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Using Hopf-algebraic structures as well as diagrammatic techniques for determining the Slavnov-Taylor
identities for QCD we construct the relations for the triple and quartic gluon vertices at one loop. By
making the longitudinal projection on an external gluon of a Green’s function we show that the gluon self-
energy of that leg is consistently replaced by a ghost self-energy. The resulting identities are then studied by
evaluating all the graphs for an off-shell nonexceptional momentum configuration. In the case of the

3-point function this is for the most general momentum case and for the 4-point function we consider the

fully symmetric point.
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I. INTRODUCTION

One of the cornerstones of quantum field theory is the
accommodation of spin-1 gauge fields in the Lagrangian of
a theory in such a way that the core properties of the gauge
field are retained. For instance, a gauge field Ay will
describe a photon or gluon in the respective Abelian or non-
Abelian cases where the Lagrangian will be built from
gauge invariant operators of Aj. However, such an object
has too many degrees of freedom and to properly describe
physical phenomena the gauge field needs to satisfy
constraints known as gauge conditions. The inclusion of
such a condition in the Lagrangian breaks gauge invariance
which is one guiding principle behind physical predictions.
In the classical theory such gauge fixings do not lead to
insurmountable problems. For instance, performing com-
putations in different gauges will give the same physical
outcome. In the quantum theory this is not as straightfor-
ward since in covariant gauges, as an example, the choice
of gauge can change due to quantum corrections. Therefore
it is not clear if the remnant of the gauge symmetry, evident
in the classical case, is also preserved quantum mechan-
ically. The development of the Becchi-Rouet-Stora-Tyutin
(BRST) transformation put this problem on a firm footing
in that a symmetry of the gauge fixed and hence gauge
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variant Lagrangian was constructed. One benefit was that it
provided the machinery to confirm that the physical state
space of the gauge field was positive definite ensuring that
the Lagrangian satisfies unitarity. As equally as important
as this is that the formalism reproduced the non-Abelian
extension of the Ward-Takahashi identities which are
termed the Slavnov-Taylor identities [1,2]. Briefly these
are relations between different n-point functions of the
quantum theory and such relations have to hold in the bare
and renormalized cases. In the latter situation this means
that constraints on the renormalization constants implied by
the identities have to be satisfied in each choice of
renormalization scheme [1-4]. It is widely known that in
Quantum Chromodynamics (QCD) that the coupling
renormalization constant derived from one of the 3- or
4-point vertices in the modified minimal subtraction (MS)
scheme is automatically consistent with that derived from
the remaining ones [3,5]. In other schemes this may not be
the case. So fixing the coupling constant renormalization
from one vertex means that the structure of the other vertex
functions is determined using the restrictions from the
Slavnov-Taylor identities. This has been studied in depth in
QCD in a variety of early articles such as [3,6-11]. More
recently Slavnov-Taylor identities have been used to
analyze the structure of n-point functions in order to probe
the infrared dynamics of QCD. Various review articles, for
instance, give a flavor of developments over the last decade
[12-15]. More recently, progress in understanding the
nonperturbative structure of the triple gluon vertex has
been made through Dyson-Schwinger, functional renorm-
alization group and lattice methods [16-20]. For example,
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a comprehensive study of the non-perturbative longitudinal
part of the triple gluon vertex was provided in [21].
Although 3-point QCD vertex studies have been the main
focus, a similar level of nonperturbative analysis is becom-
ing available for 4-point vertices primarily through the
Dyson-Schwinger technique [22-27].

Diagrammatic techniques for the construction of
QCD Slavnov-Taylor identities have been provided in
[1,3,28-30]. More recently these ideas have been used
in several articles [31,32]. For instance, in [31] the Hopf-
algebraic structure of Slavnov-Taylor identities was exam-
ined with the ghost sector being shown to have a
connection with the Corolla polynomial. In [28,33] the
diagrammatic approach was used to reorganize Feynman
diagrams contributing to Dyson-Schwinger equations in
quantum electrodynamics (QED). An important result was
that the gauge parameter dependence of the electron
propagator in a linear covariant gauge was reconstructed
from a pure Feynman gauge analysis. The formalism was
shown to be correct to four loops. While the diagrammatic
approach of [1,3,28-30] is perhaps not a mainstream
method since it does not use path integral methods or
the technique of algebraic renormalization [34], impor-
tantly it does preserve the distinction between the trans-
verse and longitudinal components of the gauge field
within Green’s functions and allows one to follow their
individual routes through a graph. One useful aspect of
diagrammatic techniques is that Slavnov-Taylor identity-
like relations between one-particle irreducible (1PI)
Green’s functions can be derived without explicitly study-
ing connected Green’s functions. Such 1PI Green’s func-
tions have been checked calculationally in several articles
[10,11]. In [10] the triple gluon vertex was studied in QCD
in the linear covariant gauge and axial gauge at one loop.
While the identity for the gluon 4-point was discussed in
[3,10] it was not checked but one loop calculations were
carried out in [11]. In that latter article the quartic vertex
was examined at the completely symmetric point which is a
nonexceptional momentum configuration. Moreover the
consequences of the Slavnov-Taylor identity for the
renormalization constants were studied in the Weinberg
scheme [4]. More recently the analysis of [11] was
extended in [35] where the full decomposition of the
quartic vertex into all the Lorentz tensor and color channels
was given. Aside from a few minor typographical errors the
expression found in [11] for the Lorentz tensors purely
corresponding to the quartic gluon Feynman rule was
effectively correct. However one observation of [11] was
that the relations between renormalization constants were
not satisfied as they ought to have been due to the Slavnov-
Taylor implications. Choices of the gauge parameter were
found to ameliorate the situation.

Therefore to study the Slavnov-Taylor identities afresh
we return to basics and apply modern algebraic and
diagrammatic methods to construct the identities of the

various relevant 3- and 4-point functions. These will
involve the triple gluon and ghost-gluon vertices and both
the pure gluon and ghost-gluon 4-point functions. The latter
was studied in [36] together with the other possible 4-point
functions of QCD at one loop at the symmetric point. While
the 3- and 4-point ghost-gluon vertex functions have been
studied in earlier work we have to carry out a new
evaluation here. This is because in the standard construc-
tion of the Slavnov-Taylor identity the vertex connecting to
one of the external ghost fields is not the standard one
derived using the Faddeev-Popov method [1-3]. Instead for
that specific vertex the momentum appearing in the
Feynman rule is stripped off to produce a vertex rule with
two Lorentz indices. Since the vertex function of this
modified vertex is required for our computations we have to
evaluate it for a completely off-shell momentum configu-
ration. We will also provide a general derivation of the
identities using Hopf-algebraic arguments based on [37]
valid at all orders in perturbation theory. In addition to this
we will carry out explicit one loop calculations for each
Slavnov-Taylor identity for an off-shell setup. In the case of
the 3-point identity this will be in the fully off-shell case
while for the 4-point one we will focus on the same fully
symmetric point as [11]. In both cases we will show that the
identities are fully satisfied in all color and Lorentz
channels. While this appears to contradict the observation
of [11], in our derivation using combinatorial Dyson-
Schwinger equations [37], and the diagrammatic approach
following [1,3,28-30,38], additional graphs arise which
appear to be absent or implicit in earlier work for 1PI
Green’s functions. Their presence is crucial to reconciling
the identities. At this juncture our primary concern is to
demonstrate the consistency of the 1PI Slavnov-Taylor
identities. What the implications of the results are for other
work still has to be followed through.

The paper is organized as follows. We devote Sec. II to
the description of the Hopf-algebraic and diagrammatic
constructions of the 3- and 4-point identities which we will
study using explicit computations. The identity relating the
triple gluon vertex to ghost-gluon 3-point functions is
studied in depth at one loop in the off-shell case in
Sec. III. A similar analysis but for the 4-point identity at
the fully symmetric point is carried out in the next section
with conclusions given in Sec. V. Several appendices are
provided. These give the details of the projection matrices
and tensor basis, the core color group theory needed for the
4-point function calculation with the final appendix giving
explicit expressions for the purely gluonic 3- and 4-point
functions.

II. CONSTRUCTION OF IDENTITIES

We devote this section to the derivation of the identities
by exploiting algebraic structures which originate due to
combinatorial insertions of Green’s functions [37] and
studying diagrammatic techniques following [1,3,28-30].
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In particular we will offer two different derivations of the
desired identities. The main goal is to clarify how gauge
symmetry can be expressed on the level of renormalized
1PI Green’s functions and the resulting implications in the
corresponding algebra of structure functions.

A. Hopf-algebra derivation

Our first starting point is to consider the Dyson-
Schwinger equations for the 1PI Green’s functions. The
demand that QCD can be renormalized by the unique
renormalization of a single coupling constant g delivers a
set of identities for the renormalization factor Z, of the
coupling constant

VZ 19999

r - . (2.)

Z = p— =
g (ZFW )% ZraaN/ Lo Zreen/ Lo qug

We note that at the outset our notation is that when we label
the renormalization constants or Green’s function to dis-
tinguish which n-point function they relate to we use the
letters g, ¢ and ¢ to indicate gluons, Faddeev-Popov ghosts
and quarks respectively as well as the associated antipar-
ticles in the latter two instances. So, for example, the label
gggg indicates the gluon 4-point function or quartic gluon
vertex function. A derivation of these identities (2.1) can be
achieved using the locality of counterterms in a renorma-
lizable field theory which implies that the all orders
counterterms can be obtained from a solution of a fixed
point equation in Hochschild cohomology [37] and we
refer readers to that article for background to the notation
used for the derivation by this method.

As a consequence the relations (2.1) are obtained by
applying the counterterm map S to combinatorial Green’s
functions. They themselves obey a similar formal identity

V4 1999 Z rvaq

999 94 [oce /T9999
(r99)2 C[24\T99  Te\T99 I (2.2)
Let us define 1PI combinatorial Green’s functions
D)= Y P
res(D)=r |Aut(r) |
=1+ g*BY (M%), (2.3)

k=1

where r € R specifies the 1PI amplitude under consid-
eration. For us it suffices to consider

R = {cc, g9, 999 9999, gcc, Ecgg}

the inverse ghost and gluon propagators, the 3- and 4-gluon
vertex functions, and the coupling of one or two gluons
with a ghost pair. We take 7, = Ffo) to be the tree-level

contribution for such an amplitude. It can vanish as it does
in fz.4, = 0, as there is no quartic gluon-ghost interaction in
the linear covariant gauge fixed Lagrangian. Indeed there is
no need for such a term as it does not have to be
renormalized as an overall convergent contribution.

Furthermore, res(I') is obtained by shrinking internal

edges in 1PI graphs to zero length. The fact that the B'ﬁ’
act as Hochschild 1-cocycles ensures the desired renorm-
alization by local counterterms. For the maps B%" to be
indeed closed in Hochschild cohomology the identities
(2.2) are necessary and sufficient [37]. Note that the 1PI
2-point functions are inverse propagators, in particular
P9(g) =1=T%(g).  T(g)=1-T") (24)
where I indicates self-energies.

Two further remarks are in order. The product of
combinatorial Green’s functions always implies a product
as connected diagrams with a sum over all orientations
understood. This is required by Hochschild cohomology
where products of combinatorial Green’s functions appear
in arguments of the l-cocycles B%, and closedness can
only be achieved when the correct sum over all orientations
is taken into account [37,39]. As an example,

9999 1999 1
= & 9999 =T999 . — .T99

999 — T99 99

where the propagator 1% is sandwiched between two
3-gluon vertex functions in the three s, f and u topologies,
with respect to the Mandelstam variables, as indicated by
the - notation. Also understood is a form factor decom-
position whenever appropriate. To allow for a projection
onto chosen form factors, we extend the notion of a graph I"
to a pair (I', 6) where o € {¢}, with {¢} a complete basis
for the form factor decomposition of the evaluation of I’
under renormalized Feynman rules. The graph insertion is
stable under projection onto a chosen form factor ¢ upon
summing over the complete basis for the inserted graphs y

S (Fo)+ (n3) = 3 202D )

2.5
d Tl 22
in the notation of [37]. This ensures that projection onto a
desired form factor commutes with replacing an edge or
vertex by a full propagator or vertex Green’s function.

The identities (2.2) above constitute several co-ideals in
accordance with Hochschild cohomology

999 T9ec  T[949  [°9999
9a — 1999 °

(2.6)

199 FZ‘c

Of particular interest is the equation constituted by the first
equality
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e . 1999 = T°9¢¢ . T99 (2.7)
which implies

[%c . 19999 — [°ecgg - [9ec . 1999

__cegg
=Tt

(2.8)

where T.“% is a connected combinatorial Green’s function
from

- 1 I -
[ . 1999 . — .T999 — ['9¢c . —— . [999 — ["9¢¢ . ['999
Iz N

(2.9)
using (2.7). The Green’s function I'=" as a 1PI Green’s
function contributing to the same amplitude as the con-
nected Green’s function is (2.9). It hence must be included.

Upon using (2.4) and expanding in ¢?, (2.7) formally
becomes

999 __ fEc | 1999 | ygec | ]
Fay =10 T + Ty - L —To I (2.10)
=
where
i
+
FIG. 1.

- - - - - -

R N

PuP
P/u/(p) =My — ;2D

(2.11)

is the transverse projector and this is the first desired
identity. It is illustrated in Fig. 1 and given in more explicit
detail in (3.10), where a projection onto a longitudinal
component p, for a fixed chosen external leg is automatic
on both sides above. We note that in Fig. 1 a blob at a vertex
represents all 1PI one loop contributions and a gluon leg
with a blob indicates the one loop corrections to the 2-point
function. Similarly, using (2.4) again and expanding in ¢*,
(2.8) becomes

9999 __ e | 79999 cegg
oy =T Ty T

gec 999
+F(0) -P-F(l)

gcc  p 1999
+F(1> P F(o)

(2.12)

which is the second desired identity. A sum over orienta-
tions is understood in both equations so that they are indeed
in complete agreement with Figs. 1 and 2. Again, a
projection onto the longitudinal component p, on a chosen
external leg is automatic. We have illustrated our notation
for the various edges in Fig. 3 together with their various

[,

[

Slavnov-Taylor identity for 3-point function.
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FIG. 2. Slavnov-Taylor identity for 4-point function.

Feynman rules. In each rule the through momentum is p
and we have omitted the unit matrix in the color indices.
The same result can be obtained by studying the
contraction of a connected Green’s function with n external
gluons at a fixed external gluon leg i with its momentum p;.
The Slavnov-Taylor identity is
pi-G"(p1s - pa) = 0. (2.13)
From [31] we know that all graphs contributing to such
a connected amplitude can be obtained by applying the
Corolla polynomial [40] to a corresponding sum of
3-regular scalar graphs. Underlying this is a bi-complex
in graph and cycle homology studied in [31] which puts the
approach of [28-30] on a firm mathematical footing. A
careful rederivation of the Slavnov-Taylor identities using
this approach is given in [38]. In particular see Lemma 5.9
there which allows one to follow the resulting propagation
of the corresponding longitudinal momenta through the
graphs. If we dress an external gluon leg of a 1PI vertex

function in QCD by a gluon self-energy and contract with
the gluon momentum, properties of the Corolla polynomial,
discussed in Secs. 6.1 and 6.9 of [31], ensure that this
results in a 1PI vertex function where that external leg is

T

\

[ p? — pHp”]

n v

n
FIG. 3. Notation for graph representation of Slavnov-Taylor
identities.
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longitudinal and dressed by a ghost self-energy. Indeed the
Feynman graphs for the latter pair off with the sum of all
paths through a gluon self-energy. This again leads to the
desired identities.

B. Diagrammatic derivation

Our first derivation of the Slavnov-Taylor identities
clearly shows how the underlying algebra implies restric-
tions on the renormalization of Green’s functions to all loop
orders. In order to provide an illustration of the derived
identities as well as a practical alternative to complement
the general argument, and which in fact was the original
way we discovered the relations (2.10) and (2.12), we now
examine one loop diagrams and discuss the diagrammatic
approach following [1,3,28-30].

For the concrete evaluation of the diagrams below, we
are mainly concerned with two basic identities that either
link the 3-gluon 1PI Green’s function I'%% or the 4-gluon
1PI Green’s functions %% to a linear combination of
certain connected Green’s functions. The procedure for
achieving this for one loop diagrams begins with con-
tracting one of the external gluon legs with its in-going
momentum. We will refer to this here as the longitudinal
contraction which corresponds to the final rule in Fig. 3.
The next stage is to examine the effect this contraction
has on each individual graphs of the Green’s function. As
each contributing diagram is 1Pl and has amputated
external propagators, the longitudinal contraction of
the external gluon leg is always incident to a vertex.
At this stage we need to distinguish the effect the
contraction has on each of the possible vertices of the
linear covariant gauge fixed QCD Lagrangian we focus
on in this article.

First, if the incident vertex is of quark-gluon type then
the diagrammatic cancellations which are applied are very
similar to the Abelian case that was discussed in [33,41].
However, due to the presence of the non-Abelian group
generator in the quark-gluon vertex we need to consider
gauge invariant sets of graphs as discussed in [42]. This
includes diagrams which are no longer 1PI. They will
feature connected diagrams with a bridge corresponding to
the contracted propagator of the final two terms of (2.12) or
the third and fourth graphs on the right-hand side of Fig. 1
for instance. Next if the incident vertex is a triple gluon
vertex then it is straightforward to see that using the rules
given in [28-30,38] the contracted vertex can be rewritten
in terms of an auxiliary ghost vertex allowing us to
recognize that the longitudinal gluon momentum propa-
gates to the next adjacent vertex or contracts the propagator
adjacent to both of these vertices. Repeating the application
of the rules means that the longitudinal gluon momentum
propagates through a diagram until it hits a vertex which is
not a triple gluon vertex or eventually reaches an external
leg. The former diagram can be shown to cancel 1PI
diagrams with a contracted propagator that emerges from

longitudinal contractions of a 4-gluon vertex which is
discussed below. The latter diagrams constitute a new type
of Green’s function where the external leg that has been
reached equals an in-going ghost leg of an incident vertex
which has a purely transverse component as derived in [1].
The corresponding fixed longitudinal gluon leg is then
identified with an out-going ghost leg. An illustration of
this is given, for example, in the first and second Green’s
functions on the right-hand side of Fig. 1. In terms of (2.10)
and (2.12) this is consistent with the transverse projec-
tion there.

Next for the case when the incident vertex involves a
ghost vertex then it is possible to show that a certain linear
combination of diagrams with internal ghost loops together
with diagrams which have an external ghost line that
originated from the longitudinal contraction of the fixed
gluon vanishes. The essence of this cancellation of the
ghost loops and longitudinal lines resides in the Jacobi
identity for the structure constants. The final situation we
have to consider is that where the incident vertex involves
the quartic gluon vertex. Then the 4-valent vertex gets
replaced by two 3-valent vertices that are connected by a
contracted propagator edge [29-31]. To be more precise, all
(2]2) partitions of the four edges of the 4-gluon vertex to
the two emerging vertices need to be considered. From
graph homology these partitions are well known and
termed THX terms and more familiarly correspond to the
s, t and u channels in the Mandelstam variable notation. For
full details on the quartic gluon vertex identity, we refer the
reader to [31] which also includes a detailed account of
graph homology in QCD that underlies these identities.
As discussed in the case of the gluon 3-point case, the
contracted propagator edge that connected the new 3-valent
vertices can be arranged to cancel contributions from other
diagrams as long it is not a bridge. By contrast if it is a
bridge then the contracted propagator edge contributes a
new type of connected Green’s function to the identity.
Examples of this are evident in either the third, fourth or
fifth graph on the right-hand side of Fig. 1 or the third,
fourth or fifth graphs on the right-hand side of Fig. 2.
This explains the extra diagram of the gluon 3-point
function %% in Fig. 1. A separate case that we need to
consider is the circumstance that occurs when an edge that
is incident to a 4-gluon vertex is contracted. This can be
resolved since there is a simple cancellation rule that
follows from the Jacobi identity as demonstrated in
[31,38]. As a result the sum over all ways to contract
one of the edges of the 4-gluon vertex vanishes. Therefore,
all 1PI diagrams with a contracted edge incident to a
4-gluon vertex vanish on the right-hand side of the
Slavnov-Taylor identity in Fig. 2. However, a single
diagram remains since the contracted edge is a bridge.
Therefore this explains the appearance of the last diagram
of Fig. 2 in full accord with a similar origin in the previous
Hochschild construction.
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III. TRIPLE GLUON VERTEX

In deriving both Slavnov-Taylor identities by algebraic
and diagrammatic methods we have arrived at the same
relations. However in comparing our expressions with
relations between similar Green’s functions provided in,
say, [10] we note that for both cases we have an additional
graph which is not 1PI but involves self-energy corrections
to the ghost on the same external leg corresponding to the
longitudinal projection. In other words this Faddeev-Popov
ghost is intimately tied to the longitudinal gluon. This is
already well known in the 2-point context since the ghost is
necessary to cancel unphysical degrees of freedom in the
longitudinal sector and ensure the gluon 2-point function is
transverse. Therefore we now turn to explicit computations
to demonstrate how important this extra graph is to
ensuring our relations are consistent. We will carry this
out for the cases where the momentum of none of the
external legs to set to zero and focus on general nonexcep-
tional momentum configurations. In the case of the 3-point
relation we will do so for the completely off-shell con-
figuration. This will build on earlier work of [7,8,43-46]
where in the latter the two loop off-shell QCD 3-point
vertex functions were computed. However it is not possible
to immediately lift even the one loop vertex functions from
[46] to effect an immediate check on our 3-point identity.
This is because like [1,2,10] the ghost-gluon vertex
function of the identity is a modification of the correspond-
ing vertex function of the Lagrangian. We note that the
Feynman rule for the canonical ghost-gluon vertex for the
linear covariant gauge we use involves the momentum of
one of the ghost fields. The associated connected vertex
function would then be denoted by T “(p, g, r) where the
Lorentz index matches that of the gluon field and p, ¢ and
are the external momenta. However as we have noted in the
derivation of the identities an adjusted ghost-gluon vertex
plays the major role. It is related to the canonical ghost-
gluon vertex Feynman rule but with the external ghost
momentum dropped. In general this vertex function is

denoted by I'%‘(p.q.r) and is graphically defined in

external ghost momentum would be attached to produce the
canonical vertex present in the Lagrangian. Therefore the
Feynman rule for T, (p. ¢, r) is proportional to 7,, with
the color group and other factors remaining unchanged. In
Fig. 4 we have included two ghost-gluon Green’s functions
labeled separately by A and B. This is because both
orientations appear in the identity and we need to be
careful in computing both off-shell. The other Green’s
function of Fig. 4 defines the triple gluon vertex function of
the identity which was computed in [43,46]. We refer the
reader to [46] for the result with the same conventions
used here.

While the ghost-gluon vertex function itself was also
computed in [43,46] we will need the off-shell result for
I(p, g, r) for both orientations. We briefly summarize
the computation of [46] here first noting that we used the
same projection principle to decompose the vertex function
into a basis of Lorentz tensors. Using r in each instance of a
3-point function as the dependent external momentum then
there are now five possible tensors for both versions of

Fﬁic(p, g, r), rather than two for the conventional vertex
function, which are

cc cc PuPy
PlhwPed) =t Phy,(poa) = ;2 :

cc _ p/AQU cc _ QﬂQU
PowP-9) == 57 Plaupa) == 5

cc 9.9y
P?s)ﬂb(p’ q) = /’;2

(3.1)

for the orientations of Fig. 4. The kinematic variables for
our off-shell analysis are the same as [47] and we note that

2
p q
Ly =1 32
2 Y=2 (3.2)
when we consider 3-point Green’s functions. The associ-
ated Gram determinant is [47]

Fig. 4. The second Lorentz index is the place where the Ag(x.y) =x*=2xy +y*=2x =2y + 1. (3.3)
co C C
br :Ai r :Ai r
ap (VP ANy, ap (DD (NN a0 ANy,
T9999% (p, g, 7) oo (p.q.m) e (p,q,7)

FIG. 4. Basic one particle irreducible Green’s functions for 3-point identity.
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With this basis then for route A we have

(Ai(p)cP(q)es(r)) = f T,
5

=1 Pl (P iy (. 9)
k=1

(p.q.7)

(3.4)
with

p+qg+r=0 (3.5)

and we have factored off the common color group structure
constants f** which play a passive role at one loop. The

Lorentz index on the field ¢j indicates the removal of

the external momentum from the associated ghost-gluon
vertex. We also define

(AL (P)AY(@)AS(r) = fTils(p.q.7).  (3.6)

The associated scalar amplitudes are ZZE&) (p,q) and are

deduced by multiplying Ff‘ifj(p,q, r) by the projection

where 1 < k < 5. The explicit expressions for the elements
of MY are provided in Appendix A as they are compli-
cated functions of the variables x and y as well as the
spacetime dimension d. We note that throughout we use
dimensional regularization to carry out all our loop calcu-
lations in d = 4 — 2e dimensions. So we have to carry out
the projection in d-dimensions. To evaluate the vertex
functions to one loop we use the same method outlined in
detail in [46] and refer the reader to that for more technical
details. Though to summarize we note that the integration
by parts algorithm devised by Laporta [48], is the main tool
and we used the REDUZE implementation [49,50]. The
underlying master integrals are imported from [51,52] to
complete the decomposition into scalar amplitudes. All our
calculations for both 3- and 4-point functions are carried
out automatically with the symbolic manipulation language
Forwm [53,54], used to handle the algebraic manipulations
after the contributing Feynman graphs are generated using
the QGRAF package [55].

To get a flavor of the consequences of our computations
we record the expressions for both orientations of

% (p.q.r) in Fig. 4. However given that the completely

matrix M‘Z?C which is the inverse of the matrix off-shell results involve polylogarithms we provide the
- - - versions at the completely symmetric point defined by
N =Plyu (P a)P™ (p.q) (3.7)  x=y=1 for illustration. We have
|
£ 1]1 2 Ixr. & 1,1\ T /(1
—Fg .q, — A+ 12==—-— 1-=—4 2= A o B N B )
3 (Pogo )l nﬂg+mz 3 ot tarétgtevlz) —3g¥(3)¢|m
4r* & ot A, 2 (1 E (1 & (1] pup.
AR T (5)‘&"’ <§>+3—6"’ (3)} p
& 2, & (1\]Pudu
Tle T T8 \3)| e
4r* & ot & o, 2 (1 & (1 1 (1N, P
Tl et et T 6) T 5) TV 5) ) e
1, 2, 1,1 1N N Jaa] . S
- — —y' (=) ——=y/(= C 0 3.8
+_3§ 577 +277r5+9l//<3> ¥ (3)¢ 2 |Cag T+ () (3.8)
and
1 &1 B 76, & 1 1\ T (1
_jT%ee _ Sl NSNS RIS B S S e el LY (e
Ty (P-4 1)y ”ﬂ”ﬁmz 2} Ity T 6 \3) T3V \3) |
222 1. 1 5. 1 1\ 1 1\ ]pw.
+_7‘§5‘ﬁ”5‘§‘”(§>+ﬁ"’ 3)°)
(4 E 2. 1, 2, 2 (1N & (1N 1 (1N ,] P
27 Te Tt T Ty oY (5)‘@’” <§)‘ﬁ"’ (5)5],,—2
[ 1 1 1 1 Puq
__Eg_ - 22 Ryl H
G AR <3H 2
4, 1,1, 2 (1 11 TSN 7
- ZE—— — Sl +—y/ (= —'( = C
Tl e T e s v 3) T \5) 736 3)¢ ] e |G
+0(g) (3.9)
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where a =1—-¢ is the gauge parameter with a =0
corresponding to the Landau gauge, y/(z) is the derivative
of the logarithm of Euler I-function,' C, is the usual color
group Casimir and g is the gauge coupling constant. We do
not carry out any renormalization at any instance since the
identities hold in the bare case. So the parameters &, @ and g
are bare. We have provided the expressions for these off-
shell vertex functions in Supplemental Material [57].

At this point it is worth recording the 3-point Slavnov-
Taylor identity for the triple gluon vertex, illustrated in
Fig. 1, as an equation with the Lorentz indices explicit, now
that we have introduced the modified ghost-gluon vertex

% (p.q.r). We have
rT(p.g.r) =T, (p.q.r)PL(q)q>
+ % (p.q.r)Ph(p)p?
= TG0 (P 0. )PLPIT (p) P2~
— T{ors,, (P @ PL@)TY (@)a?y
+ TG0 (P @ 1T () (3.10)

where we recall a subscript 0 on a Green’s function means
the tree contribution only. We note that we have set

le/(p) = P;w(p) +F?f)(p)P;w(p) (311)

for the inverse propagator to one loop with Fflc) indicating

the one loop correction of the ghost leg of the final graph of
Fig. 1. For reference we note

5 4 1 1
99 _ |2~ - -
F(1)(P) = H3 Cy 3NfTF =+ 2§CA:| .
31 20 1
+5 Ca— g NTr=¢Ca +Z(§2CA
188 112 1
+ |:7 CA - foTF - 2§CA + §§2CA1| €
+ 0(62)] 7 (3.12)
and
cc 1 1 2 2
as well as

ng)gyvp (P, q, I‘) = i[’?;w% ~NwPo + 277/40[71/

+ Mue9v — NvePu — 2711/5Qu]g (314)

"The presence of 1//(%) is not unrelated to the cyclotomic
polynomials of [56].

for the tree term of the 3-point gluon vertex. We have
included diagrams with quarks in all our computations and
their contributions are associated with the number of
flavors Ny and Dynkin index Tz. However for the 3-point
identity (3.10) they primarily play a passive role in the
verification by calculation.

To illustrate how each of the various terms of (3.10)
conspire together to satisfy the identity we have provided
the values for each of the terms on the right-hand side of
(3.10) in Table I. We do this for the completely symmetric
point for simplicity here purely due to the cumbersome
expressions for the fully off-shell case. In Table I there are
five separate sections which correspond to the respective
terms of (3.10) in order. Within each graph we have divided
the contributions by the respective structures which can
appear in the expression. These correspond respectively to
the residue of the simple pole in ¢, the rational finite part
and the coefficients of 72 and y/(3). As each graph was
decomposed into the Lorentz basis there are five columns
corresponding to the basis of the factored ghost-gluon
vertex. Therefore Table I compactly summarizes all con-
tributions to the right-hand side of (3.10). The correspond-
ing coefficients of the left-hand side of the identity are
given in Table II in the same notation. Therefore it is a
straightforward exercise to sum the respective coefficients
for each structure and tensor in Table I and see that they
completely tally with the corresponding entries in Table II.
It is worth noting that this represents a check of the
Slavnov-Taylor identity derived using the methods of
[28-30] for a nonexceptional momentum configuration.
No external momenta have been nullified. We have
repeated the same check for the completely off-shell case
for x and y not restricted to unity and found the same total
consistency of (3.10). This is nontrivial and to give an
indication of the nature of the functions involved in this
case we note that the coefficient of Pff)c for the first term on

the right-hand side of (3.10) is

1 3 1

1 301
—yIn(x) =2y — =yl 2 _Zy—Zxy|®
Ly n(x) gV =5V n(y)+{2y g7 4xy} 1(x.y)

M1 1 3 1
Ty — 2 ~ 3 = 2 1
+ _[8y 7Y +8y +8xy 8xy] n(x)
11, 1, 1 1,

Cy— 2 — 3 — = - 1

+ _4y gV —gY 4xy+8xy] n(y)

+_1 ]2+]3 ] @, (x,y) 1C (3.15)
2V 7Y T T ey 3| G -

which is considerably more involved than the three
coefficients in the first column of Table I corresponding
to this graph. At the symmetric point (3.15) reduces to the
corresponding entry where the function ®(x,y) contains
the polylogarithm function Li,(z) and is defined by [52]
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TABLE L
Landau gauge.

Coefficients of each of the tensors and different structures for each of the five terms on the right-hand side of (3.10) in the

. gcc gcc gcc gcc gcc
Entity Pl Pl PG Pl P
1 0 0 0 0 0
Q -3C, —-1Cy —5Ca —5Ca —5Cy
71'2 iCA %CA %CA %CA ﬁCA
v'(3) —3Ca =3Ca —3Ca ~1:Ca —3Ca
1 0 0 0 0 0
Q 3C, 2Cy 5Ca 5Ca ¢Cy
a ~5iCa ~15Ca ~1Ca = Ca —5Ca
W’(%) %CA ﬁcA éCA %CA %CA
L 1TeN, -2 C,y 1TeN, —2C, 0 0 0
Q DTN -2 Cy DTN —2Cy 0 0 0
7 0 0 0 0 0
v (b 0 0 0 0 0
1 —3TpN,+8C, 0 0 0 —3TpN; +2Cy
Q —0TeNy +32Cy 0 0 0 —RTpN; +3Ca
7? 0 0 0 0 0
v () 0 0 0 0 0
1 0 3¢, 0 0 —3iCa
Q 0 C, 0 0 —C,
72 0 0 0 0 0
o 0 0 0 0 0
TABLE II. Coefficients of each of the tensors and different structures for the left-hand side of (3.10) in the Landau gauge.
. gcc gcc gcc gcc gcc
Entity 77(1) 77(2) 77(3) 77(4) 77(5)
1 0 4TeN, -2, 0 0 —4TeN; +13Cy
Q 0 DTN, -8 C, 0 0 -207.N,+1C,
x 0 LCa 0 0 =5Ca
l//l(%) 0 — é Cy 0 0 % Cy
1 . . The more involved x and y dependence would make the
@ (x,y) = 2 {2L12(—p %) + 2L (=py) extension of Table I to the off-shell case large but the
(14 py) ) Supplemental Material [57] contains the details of the full
+1n <X> In (J> + In(px) In(py) + T off-shell case for arbitrary gauge. However we confirm that
X (1 + px) 3 the sum of the graphs on the right side of (3.10) fully agree
(3.16)  with the expression for T3 (p. ¢, r) for nonunit x and y.
We note that in addition to @;(x, y) the O(e) correction to
where one loop master triangle graph is required for several
5 Green’s function contributing to the 4-point identity.
- — Therefore as this is the appropriate place to note this we
plx,y)= . AMxy)=+Ag.  (3.17) ppropriate p _
[1-x—y+A(x.y)] record that the O(e) term of the triangle master is
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‘Pl(x,y):—ﬂ%g(_/M) +4Li3< : py(1 + px)

1 —p%xy)

1 —p°xy)
(1 +px)

)_ Ll3< (1-p? xy>+2Li3<XI()1(1+7J;§)y>>

+ 2Lij (%Tw) — 2Lis(p2xy) — 285 — 2 In(y)Li ( (1( +py)> 2 In(x)Li, <y€(1 +px)>

2
- §1n3(1 — pPxy)

)

1+ py)

2 2
+§ln3(1 + px) +§ln3(1 +py) + 21In(p)In*(1 — p>xy)

—21In(1 = p2xy) {ln(px) In(py) + ln< ) In (M> +2In(1 + px) In(1 + py) + %2]

(1+px

2

IV. QUARTIC GLUON VERTEX

We now turn to the examination of the 4-point identity
which was considered in [3,5,11] and that derived using
algebraic and diagrammatic methods which is illustrated in
Fig. 2. It relates the purely gluonic 4-point vertex function
to three ghost-gluon boxes as well as the 4-point functions
built from reduced 3-point ghost-gluon functions. We have
labeled the respective orientations with C and D as they
differ from the previous ones and illustrated their defini-
tions in Fig. 5 for clarity. The graphical definitions of the
4-point terms are provided in Fig. 6 which includes the
three orientations of the reduced 4-point ghost-gluon
functions where one external ghost leg corresponds to
the reduced 3-point ghost-gluon vertex. For reference we
note that the quartic gluon vertex is defined by

|

+ L in(xyp?) {ln(px) In(py) + In e) In (%

)= (i) )

)
(3.18)

(A4(P)AL(Q)AS(r)AL(s)) = Ty (p. g, r.s).  (4.1)

Unlike its 3-point counterpart we cannot factor off a
common group theory structure. This is because even
at one loop there are a large number of different combi-
nations of the structure constants and unit matrix in color
space to produce symmetric rank 4 color tensors. This was
also apparent in the early work of [11] and had to be taken
into account in [35] as well. In Appendix B we have
summarized our algorithm for dealing with aspects of the
group theory issues which is based on [35]. Though we
note that throughout this section alone we restrict ourselves
to the SU(N.) group rather than the general Lie group
considered previously. The 4-point identity of Fig. 6
corresponds to

abcd ) ggabced -cggabed bed
T (p.q. r.5)s” = Ta5" U (p.q. r.s)PL(p) + Tyl (p. q. r.s)P(q) + TGy (p. q. r. ) Py(r)
ccdbe ace _
+ T (s.q,=s = @)Uy “(p.r.=p = 1)((p + 1))~
d b _
+ T8 (r, s, —r = S)Fiﬂi“ “(pog-—p—a)((p+q)*)*
d b bed c
+ T (s, po=s = PITT“ (g, o =g = 1) (g + 1)2) ™ + {0 (p. g, rs)s'Ti (5) (4.2)
C C
lr lr
\‘\ /4/
ap (VP g\ ap - P ANy

ccab
rey (pg,r)

FIG. 5.

ccab
Iy (pg,r)

Extra ghost-gluon 3-point function configurations for 4-point identity.
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dp \ r co

ap (DD Iy,

bed
Logeee(p, a,r s)

d co
apu /p VAN b
C: bed
LElos “(p,g. . )

d co
a p g™\ by
T ars)

d cA
ap ' p qa™\ by

C bed
et (p g,y )

FIG. 6. Basic one particle irreducible Green’s functions for 4-point function.

or to (2.12) with the Lorentz and color indices included for
the practical task of its evaluation. Due to the presence of
two 3-point vertices appearing in graphs with a bridge we
have temporarily reintroduced the color indices in those
vertex functions to assist with the placement of the structure
constants in an evaluation.

To study (4.2) we will restrict to the fully symmetric
point setup of [11] but using the notation of [35]. For a
4-point function the symmetric point is defined by the
following relations between the external momenta

1

pP=q=r==  pg=pr=qr=zu’ (43
where we take s as the dependent momentum since

p+q+r+s=0. (4.4)
The Mandelstam variables are explicitly defined by
o1 , -1 5 _ 1 N
s=5(p+aq), i=5(q+r),  a=g(p+r)? (45)

2 2 2
then take the values
_ 4
Ezt:ﬁ:—g/ﬂ. (4.6)

Here u is the overall mass scale to which all the external
momenta relate to. In the previous section we considered
the completely off-shell 3-point identity and it is apparent
in Fig. 6 that these functions play a role. However at the
4-point symmetric point it is important to realise that in
bolting two 3-point functions together each of these
functions are not at the 3-point symmetric point. With
(4.3) the bridging momentum corresponds to one of the
Mandelstam variables (4.5).

Aside from the various different color channels which
are present in the 4-point functions there is a larger number
of Lorentz tensors for each of the Green’s functions of
Fig. 6. For instance Fﬁﬁ%ﬁ“bed( p.q,r,s) has 138 such
tensors, [35], which reduces to 36 when contracted with

s”. These match the same 36 possibilities for the decom-

position of T<9%“*“U(p g r, s) into its tensor basis. As this

Green’s function was not computed in [36] we need to
evaluate it here for the three different routings. To do so we
follow the same procedure as (3.4). The tensor basis for
each case is structurally the same differing only in the
rotation of the Lorentz indices with respect to the various
external legs. In Appendix A we have given the tensor basis
as well as the projection matrix for the 4-point ghost-gluon
function at the symmetric point. For a more general off-
shell setup the projection matrix method is not appropriate
to use given the large dependence on the kinematic
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variables which would be present. Aside from the
Mandelstam variables the other variables in that instance
would be the ratios of the three dependent external
momenta, akin to x and y of (3.2), as well as one overall
mass scale which would be 2. To be clear we decompose
the ghost-gluon 4-point function of the identity via

(Ai(P)AL(g)cc(r)Eg(s))

= FZ%"”M(p q.7.5)

CC cc abced
—27’ o o (P @ PE " (pogr)  (47)

using the same basic notation as earlier. The full Lorentz
tensor basis is given in Appendix A together with the
elements of the projection matrix M at the symmetric
point (4.3). For each of the three orientations there are 7
Feynman graphs at one loop none of which involve quarks.
Again the method we employ to evaluate the scalar

amplitudes of F;ﬁgyah“i(p, q,r,s) is the same as that for
the 3-point case in that we use the Laporta algorithm
after the scalar amplitudes have been isolated by the

projection method. One of the main differences in comput-

. ggggabed
ing I'iep

Ff,f,ﬂgabm( P, q,r,s) is that there is more than one possible
rank 4 color group tensor which can appear at one loop. For
a 3-point function involving only ghosts and gluons there is
only one possible rank 3 color tensor. For the 4-point
functions we have to be careful in our color tensor basis
choice and have retained that which was used in [35,36].
The technical details of this have been relegated to
Appendix B but we note that we do not use a method
of projection similar to that for the Lorentz structure.
Instead we map the color combinations into our choice
of basis tensors. For completeness this is

(p,q,r,s) and the various orientations of

{5ab5cd’ 66{651)(1, 5ad5bc, fabefcde7 facefbde7 deCd, d?;de}
(4.8)

where the fully symmetric rank 4 tensors d4°°¢ and d4”¢¢ are
defined in (B1) and their properties discussed at length in
[58]. We have used the Jacobi identity to ensure there
are only two independent rank 4 combinations of the
product of two structure constants. For illustration we

have provided the expressions for F,J,,g,?,fgabm( p.q,r,s) and
F;;ﬂ‘i“b‘d( p,q,r,s) in the Landau gauge at the fully sym-
metric point in Appendix C. Full explicit expressions for
each of the graphs in Fig. 2 in an arbitrary linear covariant
gauge are given in the Supplemental Material [57].
Having discussed the technical issues around computing
the individual graphs contributing to (4.2) we now turn to
demonstrating that the identity is satisfied at the symmetric

point (4.3). Compared to the 3-point case this is much more

involved because of the structure of the Green’s function.
First there are 3 color and 36 Lorentz tensors in the basis for
each graph. On top of this there are four different
numerological structures in each tensor coefficient aside
from the pole term in e. These structures are the pure
rational piece, ln(g—‘) and two specific functions involving
dilogarithms. These are @, (3,3) and ®, (3, %). This gives
a large number of overall terms which have to sum to match
both sides of (4.2) exactly. If we dissect the origin of
@ (3.3) and @, (3, 1) more carefully we can understand
how part of this cancellation proceeds. The arguments of
both functions reflect the kinematics of the underlying
master integral deriving from the application of the
Laporta algorithm. For instance the completely off-shell
box fully symmetric point master integral of Fig. 7 is given
by [59,60]

p22 q22

i ((p +9)*(q+7r)? (p+q)Pqg+ r)2> (49)

which depend on the Mandelstam variables. Using their
values at the symmetric point, (4.6), determines the origin
of @, (7%, %)- Therefore in (4.2) the only terms where such
a function can arise is in 1PI 4-point functions which is the
first three terms of the right-hand side as well as the left
side. The other structure @ ( ) occurs in all bar the last
term on the right-hand side of (4.2). However it has
different origins in the three 4-point functions and the
three graphs of Fig. 2 where there is a bridging propagator
between two 3-point functions. For instance the box graph
of Fig. 7 is also one of the three box topologies in the
integral family which is the starting point of the Laporta
algorithm. Within the integration by parts routine various
masters can be deduced by taking one of the integral family
topologies and removing lines or propagators in such a way
as not to produce a zero sector integral. Doing this for the
box graph of Fig. 7 produces the three remaining graphs of

FIG. 7. Master integrals for reduction of 4-point function.
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that figure. Given this @, (3,3) corresponds to the triangle
graph. We have deliberately retained the two external lines
of the top apex to indicate the origin of this master.
However both lines reflect that the momentum flowing
out of that point is the sum of the two incoming momenta.
Therefore from (4.3) one does not have a triangle master at
the fully symmetric point of the 3-point functions of the
previous section. Instead the variable for the top apex
momentum is one of the three Mandelstam variables of
(4.6). For the connected graphs of Fig. 2 each 3-point
vertex function is likewise evaluated with the connecting
vertex momentum taking the same Mandelstam variable to
produce terms involving @, (3,3). Finally the remaining
two bubble topologies of Fig. 7 give different values for
similar reasons. This is because upon reduction from the
box the momentum flow across the left bubble graph is p
for instance but (p + ¢g) say for the second. The latter
involves a Mandelstam variable and also is one source of

the In(3) structure in the final expressions.

In order to give a flavor of how these different structures
are assembled to ensure the Slavnov-Taylor identity is
satisfied at the fully symmetric point we have repeated the
approach used for the 3-point case. In other words we have
provided a breakdown of the terms contributing to graphs
in (4.2) in Tables III-VI. However given the large number
of different tensor structures, both color and Lorentz, we
focus on a representative selection of each. In each of these
tables the coefficients of the various structures are given for
each graph. We note not every graph has simple poles in ¢
and only record data for them where they occur. In each of
the Tables III to VI we focus on 5 of the 36 different
Lorentz tensors noting for instance in Table III only 5
graphs on the right side of (4.2) have contributions for these
tensors. For a different choice of Lorentz tensors other
graphs would contribute. To differentiate between the color
structures Tables III and IV correspond to the color tensor
f4bed while Tables V and VI relate to the symmetric tensor
df\de where both these tensors are defined in (B4). Similar

TABLE III. Coefficients of selected tensors and different structures for the first three, fifth and sixth terms on the right-hand side of

(4.2) for the f42? sector in the Landau gauge.

Entit CcCgyg cCgg cCgyg CCgg cCgg
y P Po) P Plie) Pen)
_ 63 _ 1609 _ 4151 37 _ 453
Q 1280 N, 30720 N 15360 N, 360 Ve 1280 N,
4 2821 _ 183663 _ 931 113231 _ 36063
ln(3) 25600 N, 204800 N, 1600 N, 307200 N¢ 102400 N,
F (9 33 18211 35329 _ 16307 _ 17427
@, (16) 25600 N 204800 N¢ 819200 N, 819200 N, 819200 N,
F (3 101 _ 3983 _ 129 _ 111 2925
D, (Z) 4096 N¢ 32768 N¢ 4096 N. 16384 N¢ 16384 N,
23 _ 867 _ 257 _ 221
Q 160Nc 0 5120NC 5760 Ve 5120Nc
4 13 4791 17929 37989
In(3) 35 NVe 0 51200 Ve — 76800 Ve 51200 Ve
§ (9 _ 1649 8253 _ 9137 103707
@, (16) 25600 N. 0 819200 N. 204800 N, 819200 N,
(i)l(é) LN 0 471 N _ 63 N. __ 1521 N.
4 8¢ 81927 "¢ 4096 ¢ 8192V ¢
_ 263 1609 9331 _ .59 __ 1009
Q 3840 N, 30720 N¢ 30720 N, 9216Nc 5120 N¢
4 15661 183663 154731 6341 _ _1101
ln(3) 76800 N, 20300 Ve 204800 N, 30720 Ve 102400 ' ¢
F (9 3503 _ 18211 _ 69073 _ 17859 7331
@, (16) 76800 Ve 204800 N 819200 N, 163840 1V ¢ 51200 N,
F (3 _ 337 3983 563 945 1715
@, (Z) 4096 N, 32768 N¢ 32768 N, 8192 N¢ 16384 N,
1 UIN. _ 2N, 0 0 0 0
€ 2 "3
Q _N._ 3Ny 3N 3Ny 73N, _ 1INy 0 Ne
72 36 64 32 64 32 4
ln(i) 95N, _ INs 191N, _ 5Ny _ 84N, 93N, 0 _ 25N,
3 96 48 256 128 256 128 16
®,(2) 0 0 0 0 0
16
OHE! _43N, | 21Ny 327N, _ 189N, 681N, _ 171N, 0 _ 9N,
1 (4) 8 T e 1024 512 1024 512 64
1 17N, | 2Ny
: —1e 4 = 0 0 0 0
Q 23N, | 37Ng __ 63N, _3N; 8N, | 1INy _9IN, Ny __I5N, | 9N;
72 36 64 32 64 16 92~ 16 32 B
ln(i) 455N, _ 53Ny _Lwve 5Ny _ 203N, 19N 847N, _ 41Ny _ 531N 41N
3 96 48 256 128 256 64 256 64 128 32
®,(2) 0 0 0 0 0
16
) . (i) _ 5N ISNy _ 327N, , 189Ny 243N, | 27Ny __ 297N, , 63N, 261N, _ 03N,
4 128 64 1024 512 1024 256 1024 256 512 128
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TABLE IV. Coefficients of selected tensors and different structures for the left-hand side of (4.2) for the ff(b“’ sector in the Landau

gauge.
: ccgg ccgg ccgg ccgg ccgg
Entity Py Poy Py Plie) Py
Q _ S9N, _ 5Ny 0 _ 299N, | 1IN, _ 129N, _ N _336IN. | INs
72 4 10240 32 3072 T 16 2560 8
, 785273N, | 131N, HN 272993N, | 41N,
In(4 8401N, _ 5N 0 - <4 1495IN, _ 41Ny — e S
() 1330 7 204800 128 7096 o 51200 )
(i) (2) __ 269N, 0 _ 25491IN, __2843N, 25447N,
116 153603N 819200 1638463N 102400
z 515N, / 117N, 3225N, f 23N. 63N
[ONE! —20% 4 2/ 0 15455N, / — + ==L 3823N, f
1) 1024 1 16 35768 373 16384 ' 236 3192 — 138
. . abcd . .
TABLE V. Coefficients of selected tensors and different struc- " Ijizap (P, q.r,s) for the configuration (4.3) in all

tures for the first three terms on the right-hand side of (4.2) for the
d%><? sector in the Landau gauge.

Lorentz and color channels.

. cCgg CcCgqg CCgq CCqgq cCgg
Entity 73(1) 77(10) 77(”) 77(16) 73(31)
Q 81 2119 1 709 207

640 2560 256 3840 640
ln(i) 6909 123771 93951 _ 15791 2007
3 6400 51200 51200 25600 2048
) ( 9 ) 134337 6603 345189 _ 14397 _ 111879
1\16 102400 3200 409600 102400 81920
o (3) _ 285 23493 _ 8469 _ 135 10125
14 1024 8192 8192 4096 8192
_21 297 709 1209
Q 80 0 640 3840 2560
ln(i) 1437 0 64863 15791 11277

3 1600 51200 25600 5120

) ( 9 ) _ 2967 0 245187 _ 14397 336609

1\16 12800 409600 102400 81920
% (3 57 _ 5805 _ 135 _ 22761
@, (Z) 256 0 8192 4096 4096
Q 7 _ 2119 _ 931 _ 103 _ 453
640 2560 2560 768 640

ln(i) _ 1057 _ 123771 _ 14727 _ 1411 _ 24129

3 6400 51200 12800 1280 10240

o ( 9 ) _ 79301 _ 6603 599997 49509 _ 44049
1\16 102400 3200 409600 40960 16384

) (g) 1161 23493 2211 _1m 24927
1\ 1024 8192 1024 128 8192

TABLE VI. Coefficients of selected tensors and different

structures for the lef-hand side of (4.2) for the d4’“? sector in

the Landau gauge.

. cCgq cCgqg CCgg cCgqg cCgq
Entity 73(1) 73<10) 7701) 73(16) 73(31)

_1 267 301 45

Q 8 0 2560 1280 512
4 29 49953 __ 29901 __llel
111(3) 16 0 25600 12800 1024

FH (9 _1 __ 9621 189957 879
(Dl (]6) 8 0 409600 204800 16384
T (3 09 1707 __ 2871 __ 5235
q)l (4) 64 0 4096 2048 4096

to before the respective terms in Table III sum to the
values give in Table IV which are the calculated values of
the left side of (4.2). For the case of d4*“? the respective
tables are V and VI and we note that for the former table
only the first three terms on the right-hand side of (4.2) can
have terms involving this color tensor. As before we
confirm that adding all the contributions from the right-
hand side of (4.2) gives precisely the same expression as

V. DISCUSSION

The main aim of our analysis was to first generate
relations between various 3- and 4-point 1PI Green’s
functions in QCD when the gauge fixing was the canonical
linear covariant one, and then to check that they were
identically satisfied by explicit one loop computations.
To derive these identities, we start from the contraction
p; - I'? =0 given by gauge invariance, which is the basic
Slavnov-Taylor identity. Here, I} can be any connected
Green’s function with n external gluons. The connected
Green’s function I} above has the structure of an ampu-
tated connected n-point vertex function where each of the
external legs is then dressed by a propagator function.
Contraction of leg i with its external momentum p; kills the
transverse degrees of freedom in leg i. Remaining is a
longitudinal ghost self-energy which dresses leg i in a
connected Green’s function as a through-going longitudinal
degree of freedom exiting at any leg j transversally. Hence
the structure of the dressed Green’s function is consistently
maintained when replacing an external gluon leg by a
longitudinal degree of freedom followed through the
connected function in all possible ways. See, for example,
Fig. 8. At one loop for %9 and I'%9%9 this resulted in an
extra graph in each case and their presence could be
deduced by the systematic use of Hopf-algebraic and
diagrammatic formalisms of [1,3,28-30,37]. Indeed the
approach in [37] was instrumental in gaining previous
insights into the structure of gauge fixed QED and QCD
[31,32]. The extra graphs in both identities involved the
ghost self-energy appended to an external leg as expected
and its absence would have invalidated each relation
calculationally. In the connected Green’s function version
of the Slavnov-Taylor identities such additional graphs are
automatically incorporated. However in certain applica-
tions the 1PI version of the identities may be more
applicable and our derivations and examples therefore
crucially emphasize that one has to be careful in applying
the correct relation. The fact that we check both our
examples for nonexceptional momenta configurations,
rather than nullifying an external leg as is carried out in
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FIG. 8.

Self-consistent Slavnov-Taylor identity. A connected n-gluon vertex function with n dressed external gluon propagators when

contracted at leg i becomes a dressed vertex for a connected vertex function with n — 2 external gluons and one through-going ghost
line, providing one external ghost propagator and one transversal external leg and n — 2 further external dressed gluon propagators.

some verifications, represents a robust check and circum-
vents any potential infrared issues. This is particularly the
case for the 4-point function given the large number of
color and Lorentz tensors that are present in each of the
contributing graphs.

In light of these there are several natural avenues to
pursue. One obvious one is to first derive general relations
for other gluon n-point functions as well as to extend our
calculations to the two loop case. For the 3-point identity
this would be the first place to start since the full off-shell
vertex functions of QCD are known [46]. So the necessary
computational tools are in place to determine the two loop
corrections to I,(p, g, r) that would be needed. This
would also provide the forum to study the effect and
relation the identities we have derived have on the
renormalization of QCD in kinematical schemes such as
the momentum subtraction one of [7,8]. Equally at a
practical level the current use of the Dyson-Schwinger
methods to probe the infrared behaviour of 2-point and
vertex functions in QCD, [12-27], relies on relations
between different n-point functions. Therefore constructing
the identity for the 5-point gluon function, for instance,
could provide a useful off-shell consistency check. Another
direction that has been followed in recent years is to
consider nonlinear gauges such as the Curci-Ferrari [61],
and maximal Abelian gauges [62—64]. From a structural
point of view the former gauge would be the starting place
to understand the subtleties of the nonlinear aspect of such
|

Mﬁc =4[X2—2xy—2x+y2 -2y + 1}2’ M({SC _

MY = M = —8[x* —2xy —2x +y? =2y + 1][x +y — 1]

MY = =16[ly = 1] + 22 = 2[y + 1]a]x,
MY = —16[2[x* = 2x +y> =2y + 1] = [x + y — 1]?d]

M =16[[y = 1]> + x* + 4dxy — 2[3y + 1]x], MY =

MEE =32y —1+x[d=-1]x, ML =64[d—1]x

M = - 113

gauges. The former gauge differs from the linear covariant
gauge only in having an asymmetric ghost-gluon vertex as
well as a quartic ghost interaction. While the latter is a valid
term in a renormalizable gauge theory, BRST symmetry
excludes it in the linear covariant case. Therefore given the
insights we have found here we aim to study some of these
potential new directions in future work.
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APPENDIX A: PROJECTION MATRICES

In this appendix we record the projection matrices for the
computation of I}, (p, ¢, r) and Ff,f,(g,gade( P, q,r,s) where
the formalism was introduced earlier. For the former if we
define the related projection matrix MY with a common
factor removed by

1

MEE =32[y — 1 +x][d - 1]x, MY =16[[y = 1]> + x* + 4dxy — 2[3y + 1]x]

M = Jd—2AL Mo (A1)
then the elements are
—16[[y = 1> +x* = 2[y + 1]a]y
M = M =320d ~1]lx +y — 1]y
16[d — 1][x+y—1)?
(A2)
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As MY is by construction a symmetric matrix we have only provided the upper triangle entries.

For the 4-point ghost-gluon function there are 36 Lorentz tensors in the projection basis for each orientation. They are

CU}G _ C“Ifl u(l(l LU}G _
Pwe = NuwPo> P oo = Mo P3ywe = Mulos P4y = MuoPu

uve 2)uve 3)uvo
ccgg ccgg ccgg ccgg
P(S)ﬂuo‘ NuoYvs P(G)ﬂuo‘ NuoTvs P(7)/4D6 NuoPus P(S)ﬂuo‘ Nvolu
_ PuPuPs PulPu4s PuDPuls
Cng ccgg H ccgg _fu ccgg _p
P 9uvo = NMvoTp> P (10)pve — 2 ’ (1)pve — 2 (12)pve — 2
p T p
,P“gg pﬂpﬁql/ ccgg _ pﬂpary ccgg _ pﬂQyQa cCgg _ quprn
(13)puve — ﬂ2 ’ (14)puve — /’42 ’ (15)puve — ﬂZ ’ (16)puve — /"2
¢ PudsTv ¢ Pulvls ¢ PuvPs4q ¢ PuPsT,
ccgg _u ccgg _Fu ccg9 — H cc99 — H
P(l7);wo‘ - ﬂ2 ’ P(lS);wa - ”2 ’ P(l9);wa - ’u2 ’ P(ZO);wa - ﬂ2
,Pccgg _ vaIyCIU cCqgg _ pl/qﬂro' ,Pcégg _ pro-ry ,PcEgg _ pur,
21)puve — ﬂ2 ’ (22)pve — ﬂ2 ’ (23)uve /42 ’ (24)pvo — HZ
ccgg _ pﬁqﬂ% ccgyg _ paqﬂry ccgg _ paqurﬂ CcCgg _ p(irﬂ
(25)puve ”2 ’ (26)puve ”2 ’ (27)pve — ﬂZ ’ (28)uve 'u2
¥ 9.9.49 % 949,70 % 9udsy % qury’
ccgg __ Yu4vYo ccgg  _ Duv ccgg  _ YuYo ccgg  _ Yu
(29)uve — 2 7)(30);41/0’ - 2 P(31)/41/o’ - 2 P(32)ﬂl/(7 - 2
p p !
- 4,957 - q,", s = qs7ru Ty . r,ryrs
ccgg — H ccgg _ H ccgg — H ccgg __ K
(33)uve ﬂ2 ’ 73(34);4110' - /’42 ’ P(35)/41/o’ - ﬂ2 ’ P(36)}41/6 - /42

(A3)

where we have suppressed the argument. The symmetric projection matrix is constructed in the same way as for the 3-point

case. First defining the related matrix A% by

_ 1 U
ccgg — cegg
M 64[d — 3] M

then the upper triangle elements are

ME =96, MY = M = a8
M = MY = T = M = M = M =0, M =144

1.5
ccgg _ ccgg _ ccgy _ ccgg _
Mlll M112 M113 M114 =-72
M = JA = ST = M = =36, M = S = 72
1,15 — 1,16 — 1,17 — 1,18 — ’ 1,19 — 1, -
\ACCI _ N ACCYY . N ACC99 __ N 4CC99 \(CC99 __ _
Mi5) = M5 = M55 = M5 = =36, M55 =—144
MG = MG =-72, MY =-144, MTY = MY =-72
9 9
cegg cegg cegg ccgg (€99 cegg
M131 M132 M133 Ml 34 *_36’ M1,35 *M136 =-72
M‘“’" —96, M‘“’" —48
M = MY = M5 = M5F = M5 = M5 =0, M =-T72

MG = —144, MEH = -T2 M= MG =36 MW = -T2
Mg ==36. My =-72, M = M = Mo = =36

M= -2 M =36, MEE=-T2 MY =36

MG =12, MY = MG =36, MY =72

M =144, M = M = MER =36, M = -T2
MY =-36, MY =-144, MW =-72, MY =-9

MEF = MY = MY = MEF = MSY = M5 =
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M =

M5 =
M =
MF =
M35 =
M =
M35 =
M =
M =
M =
RH -
M3 =
M =
M3 =
M =
M =
M =
M =
M =
5 -
5 =
MCng —
o -
-
i -
iy -
i =
MCCGG —
M =
MY =
MF =
5y -
w5 -
M =
MG =

\f€C99 __
M8,20 -

MY
M}
72,
~36,
M35
72,
—144,
M
M
Mg
M58
—144,
-36,
-36,
Ms"
—144,
M
M5
72,
M3
—36,
Mgy’
72,
Mgi§
Mg
—36,
72,
—96,
—144,
My
My
72,
M
72,
M7

99
Mgo) =

=72, MY =-144

M ==36, MY =-72. MY =-36

M = M = M3 =36 M =T

M = T = =12, Mg = U5 = =36

T M= MY =36

My =36, MY = g =72

M =-96, MY = MTP =48

M =0, M = -144

MG = My = =72

MG = MG = =36

=72 M =144, M = MY = -2

MF = M5 = M3 = M =36, M5 =-T2
M3 =12 M= M= 36 MY =
M =12 M= 96 M= 48

M =0, M= M = M = 36
M = M = M = =72

M5 = M3 = =36, Ms3{ = -T2

=36, MG = M =72, MR =36

M ==36, Mg =-144

—72, M =-36, M =-72, MY =-144
M = =72, Mg = -96

M =0 M= -T2 MG = MG = 36
M =144 S = S = =36

T2 M =M =% M=

=36, M =-72, MG =-36, M =-T72
M = M3 =72 MG =36 M = 144
Mg =36, M= M3 =12 M3 =14
MEY = M3 = a8

ST = MG = AT = M = =72, M = 144
=72, M =-144,  MEW = MSY = -T2

RS = ST = MASEE = MAGE = MG = S5 = =36
M5 = M5 = =36, ST = MG = -7

36 M =T MG =96 MG = 48
MG = MG = MG = MG = =36, MG = -2
36 M =2 M =14

M = =72, M = A = =36
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CqcCgg _ [qccog CCC99 _ [qctgg _
Ms,zs = M8,26 =-72, My = Mgsrg =
Cqct9g _ [qctog _ CqcC99 _

M&w = M8,31 =-72, M35 = —144,

\ 4CC99 __ K 4cC99

M83g49 - MS 35g - _36’
ccgg ccgg ccgg

M911 *M912 M913

MEY = -72,
Ml = =36,

-36, M5 =-144
Ml =72
Mgg? = =96,
M5 = 72

My =72

Mote = My = =36, Mg = M3 =72, M5 =144

MGG = M3y = =36, MGF = M3l = =72 MG = My = =36
MG = My = M3 = =72, Mg = MG37 = =36, My = -T2
M =—144, M = M = -T2, MG = —144

Mighy = =216d, Mgy = Mg, = Mgy = Mg, = 1084

Migls = =54d +3]. Mg =-54d+1]. Mg}, = —54[d + 1]

Migts = =54ld +3]. My = M{(% = 1084, MG%) = —54[d + 3]
MiGHy = My = =54ld +1]. M, = M5 = —54[d + 3]

Mighe = Migh = =54l + 1], Migh = —54[d +3]. Mg = =27[d + 9]
Mf(z),gago = M?(E),%gl = Mcl(c)ggz Mi(c)g3g3 MTS%"4 = Mi(é)géqs = -27[d + 5]

Mighe = =271d +9]. MY = -1082d 3. M, = ~108[d — 1]
Mﬁgiq% = Mﬁgﬂ = =34, Mﬁgiqs = —27[4d - 3], Mﬁglga =-27[2d - 1]
M = =274d =5, My =-272d +1). My = M%), = —54d
M%) = -27[4d =3, M{%=-272d~1].  M{% = -27[4d - 5]
M, = -27[2d + 1], Mﬁgzjs = —27[d + 3], Mﬁ,gzgﬁ = M1%, = =27[d + 1]
M % = =27[d + 3], Mi% = =54[d + 3], M{% = =27[d + 3]

M =-272d + 1), M%=-271d+2], MY =-27[2d + 1]

My =-271d+2).  M%=-54[d+2.  M{% =-27ld+3]

MY, = -1082d =3]. MYy = MY, = =54d, M5 = -27[2d + 1]
M ==27[4d =5, M =-272d - 1], My = -274d - 3]
My = M35, = =54d. M5 =-272d +1]. MY, = -27[4d - 5]
My =-212d-1],  MB%, =-274d-3],  M{%s=-27[d + 3]
M5 =M% = =27d + 1), M% =-27[d+3]. M%) =-27[d + 5]

M54y = —54[d + 2],
Mis% = -27[d +2).
]

M?Q‘gg] = -27[d + 2],
M4, = -27[2d + 1],

A, = <272d + 1]
MG = 27d +3]

Mi% =-54d+3]. M3l =-1082d 3] M, =-108[d - 1]
Mg =-274d = 3], M =-27[4d -5]. M5, = -27)2d — 1]
Mgy =-27d +1].  M{Ffy = M{3% =-54d. M55 = -27[d + 3]
M55 = MS% = =27l + 1], M{3%, = -27[d + 3]

M5 = =27[4d =3, M35 =-272d - 1], M5%, = -27[4d - 5|

M = =27[2d + 1],

My = =54]d + 3],

MYy = —2712d + 1]
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MK = -27[d + 3],
MG, = -54[d + 2],

M, = —108[2d —
MG = ~274d -5
M%, = =27[d + 3]
M%, = -271d + 3],
M, = 27024 -1
M = =27[d + 2]
M;;‘g‘g = -27[d + 2],
M%s = =54[d + 3]
MiSTy = —54[d + 2],
M$%, = =27[d + 1],
Miggzgs = —54d,
M$%y = =27[d + 2],
M$%, = -27[d + 3],
M$%s = =27[d + 5),
M = =27[4d -5
Mﬁégzqz = —54[d - 1],
/\N/IEEQ;G = —27d,
M?Z% = —54[d + 1],
M, = =272d -
Mﬁ%qsqs = =27[d + 1],
MS% = -27[4d - 5
Mig,gzgz = —27d,
M55 = =54[d — 1],
M?;gz% = —54[d + 1],
Miéngz = ./\~/lj§"3"3 =
M4 = —27[4d -5
My = M5, =
My = =271 + 1,
MG = —2712d - 1
Mi%y = =271d + 5],
My = =271d + 3],
M, = —108[2d —
MS%, = —27[4d -5

MY, = =27[d + 2,

MY, = =2712d + 1]

M = —27(d +2), M = —27[d + 5]

3], M = =272d + 1], MUK = =272d - 1]

Lo Mgy =274 -3], M = M, = -54d

s M =27ld 1), MYy = =27(d + 1]
M =-272d+1],  MG% = -27[4d -5

o ME% = -274d-3], M5 = -27[d + 5]

. M =-54ld+2], M = -27)2d + 1]
MUH, = =271d+3],  M% =-272d + 1]

. M =-1082d - 3], M = MY, = ~27[4d - 5]
Miggi% = Mingqo = -27[d + 3], M = —54d
My ==272d - 1],  M{$%, = -27d +2]

M =-271d+1], MY, =-27[2d - 1]

M$%y =-108d. M%), = M($%, = ~54d
MHy=-108[d~ 1], M{5Y, = M$%; = -27[2d + 1]
Mighs = =54[4d =9], M, = =54[d 1]
Lo Mighy = Migh, = Mig%, = -27(d + 1]
Mighs = =27d, M%), = Mig%s = 27[2d — 1]
Migh, = =54ld =1],  Mi%y = =27[d + 1]
M =-27[4d -5],  M{H, =-27d+1]
1, M%=-272d~1),  Mi%, = -27[4d - 5]
Mihe = =54ld+1], MY, = -54[4d - 9]
] Mi;% = Mi;% = _27[d + 1], Mi;gqu = _27[2‘1 - 1]
Mig‘,qé% = —54[d - 1], /\7155,95’4 = Mfi,gzgs = _27[d + 1]
MG =-27d. M55 = -27[2d - 1]
M?;%go =-27[d+ 1], M?%gl = —27[4d - 5]
=27[2d — 1], M5y = =27d + 1]
o M ==54d+ 1), Mg = -108[2d - 3
=27[d+3],  ME =-27[d+2], M{%, =-27]2d - 1]
ME, = =54d, MY =-27[d+2]
o MY =27ld 1), MY = —54d
Migq%go = Mié%ql = -27[2d + 1], Migge?z = —108[d — 1]
M§§g3g4 = Miggéqs = —54d, Migggs = —1084
3, Mighy =—108[d—1]. M = ~27[4d - 3]
o M =-272d 1], MGE, = -2712d + 1]
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MGBs = =2714d 3], Mig% = -27[4d -5,  M% = -27[2d - 1]
MiGhy = =272d + 1], Mig% = -54[d +3],  M% = -27[2d + 1]
M =-272d +1],  MG%, =-54d+2],  M%; = -27[d + 3]
Mig%, = Mighs = =27[d +2], My =-27[d+5], My’ = ~108[2d = 3]
My = =272d + 1], M55, ==272d - 1], Mse% = =27[4d - 3]
Moy = =27[4d =3],  My%s=-272d +1],  My% = -27[2d - 1]
My = =27[4d =5],  My% = -27[4d-3),  M5% = -27[d +5]
Mo%y =M%y = =27ld +2].  My% =-27[d +3], My = —54[d + 2]
My = Mo = =272d + 1], My% = =54[d + 3]

M%) =-1082d =3],  M5%, = M3% = =27[4d - 5]

Mo% = =54d +2].  My%=-54d.  My% = -272d - 1]

My ==27[d+ 1],  My%=-27[d+2],  My% =-108d
M35 = =54d, M%) =-108[d—1],  M3% = -27[2d + 1]
MY ==54d,  M5%, =-27[d+3],  M$% = -27[2d + 1]
M = =27[d +5],  MH% =-54[4d-9), MY = -54[d - 1]
M5y ==27[4d -5],  My%s=-272d~1],  My% = -54[d - 1]
M% =-27d,  M%=-27[d+1].  M5y% =-54[d +1]

M55 ==27[4d =5],  My% =-272d-1],  My%, = -27[4d - 3]
MG = =27[d+1],  ME%, =-272d-1],  M5% = -27[d + 1]
M§§q3q6 = _54[d + 1], M§§q2q3 = _54[4‘1 - 9] /\N/lgngqdf =-27 [4‘1 - 5]
MEBs=-27[d+1).  My% =-27d.  M5%, = -54[d - 1]

M5y ==272d - 1), M5%, = -54ld+1],  My% = -27[d + 1]
ME% =-272d~1]. ME%, =-27[d+ 1), MY =-27[4d - 5]
M%, = -212d = 1], M$% =-274d-5].  M5% = -54[d + 1]
M5, =-1082d 3], M5%i=-27[d+2].  My% =-27[d +1]
Mo =-212d = 1], My% =-54d.  M5% = -27[d +5]

ME%y = =212d + 1), My% =-27d+3].  M5%, =-54d
M% ==272d+1],  M5%, =-108[d—1],  M5% = —54d
M3 = —108d,  M5%s = —1082d = 3], My5% = ~27[4d - 5)
M5s% = =2714d =5, M =-54[d+2].  M5s%, = ~108d
Mé?’fo = —108[d — 1], M;’ﬁfgﬂ = —54d, Mgg‘f]égz = —27[2d + 1]
Mo = =54d, M, = -272d+ 1], M55 = =27[d + 3]
M3 = =27[d +5], My = —54[4d-9],  My%, = ~54[d — 1]
Moy = =27[4d = 5], Mye%, = =54[d+ 1], M5’ = -27[2d - 1]
Moy = Mo, = =27[4d = 5], M5y = M5, = —27(d + 1]
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ccgg ccgg

ccgg

Mie5s = =27[2d - 1], Mg = —54[d + 1], M5, = =54[4d - 9
My%s = -27[4d 5], MP% =-54d+1].  My% =-272d - 1]
Mé%ql = M%égzqz = =27[d + 1], M%qu = /\7133"3"4 = —27[4d - 5]

My%s =-272d 1), My%=-54ld+1],  M5% = -108[2d - 3]
Mol = =27[d+5], M5y =-27[d+3].  M5% = -27)2d + 1]
Moy ==54d, My =-272d+ 1), My, =-54d

Mg = —108[d = 1], Myl =—-108d, My’ = -216d

M;‘S%"O = M;g.%gl = —108d, M;g.gagz = —54[d + 3], Mgg%% = —1084
M3y = Ma%s = =54[d +3], My’ = =27[d +9)]

Migh = —1082d =3]. M%) = =54d, M5, = ~27[4d - 3]
Mgg% = —54d, /\~/l§8f1394 =27 {451 - 3]7 Mg(c)g%gs = _27[d + 3]

M35 = =54[d+3],  M% =-1082d =3],  M5%, = —27[4d - 3]
M5% = =54d,  M3%, =-27[d+3], M5 = —27[4d - 3]

M55 = =54ld +3],  My%, =-1082d =3,  M3% = -27[d + 3]
M55, = MB% = =54d,  M% =-108d,  M5% = ~108[2d - 3]
MEHy = M5%s = =27[4d - 3], ME3% = —54[d + 3]

MGH, =-1082d —3],  MG% =-54d,  M§% = -108d

M =—1082d —3], M =—108d,  MS% = —216d (A5)

in d-dimensions. Useful in deriving these was the symbolic
manipulation language REDUCE [66].

APPENDIX B: GROUP THEORY

In this appendix we summarize aspects of the color
group theory used in examining the 4-point identity. For
that example we have concentrated exclusively on the
SU(N.) case due to the presence of rank 4 color Casimirs.
These arise in 4-point box graphs through the general fully
symmetric tensors [58],

TV

1
~Tr 75T

dszd — g

1
dped = 6Tr(TaT“’TCTﬂU), (T4

(B1)

where T are the group generators and the subscripts F and
A indicate the fundamental and adjoint representations
respectively. These can be related to the structure constants
fe¢ and the fully symmetric SU(N..) tensor d“*¢ via the
SU(N,) relation

T¢ Tb — Léub + ldubcTc

i abc e
. : ST (B2)

When there is a contracted tensor product of generators
we use

1
T?JT’;(L = 5 o116k — Félﬂsl(L .

(B3)

In studying 4-point identity one has more than one color
tensor that can appear in the Green’s functions contributing
to (4.2). This is in contrast to the 3-point case where f abe g
the only structure that appears a low loop order. Therefore
for (4.2) we have to have a basis which spans the color
space. If we define the tensors

deCd = dabedcde

beCd = fabefcde’ (B4)

then the second object is not independent of d<¢ or d4b<?
since for instance

2
fﬁha] — V [5ac5hd _ 5ad5bc] + dZChd _ dffdbc (BS)

using results from [11,67]. In [35] the mapping from the
nonfully symmetric tensor d4°°? was constructed with for
example
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1 2 2 2
deCd — _§ [fgbcd _N {5ac5hd _ 5ad5bc]:| +§ |:fXde _N [5ab50d _ 5ad5bc]
4 2
+ N |:dZde _3 [5(1/)50(1 + 5ac‘5hd + 5ad5bc]i| (B6)

for purely gluonic or ghost boxes and

2 2
[5(1('5hd _ 5ad5hc]:| + g |:f2€bd _

Ni [5ah60d _ 5ad5bc]

1 2
deCd — _ g |:be€0[ _ Ni

1
+ 8 |:d31:cbd _ N [5ab5cd + 5a05bd + 5ad5bc]:| (B7)

for boxes involving quarks only. The use of d%*¢ and d4%*? is more natural rather than d$*? given the fully symmetric
nature of the 4-point identity.

APPENDIX C: GLUON VERTEX FUNCTION EXAMPLES

The full arbitrary gauge expression of the 3-gluon vertex function at the symmetric point is given by

_lrzzg/%(p! q, r)‘x:y:l = [’7;4»% - nmxpa + 2’7/40'pu + ’ha% - nvapy - 2’11/6‘1/4}9
4 2 3 1 4 32
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1 3 5 1 1
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4 2 3 1 4

32

1 3 5 1
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16 1

1 1 1 (1
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275 " Cam s G 27"’(3) N5 (3)CA
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8 4 3 1 8

3 3
64 2 5
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_ £ _ T 22 _ £ =W 2\ T-N ) N
FC -8 mCa—58Ca 271//<3> F f+27l//<3)CA

5 ,(1 VAR
+ 18W <3>§CA +91// <3)§ CA:|77/40'p1/
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4 2 3 1 4

3 4
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in terms of the full tensor basis where we note again that we have used the compact notation £ = 1 — a. Also for assistance
at the 3-point symmetric point x =y = 1 we have

4z? 2 1
o1, ) =——=y/(= C2
o =25-2v(3) )
which is related to the Clausen function since Ag(1, 1) = —3 leading to a complex value for p(1, 1) and an imaginary one

for A(1,1).
For the 4-point identity we record the contraction of the symmetric point quartic gluon Green’s function with one external
momentum to illustrate several subtle points. The Landau gauge expression restricted to SU(N,.) is
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for shorthand. In [35] the noncontracted expression included the quartic color group Casimir in the fundamental
representation 4 of (B1) in addition to the adjoint one. When the full expression for T%%%“*“Y(p 4. r, s), which contains

uvop

d4ed is contracted with s” to produce (C3) it transpires that all the d%°°? terms cancel. This is not unexpected since there are no
other places in the identity (4.2) for such a Casimir to arise at one loop. The places where d4”°? can potentially appear are in the
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at one loop there are no box graphs involving quarks. However

(p.q.r.s)does depend on N, through the reorganization of the group theory associated with the purely quark boxes.
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also for SU(N,). Unlike F,g,,g,%f,“de( p,q,r,s) there are no

quark contributions.
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