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We consider three-dimensional isolated horizons (IHs) generated by null curves that form nontrivial
Uð1Þ bundles. We find a natural interplay between the IH geometry and the Uð1Þ-bundle geometry. In this
context, we consider the Petrov typeD equation introduced and studied in previous works [D. Dobkowski-
Ryłko, J. Lewandowski, and T. Pawłowski, The Petrov type D isolated null surfaces, Classical Quantum
Gravity 35, 175016 (2018); D. Dobkowski-Ryłko, J. Lewandowski, and T. Pawłowski, Local version of the
no-hair theorem, Phys. Rev. D 98, 024008 (2018); J. Lewandowski and A. Szereszewski, The axial
symmetry of Kerr without the rigidity theorem, Phys. Rev. D 97, 124067 (2018); D. Dobkowski-Ryłko, W.
Kamiński, J. Lewandowski, and A. Szereszewski, The Petrov type D equation on genus >0 sections of
isolated horizons, Phys. Lett. B 783, 415 (2018)]. From the four-dimensional spacetime point of view,
solutions to that equation define isolated horizons embeddable in vacuum spacetimes (with cosmological
constant) as Killing horizons to the second order such that the spacetime Weyl tensor at the horizon is of the
Petrov type D. From the point of view of the Uð1Þ-bundle structure, the equation couples a Uð1Þ
connection, a metric tensor defined on the base manifold and the surface gravity in a very nontrivial way.
We focus on the Uð1Þ bundles over two-dimensional manifolds diffeomorphic to 2-sphere. We have
derived all the axisymmetric solutions to the Petrov typeD equation. They set a four-dimensional family of
horizons and there is a four-dimensional family of the Kerr-NUT-dS (AdS) spacetimes in the literature. A
surprising result is, that generically, our horizons do not correspond to those spacetimes. It means that
among the exact type D spacetimes there exists a new four-dimensional family of spacetimes that
generalize the properties of the Kerr-(anti-)de Sitter black holes on one hand and the Taub-NUT spacetimes
on the other hand.

DOI: 10.1103/PhysRevD.100.084058

I. INTRODUCTION

The theory of nonexpanding horizons (NEHs) is often
used to describe black holes [1]. It is, however, far more
general and may also be applied to spacetimes containing
cosmological horizons, null boundaries of the conformally
completed asymptotically flat spacetimes [2], or black hole
holograph construction of spacetimes about isolated hori-
zons [3–5]. Properties of NEHs find their analogs in the
black hole spacetimes, such as the black hole “thermody-
namics” [6], uniqueness theorems [7], and the rigidity
theorem [8]. The long-term program is to understand
conditions satisfied by the geometry of NEHs that distin-
guish the horizons of physical black holes. In a case of
NEHs embeddable in spacetime as a Killing horizon to the
second order, the vacuum Einstein equations (possibly with

a cosmological constant) and the Petrov type D of the
spacetimeWeyl tensor at the horizon amount to an equation
on the Riemann geometry induced on the two-dimensional
space of null generators and the 2-form representing
the rotation [9,10]. The equation and solutions were
investigated in the case of horizons that have the structure
of a trivial principal fiber bundle. For rotating solutions,
the only allowed topology of a cross section is that of
a 2-sphere [11]. For bifurcated horizons, the type D
equation implies the axial symmetry [12,13]. All the axially
symmetric solutions were derived [10,14]. For every value
of the cosmological constant, they form a two-dimensional
family that can be parametrized by the area and angular
momentum. In that sense, the equation has the properties of
rigidity and no hair so well known in the global black hole
theory [15]. Even though the Petrov type D equation was
derived for nonextremal horizons, it is also an integrability
condition for the condition satisfied by the geometry and
rotation 1-form potential induced on two-dimensional
spaces of null generators of extremal Killing horizons to
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the first order [1,7,9]. This condition is also known as the
near horizon geometry (NHG) equation [16,17]. That
relation between the type D and the NHG equation
was used to show that in the case of nonzero genus
the only solutions to the NHG equation are geometries
of constant Gauss curvature and zero rotation 1-form
potential [18].
In this paper, we consider the Petrov typeD equation and

the vacuum Einstein equations with cosmological constant
for isolated horizons (IHs) of the structure of a nontrivial
bundle; the Hopf bundle; or, more generally, the Dirac
monopol bundle. Hence, the space of the null generators is
topologically a 2-sphere; however, there is no global
spacelike cross section. An example of spacetime contain-
ing such a horizon is the Taub-NUT spacetime [19]. We
derive all the axisymmetric solutions to the Petrov type D
equation. They set a three-dimensional family for every
value of the cosmological constant. As could be expected,
there emerges a new parameter: the topological charge
times the surface gravity. The final result, however, is
surprising. In the previous, trivial bundle case, the axisym-
metric Petrov type D horizons are embeddable in the Kerr–
(anti-)de Sitter spacetimes. The generic horizons we find in
the current case turn out not to be embeddable in the known
in the literature Kerr-NUT-dS (AdS) generalizations of the
Kerr spacetimes. That means that our horizons define a new
family of suitably generalized black hole spacetimes.

II. ISOLATED HORIZONS OF NONTRIVIAL
Uð1Þ-BUNDLE TOPOLOGY

In this section, we introduce a general definition of three-
dimensional isolated horizons of which the null generators
have the structure of nontrivial fibration. While eventually
the horizons are surfaces in four-dimensional spacetimes,
their intrinsic structure can be considered on its own,
independently of an embedding. That is what we do in
the first subsection below. In the second subsection we
discuss the embedded IHs in the context of four-dimensional
spacetime, the assumed symmetries, the Einstein constrains
and also recall the Petrov type D equation. For a detailed
derivation of the Petrov typeD equation for IHs, seeRef. [9].
The derivation is local and applies also to the current case.
In this paper, we use the same abstract index notation

[20] as in Ref. [9]:
(i) Indices of four-dimensional spacetimeM tensors are

denoted by lower greek letters: α; β; γ;… ¼ 1, 2,
3, 4.

(ii) Tensors defined in three-dimensional space H carry
indices denoted by lower latin letters: a; b; c;… ¼
1, 2, 3.

(iii) Capital latin letters A; B;C;… ¼ 1, 2 are for the
tensors defined on the two-dimensional space S of
the null generators of H.

A. IH structure on a Uð1Þ bundle
A nontrivial bundle structure is a new element intro-

duced in the IH theory in the current paper. Let

Π∶H → S ð1Þ

be a principal fiber bundle with the structure group Uð1Þ.
Denote by l the fundamental vector field onH, that is, such
that its flow coincides with the action of Uð1Þ on H. We
normalize l such that the parameter of the flow ranges the
interval ½0; 2π�.
Throughout this paper,

dimH ¼ 3: ð2Þ

On H, we introduce an IH geometry compatible with the
bundle structure. It consists of the following:

(i) a degenerate metric tensor gab of the signature 0þþ,
such that

lagab ¼ 0 ¼ Llgab; ð3Þ

(ii) a covariant derivative ∇a on TðHÞ, torsion free and
such that

∇agbc ¼ 0; ½Ll;∇a� ¼ 0: ð4Þ

The second condition means that ∇a is invariant
with respect to theaction of the Uð1Þ group on H.
The same is true about gab due to the second equality
in (3).

It follows that

la∇alb ¼ κlb; ð5Þ

and through out this paper, we are assuming that

κ ¼ const ≠ 0: ð6Þ

After assuming the Einstein constraints, the constancy of κ
will be a necessary property, and the nonvanishing means
that H is a nonextremal (nondegenerate) IH.
The key ingredient of the covariant derivative (for our

paper) is the rotation 1-form potential ωa defined as

∇alb ¼ ωalb; ð7Þ

and by (4), it satisfies

Llωa ¼ 0: ð8Þ

It follows from (6) that the 1-form

ω̃ ≔
1

κ
ω ð9Þ
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is a connection 1-form on the Uð1Þ bundle (1). Indeed, due
to (7) and the second equation in (4), ωa satisfies

laω̃a ¼ 1; Llω̃a ¼ 0: ð10Þ

The degenerate metric tensor gab induces on S a (genuine)
metric tensor gAB such that gab is its pullback,

gab ¼ Π�
ab

ABgAB: ð11Þ

The area 2-form ηAB defined on S and corresponding to
gAB (and some orientation of S) may also be pulled back
to H,

ηab ≔ Π�
ab

ABηAB: ð12Þ

We use it to define a rotation pseudoscalar Ω,

Ωηab ≔ dωab ¼ κdω̃ab: ð13Þ

It satisfies

laΩ;a ¼ 0; ð14Þ

hence, we consider Ω as a function on S. The rotation
1-form potential ωa can be represented by locally defined in
a neighborhood of each point x ∈ S, 1-forms ωA such that

dωAB ¼ ΩηAB; ð15Þ

where Ω is a scalar function globally defined and regular on
the entire manifold S.

B. Embedded IHs and the Petrov type D equation

In four-dimensional spacetime ðM; gμνÞ of the signature
−þþþ, every IH ðH;la; gab;∇aÞ introduced in the pre-
vious subsection is a null surface such that the intrinsic
geometry ðgab;∇aÞ coincides with the spacetime metric
tensor gμν and the covariant derivative ∇μ restricted to
TðHÞ (preserved by ∇μ). Because of the intrinsic sym-
metries [the second equation in (3) and the second equation
in (4)], IH H can be called a Killing horizon to the first
order. Indeed, there exists an extension t of the vector field
l to a neighborhood of H in M, such that

LtgμνjH ¼ 0 ¼ ½Lt;∇μ�jH : ð16Þ

Throughout this paper, we assume that the spacetime
metric tensor gμν satisfies the vacuum Einstein equations,

Gμν þ Λgμν ¼ 0; ð17Þ

where Λ is a cosmological constant and Gμν is the Einstein
tensor.

The constraints induced on ðH;la; gab;∇aÞ by
Einstein’s equations are soluble explicitly in the nonex-
tremal case (6) considered in this paper. The degenerate
metric tensor gab and the rotation 1-form ωa can be set
freely on H [modulo (3), (6), and (8)], and they determine
the remaining ingredients of ∇a.
Henceforth, about the vector field t (16) and the

spacetime Weyl tensor Cμναβ, we assume a stronger con-
dition, namely,

LtCμναβ jH ¼ 0: ð18Þ

That property of H may be called a Killing (or stationary
isolated) horizon to the second order. That assumption does
not constraint the intrinsic nonextremal IH H geometry
ðgab;∇aÞ. Instead, via the Einstein equations, it determines
all the components of the spacetime Weyl tensor at H by
gab and ωa. Therefore, the assumption that the Petrov type
of the Weyl tensor at H is D turns into an equation on
ðgAB;ΩÞ. We consider that equation in the next section.
However, before doing that, we would like to briefly give
the idea on the spacetime elements of the problem and
sketch the derivation presented in Ref. [9].
In the IH framework, we use adapted null frames (see

Ref. [9], Sec. III B). Each of them consists of a real null
vector field lμ tangent toH and coinciding thereon with the
vector field tμ (16), another real null vector field nμ

orthogonal to a foliation of H by space like 3-sections,
and two complex valued vector fields mμ tangent to the
foliation. The foliation and the frame are preserved by the
flow generated by the vector field lμ. The Weyl tensor
complex components (see Ref. [9], Sec. III C) Ψ0, Ψ1, Ψ2,
and Ψ3 are automatically guaranteed to be constant along
the null generators of H (with the first two vanishing). So,
the condition (18) is on Ψ4 only. Moreover, in the
consequence of the Bianchi identities, the components
Ψ3 and now also Ψ4 can be expressed by Ψ2 and its first
and second derivatives. Next, the Weyl tensor is of the
Petrov type D iff it admits two double principal null
directions (PNDs). The vector field lμ is already tangent
to a double PND (the vanishing of Ψ0 and Ψ1). Hence, the
type D assumption concerns the remaining transversal
PNDs. For a generic type D horizon, the transversal null
vector nμ is not a PND for any adapted null frame.
However, the existence of a second double PND turns
into an algebraic condition, namely,

3Ψ2Ψ4 − 2Ψ3
2 ¼ 0: ð19Þ

After expressing Ψ3 and Ψ4 by Ψ2 and its derivatives, the
equation somewhat magically takes a compact form. We
remind the reader of it in the next section.
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III. PETROV TYPE D EQUATION

Given an IH structure ðH;la; gab;∇a; SÞ, introduced
above, the Petrov type D equation is imposed on the
Riemaniann metric gAB and the rotation pseudoscalar Ω
defined on S. We will also use the Gauss curvature K of
gAB,

ð2ÞRAB ≕KgAB; ð20Þ

where ð2ÞRAB is the Ricci tensor of the metric tensor gAB. To
write the equation, we introduce a complex null coframe
mA such that the metric gAB and area 2-form ηAB take the
following form:

gAB ¼mAm̄BþmBm̄A; ηAB ¼ iðm̄AmB− m̄BmAÞ: ð21Þ

TheWeyl tensor is of the typeD along the generatorΠ−1ðxÞ
of the horizon H, if and only if Eq. (22), which we refer to
as the type D equation, holds true at the point x ∈ S,

m̄Am̄Bð2Þ∇A
ð2Þ∇B

�
K −

Λ
3
þ iΩ

�
−1
3 ¼ 0; ð22Þ

where ð2Þ∇A is the torsion-free, metric covariant derivative
defined by gAB, and the term in the brackets does not vanish
at the point x, namely,

K −
Λ
3
þ iΩ ≠ 0: ð23Þ

This function is related to the only nonzero invariant
(given l) component

Ψ2 ¼ −
1

2
ðK þ iΩÞ þ Λ

6
: ð24Þ

of the type D Weyl tensor, and if that component vanishes,
then all the Weyl tensor vanishes at that point.
We will solve Eq. (22) by assuming that the base

manifold S (1) is diffeomorphic to the 2-sphere,

S ¼ S2: ð25Þ

In that case, all the Uð1Þ bundles are numbered by integers.
An integer m corresponding to H can be calculated from
the curvature of the Uð1Þ-connection 1-form ω̃, which
passes to a condition on the rotation pseudoinvariant Ω,

Z
S2

ΩηAB ¼ 2πmκ≕ 2πn: ð26Þ

For each Ω, there exist 1-forms ωþ and ω− defined on S2
apart from the southern and northern poles, respectively,
such that

dω�
AB ¼ ΩηAB: ð27Þ

Incidentally, from the mathematical point of view, the case
κ ¼ 1 seems to be the most interesting. However, we do not
see any reason implied by GR that would restrict κ to
that value.
We also assume that the metric tensor gAB and the

rotation pseudoscalar Ω invariantly defined on S admit an
axial symmetry. Consequently, we choose the coordinates
adapted to the symmetry (see the Appendix) in which the
2-metric tensor gAB reads

gABdxAdxB ¼ R2

�
1

PðxÞ2 dx
2 þ PðxÞ2dφ2

�
; ð28Þ

where x ∈ ½−1; 1�, φ ∈ ½0; 2π� and R is the area parameter
[7,21]. The frame vector and its dual take the form

mA∂A ¼ 1

R
ffiffiffi
2

p
�
PðxÞ∂x þ i

1

PðxÞ ∂φ

�
;

m̄AdxA ¼ Rffiffiffi
2

p
�

1

PðxÞ dx − iPðxÞdφ
�
: ð29Þ

The above coordinate system is not well defined at x ¼ �1;
therefore, to derive the regularity conditions,1 we use the
relation between the metric (28) and the standard 2-sphere
coordinates, namely,

R2

�
1

PðxÞ2 dx
2 þ PðxÞ2dφ2

�
¼ Σ2ðθÞðdθ2 þ sin2θdφ2Þ:

ð30Þ

For an axisymmetric scalar function f defined globally on
S2 (as one of the functions K, Ω, and Ψ2), the differ-
entiability condition at the poles x ¼ �1 reads

∂θf ¼ 0: ð31Þ

This condition is equivalent to

P∂xf ¼ 0; ð32Þ

and it will be assumed for functions K and Ω (or in other
words for Ψ2). For the metric (28) to be twice differentiable
at the poles, the following boundary conditions must be
satisfied:

P2jx¼�1 ¼ 0; ð33Þ

∂xP2jx¼�1 ¼ ∓2: ð34Þ

1For more details, see the Appendix.
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The condition (26) boils down to

Z
1

−1
ΩR2dx ¼ mκ ¼ n: ð35Þ

Equation (22) in the coordinates adapted to the axial
symmetry reads

∂2
xΨ2 ¼ 0; ð36Þ

and its general solution is of the form

Ψ2 ¼ ðc1xþ c2Þ−1
3; ð37Þ

where c1 and c2 are complex constants. Now, comparing it
to Eq. (24) and expressing the Gaussian curvature in the
introduced coordinates yields

1

ðc1xþ c2Þ3
¼ 1

4R2
∂2
xP2 −

1

2
iΩþ Λ0: ð38Þ

This equation can be solved for the values of the complex
parameters c1 and c2 that satisfy solubility conditions.

IV. SOLUTION TO THE PETROV TYPE D
EQUATION ON THE NONTRIVIAL

BUNDLE TOPOLOGY

In the following section, we will solve Eq. (38), first for
the case in which the constant c1 vanishes and later for c1
taking arbitrary (nonzero) complex values. In the case in
which c2 vanishes, the geometry is not well defined (see
below); therefore, we will exclude it from our consider-
ations. We have used a similar approach in Ref. [14], in
which we solved the type D equation for the trivial bundle,
that is, n ¼ 0.

A. Solution for vanishing c1
The type D equation (38) with the vanishing complex

constant c1 reads

4R2

c32
¼ ∂2

xP2 − 2iR2Ωþ 4R2Λ0; ð39Þ

where Λ0 (as in Ref. [14]) denotes a rescaled cosmological
constant:

Λ0 ≔ Λ=6: ð40Þ

Integrating both sides of Eq. (39) and using boundary
conditions (34) and (35) yields

c32 ¼
4R2

−2 − inþ 4Λ0R2
: ð41Þ

We then find the solution to Eq. (39),

P2 ¼ 1 − x2; ð42Þ

and

Ω ¼ n
2R2

: ð43Þ

Now, we find the rotation 1-form potential ω�. Since ω�
has to satisfy Eq. (27) and the regularity conditions at
x ¼ �1, namely,

ωþjx¼1 ¼ 0 ¼ ω−jx¼−1; ð44Þ

it follows that

ω�
Adx

A ¼ n
2
ðx ∓ 1Þdφ: ð45Þ

Consequently, in case of c1 ¼ 0, the solution to the type D
equation can be parametrized by two parameters: R2 and n.
Moreover, if n ¼ 0, then ω� vanishes. The found solution
is embeddable in the Taub–NUT–(anti-)de Sitter spacetime,
which is of the typeD and is defined by the static spacetime
metric tensors satisfying the vacuum Einstein equations
with the cosmological constant Λ [19], namely,

ds2 ¼ −
Q
ρ2

�
dt − 4lsin2

�
1

2
θ

�
dϕ

�
2

þ ρ2

Q
dr2

þ ρ2ðdθ2 þ sin2θdϕ2Þ; ð46Þ

where

ρ2 ¼ r2 þ l2; ð47Þ

Q ¼ r2 − 2Mr − l2 − Λ
�
−l4 þ 2l2r2 þ 1

3
r4
�
: ð48Þ

Its extension contains Killing horizons, which are para-
metrized by the roots of the equation:

r2H − 2MrH − l2 − Λ
�
−l4 þ 2l2r2H þ 1

3
r4H

�
¼ 0: ð49Þ

Each of such horizons, that is, not nonextremal, is one of
the type D horizons that we consider. The 2-metric on the
(space of the null generators of) Killing horizon admits
spherical symmetry,

ds22 ¼ ρ2ðdθ2 þ sin2 θdϕ2Þ; ð50Þ

and the relation between coordinates x, φ, and θ, ϕ is the
following:

xðθÞ ¼ − cos θ; φðϕÞ ¼ ϕ: ð51Þ
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Furthermore, we express the parameters R2 and n in terms
of the parameters of the Taub-NUT horizon, namely, r and
l. From the comparison of the area of the S2 metrics on the
horizon, we find that

R2 ¼ r2H þ l2: ð52Þ

The Killing vector field

ξ ¼ M
∂
∂t ð53Þ

on the horizon defines our generator of the null symmetry
(we have introduced the factor M to make the vector field
dimensionless as above). It is such that on the horizon

l ¼ ξjH: ð54Þ

Next, we use the formula

ðξμξμÞ;νjH ¼ −2κξν ð55Þ

to calculate the surface gravity κ on the horizon:

κ ¼ −M
2rH

�
−Λr4H þ ð1 − 2Λl2Þr2H þ ð1 − Λl2Þl2

r2H þ l2

�
: ð56Þ

In case of the Taub–NUT–(anti-)de Sitter metric (46), the 1-
form ω̃þ reads

ω̃−
Adx

A ¼ −
4l
M

sin2
�
1

2
θ

�
dϕ: ð57Þ

Furthermore, we use the obtained expressions for κ (56)
and ω̃ (57) and plug them into (9), (26), and (27) to find the
relation between n and the parameters r and l, namely,

n ¼ −4lκ
M

¼ 2l
rH

�
−Λr4H þ ð1 − 2Λl2Þr2H þ ð1 − Λl2Þl2

r2H þ l2

�
: ð58Þ

To conclude, the found horizon for the vanishing c1 is
embeddable in the quotient of Taub–NUT–(anti-)de Sitter
spacetime by the symmetry t ↦ tþ 2πM, and the corre-
spondence between our parameters and those of the Taub–
NUT–(anti-)de Sitter horizon is listed in (52) and (58). The
embedding, obviously, is not unique and depends on the
chosen symmetry.

B. Solution for arbitrary nonzero c1
Now, assuming that neither complex constant vanishes,

we integrate Eq. (38) twice to obtain

P2 ¼ 2R2Re

�
1

c21ðc1xþ c2Þ
�
− 2R2Λ0x2 þ CxþD: ð59Þ

Using the boundary conditions (33) and (34), we find
integration constants C and D:

C ¼ −2þ 4R2Λ0 þ 2R2Re

�
1

c1ðc1 þ c2Þ2
�

¼ −2R2Re

�
1

c1ðc21 − c22Þ
�
; ð60Þ

D ¼ 2R2Re

�
2c1 þ c2

c21ðc1 þ c2Þ2
�
þ 2R2Λ0 − 2: ð61Þ

Moreover, integrating Eq. (38) once and using (34) and (35)
yields the relation between R2, Λ0, and n and parameters c1
and c2:

R2 ¼ −2 − in
4ð c2

ðc2
1
−c2

2
Þ2 − Λ0Þ : ð62Þ

The area radius R2 has to be real (and positive); therefore,
the following equation must be satisfied:

Im

�4ð c2
ðc2

1
−c2

2
Þ2 − Λ0Þ

2þ in

�
¼ 0: ð63Þ

Consequently, we can choose the parametrization

c2
ðc21 − c22Þ2

¼ 1

γ
− i

1

2
n

�
Λ0 −

1

γ

�
; ð64Þ

where γ is a real parameter. The last equality in (60) yields

1

2R2
− Λ0 ¼ Re

��
c1
c2

− 1

�
c2

ðc21 − c22Þ2
�
; ð65Þ

which we use to introduce yet another real parameter η,

c2
c1

¼ ηn
4Λ0R2 − 2

þ iη ¼ 1

2
ηnðΛ0γ − 1Þ þ iη; ð66Þ

where we have assumed that

1–2Λ0R2 ≠ 0: ð67Þ

Using such parametrization, the expression for P2 reads

P2 ¼
ð1 − x2Þððx − 1

2
ηnð1 − Λ0γÞÞ2 þ η2 þ 1−x2

1−Λ0γÞ
ðx − 1

2
ηnð1 − Λ0γÞÞ2 þ η2

: ð68Þ

For n ¼ 0, Eq. (68) reduces to the case known from
Refs. [9,14], namely,
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P2 ¼ ð1 − x2Þðη2ð1 − Λ0γÞ − Λ0γx2 þ 1Þ
ð1 − Λ0γÞðx2 þ η2Þ : ð69Þ

We can now calculate the rotation 1-form potential ω�, just
as we previously did for c1 ¼ 0. Taking the imaginary part
of both sides of the type D equation (38) yields

Ω ¼ Im

�
−2

c31ðxþ c2
c1
Þ3
�

¼ Im

�
2ið1 − η2ð1

2
nðΛ0γ − 1Þ þ iÞ2Þ

ηγðxþ 1
2
ηnðΛ0γ − 1Þ þ iηÞ3

�
; ð70Þ

and therefore

ω� ¼ Im

�
ið1− η2ðn

2
ðΛ0γ − 1Þ þ iÞ2Þ2

2ηð1−Λ0γÞðxþ ηðn
2
ðΛ0γ − 1Þ þ iÞÞ2 þ iC�

�
dϕ:

ð71Þ

Since ω� satisfies the boundary conditions (44), it follows
that

C� ¼ 1

2ηð1− γΛ0Þ
�
1−η2þn2η2

4
ð1− γΛ0Þ2 ∓nηð1− γΛ0Þ

�
:

ð72Þ

Taking all into consideration, the family of solutions (for
c1 ≠ 0) to the type D equation (38) can be expressed in
terms of three real parameters: η, γ, and n.
In case of

1 − 2Λ0R2 ¼ 0; ð73Þ

we introduce the following parametrization:

c2
ðc21 − c22Þ2

¼ −
1

2
inΛ0 c2

c1
¼ −

nΛ0

2α
: ð74Þ

It is easy to see that both expressions vanish for n ¼ 0,
which is consistent with the result obtained in Ref. [14],
in which the R2 ¼ 1

2Λ0 case has been excluded for the
geometry to be well defined. The frame coefficient P2 takes
the following form:

P2 ¼ 1 − x2; ð75Þ

and

Ω ¼ −
2αð1 − ðnΛ0

2α Þ2Þ2
ðx − nΛ0

2α Þ3
: ð76Þ

The 1-form ω� reads

ω� ¼
�
αð1 − ðnΛ0

2α Þ2Þ2
2Λ0ðx − nΛ0

2α Þ2
þ C�

�
dφ; ð77Þ

where

C� ¼ −
α

2Λ0

�
1� nΛ0

2α

�
2

: ð78Þ

V. SUMMARY

We have considered three-dimensional IHs generated by
null curves that form nontrivial Uð1Þ bundles. In the
nonextremal IH case, the rotation 1-form potential corre-
sponds to a connection on the bundle times the surface
gravity. Hence, there is a natural interplay between the IH
geometry and theUð1Þ-bundle geometry. In this context, we
have considered the Petrov typeD equation (22) introduced
and studied in previousworks (Refs. [9,11,12,14]). From the
four-dimensional spacetime point of view, solutions of that
equation define isolated horizons embeddable in vacuum
spacetimes (with cosmological constant) as Killing horizons
to the second order such that the spacetimeWeyl tensor at the
horizon is of the Petrov typeD. From the point of view of the
Uð1Þ-bundle structure, the equation couples a Uð1Þ con-
nection, a metric tensor defined on the base manifold, and
the surface gravity in a very nontrivial way. An example of
known spacetime containing an IH of the nontrivial bundle
structure is the Taub-NUT solution. The Killing horizon in
that spacetime has the structure of the Hopf fibration of S3
over S2, and it is of the Petrov type D (along with all the
spacetime). In the current paper, we have focused on the
Uð1Þ bundles over two-dimensional manifolds diffeomor-
phic to the 2-sphere. A general bundle of that type is
characterized by an integer topological charge and is
mathematically equivalent to the Dirac monopole; however,
the role of the electromagnetic vector potential of the
original Diracmonopole in our case is played by the rotation
1-form potential divided by the surface gravity. We have
derived all the axisymmetric solutions to the Petrov type D
equation. Below, we summarize our results. The analysis is
followed by our final comments.
The solutions we have derived are determined by the

cosmological constant Λ, the area radius R2, a function P
[R and P give rise to the metric (28)], and the rotation
pseudoscalar Ω (13). From gAB and Ω, one can reconstruct
the remaining element of the IH, namely, derivative∇a (see
Ref. [9]). The topological charge m (integer) of the Uð1Þ-
bundle structure of the horizon and the surface gravity κ set
the parameter n that features in Table I. The list of
ðΛ; R2; P;ΩÞ we have found is divided into three classes.
We discuss them now.
The first class consists of the metric tensors gAB of

constant Gaussian curvature
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K ¼ 1

R2
ð79Þ

and constant rotation scalar Ω related in the table with n and
R2 and is embeddable in the Taub–NUT–(anti-)de Sitter
spacetime. The cosmological constant is arbitrary in this
class and unrelated to K and Ω. Hence, that class is para-
metrized freely by three real parameters Λ0; R2 > 0, and n.
Class 2 in Table I is characterized by the special relation

between R2 and Λ≕ 6Λ0,

R2 ¼ 1

2Λ0 ; ð80Þ

and by the condition

∂AΩ ≠ 0: ð81Þ

The class is parametrized by real parameters Λ0, n, and α
constrained by certain conditions discussed now. It follows
that here we can only consider positive Λ0 for the area
radius R2 to be positive:

Λ0 > 0: ð82Þ

Furthermore, the frame coefficient takes the form (75), and
it is clear that it is non-negative for all x in the domain.
However, one has to pay attention to the behavior of Ψ2,
Eq. (37), on the domain x ∈ ½−1; 1� and require it to be well
defined, which means

���� nΛ
0

2α

���� > 1: ð83Þ

The third class is parametrized by real parameters Λ0, η, γ,
and n. First, we specify their domains, in which the metric
gAB is well defined and at least four times differentiable,
including the poles of the sphere. We want the area radius
R2 to be positive, and therefore

R2 ¼ 1

2

γ

Λ0γ − 1
> 0 ⇔ Λ0 >

1

γ
: ð84Þ

Also, the frame coefficient P2 has to be positive for
x ∈ ð−1; 1Þ,

P2> 0⇔

�
x−

1

2
ηnð1−Λ0γÞ

�
2

þη2þ 1−x2

1−Λ0γ
> 0; ð85Þ

and that occurs whenever one of the following is satisfied:
(i) γ < 0;
(ii) ðγ > 0Þ ∧

�
η2 > −Λ0γ

ð1−Λ0γÞðð1−Λ0γÞ2n2
4
þΛ0γÞ

	
;

(iii) ðγ > 0Þ ∧
�
η2 < −Λ0γ

ð1−Λ0γÞðð1−Λ0γÞ2n2
4
þΛ0γÞ

	

∧
�
jηnj < Λ0γþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1−Λ0γÞη2þ1ÞΛ0γþ1

4
η2n2ð1−Λ0γÞ3

p
1
2
ð1−Λ0γÞ

	
.

Moreover, c2 in (37) has to be nonzero, because otherwise
theΨ2 component of theWeyl tensor would be ill defined at
x ¼ 0; it follows that η cannot vanish at any case:

η ≠ 0: ð86Þ
Several remarks are in order.
The first remark concerns reconstruction of a Uð1Þ

bundle and the IH structure from the data provided above.
Let us fix arbitrarily a topological charge,

m ≠ 0; ð87Þ

and a corresponding Uð1Þ bundle Π∶H → S2. Then, for all
data from the table such that

n ≠ 0; ð88Þ
we set the surface gravity κ to be

κ ¼ n
m
; ð89Þ

and we can reconstruct a unique (modulo automorphisms
of H) IH structure gab;∇a.
For

n ¼ 0; ð90Þ

on the other hand, Table I reduces to the earlier-derived [14]
axisymmetric solutions to the Petrov type D equation the
horizon of the R × S2 topology. Those horizons can be
defined by a subgroup of R and become the trivial Uð1Þ
bundle Uð1Þ × S2.

TABLE I. Solutions to the type D equation on horizons of nontrivial bundle topology divided into three classes.

Possible solutions to type D equation

Class I Class II Class III

R2 > 0 R2 ¼ 1
2Λ0 and Λ0 > 0 R2 ≠ 1

2Λ0

P2 ¼ 1 − x2 P2 ¼ 1 − x2
P2 ¼ ð1−x2Þððx−1

2
ηnð1−Λ0γÞÞ2þη2þ 1−x2

1−Λ0γÞ
ðx−1

2
ηnð1−Λ0γÞÞ2þη2

Ω ¼ n
2R2 Ω ¼ − 2αð1−ðnΛ0

2α Þ2Þ2
ðx−nΛ0

2α Þ3
Ω ¼ Im½2ið1−η2ð12nðΛ0γ−1ÞþiÞ2Þ

ηγðxþ1
2
ηnðΛ0γ−1ÞþiηÞ3 �
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The last remark concerns the issue of embedding the
generic IHs of the Petrov type D found in the current paper
in the known exact solutions to Einstein’s equations. We
derived a four-dimensional family of vacuum Petrov typeD
horizons, and there is known four-dimensional family of
the Kerr-NUT-dS (AdS) spacetimes in the literature. A
surprising observation is, that generically, our horizons do
not correspond to those spacetimes. It means that among
the exact type D spacetimes there exists a new four
dimensional family of spacetimes that generalise the
properties of the Kerr-(anti) de Sitter black holes on one
hand and the Taub-NUT spacetimes on the other hand. In
the trivial bundle case of H ¼ R × S2 considered in
previous works [14], a generic axisymmetric Petrov type
D IH ðH; gab;∇aÞ can be embedded in one of the non-
extremal Schwarzschild–(anti-)de Sitter/Kerr–(anti-)de
Sitter spacetimes. In the current case, however, for the
nonzero values of n and a generic solution in Table I, we
were not able to identify any generalized black hole
solution that can accommodate it. That result requires a
better understanding. It may be an indication of an
existence of a new family of spacetimes like Kerr–(anti-)
de Sitter–Taub–NUT ones.

ACKNOWLEDGMENTS

This work was partially supported by the Polish National
Science Centre Grant No. 2017/27/B/ST2/02806. I. R. and
J. L. were supported by the POLONEZ program of the
National Science Centre of Poland (under the Project
No. 2016/23/P/ST1/04195), which has received funding
from the European Union‘s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie
Grant No. 665778.

APPENDIX: COORDINATES ADAPTED TO THE
AXIAL SYMMETRY

The conditions (33) and (34) are necessary for the metric
tensor (28) to be continuous and differentiable at the poles
[14]. Now, we will show (33) and (34) are also sufficient.
Consider a 2-sphere metric with a conformal factor Σ
(independent of φ because of the symmetry),

gABdxAdxB ¼ Σ2ðθÞðdθ2 þ sin2 θdφ2Þ; ðA1Þ
and the transformation

dx ¼ Σ2 sin θ
R2

dθ; ðA2Þ

where R2 is defined to be the area radius satisfying

A ¼ 4πR2:

We now introduce the frame coefficient:

P2 ¼ Σ2 sin2 θ
R2

:

Calculating the area of the transformed metric gAB
yields

A ¼ R2ðx1 − x0Þ2π: ðA3Þ

Since x has been defined up to an additive constant, by
setting x1 ¼ 1 from the above equation, we obtain that
x0 ¼ −1. The coordinate φ is such that the (normalized)
infinitesimal axial symmetry equals ∂φ and the curves φ ¼
const are orthogonal to the infinitesimal symmetry. The
metric tensor gAB reads

gABdxAdxB ¼ R2

�
1

PðxÞ2 dx
2 þ PðxÞ2dφ2

�
: ðA4Þ

Next, we check whether condition for the lack of conical
singularity, namely,

lim
x→�1

∂xP2 ¼∓ 2; ðA5Þ

implies that the metric (A1) is differentiable, that is, if
Σ;θ ¼ 0 is satisfied on the poles. Using the relation between
P and Σ, we obtain

Σ;θ ¼ ∂θ

�
PR
sin θ

�
¼ RP;θ −Σ cos θ

sin θ

¼
Σ2 sin θ

R P;x −Σ cos θ

sin θ
¼ Σ

PP;x − cos θ
sin θ

: ðA6Þ

Now, taking a limit as θ approaches 0 (or π) and using
l’Hôpital’s rule, we find

Σ;θ jθ¼0;π ¼ lim
θ→0;π

RPð1þ 1
2

P2

sin2 θ ∂2
xP2Þ

cos θ
: ðA7Þ

As long as the limit of P
sin θ as θ approaches 0 (or π) is finite,

the expression on the right-hand side will vanish. To
calculate this limit, we will use the obtained expression
for P2,

P2 ¼
ð1 − x2Þððx − 1

2
ηnð1 − Λ0γÞÞ2 þ η2 þ 1−x2

1−Λ0γÞ
ðx − 1

2
ηnð1 − Λ0γÞÞ2 þ η2

; ðA8Þ

and plug it in the following:

1

P2
dx ¼ 1

sin θ
dθ: ðA9Þ

We can use new parameters, b ≔ − 1
2
ηnð1 − Λ0γÞ and

g ¼ 1
1−Λ0γ, and simplify 1

P2 as follows:
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1

P2
¼ 1

1 − x2
−

g
x2ð1 − gÞ þ 2bxþ η2 þ b2 þ g

: ðA10Þ

That way, integrating the left-hand side of Eq. (A9)
yields

L ¼
Z �

1

1 − x2
−

g
x2ð1 − gÞ þ 2bxþ η2 þ b2 þ g

�
dx

¼
Z �

1

1 − x2
−

g
ð1 − gÞ

1

x2 þ 2x b
1−g þ η2þb2þg

1−g

�
dx

¼ log

� ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

1 − x

r �
−

2Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
�
þ C

¼ log

�
C0

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

1 − x

r �
−

2Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
�
;

ðA11Þ

where

G ¼ g
1 − g

; A ¼ η2 þ b2 þ g
1 − g

; B ¼ 2b
1 − g

;

and we assumed that 4A − B2 > 0; otherwise, the term
under the square root would take the form −4Aþ B2 and
the sign in front of the arctan function would change. Next,
we integrate the right-hand side of Eq. (A9) to obtain

R ¼
Z

1

sin θ
dθ ¼ − log

�
cot θ þ 1

sin θ

�
þD

¼ log
�

sin θ
cos θ þ 1

�
þD: ðA12Þ

Using expressions (A11) and (A12), we find θ as a function
of x:

θðxÞ ¼ 2arctan

�
C00

ffiffiffiffiffiffiffiffiffiffi
xþ 1

1− x

r
exp

�
−2Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A−B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A−B2

p
���

: ðA13Þ

Next, we write sin2 θ in terms of x:

sin2θ ¼ 4

�
C002 xþ 1

1 − x
exp

�
−4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

þ 1

C002
1 − x
xþ 1

exp

�
4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A − B2
p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

þ 2

�
−1
: ðA14Þ

Finally, we use (68) and (A14) to find

P2

sin2θ
¼ ðxþ aÞ2 þ η2 þ gð1 − x2Þ

4ððxþ aÞ2 þ η2Þ
�
C002ðxþ 1Þ2 exp

�
−4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

þ 1

C002 ð1 − xÞ2 exp
�

4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

−1
þ 2ð1 − x2Þ

�

¼ ðxþ 1
2
Bð1þGÞ−1Þ2 þ ðAð1þ GÞ −Gð1þ GÞ − 1

4
B2Þð1þGÞ−2 þ Gð1þGÞ−1ð1 − x2Þ

4ððxþ 1
2
Bð1þ GÞ−1Þ2 þ η2Þ

×

�
C002ðxþ 1Þ2 exp

�
−4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

þ 1

C002

�
1 − xÞ2 exp

�
4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A − B2
p arctan

�
Bþ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
��

−1
þ 2ð1 − x2Þ

�
;

therefore, the term P2

sin θ is finite at the poles, and in consequence, the right-hand side of Eq. (A7) vanishes.2

2It is easy to see that for P2 of the form (42) we get the same conclusion.
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