ½64π2M2ð1 − 2M

R Þ�−1=2 and it
can be shown that TU is related with the surface gravity (κ)
of the Schwarzschild BH, since, κ ¼ 1=ð4MÞ. In order to
realize the thermal spectrum in terms of the nonzero value
of the energy density in the corresponding vacuum states,
we evaluate the expectation value of Tt

t component of the
stress-energy tensor with respect to the Unruh/Kruskal
vacuum in Appendix B.

III. SETUP: DEFINITIONS OF MOMENTUM
AND FORCE-FORCE CORRELATION

In the upcoming sections, we examine the behavior of
the produced quanta in the particular vacuum state, from
the point of view of the privileged class of observer. We
follow the same procedure as adopted in [22], which is
reminiscent to an earlier work [38]. First, we define the
random force, exerted by these produced quanta on the test
particles, as measured by a particular class of observer. This
observer is indeed capable to detect the scalar field quanta
in the conformal vacuum. Subsequently, we calculate the
correlation function of the fluctuations of the random force
with respect to the chosen vacuum state. The force-force
correlation function carries the information regarding the
guiding principle, as followed by the produced particles in
the corresponding vacuum state.

A. Random force

It is well known that the physical velocity of a particle, as
measured by a comoving observer in FLRW spacetime, can
be expressed as viphys ¼ aðtÞ dxidt [39]. We generalize this
concept in order to define the momentum of a quantum
scalar field in the FLRW and BH spacetime. Therefore in
FLRW spacetime, we define the conserved three momenta
of these produced scalar quanta, in terms of the stress-
energy tensor of the corresponding field, measured by the
comoving observer, as following:
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Pα ¼ LnaðτÞ
Z

Ttαðτ; x̄Þδðx̄ − x̄DÞdnx ¼ LnaðτÞTtαðτÞ;

ð3:1Þ

where α symbolizes the spatial coordinates and n denotes
the number of spatial dimensions. Here t ¼ τ is the proper
time of the detector. We mention that all the Greek letters
except η, stand for the spatial coordinates of the corre-
sponding spacetime. Here we insert the Dirac delta function
in order to incorporate the information that the above
quantity is measured with respect to the coordinates xD ¼
ðt ¼ τ; x̄D ¼ 0Þ of the detectors. Hence the momentum
becomes the function of the proper time (τ) of the detector.
In the above equation, L is some length parameter of the
system which has been introduced in order to get the
dimensions right. This can be the size of the detector for our
present setup. Later on, we shall calculate all the quantities
in units of volume corresponding to this length parameter
and loosely call them as momentum, force, etc., So we
define our “momentum” (per unit volume) as

pα ¼ aðτÞTtαðτÞ: ð3:2Þ
For (1þ 1)-dimensional case, it would be per unit length.
Similarly, one can define the momentum associated with
the emitted scalar quanta from the Kruskal, Unruh vacuum
as measured by the detector in (1þ 1)-dimensional
Schwarzschild spacetime as

pr ¼
Z

Ttrδðr − rDÞdr ¼ TtrðτÞ; ð3:3Þ

where r symbolizes the radial coordinate corresponding to
the Schwarzschild metric.
The force as exerted by the emitted quanta of the scalar

field and measured by the comoving observer is defined
as,1

Fα ≡ dpα

dτ
¼ d

dτ
ðaðτÞTtαðτÞÞ; ð3:4Þ

and similarly for the BH case. In order to find the
correlation function of the random force, one needs to
define the random part of the force. This is defined as

RαðτÞ ¼ FαðτÞ − hFαðτÞi ð3:5Þ
where, hFαðτÞi symbolizes the vacuum average of the
force. Subsequently, the desired correlation function is
quantified as: h0jRαðτÞRαðτ0Þj0i.

B. Mathematical steps to obtain the correlation function

(i) For FLRW, the correlation function
h0jRαðτÞRαðτ0Þj0i can be written in terms of the
correlation function of the corresponding stress-
energy tensors as ∼h0jTtαðt; x̄ÞTtαðt0; x̄0Þj0i. We
find it more convenient to work with
h0jTηαðη; x̄ÞTηαðη0; x̄0Þj0i. For (3þ 1)-dimensional
spacetime, we transform Ttα to Tηα i.e., in terms
of the coordinates of the conformally flat spacetime
by tensorial transformation as follows,

Ttαðt; x̄Þ ¼ ∂t
∂η

∂xα
∂xβ T

ηβðη; x̄Þ

¼ ∂t
∂η δ

α
βT

ηβðη; x̄Þ ¼ ∂t
∂ηT

ηαðη; x̄Þ: ð3:6Þ

(ii) Upon using the explicit form of the stress-tensor
in the corresponding background metric and
implementing the Wick’s theorem, the correlation
function h0jTηαðη; x̄ÞTηαðη0; x̄0Þj0i, can be further re-
duced to the positive frequency Wightman function
of the scalar field, evaluated with respect to the con-
formal vacuum in the conformally flat spacetime.

(iii) We exploit the conformal symmetry of this curved
background and obtain the positive frequency
Wightman function of the massless scalar field in
the conformally flat background by using the rela-
tion in Eq. (2.7).

(iv) The correlator comes out to be the function of the
conformal coordinates, i.e., for example, (η, x̄) for
FLRW spacetime. Therefore, finally one needs to
transform the correlator in terms of the proper
coordinates of the comoving observer, i.e., ðt; x̄Þ
(for FLRW), by performing the coordinate trans-
formation and then obtain the desire correlation
function h0jRαðτÞRαðτ0Þj0i.

Similar steps also follow for the Schwarzschild case.
In the upcoming section we implement the described
methodology in order to find the correlation function of
the fluctuation of the random force in the context of the
(1þ 1) and (3þ 1)-dimensional FLRW spacetime and
(1þ 1)-dimensional Schwarzschild spacetime and also
explore the nature of the produced particles in the corre-
sponding vacuum state.

IV. CORRELATORS CORRESPONDING
TO THE RANDOM FORCE

Having the prescribed steps to evaluate the correlators,
we are now in a position to obtain them. In this section, we
calculate them explicitly for the cases under study in
this paper.

1This relation as of now is purely phenomenological. This
definition is applicable to all the curved backgrounds of our
interest in this present work, irrespective of the dimensionality of
the spacetime. It may be possible to give a microscopic derivation
of the same by modeling the interaction between the test particle
and the detector more robustly, however, this point shall be
addressed in a future work.
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A. de Sitter Universe

1. (1 + 1) dimensions

In (1þ 1) dimensions the only possible momentum
component is Ttx, which signifies the momentum along
the x-direction and corresponding FxðτÞ, is the force along
the x-direction. One can show that the renormalized
vacuum average of the force i.e., hFxðτÞi, turns out to
be zero, as hTtxðτÞi ¼ 0. We refer our readers to the
Appendix C, for a detailed analysis. Therefore the fluc-
tuation of the random force reduces to, RαðτÞ ¼ FαðτÞ.
Thus, the correlation function of the fluctuation of the
random force in (1þ 1)-dimensional FLRW spacetime
becomes,

h0jRxðτÞRxðτ0Þj0i

¼ d
dτ

d
dτ0

½aðtÞaðt0Þh0jTtxðt; x̄ÞTtxðt0; x̄0Þj0i�: ð4:1Þ

From this point, we follow all the steps as described
under the subsection III B. Thus in (1þ 1) dimension,
we obtain, Ttxðt; xÞ ¼ − αd

η T
ηxðη; xÞ ¼ 1

a3ðηÞTηxðη; xÞ and

subsequently, Eq. (4.1) reduces to the following form:

h0jRxðτÞRxðτ0Þj0i

¼ d
dτ

d
dτ0

�
1

a2ðηÞa2ðη0Þ f∂η∂η0G
þ
ð2Þðη; x; η0; x0Þ

× ∂x∂x0G
þ
ð2Þðη; x; η0; x0Þg

�
: ð4:2Þ

To reach the final expression of the above, see Appendix D.
Finally we use the proper coordinates of the comoving
observer, i.e., jΔx̄j ¼ x̄ − x̄0 ¼ constant ¼ 0 and t ¼ τ, in
the above correlation function. Upon using the Eq. (2.14),
and the explicit form of a½ηðtÞ�, the above equation
becomes

h0jRxðτÞRxðτ0Þj0i

¼ d
dτ

d
dτ0

�
e−

2t
αd e−

2t0
αd

4 π2
×

1

ðη − η0Þ4
�

¼ 1

26 α4d π
2

�
d
dτ

d
dτ0

�
1

sinh4 Δτ
2 αd

��

¼ −
1

26 α6d π
2
×
½5þ 4sinh2 Δτ

2 αd
�

sinh6 Δτ
2 αd

; ð4:3Þ

where, Δτ ¼ τ − τ0.
At this stage, we close the discussions on (1þ 1)

spacetime and proceed to the analysis of the same in the
context of (3þ 1)-dimensional FLRW spacetime. We
analyse the behavior of the correlation function [i.e.,
Eq. (4.3)] in the later parts of Sec. V. In Appendix E,

we explicitly calculate the correlation function of the stress-
energy tensor, using the Schwinger function. The result
exactly matches with the second last expression of the
Eq. (4.3). The exact equality of the two results which were
obtained via two different methods, strengthen our analysis
of force-force correlation in (1þ 1)-dimensional de Sitter
FLRW spacetime. Also it must be noted that the Schwinger
function cannot be implemented in case of the (3þ 1)-
dimensional FLRW spacetime. This is because, all the
results involving the same are only applicable for a specific
form of Tab ∼ ∂aϕ∂bϕ. In (3þ 1) dimensions, due to the
nonzero nonminimal coupling strength ξ, there would be
additional terms along with ∂aϕ∂bϕ, in the explicit form of
Tab [we refer to Eq. (A6)]. Therefore one fails to implement
the Schwinger function in (3þ 1)-dimensional FLRW
case.

2. (3+ 1) dimensions

In (3þ 1)-dimensional FLRW there are three component
of the force along the ðx; y; zÞ directions and accordingly
one needs to compute the momentum component such as
ðTtx; Tty; TtzÞ. For all three directions, following the similar
steps as above, one finds that the value of random force
correlator is same:

h0jRαðτÞRαðτ0Þj0i

¼ d
dτ

d
dτ0

�
1

a2ðηÞa2ðη0Þ
η2η02

6α4dπ
4ðη − η0Þ8

�
ð4:4Þ

¼ −
1

27 α10d ð6π4Þ ×
½9þ 8sinh2 Δτ

2αd
�

sinh10 Δτ
2αd

: ð4:5Þ

This is because the FLRW universe is homogeneous and
the isotropic, and hence any quantity in all directions
should be same. For details of the calculation, we refer to
Appendix D. The quantity Δτ symbolizes the proper time,
like that of the (1þ 1)-dimensional case. As stated earlier,
further analysis of the behavior of the correlation function,
i.e., Eq. (4.5), will be discussed in Sec. V.

B. (1 + 1) dimensional Schwarzschild BH

We observed that the static observer in Schwarzschild
coordinates would not see any particles in the Boulware
vacuum while in the other two vacuums the same observer
detects particles. Therefore, here we focus on finding the
correlation function of the fluctuations of the random force
by the produced particles in the Kruskal, Unruh vacuum, as
observed by this privileged class of observer in the
Schwarzschild spacetime.
Wewrite the Schwarzschild metric Eq. (2.11), in terms of

the Unruh coordinates ðū; vÞ:
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ds2U ¼
�
1 −

rs
r

��
−
4M
ū

�
dū dv; ð4:6Þ

whereas the same in Kruskal coordinates, ðū; v̄Þ takes the
form of Eq. (2.13). Following the discussions in method-
ology section, the Ttrðt; rÞ component of the energy
momentum tensor in the Schwarzschild spacetime can
be written in terms of the coordinates ðū; v̄Þ and ðū; vÞ.
Therefore Ttrðt; rÞ component reduces to,

Ttr
K ¼ 4M2

�
1 −

rs
r

��
Tv̄ v̄

v̄2
−
Tū ū

ū2

�

¼ 4r2
�
1 −

rs
r

�
e
2r
rs

�
Tū ū

v̄2
−
Tv̄ v̄

ū2

�
; ð4:7Þ

and

Ttr
U ¼ 1

4

�
1 −

rs
r

��
Tvv −

16M2

ū2
Tū ū

�

¼
�
1 −

rs
r

�
−1
��

ū
4M

�
2

Tū ū − Tvv

�
; ð4:8Þ

where, Ttr
K , T

tr
U are the stress-energy tensor of the scalar

field corresponding to the Kruskal and Unruh vacuum. The
above two equations are containing two parts: Tū ū corre-
sponds to the outgoing radiation flux while Tv̄ v̄; Tvv is the
ingoing radiation flux of the produced particles from the
respective vacuum states. Since the outgoing modes can
only be perceived by the observer in the Schwarzschild
spacetime, we concentrate only to the outgoing modes of
the Eqs. (4.7) and (4.8).
In case of the Kruskal vacuum the required component of

stress-tensor for the outgoing modes is,

4r2

v̄2

�
1 −

rs
r

�
e
2r
rsTū ū ð4:9Þ

and the corresponding stress tensor correlator becomes,

Kh0jTtr
Kðt; rÞTtr

Kðt0; r0Þj0iK
¼ 16r2r02

�
1 −

rs
r

��
1 −

rs
r0

�
e
2r
rse

2r0
rs

×
1

v̄2v̄02
h0jTū ūðū; v̄ÞTū ūðū0v̄0Þj0i

¼ 1

ð8Þ5π2M4

�
1 −

rs
R

�
−2

×
1

sinh4
	

Δτ
8M

ffiffiffiffiffiffiffi
1−rs

R

p

 : ð4:10Þ

To compute the above equation, we proceed similarly as
described in Sec. II C 2 and use the positive frequency
Wightman function as in Eq. (2.18). The trajectory of the
observer in the Schwarzschild spacetime, is set to be r ¼ R
(constant curvature) and τ symbolizes the proper time of the

detector in the Schwarzschild spacetime.Δτ symbolizes the
same as that of the earlier sections. Therefore the corre-
lation function for the fluctuations of the random force,
Kh0jRðτÞRðτ0Þj0iK , as measured by the static observer in
the Schwarzschild spacetime becomes,

Kh0jRrðτÞRrðτ0Þj0iK
¼ d

dτ
d
dτ0

�ð1 − rs
RÞ−2

ð8Þ5π2M4
×

1

sinh4
	

Δτ
8M

ffiffiffiffiffiffiffiffi
1−2M

R

p

�

¼ −
ð1 − 2M

R Þ−3
2π2ð8MÞ6 ×

h
5þ 4sinh2

	
Δτ

8M
ffiffiffiffiffiffiffiffi
1−2M

R

p

i

sinh6
	

Δτ
8M

ffiffiffiffiffiffiffiffi
1−2M

R

p

 : ð4:11Þ

We perform the same analysis in the context of the
particle production in Unruh vacuum and obtain the stress
tensor correlator for the outgoing modes as exactly same as
obtained in case of the Kruskal vacuum analysis, depicted
in Eq. (4.11).

V. NATURE OF THE CORRELATION FUNCTIONS

In this section, we focus on the examination of the nature
of the obtained correlation functions of the fluctuations of
the random force. Being motivated from the earlier dis-
cussions related to the moving mirrors [21] and the Unruh
radiation [22], we urge the reader to verify that whether the
produced particles in the curved backgrounds of our
interest as discussed in the present work follow the same
FDT. Before proceeding to the analysis, we provide a brief
description of the FDT, and for an elaborate discussion, we
refer our readers to [24].
For any general operator Ô the correlation function can

be written as,

KOðtÞ ¼ hÔðt0ÞÔðt0 þ tÞi; ð5:1Þ
provided the explicit evaluation of the right-hand side is
time translational invariant. With the above definition, one
can also define the symmetric and the antisymmetric
correlation function of the operator Ô as following [40],

Kþ
OðtÞ≡ 1

2
½hÔðt0ÞÔðt0 þ tÞi þ hÔðt0 þ tÞÔðt0Þi�

¼ 1

2
½KOðtÞ þ KOð−tÞ�; ð5:2Þ

and

K−
OðtÞ≡ 1

2
½hÔðt0ÞÔðt0 þ tÞi − hÔðt0 þ tÞÔðt0Þi�

¼ 1

2
½KOðtÞ − KOð−tÞ�: ð5:3Þ

With these above definitions, the FDT can be described as:
if the Fourier transformation of Kþ

OðtÞ, K−
OðtÞ i.e., the
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symmetric and the antisymmetric correlators in the fre-
quency space, satisfy the following relation,

K̃þ
OðωÞ ¼ coth

�
βω

2

�
K̃−

OðωÞ ð5:4Þ

the random function Ô, obeys the FDT. In the above
expression ω symbolizes the frequency of the correspond-
ing operator Ô in the phase space. K̃þ

OðωÞ, K̃−
OðωÞ

symbolize the symmetric, antisymmetric correlators in
the frequency domain. Here, β ¼ 1

T and T signifies the
temperature of the thermal bath of the produced particles.
Now, we examine the Fourier transformed version of the

correlation functions of the random forces in our cases and
symbolize KðτÞ ¼ hRσð0ÞRσðτÞi in the time domain. Here
the initial time is set to zero for the sake of simplicity and
this is admissible as the correlators are time translational
invariant. The Fourier transform of this quantity is

KðωÞ ¼
Z

∞

−∞
dτ eiωτhRσð0ÞRσðτÞi: ð5:5Þ

It is evident from Eqs. (4.3), (4.5), and (4.11) that the
obtained correlation functions are proportional to the
inverse of the even powers of sinh function.

A. de Sitter Universe

1. (1 + 1) dimensions

We begin with the Fourier transformation of the corre-
lation function Eq. (4.3) corresponding to the (1þ 1)-
dimensional FLRW de Sitter spacetime as following,

Kð−ωÞ ¼ −
1

26α6dπ
2

�Z
∞

−∞
dτ e−iωτ ×

5

sinh6ð τ
2αd

Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

þ
Z

∞

−∞
dτ e−iωτ ×

4

sinh4ð τ
2αd

Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

: ð5:6Þ

The above integral is of the form as I ¼ R∞
−∞

e−iρxdx
sinh2nðx−iϵÞ, and

widely used in the literature [41,42]. The integral can be
reduced to the compact form as follows,

I ¼
Z

∞

−∞

e−iρxdx
sinh2nðx − iϵÞ ¼

ð−1Þn
ð2n − 1Þ!

�
2π

ρ

�
1

eπρ − 1

Yn
k¼1

½ρ2

þ 4ðn − kÞ2�: ð5:7Þ

We use the above integral to obtain the integral of our
concern, as in Eq. (5.6). Therefore I1 and I2 turns out to be,

I1 ¼ −
1

4!

�
2π

ω0

�
ω02ðω02 þ 4Þðω02 þ 16Þ

eπω
0 − 1

;

I2 ¼
4

3!

�
2π

ω0

�
ω02ðω02 þ 4Þ
eπω

0 − 1
: ð5:8Þ

Here, ω0 ¼ 2ωαd. Using the above expression for I1 and
I2, we obtain Kð−ωÞ and KðωÞ as following,

Kð−ωÞ ¼ ω3ðα2dω2 þ 1Þ
12α2dπðe2παdω − 1Þ ;

KðωÞ ¼ ð−1Þω3ðα2dω2 þ 1Þ
12α2dπðe−2παdω − 1Þ : ð5:9Þ

In our parametrization the symmetric and antisymmetric
correlation functions can be written as,

KþðωÞ¼KðωÞþKð−ωÞ and K−ðωÞ¼KðωÞ−Kð−ωÞ:
ð5:10Þ

Therefore, using Eq. (5.9), the ratio of the symmetric and
the antisymmetric correlation functions turn out to be as
follows,

KþðωÞ
K−ðωÞ ¼ coth

�
2παdω

2

�
: ð5:11Þ

2. (3+ 1) dimensions

We proceed similarly in case of the (3þ 1)-dimensional
FLRW spacetime, and obtain Kð−ωÞ and KðωÞ as follow-
ing,

Kð−ωÞ ¼ 1

6α6dπ
3

ω3ðα2dω2 þ 1Þðα2dω2 þ 4Þðα2dω2 þ 9Þ
8!ðe2παdω − 1Þ ;

KðωÞ ¼ ð−1Þ
6α6dπ

3

ω3ðα2dω2 þ 1Þðα2dω2 þ 4Þðα2dω2 þ 9Þ
8!ðe−2παdω − 1Þ :

ð5:12Þ

Using the above set of equations one obtains the corre-
sponding KþðωÞ, K−ðωÞ and their ratio, which in turn
satisfies the relation as described in Eq. (5.11).
This implies that a comoving observer in (1þ 1) and as

well as in (3þ 1) dimensional FLRW spacetime observes
that the fluctuations of the random force, produced in the
conformal vacuum of the massless scalar field, abide by the
FDT. The temperature of the thermal bath of the produced
particles, as detected by the comoving observer is correctly
identified by comparing with Eq. (5.4) as 1

2παd
. We discuss

the physical implications of these findings in the upcoming
section.
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B. (1 + 1) dimensional Schwarzschild BH

In case of the BH spacetime, we proceed similarly with
the Fourier transformation of the correlation function [i.e.,
Eq. (4.11) which is same for Kruskal and Unruh vacua],
corresponding to the Schwarzschild BH spacetime, as
follows,

Kð−ωÞ ¼ ð−AÞ
Z

∞

−∞
dτ e−iωτ ×

5

sinh6
	

τ

8M
ffiffiffiffiffiffiffiffi
1−2M

R

p



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

þð−AÞ
Z

∞

−∞
dτ e−iωτ ×

4

sinh4
	

τ

8M
ffiffiffiffiffiffiffiffi
1−2M

R

p



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

; ð5:13Þ

where A ¼ ð1−2M
R Þ−3

2π2ð8MÞ6. Using the general expression as in

Eq. (5.7), we obtain,

I1 ¼
5qA
5!

2π

ω0
ω02

eπω
0 − 1

ðω02 þ 4Þðω02 þ 16Þ; ð5:14Þ

and

I2 ¼ −
4qA
3!

2π

ω0
ω02

eπω
0 − 1

ðω02 þ 4Þ; ð5:15Þ

where we have defined, ω0 ≡ qω, and, q≡ 8M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
.

Using, I1, I2 from Eqs. (5.14) and (5.15) in Eq. (5.13), we
obtain,

Kð−ωÞ ¼ Aq4π
12

ω3ðq2ω2 þ 4Þ
eqπω − 1

;

KðþωÞ ¼ −
Aq4π
12

ω3ðq2ω2 þ 4Þ
e−qπω − 1

: ð5:16Þ

Therefore, following the same method as we have imple-
mented in case of the FLRW spacetime, the ratio of the
symmetric and the antisymmetric correlation functions turn
out to satisfy the relation, as described in Eq. (5.4). This
signifies that from the perspective of an observer in
Schwarzschild spacetime the fluctuations of the random
force, produced in the respective vacuum states such as
Kruskal/Unruh vacuum, obeys FDT. From the above
relation one can identify the temperature of the thermal
bath of the produced particles from the corresponding
vacuum states as,

T ¼ 1

8πM
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q : ð5:17Þ

This exactly matches with the result obtained by the
detector response method, as mentioned earlier.

VI. FINDING THE DISSIPATIVE COEFFICIENT

So far we consider the fluctuating part of the random
force and after obtaining the correlation function of the
fluctuations of the random force, one can in principle also
obtain the dissipative coefficient of the corresponding
dissipative force. This correlation between the fluctuating
part and the dissipative component of the system in thermal
equilibrium is another way of stating the FDT. It is evident
that in general, the dissipative force will be retarded and
therefore the general time-dependent dissipative coefficient
(γðtÞ) in the frequency domain can be written as [43],

Refγ½ω�g ¼ 1

2kT

Z
∞

−∞
hRσð0ÞRσðτÞie−iωtdt: ð6:1Þ

We use the derived expression for Kð−ωÞ for (1þ 1) and
(3þ 1)-dimensional de Sitter FLRWUniverse, as these two
integrals are similar in structure, and obtain the real
dissipative coefficient in frequency domain respectively as,

γðωÞð2Þ ¼
ω3ðα2dω2 þ 1Þ

24kTα2dπðe2παdω − 1Þ ; ð6:2Þ

γðωÞð4Þ ¼
1

12kT
ω3ðα2dω2 þ 1Þðα2dω2 þ 4Þðα2dω2 þ 9Þ

8!α6dπ
3ðe2παdω − 1Þ :

ð6:3Þ

Here γð2Þ and γð4Þ symbolize the real dissipative coefficients
in frequency space in (1þ 1), (3þ 1)-dimensional de Sitter
FLRW Universe respectively.
Similarly in the context of Schwarzschild spacetime

the dissipative coefficient in frequency domain can be
found as,

γðωÞðscÞ ¼
Aq4πω3ðq2ω2 þ 1Þ
24kTðeqπω − 1Þ ð6:4Þ

where, A; q;ω0 symbolize the same as defined earlier in
Sec. Vand γðωÞðscÞ stands for the real dissipative coefficient
in the frequency domain, evaluated in the background of
the Schwarzschild spacetime. The parameter T in all these
cases symbolizes the temperature of the corresponding
thermal bath of the produced particles as perceived by the
privileged class of observer.

VII. CONCLUSION AND DISCUSSIONS

The background of this present work relies on the fact
that the observer/detector plays an important role when it
comes to defining the particle content in a state, as well as
the precise meaning of the vacuum state of a quantum field
in curved spacetime. We consider the simplest case of all,
i.e., a massless quantum scalar field in curved space-
time with conformal symmetry such as FLRW and
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(1þ 1)-dimensional Schwarzschild spacetime and discuss
the phenomena of particle production from the suitable
(though not unique) choice of vacuum states, with respect
to some privileged class of observers. Due to the production
of these particles, the same class of observers perceive the
thermal spectrum from the corresponding vacuum states. In
this context, we address a question from the perspective of
these observers: what would be the impact of these
produced particles on some test particles, which are
released in the thermal bath of these produced quanta?
Due to the involvement of a large number of particles, we
adapt the techniques from statistical field theory, where we
aim to obtain the correlation function of the fluctuations of
the random force as applied by the produced quanta on the
test particles, instead of calculating a large number of force
equations for each produced particles. We formulate the
random force, exerted by these produced particles and
subsequently the fluctuations in the random force also have
been calculated.
We determine the correlation function of the fluctuating

part of the random force, evaluated with respect to the
corresponding vacuum states, from the perspective of a
privileged class of observers. Our result depicts that to these
observers, the behavior of the entire system of the produced
particles and as well as the test particles resembles with the
systems in nonequilibrium statistics. The observer measures
that the correlation function of the fluctuations of the
random force is obeying the FDT. As a consequence, the
observer will perceive that the test particles are executing
Brownian-like motion in that thermal bath. We show that
this feature is similar in all curved spacetimes of our concern
in this present work irrespective of the dimensionality of the
spacetime. In case of the (3þ 1)-dimensional FLRW
spacetime, due to the isotropic and the homogeneous nature
of the spacetime, the correlation function of the fluctuations
of the random force will be identical in all directions. Also,
the (1þ 1)-dimensional Schwarzschild BH case for a static
observer in Kruskal and Unruh vacua has been investigated,
which also led to a similar conclusion.
We mention that in principle, one could make an attempt

to write down the Langevin equation for these kinds of
systems. However, the lack of information regarding the
velocity profile of the test particles, due to the applied force
of the produced particles prevents us from formulating the
Langevin equation for such systems. The coefficient of the
mean dissipative force (as obtained in Sec. VI) may help us
to construct the dissipative part of the force equation and
formulate the Langevin equation, but that needs deeper
investigation. In order to fulfill that purpose, we need to
incorporate all the forces arising in the system. In this
context, some works can be mentioned here. In [44] the
authors have considered the test particle as an accelerating
quantum harmonic oscillator which is interacting with the
massless scalar field in the Minkowski spacetime. The form
of the interaction term is chosen to be proportional to the

velocity of the field. In this model, people first found the
Langevin equation and then they studied the fluctuation-
dissipation of the system (also see the subsequent papers
[45–50] for further progress).
We have mentioned earlier that obtaining the Langevin

equation for our system by analysing the dissipative coef-
ficient, would be a possible future work. In this context,
another possible future direction would be to extend the
present analysis for the radiation and matter-dominated era
of theUniverse, where the corresponding positive frequency
Wightman functions lose their time translational invariance.
In the present work, we confine ourselves to the production
of the scalar quanta, whereas an important extension would
be to analyze the production of other quantum fields such as
fermions and gauge bosons and study their respective
behavior from the perspective of the privileged class of
observers, in different curved spacetimes. Another prospec-
tive would be to examine the characteristic behavior of
produced quanta in the context of the other possible (1þ 1)
dimensional BH solutions such as discussed in [33–35].
BH solutions as in [33–35] are described in (1þ 1) dimen-
sional spacetime and therefore can be expressed as the
conformally flat spacetime. Subsequently one can follow the
same procedure, as adapted in this present manuscript, and
conclude accordingly.
So far we observed that a test particle in the thermal bath,

seen from some particular frames, exhibit random motion
which is Brownian in nature. This implies that each of the
produced particles itself will also follow the same law due
to the force exerted by the others in the thermal bath (as
each particle in the bath can be regarded as a test particle).
Consequently, every produced particle will also exhibit
random motion consistent with FDT. Another point will be
worth mentioning. It is well known that near horizon, the
BH spacetimes are effectively (1þ 1)-dimensional [29–32].
Note that particle production phenomenon for a BH is very
near horizon event and also we observed that for (1þ 1)-
dimensional BH the static observer will see FDT in Kruskal
and Unruh vacuums. Therefore, as far as the near horizon is
concerned, the same will also happen for higher-dimen-
sional black holes. This a suggestive statement, rather than a
conclusive one. Of course, to reach a definite conclusion, a
rigorous analysis has to be done by taking into account the
other transverse dimensions.

APPENDIX A: EXPECTATION VALUE OF THE
COMPONENT Tt

t FOR DE SITTER UNIVERSE

The present work is based on the phenomena of the
particle production in the conformal vacuum of the quan-
tum field, with respect to the particular class of observer in
de Sitter FLRW and Schwarzschild BH spacetime.
Therefore the expectation value of the Ttt component of
the stress-energy tensor for the corresponding field, evalu-
ated with respect to the conformal vacuum should turn
out to be nonzero. In this section we aim to find the
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renormalized expectation value of the Ttt component of the
scalar field with respect to the conformal vacuum in (1þ 1)
and as well as (3þ 1)-dimensional FLRW spacetime (for
massive scalar in FLRW, see [51]). Subsequently, we find
the same in the background of BH spacetime in the
Appendix B.

1. (1 + 1)-dimensional FLRW spacetime

It is described earlier that the two-dimensional curved
spacetime can be written as the conformally flat space-
time which is depicted in Eq. (2.5). It is well described
in [1], that due to this fact it is possible to write down
the expectation value of the stress tensor in (1þ 1)-
dimensional curved spacetime, in terms of the expectation
value of the stress tensor in flat spacetime. To proceed
further, following the discussion in [1], we switch to the
null coordinate system in order to represent the (1þ 1)-
dimensional curved spacetime which is conformally flat to
the Minkowski spacetime, as following,

ds2ðNÞ ¼ Cðu; vÞdu dv: ðA1Þ
Here, ðu; vÞ symbolize the corresponding null coordinates
system. In the above metric background, the renormalized
expectation value of the stress tensor components, can be
written as (see Eq. (6.136) of [1]),

hTa
b½gcdðxÞ�iren ¼

ffiffiffiffiffiffi−ηpffiffiffiffiffiffi−gp hTa
b½ηcdðxÞ�iren þ θa

b

−
1

48π
Rð2Þδab; ðA2Þ

where,

θuu ¼ −
1

12π
C1=2∂2

uðC−1=2Þ;

θvv ¼ −
1

12π
C1=2∂2

vðC−1=2Þ;
θuv ¼ θvu ¼ 0: ðA3Þ

In the above, ða; bÞ (i.e., the alphabets in lower case), stand
for all the spacetime coordinates ðt; xÞ. In this present
context ða; bÞ symbolize the null coordinates ðu; vÞ. In our
case

ffiffiffiffiffiffi−ηp
, corresponds to the determinant of the flat space-

time in the null coordinate ðu; vÞ. Therefore one finds
ηuv ¼ ηvu ¼ 1

2
. Rð2Þ is the (1þ 1)-dimensional Ricci scalar

corresponding to the curved spacetime. In the context of
(1þ 1)-dimensional FLRW spacetime, the quantity
hTa

b½gcdðxÞ�iren symbolizes the renormalized expectation
value of the stress energy tensor for the conformally flat
metric, evaluated with respect to the conformal vacuum.
We mention that this quantity is indeed measured by the
comoving observer. Similarly, hTa

b½ηcdðxÞ�iren signifies the
renormalized expectation value of the stress energy tensor,
corresponding to the flat spacetime part of the full metric

(A1) as measured by the comoving observer. Regarding the
specification of the vacuum state of the later, it is well
described in [1], that if the conformal spacetime is
conformal to the whole Minkowski spacetime (i.e., not
just only a part of the Minkowski spacetime), the usual
Minkowski vacuum state is employed to calculate the
expectation value of the stress tensor. Under this circum-
stances the quantity, hTa

b½ηcdðxÞ�iren will turn out to be
zero. However if the vacuum state is not the Minkowski
vacuum state, the first term on the right-hand side of
Eq. (A2), will produce a nonzero contribution. In the above
equations, C is related with the conformal factor Ω2ðxÞ,
which appears in Eq. (2.5) in Sec. II A, as, Ω2ðxÞ ¼ C.
For (1þ 1)-dimensional FLRW spacetime, ðu; vÞ can be
depicted as, u ¼ ðη − xÞ, v ¼ ðηþ xÞ, by following the
metric as in Eq. (2.8). In this case, the FLRW spacetime, in
terms of the null coordinates, can be written as in Eq. (A1),

where Cðu; vÞ ¼ 2α2d
ðuþvÞ2 du dv.

Our quantity of interest is the renormalized expectation
value of the components of the stress energy tensors,
evaluated with respect to the conformal vacuum and mea-
sured by a comoving observer, i.e., hTt

tiren. Therefore at
first to implement Eq. (A2), we transform tensor compo-
nent Tt

t in terms of the null coordinates ðu; vÞ, by
following the step as described in Sec. III B. Hence we
obtain,

h0jTt
tj0iren ¼

1

2
h0jTu

v þ Tv
u þ 2Tu

uj0iren: ðA4Þ

Now we write Tu
v; Tv

u; Tu
u, which are defined in curved

spacetime, by following Eq. (A2), where we take ða; bÞ ¼
ðu; vÞ; ðv; uÞ; ðu; uÞ respectively. For example,

1

2
hTu

v½gcdðxÞ�i ¼
ffiffiffiffiffiffi−ηp

2
ffiffiffiffiffiffi−gp hTu

v½ηcdðxÞ�iren þ
1

2
θu

v: ðA5Þ

Here one finds
ffiffiffiffiffiffi−ηp ¼ 1

2
and for the present case, ðc; dÞ

correspond to the null coordinates. In case of (1þ 1)-
dimensional FLRW, the conformal vacuum is same as the
usual Minkowski vacuum and therefore the first term on the
right-hand side of Eq. (A5) vanishes. In order to show this
explicitly, one can indeed start the analysis by writing the
general form of the stress tensor Tu

v½ηcdðxÞ�, in terms of the
field ϕðxÞ as following,

TðϕÞ
ab ðxÞ ¼ ð1 − 2ξÞ∇aϕ∇bϕþ

�
2ξ −

1

2

�
gabgcd∇cϕ∇dϕ

− 2ξ½∇a∇bϕ�ϕþ 2

D
ξgabðϕ□ϕÞ

− ξ

�
Gab þ

2ðD − 1Þ
D

ξRgab

�
ϕ2

þ 2

�
1

4
−
�
1 −

1

D

�
ξ

�
m2gabϕ2; ðA6Þ
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where D symbolizes the dimensionality of spacetime and ξ
is described in Sec. II A. It is mentioned earlier that in this
work we consider the scalar field to be massless and
therefore the last term in Eq. (A6) will not contribute
further. In two-dimensional spacetime ξ turned out to be
zero and produces, TabðxÞ ∼ ∂aϕ∂bϕ. Upon using the point
splitting technique, one can reduce the expectation value of
the stress tensor in terms of the derivatives of the positive
frequency Wightman function. As both the conformal and
the Minkowski vacuum states signify the same vacuum
state, therefore the expectation value, i.e., hTu

v½ηcdðxÞ�iren
will turn out to be zero in this case (the point splitting
technique will be described elaborately in case of the
(1þ 1)-dimensional BH spacetime, in Section B, as it
produces a nonzero result for this quantity).
For (1þ 1)-dimensional de Sitter FLRW we also have

θu
v ¼ guvθuu. It can be noted that for C−1=2 ¼ ðuþvÞffiffi

2
p

αd
,

θuu ¼ θvv ¼ 0. Therefore hTu
v½gcdðxÞ�i ¼ 0. Proceeding

similarly the second term of Eq. (A4), also becomes zero.
The only contribution comes from the third term of
Eq. (A4), which is

hTu
u½gcdðxÞ�iren ¼

ffiffiffiffiffiffi−ηpffiffiffiffiffiffi−gp hTu
u½ηcdðxÞ�iren þ θu

u −
1

48π
Rð2Þ:

ðA7Þ
By the same reason as explained in case of Eq. (A5), the
first term on the right-hand side of the above equation turns
out to be zero. The second term of the above equation,
θu

u ¼ guvθuv ¼ 0. Therefore using the Ricci scalar Rð2Þ ¼
− 2

α2d
and Cðu; vÞ corresponding to the (1þ 1)-dimensional

de Sitter FLRW spacetime, in the above equation, we
finally obtain,

hTt
t½gcdðxÞ�iren ¼

1

24πα2d
: ðA8Þ

This is the correct expression for energy flux which is a
nonzero constant value.

2. (3 + 1) dimensions

In the (3þ 1)-dimensional FLRW spacetime, the renor-
malized expectation value of the Ttt component of the stress
tensor, as evaluated by a comoving observer with respect to
the conformal vacuum of the massless scalar field, can be
written in terms of the curvature of the corresponding
curved spacetime as follows (see Eq. (7.44) of [1]),

h0jTabj0iren
¼ 1

2880π2

��
−
1

3
∇a∇bRð4Þ þRa

cð4ÞRð4Þ
cb −Rð4ÞRð4Þ

ab

�

þ gab

�
1

3
□Rð4Þ −

1

2
Rcdð4ÞRð4Þ

cd þ 1

3
Rð4Þ2

��
: ðA9Þ

In the above equation gab symbolizes the metric tensor
corresponding to the (3þ 1)-dimensional de Sitter FLRW

spacetime and Rð4Þ;Rð4Þ
ab is the Ricci scalar, Ricci tensor,

defined with respect to gab in (3þ 1) dimensions. In this
spacetime the Ricci scalar turns out to be: Rð4Þ ¼ − 12

α2d
and

for the Ricci tensor, only the diagonal components survive.
Surviving components of Ricci tensor are as follows,

Rð4Þ
xx ¼ Rð4Þ

yy ¼ Rð4Þ
zz ¼ 3

α2d
e

2t
αd , and Rð4Þ

tt ¼ − 3
α2d
. Upon using

these expressions, we obtain the renormalized expectation
value of the Ttt component as,

h0jTt
tj0iren ¼

1

960π2α4d
; ðA10Þ

which is again a constant. This result depicts that the
comoving observer in (3þ 1)-dimensional de Sitter FLRW
spacetime, will effectively perceive a finite expectation
value for the ðt; tÞ component of the stress-energy tensor,
which signifies the presence of a finite energy density of the
produced scalar field quanta in the conformal vacuum of
the scalar field.

APPENDIX B: EXPECTATION VALUE OF THE
COMPONENT Tt

tðt;rÞ FOR THE BH SPACETIME

In this section we calculate the renormalized expectation
value of the Tt

tðt; rÞ component of the stress energy tensor
in the background of the Schwarzschild spacetime. We
follow the same procedure as adapted for the (1þ 1)-
dimensional FLRW spacetime, described in the previous
section. We consider the case where the Schwarzschild
observer detects the particle production in the Unruh
vacuum. Like earlier cases of FLRW spacetime, here also
we aim to calculate the renormalized expectation value of
the ðt; tÞ component of the stress-energy tensor as evaluated
by the Schwarzschild observer with respect to the Unruh
vacuum/Kruskal vacuum. In this case, the Unruh/Kruskal
vacuum state does not coincide with the Minkowski
vacuum, which can be portrayed as the Boulware vacuum.
Hence the quantity hTa

b½ηcdðxÞ�iren in Eq. (A2), produces a
nonzero contribution and has to be evaluated separately.
This quantity is nothing but the difference between the

expectation value of the stress tensor components evaluated
with respect to the Unruh/Kruskal vacuum and Minkowski
vacuum, measured by the Schwarzschild observer.
Proceeding similarly as (1þ 1)-dimensional FLRW space-
time, we obtain,

hTt
tiren ¼

1

2
h0jTu

v þ Tv
u þ 2Tu

uj0iren: ðB1Þ
In case of the BH spacetime the null coordinates ðu; vÞ are
defined in Sec. II B. We start our analysis by considering
the first term on the right-hand side of Eq. (B1), evaluated
with respect to the Unruh vacuum. Later, we generalize this
same procedure for the Kruskal vacuum case. Upon using
Eq. (A2), we obtain,
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1

2
hTu

v½gcdðxÞ�irenðUÞ ¼
ffiffiffiffiffiffi−ηp

2
ffiffiffiffiffiffi−gp ½Uh0jTu

v½ηcdðxÞ�j0iU − Mh0jTu
v½ηcdðxÞ�j0iM� þ

1

2
θu

v

¼ ηuv
ffiffiffiffiffiffi−ηp

2
ffiffiffiffiffiffi−gp ½Uh0jTuu½ηcdðxÞ�j0iU −M h0jTuu½ηcdðxÞ�j0iM� þ

1

2
θu

v:

¼
�
1 −

rs
r

�
−1
½Uh0jTuu½ηcdðxÞ�j0iU −M h0jTuu½ηcdðxÞ�j0iM� þ

1

2
θu

v: ðB2Þ

Here we write, hTu
v½ηcdðxÞ�irenðUÞ¼½Uh0jTu

v½ηcdðxÞ�j0iU−
Mh0jTu

v½ηcdðxÞ�j0iM�. In this context we would like to
mention that in [52–54], a similar term was calculated for
an accelerating frame in four-dimensional flat spacetime.
There the same has been interpreted as the components of
energy-momentum tensor for an accelerating plane con-
ductor. This can be also called as vacuum stress [37]. In our
present case, we call this as the stress of the Unruh vacuum.
We use the explicit form of the Tuu in terms of the scalar
field in (1þ 1)-dimensional spacetime by following the
Eq. (A6) and implement the point splitting technique.
Therefore the first term on the right-hand side of the above
equation reduces to,�
1 −

rs
r

�
−1
½ lim
x→x0

∂u∂u0Uh0jϕðu; vÞϕðu0; v0Þj0iU
− lim

x→x0
∂u∂u0Mh0jϕðu; vÞϕðu0; v0Þj0iM�: ðB3Þ

Here we denoted ðx; x0Þ ¼ ðu; v; u0; v0Þ. The positive fre-
quency Wightman function of a scalar field, evaluated with
respect to the Unruh vacuum and as measured by the Unruh
observer, is well known in literature [depicted in
Eq. (2.19)]. Hence to evaluate the term within the square
bracket, in the above expression, at first we use Eq. (2.19)
and then transform the coordinates ðū; vÞ → ðu; vÞ. Per-
forming the derivatives, we set the trajectory of the
Schwarzschild observer to be r ¼ r0 ¼ R (i.e., constant
curvature). Therefore, the above term reduces to,�
1 −

rs
r

�
−1
�
−

1

4π

��
lim
x→x0

�
1

64M2

�
1

sinh2ðΔu
8MÞ

− lim
x→x0

1

ðΔuÞ2
�

ðB4Þ
where Δu ¼ ðu − u0Þ. The second term within the square
bracket of the above equation, corresponds to the expect-
ation value, evaluated with respect to the Minkowski
vacuum and hence, by following the same point splitting
method, it reduces to,

lim
x→x0

∂u∂u0 ½Mh0jϕðu; vÞϕðu0; v0Þj0iM�

¼
�
−

1

4π

�
lim
Δu→0

�
1

ðΔuÞ2
�
: ðB5Þ

Subsequently, using the series expansion of sinhðΔu
2αd

Þ,
Eq. (B3) reduces to,

�
1 −

rs
r

�
−1
�
−

1

4π

�
lim
Δu→0

�
1

64M2

��
8M
Δu

�
2
�
1þ 1

3!

�
Δu
8M

�
2

þ 1

5!

�
Δu
8M

�
4

þ � � �
�

−2
�
−

1

ðΔuÞ2
�
: ðB6Þ

Upon further simplification the above expression becomes,�
1 −

rs
r

�
−1
�
−

1

4π

�
lim
Δu→0

"
1

ðΔuÞ2 −
1

192M2|fflfflffl{zfflfflffl}
finite term

−
1

ð8MÞ4
ðΔuÞ2
60

−… −
1

ðΔuÞ2
#
: ðB7Þ

Implementing Δu → 0, we are left with only the finite term
as following, �

1 −
rs
r

�
−1 1

4π

1

192M2
: ðB8Þ

Therefore we obtain Eq. (B2) as,

1

2
hTu

v½gcdðxÞ�irenðUÞ ¼
�
1−

rs
R

�
−1 1

768πM2
þ1

2
θu

v: ðB9Þ

Now proceeding similarly the second term on the right side
of the Eq. (B1) becomes,

1

2
hTv

u½gcdðxÞ�irenðUÞ ¼
1

2
θv

u: ðB10Þ
Here, the term hTv

u½ηcdðxÞ�irenðUÞ reduces to zero. The third
term of Eq. (B1) becomes,

hTu
u½gcdðxÞ�irenðUÞ ¼ −

1

48π
Rð2Þjr¼R ¼ rs

24πR3
: ðB11Þ

Here also one obtains, hTu
u½ηcdðxÞ�irenðUÞ ¼ 0 and θuu ¼ 0.

We also use the two-dimensional Ricci scalar correspond-
ing to the Schwarzschild spacetime as, Rð2Þ ¼ − 2rs

r3 , where
rs is specified in the earlier section. Now we combine the
terms θu

v and θv
u as appear in Eqs. (B9) and (B10).

Proceeding similarly as in the (1þ 1)-dimensional FLRW
case, we obtain

1

2
ðθuvþθv

uÞjr¼R¼
1

48π

�
−
2rs
R3

−
r2s
2R4

�
1−

rs
R

�
−1
�
: ðB12Þ

In order to obtain the above equation we used,
CðrÞ ¼ 1

2
ð1 − rs

r Þ. Now using the Eqs. (B9)–(B12) in
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Eq. (B1), we obtain the renormalized expectation value of
the stress tensor as evaluated by the Schwarzschild observer
with respect to the Unruh vacuum as,

hTt
t½gcdðxÞ�irenðUÞ
¼

�
1 −

rs
R

�
−1 1

768πM2
−

r2s
96πR4

�
1 −

rs
R

�
−1
: ðB13Þ

Following the identical procedure, one can indeed obtain
the renormalized expectation value of the stress tensor as
evaluated by the Schwarzschild observer with respect to the
Kruskal vacuum as,

hTt
t½gcdðxÞ�irenðKÞ
¼

�
1 −

rs
R

�
−1 1

384πM2
−

r2s
96πR4

�
1 −

rs
R

�
−1
: ðB14Þ

Note that if the observer is at infinity; i.e., R → ∞, then
(B13) reduces to the well-known Hawking expression
(κ2=48π), with κ ¼ 1=4M. Whereas the other one (B14)
reduces to ðκ2=24πÞwhich, as expected, is two times of the
Hawking expression. Also it can be checked that for Unruh
vacuum, Tuu vanishes which one expects. The explicit
expression for this component is

hTuu½gcdðxÞ�irenðUÞ ¼
κ2

48π
þ 1

96π

�
−
2rs
R3

�
1 −

rs
r

�
−

r2s
2R4

�
:

ðB15Þ
Notice that the first term is constant, independent of R. If
one solves the (trace) anomaly equation Ta

a ¼ Rð2Þ
24π along

with covariant conservation equation ∇aTab ¼ 0, the sol-
ution will be exactly identical to (B15), where the first term
comes as a integration constant (for instance, see Eq. (20)
of [55]). This constant is fixed by a relevant boundary
condition. In Unruh vacuum, the value of the constant is
exactly the same as appears in the above.

APPENDIX C: EXPECTATION VALUE OF THE
COMPONENT Tt

α FOR DE SITTER AND
SCHWARZSCHILD SPACETIME

We compute the renormalized expectation value of the
off diagonal component of the stress tensor, in the similar
way as discussed in the earlier sections.

1. de Sitter Universe

(1þ 1) dimensions: For the two-dimensional de Sitter
FLRW spacetime, we use Eq. (A2), in order to evaluate the
renormalized expectation value of the off diagonal com-
ponent of the stress tensor, i.e., Tt

x. By the tensor trans-
formation the off diagonal component of the stress tensor
Tt

x can be written in terms of the null coordinates as,

hTt
x½gcd�iren ¼

η

2αd
½hTv

u½gcd�iren − hTu
v½gcd�iren�: ðC1Þ

Here also, since the vacuum is conformal vacuum, we have
hTv

u½ηcd�iren ¼ hTu
v½ηcd�iren ¼ 0. Moreover we have

explicitly shown earlier that in case of the two-dimensional
FLRW metric, θuu ¼ θvv ¼ 0. In this case, the term
associated with the Ricci scalar will also reduces to zero
because of the presence of the Kronecker delta. Finally, the
renormalized expectation value becomes, hTt

x½gcd�iren ¼ 0.
(3þ 1) dimensions: In (3þ 1)-dimensional FLRW

spacetime we follow the procedure in the subsection A 2,
and use Eq. (A9) in order to compute the renormalized
expectation value of the off-diagonal components of the
stress tensor as evaluated by the comoving observer with
respect to the conformal vacuum. For the ease of the
computation, we examine only the component Tt

xðt; xÞ.
The outcome of the analysis for Tt

x would be the same for
other components (e.g., Ty

t ; T
z
t ) due to the homogeneity and

isotopy of the FLRW spacetime. In this case as, gtx ¼ 0, the
second term on the right-hand side of the Eq. (A9) does not
contribute to the expectation value. Moreover, it is
mentioned earlier that in the background of the (3þ 1)-
dimensional de Sitter FLRW spacetime, there exist only
the diagonal components of the Ricci tensor. Hence

terms like Rt
xð4ÞRð4Þ

xx , Rð4ÞRð4Þ
tx become zero individually.

Subsequently, one can clearly perceive that as the Ricci
scalar corresponding to this spacetime, depends only on the
expansion parameter αd, their derivatives are also going to
be zero. Overall this analysis is implying that the renor-
malized expectation value of the off-diagonal components
of the stress tensor as evaluated by the comoving observer
with respect to the conformal vacuum in the (3þ 1)-
dimensional de sitter FLRW spacetime, is turn out to
be zero.

2. Two-dimensional BH

In case of the BH spacetime, the quantity
hTt

r½gcdðxÞ�irenðUÞ is evaluated by following the discussion
in the Appendix B. By the tensor transformation, the
quantity hTt

r½gcdðxÞ�irenðUÞ becomes,

hTt
r½gcd�irenðUÞ ¼

1

2

�
1 −

rs
r

�
½hTu

v½gcd�iren − hTv
u½gcd�iren�:

ðC2Þ
Following the same mathematical procedures one obtains,

hTt
r½gcd�irenðUÞ ¼

1

768πM2
: ðC3Þ

Similarly, one can generalize the above procedures to the
analysis of the expectation value of the off diagonal
components of the stress tensor, evaluated with respect
to the Kruskal vacuum, as measured by the Schwarzschild
observer. This analysis produces,

hTt
r½gcd�irenðKÞ ¼ 0: ðC4Þ
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APPENDIX D: EXPLICIT DERIVATION OF THE CORRELATION FUNCTION OF THE
FLUCTUATIONS OF THE RANDOM FORCE

The general form of the stress-energy tensor corresponding to the scalar field ϕðxÞ, is depicted in Eq. (A6). Following the
method as described in Sec. III B, the term h0jTtxðt; x̄ÞTtxðt0; x̄0Þj0i in (1þ 1) dimensions, i.e., Eq. (4.1), can be written as,

h0jTtxðt; x̄ÞTtxðt0; x̄0Þj0i ¼ 1

a3ðηÞa3ðη0Þ h0jTηxðη; x̄ÞTηxðη0; x̄0Þj0i: ðD1Þ

In two-dimensional spacetime ξ turned out to be zero and we use ða; bÞ ¼ ðη; xÞ in order to obtain the Tηx component of the
stress energy tensor. This produces, Tηx ¼ ∂ηϕ∂xϕ. Hence the stress-stress correlation function becomes,

h0jTηxðη; x̄ÞTηxðη0; x̄0Þj0i ¼ h0j∂ηϕ∂xϕ∂η0ϕ∂x0ϕj0i: ðD2Þ
At this stage we use the Wick contraction and obtain,

h0j∂ηϕ∂xϕ∂η0ϕ∂x0ϕj0i ¼ h0j∂ηϕ∂η0ϕj0ih0j∂xϕ∂x0ϕj0i þ h0j∂ηϕ∂x0ϕj0ih0j∂xϕ∂η0ϕj0i
¼ ∂η∂η0 h0jϕðη; xÞϕðη0; x0Þj0i∂x∂x0 h0jϕðη; xÞϕðη0; x0Þj0i
þ ∂η∂x0 h0jϕðη; xÞϕðη0; x0Þj0i∂x∂η0 h0jϕðη; xÞϕðη0; x0Þj0i

¼ ∂η∂η0 ½Gþ
ð2Þðη; x; η0; x0Þ�∂x∂x0 ½Gþ

ð2Þðη; x; η0; x0Þ�
þ ∂η∂x0 ½Gþ

ð2Þðη; x; η0; x0Þ�∂x∂η0 ½Gþ
ð2Þðη; x; η0; x0Þ�: ðD3Þ

In the last step we use the positive frequencyWightman functionGþ
ð2Þðη; x; η0; x0Þ ¼ h0jϕðη; xÞϕðη0; x0Þj0i. After performing

the derivatives which are appearing in the last step of the above equation, we need to put the trajectory of the comoving
observer, which implies Δx ¼ 0 (proper frame condition). Therefore the second term of the last equation, reduces to zero
and the final form of the stress-stress correlation in (1þ 1)-dimensional spacetime becomes,

h0jTηxðη; x̄ÞTηxðη0; x̄0Þj0i ¼ ∂η∂η0 ½Gþðη; x; η0; x0Þ�∂x∂x0 ½Gþðη; x; η0; x0Þ�: ðD4Þ
This is nothing but the expression as used in Eq. (4.2).
Proceeding similarly like the (1þ 1)-dimensional FLRW spacetime, the stress tensor component Tηx in (3þ 1)

dimensions becomes,

Tηx ¼
2

3
∂ηϕ∂xϕ −

1

3
ϕ∂η∂xϕþ a0ðηÞ

3aðηÞϕ∂xϕ: ðD5Þ

Implementing the Wick’s contraction, the only survival terms we obtain for the stress-stress correlation function are,

h0jTηxðη; xÞTηxðη0; x0Þj0i ðD6Þ

¼ 4

9
½f∂η∂η0Gþðx; x0Þgf∂x∂x0Gþðx; x0Þg�

−
2

9
f∂ηGþðx; x0Þgf∂x∂η0∂x0Gþðx; x0Þg

−
2

9η0
f∂ηGþðx; x0Þgf∂x∂x0Gþðx; x0Þgg − 2

9
f∂η0 fGþðx; x0Þgf∂η∂x∂x0Gþðx; x0Þg

þ 1

9
fGþðx; x0Þgf∂η∂x∂η0∂x0Gþðx; x0Þg þ 1

9η0
fGþðx; x0Þgf∂η∂x∂x0Gþðx; x0Þg

−
2

9η
f∂η0Gþðx; x0Þgf∂x∂x0Gþðx; x0Þg þ 1

9η
fGþðx; x0Þgf∂x∂η0∂x0Gþðx; x0Þg

þ 1

9ηη0
fGþðx; x0Þgf∂x∂x0Gþðx; x0Þg; ðD7Þ

where we use the positive frequency Wightman function in (3þ 1)-dimensional FLRW spacetime Gþðx; x0Þ ¼
h0jϕðη; xÞϕðη0; x0Þj0i, given by (2.15). Now the expressions of the survival terms after performing the respective partial
differentiations and implementing the proper frame condition (Δx ¼ 0) we obtain,
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4
9
f∂η∂η0Gþðx; x0Þgf∂x∂x0Gþðx; x0Þg ηη0ðη2þ4ηη0þη02Þ

18α4dπ
4ðη−η0Þ8

− 2
9
f∂ηGþðx; x0Þgf∂x∂η0∂x0Gþðx; x0Þg − ηη0ðηþη0Þðηþ3η0Þ

36α4dπ
4ðη−η0Þ8

− 2
9η0 f∂ηGþðx; x0Þgf∂x∂x0Gþðx; x0Þgg − ηη0ðηþη0Þ

36α4dπ
4ðη−η0Þ7

− 2
9
f∂η0 fGþðx; x0Þgf∂η∂x∂x0Gþðx; x0Þg − ηη0ðηþη0Þð3ηþη0Þ

36α4dπ
4ðη−η0Þ8

þ 1
9
fGþðx; x0Þgf∂η∂x∂η0∂x0Gþðx; x0Þg ηηð3η2þ14ηη0þ3η02Þ

72α4dπ
4ðη−η0Þ8

1
9η0 fGþðx; x0Þgf∂η∂x∂x0Gþðx; x0Þg ηη0ð3ηþη0Þ

72α4dπ
4ðη−η0Þ7

− 2
9η f∂η0Gþðx; x0Þgf∂x∂x0Gþðx; x0Þg ηη0ðηþη0Þ

36α4dπ
4ðη−η0Þ7

1
9η fGþðx; x0Þgf∂x∂η0∂x0Gþðx; x0Þg − ηη0ð3ηþη0Þ

72α4dπ
4ðη−η0Þ7

1
9ηη0 fGþðx; x0Þgf∂x∂x0Gþðx; x0Þg − ηη0

72α4dπ
4ðη−η0Þ6

After adding all the terms we obtain the expression
within the square bracket of Eq. (4.4). Now performing the
similar analysis as the two-dimensional FLRW case, we
land up to Eq. (4.5).
In case of the two-dimensional Schwarzschild BH

spacetime one can proceed similarly as the FLRW space-
time and in turn perceive the appearance of the Eq. (4.11).

APPENDIX E: SCHWINGER FUNCTION

The (1þ 1) dimension FRW Universe result can be
obtained explicitly from the Schwinger function also where
the most general form of it is given by [56]

Sabcdðx1;x2Þ ¼ hTabðx1ÞTcdðx2Þi

¼ A
ðΔx2Þ4 ½ð3gabgcd − gacgbd − gadgbcÞðΔx2Þ2

− 4Δx2ðgabΔxcΔxd þ gcdΔxaΔxbÞ
þ 8ΔxaΔxbΔxcΔxd�; ðE1Þ

where Δx2 ¼ −ðx0 − x00Þ2 þ ðx1 − x10Þ2 and A is an arbi-
trary constant, related to the central charge C of the
particular fields by A ¼ C=4π2. Since for the present case
we have considered only massless scalar fields, its value is
given by A ¼ 1=4π2 as C ¼ 1. Using that technique one
can obtain the form of stress tensor correlation function in
(1þ 1) dimensions as

aðtÞaðt0Þh0jTtxðt; xÞTtxðt0; x0Þj0i ¼ 1

26α4dπ
2
×

1

sinh4ðΔτ
2αd

Þ ;

ðE2Þ

in the proper frame of the FRW observer. Similarly for BH
result (4.10) can be obtained from the above Schwinger
function.

APPENDIX F: TABLE OF NOTATIONS

Vacuum States

j0i Conformal
j0iM Minkowski
j0is Boulware
j0iK Kruskal
j0iU Unruh

+ve frequency Wightman functions

Gþ
ð2Þ 2D de Sitter Universe

Gþ 4D de Sitter Universe
Gþ

s 2D Boulware
Gþ

K 2D Kruskal
Gþ

U 2D Unruh

Rð2Þ Ricci scalar in (1þ 1)D
Rð4Þ Ricci scalar in (3þ 1)D
R Constant radial vector
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