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A matter-dominated model with gravitationally induced matter creation is proposed in the framework of
Brans-Dicke theory. We obtain the main cosmological functions such as the scale factor of the Universe, the
Hubble expansion rate, and the deceleration parameter analytically. We explore the viability of the model to
explain the present accelerated expansion of the Universe. In this scenario, the present cosmic acceleration
is supposed to be driven only by the negative creation pressure associated with the matter component. The
evolution of such a model is tested by statistical analysis of the latest SNe, OHD, and BAO probes. We
study and plot the trajectories of the evolution of the Universe with the best estimated values of the model
parameters. It is observed that the expanding Universe begins with a big bang followed by a smooth
transition from the decelerated phase to the accelerated phase. The ages of the Universe obtained by
SNeþ OHD and SNeþ OHDþ BAO in this model are in good agreement with the age predicted by the
ΛCDMmodel. We analyze the model with a statefinder diagnostic and find that the model is different from
the ΛCDM model but approaches ΛCDM in the future. The model shows quintessence behavior.
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I. INTRODUCTION

A large number of observational data such as type-Ia
supernovae [1,2], cosmic background radiation fluctuations
[3], and baryon acoustic oscillations [4] have provided
strong evidence for an accelerating Universe. The discov-
ery from these observations indicates the existence of a new
component with negative pressure, which is generally
called dark energy (DE) and is responsible for this accel-
eration. The simplest candidate of dark energy is the
cosmological constant Λ, with equation of state ωΛ ¼
−1 [5]. However, it suffers two well-known problems
named the “fine-tuning problem” and the “cosmic coinci-
dence problem” [6]. Such problems have inspired many
researchers to propose alternative candidates in the liter-
ature: quintessence [7–12], k-essence [13], phantom energy
[14–16], quintom [17,18], exotic Chaplygin gas [19], etc.,
have been proposed in the past 18 years. More recently,
some attention has also been paid to a possible interaction
between the dark sector components [20–22]. However, the
nature of DE is far from being understood.
In the past several years, matter creation in cosmology

has drawn the attention of many researchers. After the
discovery of the accelerating Universe, matter creation
has been reconsidered to explain it and produced some
unexpected results. In general relativistic cosmology, the
presence of a negative pressure is the key ingredient to

accelerating the expansion. Cosmological models domi-
nated by pressureless fluid like a cold dark matter (CDM)
component expand in a decelerating way. Matter creation is
considered in the context of the thermodynamics of open
systems. The first self-consistent theoretical approach to
matter creation was proposed by Prigogine and his col-
laborators [23,24]. It was argued that, at the expense of the
gravitational field, matter creation occurs only as an
irreversible process constrained by the usual requirements
of nonequilibrium thermodynamics. They also showed how
the thermodynamics of open systems lead naturally to a
reinterpretation of the energy-momentum tensor, adding an
additional pressure term. A detailed study of the thermo-
dynamics of matter creation with changing specific entropy
has been discussed in Refs. [12,25].
In comparison to the standard equilibrium equations, the

irreversible creation process is described by two new
ingredients: a balance equation for the particle number
density and a negative pressure term in the energy-
momentum tensor. Such quantities are related to each other
in a very definite way by the second law of thermody-
namics. Several interesting features of cosmological mod-
els with matter creation have been investigated by many
authors [26–34]. This field is very appealing for several
important observations carried out in the last ten years. It
has been pointed out that models with particle creation can
mimic ΛCDM cosmology (see Refs. [29,30,35–39]).
Further, Nunes and Pavón [40] have shown that the matter
creation models can explain the phantom behavior of the
Universe without invoking any phantom fields. Particle
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creation models in modified theories have recently attracted
several authors [41–43].
In recent years, there have also been attempts to model

the missing energy of the Universe and to explain its late-
time accelerated expansion in purview of the scalar tensor
theories where the scalar field is nonminimally coupled to
the gravity sector. The pioneering study on scalar-tensor
theories was done several decades ago by Brans and Dicke
[44], who applied Mach’s principle to gravity. It has found
a new impetus, as it arises naturally as the low-energy limit
of many theories of quantum gravity like superstring
theory. Brans-Dicke (BD) theory as a natural extension
of Einstein’s general theory of relativity passes the exper-
imental tests from the Solar System [45] and explains the
accelerated expansion of the Universe [46]. In BD theory,
the gravitational constant G is replaced with an inverse-of-
time-dependent scalar field, i.e., G ∼ 1=ϕðtÞ, which cou-
ples to gravity with a coupling parameter ω.
The study of matter creation processes in the context

of the cosmological models has recently attracted a lot of
interest in cosmology. In this paper, we study the role
of irreversible processes, corresponding to the creation of
matter out of gravitational energy in BD theory. The aim of
this work is to build a cosmological model of late
acceleration based on matter creation in the BD theory
of gravity. In a flat Friedmann-Robertson-Walker (FRW)
geometry, we consider a general creation rate to demon-
strate how matter creation explains the accelerating
Universe. We obtain the analytical solutions of the
Hubble function and the scale factor of the FRW universe.
We also constrain the model using the latest compilation of
type-Ia supernova data, observational Hubble data, and
baryon acoustic oscillation data. We examine the models
using independent diagnosis, namely the statefinder param-
eter from observational constraints. Further, we test the
thermodynamic viabilities of the matter creation model.
The paper is organized as follows: In Sec. II, we present

the model field equations for matter creation in a flat FRW
space-time in BD theory. We obtain the analytical solutions
of Hubble parameter and the scale factor in Sec. III.
In Sec. IV, we present the solution of the deceleration
parameter. In Sec. V, we present a brief introduction of
type-Ia supernova data, observational Hubble data, and
baryon acoustic oscillation data to test the cosmological
model with matter creation in BD theory and derive the
constraints on the model parameters. The results obtained
by observational data are given in Sec. VI. In Sec. VII, we
study the evolution of the Universe with the best fitted
values of parameters. We present the thermodynamic
analysis of the model in Sec. VIII. Finally, in Sec. IX,
we discuss our findings.

II. MODEL AND FIELD EQUATIONS

The action of BD theory in the presence of matter with
Lagrangian Lm in the Jordan frame [47,48] is given by

S¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
ð−gÞp �

1

16

�
ϕR−ω

∇αϕ∇αϕ

ϕ

�
þLm

�
; ð1Þ

where ϕ is the BD scalar field representing the inverse
of Newton’s constant, which is allowed to vary with space
and time;ω is the generic dimensionless coupling parameter
of the theory; and other symbols have their usual meaning.
Let us consider a spatially homogeneous and isotropic

flat Friedmann-Robertson-Walker (FRW) line element
(c ¼ 1),

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�; ð2Þ
where aðtÞ is referred to as the scale factor and t is the
cosmic time.
The field equations of BD theory derived from the action

(1) by varying the action with respect to the metric are
given by

Rμν −
1

2
gμνR ¼ Tμν

ϕ
þ ω

ϕ2

�
ϕ;μϕ;ν −

1

2
gμνϕ;kϕ

;k

�

þ 1

ϕ
½ϕ;μ;ν − gμν□ϕ� ð3Þ

and

□ϕ ¼ Tμ
μ

ð2ωþ 3Þ ; ð4Þ

where Tμν is the total energy-momentum tensor Tμν ¼
TðmÞ
μν þ TðcÞ

μν , where T
ðmÞ
μν is the energy-momentum tensor for

the perfect fluid, i.e.,

TðmÞ
μν ¼ ðρþ pÞuμuν þ pgμν; ð5Þ

and TðcÞ
μν is the energy-momentum tensor which corre-

sponds to the matter creation, i.e.,

TðcÞ
μν ¼ pcðgμν þ uμuνÞ: ð6Þ

In the above Eqs. (5) and (6), ρ and p are the energy density
and pressure, respectively, and pc is the creation pressure.
In this background, the first nontrivial evolution equation is
given by

H2 þH
_ϕ

ϕ
−
ω

6

_ϕ2

ϕ2
¼ ρ

3ϕ
: ð7Þ

The scalar field evolution equation is

ϕ̈þ 3H _ϕ ¼ ρ − 3ðpþ pcÞ
ð2ωþ 3Þ ; ð8Þ

whereH ¼ _a
a is the Hubble parameter, and the dot denotes a

derivative with respect to cosmic time t. Here, we note that
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the case of ω ¼ −3=2 is not allowed. The energy con-
servation equation Tμν

;ν ¼ 0 leads to

_ρþ 3Hðρþ pþ pcÞ ¼ 0: ð9Þ

We work in the Jordan frame. One interesting thing about
BD theory in the Jordan frame is that the conservation
equation holds for the matter and the scalar field separately.
Or, in a slightly different way, the Bianchi identity along
with wave equation given by Eq. (8) gives the matter
conservation Eq. (9).
In the gravitationally induced matter creation, the usual

balance equation Nμ
;μ ¼ 0, is modified as [24]

Nμ
;μ ¼ n;μuμ þ 3Hn ¼ nΓ; ð10Þ

where Nμ ¼ nuμ represents the particle flow vector, uμ is
the usual particle four-velocity, n ¼ N=V is the particle
number density, and Γ is the rate of change of the particle
number in a physical volume V ¼ a3 containing N number
of particles and has units in time−1. A semicolon denotes a
covariant derivative.
It is to be noted that the creation pressure pc is defined in

terms of the creation rate Γ and other physical quantities
describing the fluid. In adiabatic particle creation (meaning
particles are created but the specific entropy per particle
remains constant), the creation pressure is given by [25,27]

pc ¼ −
ðρþ pÞ
3H

Γ ð11Þ

or

pc ¼ −
ρ

3H
Γ ð12Þ

for a pressureless (p ¼ 0) matter-dominated model. Now,
because we consider matter creation, from the second law
of thermodynamics, we have the constraint

dS ¼ s
n
dðnVÞ ≥ 0; ð13Þ

where s ¼ S=V is the entropy density.

III. SOLUTION OF FIELD EQUATIONS

Equations (11) and (12) show how the matter creation
rate, Γ, modifies the evolution of the scale factor and
density of fluid. The evolution of a matter-dominated
model can be determined by assuming a suitable form
of the creation rate. Although the precise functional form of
Γ is still missing, a number of different phenomenological
parametrizations have been proposed in the literature. The
simplest choices of Γ are Γ ∝ H; however, this model is not
consistent with type-Ia supernovae. The other forms of Γ
are Γ ¼ H0 [38], Γ ∝ H2 [26], and Γ ∝ H−1 [39]. Steigman

et al. [49] proposed a linear combination in the terms of
Hubble parameter as

Γ ¼ 3γH0 þ 3βH; ð14Þ

where γ and β are constants contained in the interval [0,1],
and H0 is the present value of H.
At this point, the system of our equations is not closed,

and we still have freedom to choose a suitable assumption
for the scalar field. In the framework of BD cosmology, the
BD scalar field ϕ is usually assumed to have a power-law
relation in terms of scale factor [50,51], namely

ϕ ¼ ϕ0aðtÞϵ; ð15Þ

where ϕ0 and ϵ are constants. Taking the time derivative of
Eq. (15), we obtain

_ϕ

ϕ
¼ ϵ

_a
a
¼ ϵH: ð16Þ

Using Eqs. (15) and (16), the first Friedmann equation (7)
can be rewritten as

�
1þ ϵ −

ϵ2ω

6

�
H2 ¼ ρ

3ϕ0aϵ
: ð17Þ

From the above Eq. (17), we get

2
_H
H

¼ _ρ

ρ
− ϵH: ð18Þ

Now, from Eq. (9), we obtain

_ρ

ρ
¼ −3

�
1 −

Γ
3H

�
H: ð19Þ

Using Eqs. (19) and (14) in Eq. (18), we get

_h
h
þ ðϵþ 3ð1 − βÞÞ

2
H0h −

3

2
γH0 ¼ 0; ð20Þ

where h ¼ H
H0

is the dimensionless Hubble parameter. Here
H0 is the present value of the Hubble parameter. Using
d
dt ¼ _a

a
d

dlna, the above equation can be written as

h0 þ ðϵþ 3ð1 − βÞÞ
2

h ¼ 3

2
γ; ð21Þ

where the prime denotes a derivative with respect to
conformal time lna.
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Performing the integration of Eq. (21), we obtain

hðaÞ ¼
�

3γ

ϵþ 3ð1 − βÞ þ
�
1 −

3γ

ϵþ 3ð1 − βÞ
��

a0
a

�ϵþ3ð1−βÞ
2

�
:

ð22Þ

From Eq. (22), we get the solution of the scale factor aðtÞ as
a function of time:

aðtÞ ¼ a0

�
1þ ϵþ 3ð1 − βÞ

3γ
ðe3γ

2
H0ðt−t0Þ − 1Þ

� 2
ϵþ3ð1−βÞ

; ð23Þ

where a0 is the present value of the scale factor at cosmic
time t ¼ t0, and thereafter we take a0 ¼ 1, and
ϵþ 3ð1 − βÞ ≠ 0, γ ≠ 0. As ðt − t0Þ → 0, the scale factor

aðtÞ → ½1þ ϵþ3ð1−βÞ
2

H0ðt − t0Þ�
2

ϵþ3ð1−βÞ, which corresponds
to early deceleration; and as ðt − t0Þ → ∞, the scale factor

aðtÞ ∝ e
3γ
2
H0ðt−t0Þ corresponds to that of the de Sitter

universe.
The Hubble parameter in terms of cosmic time t reads

H ¼ H0e
3γ
2
H0ðt−t0Þ

½1þ ϵþ3ð1−βÞ
3γ ðe3γ

2
H0ðt−t0Þ − 1Þ�

: ð24Þ

The Hubble parameter in terms of redshift 1þ z ¼ ða0=aÞ
is given by

HðzÞ ¼ H0

�
3γ

ϵþ 3ð1 − βÞ

þ
�
1 −

3γ

ϵþ 3ð1 − βÞ
�
ð1þ zÞϵþ3ð1−βÞ

2

�
: ð25Þ

Using aðtÞ ¼ 0 in Eq. (23), we can calculate the cosmic
time tBB when the big bang happens:

tBB ¼ t0 þ
2

3γH0

ln

�
1 −

3γ

ϵþ 3ð1 − βÞ
�
: ð26Þ

The energy density in terms of z is given by

ρ ¼ ρ0ð1þ zÞ−ϵ
�

3γ

ϵþ 3ð1 − βÞ

þ
�
1 −

3γ

ϵþ 3ð1 − βÞ
�
ð1þ zÞϵþ3ð1−βÞ

2

�
2

; ð27Þ

where ρ0 is a constant quantity. The scalar field ϕ has the
solution

ϕ ¼ ϕ0

�
1þ ϵþ 3ð1 − βÞ

3γ
ðe3γ

2
H0ðt−t0Þ − 1Þ

� 2ϵ
ϵþ3ð1−βÞ

; ð28Þ

which shows that the BD scalar field increases exponen-
tially with time.
Let us discuss the matter creation model in the sense of

an irreversible process. Adiabatic matter creation means
that the total entropy S increases, but the specific entropy
(per particle), σ ¼ S=N, remains constant, i.e., _σ ¼ 0,
which implies that

_S
S
¼

_N
N
: ð29Þ

Now, from N ¼ na3, we have

_N
N

¼ _n
n
þ 3_a

a
: ð30Þ

Inserting Eqs. (10) and (14) into Eq. (30), a straightforward
integration yields

NðtÞ ¼ N0a3βe3γH0ðt−t0Þ; ð31Þ

where N0 is the present number of particles. The number of
particles is an increasing function of time. Using Eq. (31) in
Eq. (29) and integrating, we get

SðtÞ ¼ S0a3βe3γH0ðt−t0Þ; ð32Þ

where S0 is the present entropy.
The solution for particle number density is given by

n ¼ n0a−3ð1−βÞe3γH0ðt−t0Þ; ð33Þ

which shows that the particle number density first decreases
and then increases exponentially with cosmic time t.
The exact solutions coming from Eqs. (7) and (9) are

consistent solutions if they satisfy the wave equation (8).
From Eq. (8), the conditions of consistency are

ð2wþ 3Þðϵ− 3ð1− βÞ þ 2Þϵ− ð6þ 6ϵ− ϵ2wÞð1þ 3βÞ ¼ 0

ð34Þ

and

3ϵð2wþ 3Þ − ð6þ 6ϵ − ϵ2wÞ ¼ 0: ð35Þ

IV. DECELERATION PARAMETER

The transition from one phase to another can be obtained
by defining the deceleration parameter q, which is defined
as q ¼ −aä= _a2. It is straightforward to show from Eq. (23)
that the deceleration parameter now takes the following
form:
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qðtÞ ¼ −1 −
�
3γ − 3ð1 − βÞ − ϵ

2

�
e−

3γ
2
H0ðt−t0Þ: ð36Þ

Now, eliminating time from Eqs. (23) and (36), and using
a=a0 ¼ ð1þ zÞ−1, one obtains the deceleration parameter
in terms of the redshift:

qðzÞ¼1

2

�
−6γþð1−3βþϵÞðϵþ3ð1−βÞ−3γÞð1þzÞϵþ3ð1−βÞ

2

ðϵþ3ð1−βÞ−3γÞð1þzÞϵþ3ð1−βÞ
2 þ3γ

�
:

ð37Þ

When ϵþ 3ð1 − βÞ ¼ 3γ, we have q ¼ −1 that corre-
sponds to the de Sitter universe. From the above expression,
the present-day value of q is

q0 ¼
1

2

�
−6γ þ ð1 − 3β þ ϵÞðϵþ 3ð1 − βÞ − 3γÞ

ϵþ 3ð1 − βÞ
�
: ð38Þ

For ϵ ¼ 0, Eq. (37) reduces to the result of Ref. [27] in
general relativity. For β ¼ 0, we find

qðzÞ ¼ 1

2

�
−6γ þ ð1þ ϵÞð3þ ϵ − 3γÞð1þ zÞðϵþ3Þ

2

ð3þ ϵ − 3γÞð1þ zÞðϵþ3Þ
2 þ 3γ

�
: ð39Þ

Equation (39) shows that the creation of matter is negligible
at high redshifts, while due to matter creation at redshifts of
the order of a few, a transition from a decelerating to an
accelerating phase occurs. For γ ¼ 0, from Eq. (37) we get

q ¼ 1þ ϵ − 3β

2
: ð40Þ

Equation (40) shows that β ¼ ð1þ ϵÞ=3 is a critical value
for which q ¼ 0. For β < ð1þ ϵÞ=3, the possible values of
qðzÞ are always constant and positive, while for
β > ð1þ ϵÞ=3, they remain constant and negative in the
course of expansion. There is no transition from the
deceleration to the acceleration phase.
The transition redshift ztr can be obtained by taking q ¼

0 in Eq. (37), which implies that

ztr ¼
�

6γ

ð1þ ϵ − 3βÞðϵþ 3ð1 − βÞ − 3γÞ
� 2

ðϵþ3ð1−βÞÞ
− 1: ð41Þ

Note that the case γ ¼ 0 gives ztr ¼ −1, which shows that
the transition would be in the infinite future. This gives a
contradiction with SNe data. Equation (41) equivalently
can be written as

γ ¼ 1

3

ð1þ ϵ − 3βÞðϵþ 3ð1 − βÞÞð1þ ztÞ
ðϵþ3ð1−βÞÞ

2

2þ ð1þ ϵ − 3βÞð1þ ztÞ
ðϵþ3ð1−βÞÞ

2

: ð42Þ

For β ¼ 0, the above expression gives

γ ¼ 1

3

ð1þ ϵÞðϵþ 3Þð1þ ztÞ
ðϵþ3Þ
2

2þ ð1þ ϵÞð1þ ztÞ
ðϵþ3Þ
2

: ð43Þ

V. OBSERVATIONAL DATASETS

In this section, we use the Hubble parameter (25) to
perform three different statistical analyses involving the
latest observational data—namely, type-Ia supernovae
(SNe), observational Hubble parameter data, (OHD) and
baryon acoustic oscillation (BAO)—to obtain the best fit of
themodel parameters—namely, ϵ, β, and γ. The goodness of
fit of the model is obtained by the χ2 minimization and
likelihoods by using aMarkov chainMonte Carlo (MCMC)
method [52]. In this study, we have taken the value of the
Hubble constant to be H0 ¼ 67.8 km sec−1Mpc−1 [53].

A. Supernovae type Ia

We use the joint light-curve analysis (cJLA) dataset of 31
check points (30 bins) covering the redshift range
z ¼ ½0.01; 1.3� [54]. In a flat universe, the luminosity
distance dLðzÞ is defined as

dLðz;H0; θÞ ¼ cð1þ zÞ
Z

z

0

dz0

Hðz0; θÞ ; ð44Þ

where HðzÞ is defined in Eq. (25), θ denotes the model
parameters—namely ϵ, β, and γ—and c is the speed of light
given in units of km/sec.
The theoretical distance modulus is defined as

r ¼ μb −M − 5log10dL; ð45Þ

where μb is the observational distance modulus and M is a
free normalization parameter. We construct the statistical χ2

function as

χ2SNe ¼ rtC−1
b r; ð46Þ

where Cb is the covariance matrix of μb; see Table F.2 of
Ref. [54]. We numerically minimize χ2 to compute the best
estimates for free parameters ðϵ; β; γÞ of the model.

B. Observational Hubble data

The observational Hubble data are based on differential
ages of the galaxies [55]. We use the OHD dataset of 43
measurement points collected in Ref. [56] in the redshift
range 0 < z < 2.5. The best-fit values of the model
parameters are determined by minimizing

MATTER CREATION COSMOLOGY IN BRANS-DICKE THEORY: … PHYS. REV. D 100, 084057 (2019)

084057-5



χ2OHD ¼
Xm
i¼1

½HðziÞ −Hobsðzi; θÞ�2
σ2i

; ð47Þ

where HðziÞ and HobsðziÞ are the theoretical and observed
values, respectively, and σ2i is the standard deviation of
each HobsðziÞ.

C. Baryon acoustic oscillations

We use BAO measurements from SDSS(R) [57], the 6dF
galaxy survey [58], BOSS CMASS [59], and three parallel
measurements from the WiggleZ survey [60].
The angular diameter dAðz; θÞ is given by

dAðz�; θÞ ¼ c
Z

z�

0

dz0

Hðz0; θÞ ; ð48Þ

where z� denotes the photons decoupling redshift and
according to the Planck 2015 results [53], its value is
z� ≈ 1090. Further, the dilation scale Dvðz; θÞ is given

by Dvðz; θÞ ¼ ðd2Aðz;θÞczHðz;θÞ Þ
1
3.

The corresponding χ2 function is given by [61]

χ2BAO ¼ ATC−1A; ð49Þ
where A is a matrix given by

A ¼

2
66666666666664

dAðz�;θÞ
Dvð0.106;θÞ − 30.84

dAðz�;θÞ
Dvð0.35;θÞ − 10.33

dAðz�;θÞ
Dvð0.57;θÞ − 6.72

dAðz�;θÞ
Dvð0.44;θÞ − 8.41

dAðz�;θÞ
Dvð0.6;θÞ − 6.66

dAðz�;θÞ
Dvð0.73;θÞ − 5.43

3
77777777777775

and C−1 is the inverse of the covariance matrix [61]. Here,
we have adopted the correlation coefficients given
in Ref. [62].

VI. RESULTS

In our analysis, we perform a global fitting to determine
the model parameters using the MCMC method. We have

adopted a Python implementation of the ensemble sampler
for MCMC, EMCEE, introduced by Foreman-Mackey et al.
[52]. Table I summarizes the best-fit values of model
parameters obtained by statistical analysis carried out using
different sets of observational data. The results of SNe and
SNeþ BAO are little different from those of SNeþ OHD
and SNeþ OHDþ BAO.
In statistical analysis, we find the best-fit values of model

parameters at 1σð68.3%Þ and 2σð95.4%Þ confidence levels,
satisfying the constraints 0 < ϵ < 3, 0 < β < 1, 0 < γ < 1,
and 1 < ðβ þ γÞ < 2. We can test the reliability by com-
paring the result with a spatially flat ΛCDM model. We
observe that the model provides a very good fit to these
data. Figures 1–4 show confidence contours on parameters
and the marginalized likelihood function of the model
obtained from the combined analysis with different data-
sets. The best-fit values of model parameters are given in
Table I.

TABLE I. The best-fit results of model parameters obtained from the analysis with different combinations of the
datasets.

Dataset ϵ β γ M χ2min

SNe 1.898þ0.633
−0.535 0.667þ0.210

−0.240 0.645þ0.218
−0.240 24.941þ0.020

−0.022 18.427

SNeþ OHD 2.142þ0.593
−0.698 0.512þ0.205

−0.224 0.840þ0.066
−0.079 24.945þ0.018

−0.020 28.223

SNeþ BAO 1.915þ0.665
−0.651 0.448þ0.225

−0.199 0.813þ0.072
−0.059 24.932þ0.021

−0.020 17.497

SNeþ OHDþ BAO 2.141þ0.596
−0.672 0.597þ0.200

−0.215 0.731þ0.021
−0.020 24.951þ0.017

−0.018 30.671

FIG. 1. The contour map of a matter creation model using data
from SNe with marginalized probability for the parameters. The
associated 1σ and 2σ confidence contours are shown. The labels
ep, bt, and gm denote ϵ, β, and γ parameters, respectively.
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VII. EVOLUTION OF THE MODEL

In this section, we discuss the evolution of the different
cosmological quantities using the best-fit values of model
parameters obtained from different observational datasets.
Figure 5 shows the evolution of the scale factor for different
values of model parameters using observational data. It
shows that the model starts expansion with an accelerated
rate at early time. The dots denote the transition point
where the Universe transits from deceleration to the

FIG. 2. The contour map of a matter creation model based on
joint analysis of SNe + OHD, showing contours of 1σð68.3%Þ
and 2σð95.4%Þ regions with marginalized probability for the
parameters. The labels ep, bt, and gm denote ϵ, β, and γ
parameters, respectively.

FIG. 3. The contour map of a matter creation model based on
joint analysis of SNeþ BAO, showing contours of 1σð68.3%Þ
and 2σð95.4%Þ regions with marginalized probability for the
parameters. The labels ep, bt, and gm denote ϵ, β, and γ
parameters, respectively.

FIG. 4. The contour map of a matter creation model based on
joint analysis of SNeþ OHDþ BAO, showing contours of
1σð68.3%Þ and 2σð95.4%Þ regions with marginalized probability
for the parameters. The labels ep, bt, and gm denote ϵ, β, and γ
parameters, respectively.

FIG. 5. The scale function as a function of time for different
values of model parameters ϵ, β, and γ. The dots show the
transition point.
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acceleration phase. We have also plotted the trajectories for
other different values of parameters. The bottom curve
gives the trajectory without matter creation (β ¼ 0, γ ¼ 0)
in general relativity (ϵ ¼ 0), which clearly shows the
expansion in the decelerated rate.
To compute the value of the scale factor where transition

happens, we have from Eq. (25)

d _a
da

¼ H0

ðϵþ 3ð1− βÞÞ

×

�
3γþðϵþ 3ð1− β− γÞÞð2− ϵ− 3ð1− βÞÞ

2
a−

ϵþ3ð1−βÞ
2

�
:

ð50Þ

Equating Eq. (50) to zero, we get

atr ¼
�ðϵþ 3ð1 − β − γÞÞðϵþ 3ð1 − βÞ − 2Þ

6γ

� 2
ϵþ3ð1−βÞ

; ð51Þ

where the subscript “tr” denotes the transition. The
values of atr are listed in Table II for different values of
model parameters. In the expression (23), If we assume
ϵþ 3ð1 − βÞ ¼ 3γ, we obtain the de Sitter universe aðtÞ ¼
eH0ðt−t0Þ as shown in Fig. 5 by the solid black line. In this
case, the model predicts an eternal accelerated expansion.
For 0 < ϵþ 3ð1 − βÞ < 3γ, the model expands forever (see
the brown curve), and for ϵþ 3ð1 − βÞ > 3γ, we find that
the model begins with a big bang followed by an eternal
expansion.
Using the best-fitting data of the parameters listed in

Table I in Eq. (37), the variation of q with z is shown in
Fig. 6. It is observed that the evolutions corresponding to
the best estimates from all observational data are identical.
The deceleration parameter starts from negative redshift,
z ¼ −1, and takes the transition from negative to positive.
The model transits from the decelerated to the accele-
rated epoch at around ztr ∼ 0.8 with SNeþ OHD and
SNeþ OHDþ BAO, whereas SNe and SNeþ BAO pre-
dict the transition at around z ∼ 1.818 and z ∼ 1.005,
respectively, which is significantly higher and hints at a
strong deviation from the other two. The transition redshift
ztr, at which q enters the negative region, and the present-
day value of q0 are given in Table II. The present-day

negative value −1 < q0 < 0 with each observational data
shows that the model behaves like quintessence.
The effective equation of state parameter, ωeff , can be

obtained using the standard relation [63]

ωeff ¼ −1 −
1

3

2a
h
dh
da

; ð52Þ

where h ¼ H=H0 is the weighted Hubble parameter. Using
Eq. (22) in Eq. (48), we get

ωeff ¼ −1þ 1

3

ðϵþ 3ð1 − β − γÞÞð1þ zÞðϵþ3ð1−βÞÞ
2

h
: ð53Þ

As z → −1 ða → ∞Þ, we get ωeff → −1, which can also be
observed from Fig. 7. This means that the model corre-
sponds to ΛCDM in future time. The equation of state does
not cross the phantom divide line ω ≤ −1, which shows
that the matter creation model is free from big-rip
singularity.

FIG. 6. The evolution of the deceleration parameter qðzÞ vs
redshift z for the best estimated values of parameters. The dot
denotes the value of zt at which qðzÞ ¼ 0, as mentioned in
Table II.

FIG. 7. Plot of effective equation of state parameter ωeff with
respect to the redshift z for best-fitted parameters.

TABLE II. The transition scale factor, redshift, and present
values of the deceleration parameter and the equation of state
parameter using best-fit results of model parameters.

Data atr ztr q0 weffðzÞ
SNe 0.3548 1.8180 −0.779 −0.679
SNeþ OHD 0.5551 0.8013 −0.457 −0.638
SNeþ BAO 0.4986 1.005 −0.434 −0.662
SNeþ OHDþ BAO 0.5398 0.8522 −0.422 −0.614
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The present value (h ¼ 1) of ωeff is found to be

ωeffðz ¼ 0Þ ¼ −1þ ϵþ 3ð1 − β − γÞ
3

: ð54Þ

The present values of ωeff are listed in Table II using dif-
ferent observational data. These values are comparatively
higher than that predicted by the joint analysis of WMAPþ
BAOþH0 þ SNe data, which is around −0.93 [64].
We compare our model with the ΛCDM model with the

error bar plots of Hubble dataset in the range zεð0; 2Þ as
shown in Fig. 8. Although at the low redshifts the curves
coincide, their evolution with increasing z differs appreci-
ably in the cases of SNe and SNeþ BAO. However, it is
possible to get a good fit using joint statistical analysis of
SNeþ OHD and SNeþ OHDþ BAO.
We calculate the age of the Universe. The age of our

Universe at redshift z is given by tðzÞ ¼ TðzÞ=H0, where

TðzÞ ¼
Z

∞

z

dz0

ð1þ z0ÞðHðzÞ=H0Þ
ð55Þ

is the dimensionless age parameter. For the ΛCDM model,
in which the density parameter, Ωm0 ≈ 0.27, the age
parameter is [65]

TðzÞ ¼
Z

∞

z

dz0

ð1þ z0Þ½Ωm0ð1þ zÞ3 þ ð1 − Ωm0Þ�1=2
: ð56Þ

It is to be noted that the present age of the Universe for a
flat CDM model dominated by matter [Ωm0 ¼ 1,
t0 ¼ 2=ð3H0Þ] gives t0 ≈ 8–10 Gyr, which does not satisfy
the stellar age bound, t0 > 11–12 Gyr; namely, the age of
the Universe should be longer than any objects living in the
Universe. Therefore, this model suffers the age problem.
However, for the ΛCDM model, it easily satisfies the
constraint t0 > 11–12 Gyr. A plot of the age of the
Universe with redshift for the best estimates of model
parameters is shown in Fig. 9. The age of the Universe

corresponding to SNeþ OHD and SNeþ OHDþ BAO is
found to be 13.9 Gyr. So, the age predicted by the present
model is agreeing with the age deduced from the ΛCDM
model, which is around 13.799� 0.021 Gyr.
To compare with the ΛCDM model, we have used the

statefinder parameter diagnostic introduced by Sahni et al.
[66]. The statefinder parameters fr; sg are defined as

r ¼ a
…

aH3
and s ¼ r − 1

3ðq − 1=2Þ : ð57Þ

For the ΛCDM and standard cold dark matter (SCDM),
these parameters constitute fixed points fr; sg ¼ f1; 0g and
fr; sg ¼ f1; 1g, respectively, in s − r plane. For our model,
the statefinder parameters are given by

r ¼ ð2 − ðϵþ 3ð1 − βÞÞÞð2 − 2ðϵþ 3ð1 − βÞÞÞ
4

þ 9γ

4
ð2 − ðϵþ 3ð1 − βÞÞÞe−3γH0

2
ðt−t0Þ

×

�
1þ ϵþ 3ð1 − βÞ

3γ
ðe3γH0

2
ðt−t0Þ − 1Þ

�

þ 9γ2

4
e−3γH0ðt−t0Þ

�
1þ ϵþ 3ð1 − βÞ

3γ
ðe3γH0

2
ðt−t0Þ − 1Þ

�
2

;

ð58Þ

s ¼ ðr − 1Þ
3½− 3

2
þ ð3γ−3ð1−βÞ−ϵ

2
Þe−3γ

2
H0ðt−t0Þ�

: ð59Þ

We observe that as ðt − t0Þ → ∞, fr; sg →

fð3β−ϵ−1Þð3β−ϵ−2Þ
2

; 2ð1−rÞ
9

g, which deviates from the ΛCDM
model. However, it corresponds to the ΛCDM model for
ϵ ¼ 0 and β ¼ 0. The fr; sg plane trajectory of the model
for the best estimated values of parameters by SNeþ
OHDþ BAO is shown in Fig. 10. The plot lies in the
region r < 1, s > 0, which is the general behavior of any
quintessence model. The fr; qg trajectory of the model is

FIG. 8. The Hubble function in terms of the redshift for the
ΛCDM model and the fitted model with error bar plots from
Hubble data.

FIG. 9. The age of the Universe for best-fitted values and the
ΛCDM model in units of Gyr with redshift.
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shown in Fig. 11. The SCDM model and steady state (SS)
model correspond to the fixed points fr; qg ¼ f1; 0.5g and
fr; qg ¼ f1;−1g, respectively. The horizontal line at r ¼ 1
corresponds to the time evolution of theΛCDMmodel. Our
model approaches the standard models like ΛCDM and the
quintessence model (Q-model) [66] at late times.

VIII. THERMODYNAMIC ANALYSIS

In this section, we discuss the validity of the generalized
second law (GSL) of thermodynamics in the present model
dominated by matter creation. It is to be noted that
according to thermodynamics, the entropy of isolated
systems can never diminish. We explore the calculations
of total entropy S for the matter creation model. We assume
that the apparent horizon is related to temperature and
entropy analogous with the black hole event horizon [67].
So, according to GSL, the total entropy S must include the

entropy of all sources. During the evolution of the
Universe, the rate of the entropy change of the fluid within
the Universe and that of the horizon must always be greater
than or equal to zero. As we are studying only recent and
future times, the total entropy is equal to the sum of the
contribution of entropy to matter Sm and the apparent
horizon Sh, i.e., S ¼ Sm þ Sh, where Sh ¼ κBA

4l2Pl
is the

entropy of the apparent horizon and Sm is the entropy of
pressureless matter. A and lPl are the area of the horizon and
Planck’s length, respectively, and κB is the Boltzman
constant. The area of the apparent horizon is given by
A ¼ 4πr2h, where rh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðH2þka−2Þ
p . As we are restricting our

analysis to a spatially flat model (k ¼ 0), this assumption
yields rh ¼ H−1. Therefore, the horizon entropy reads as

Sh ¼
κBπ

l2PlH
2
: ð60Þ

Using Eq. (22), the first derivative of Eq. (60) gives

_Sh ¼
κBπH0

l2Pl

H0

H2
ðϵþ 3ð1 − β − γÞÞa−ϵþ3ð1−βÞ

2 : ð61Þ

It is observed from the above equation that _Sh ≥ 0 for
0 < β þ γ ≤ 1. The matter entropy inside the dynamical
apparent horizon is described by the Gibbs relation [68]:

TdSm ¼ dðρVÞ þ pdV; ð62Þ
where V ¼ 4π

3
r3h is the spatial volume enclosed by the

horizon and T is the temperature of the fluid, and we
assume that the temperature T is equal to the temperature at
the horizon Th, where Th ¼ 1=2πrh [69].
Using Eq. (19), the above equation gives

_Sm¼8π2H0ρ

H4

�ð3γ−ðϵþ3ð1−βÞÞÞ
2

a−
ϵþ3ð1−βÞ

2 þϵH

�
: ð63Þ

As H and ρ are positive, the positivity of _Sm is ensured
whenever ϵþ 3ð1 − βÞ < 3γ. Adding Eqs. (61) and (63),
we get _Sh þ _Sm ≥ 0, provided 0 < ðβ þ γÞ < 1 and
ϵþ 3ð1 − βÞ < 3γ. This means that GSL is always valid
with these constraints.

IX. CONCLUSION

In this paper, we have studied a matter-dominated model
with “adiabatic”matter creation in Brans-Dicke theory with
matter creation rate Γ ¼ 3γH0 þ 3βH to explain the late-
time accelerated expansion of the Universe. We have
demonstrated how matter creation works well with the
expanding Universe. In order to constrain the model
parameters, statistical analyses using cosmic observations
data from SNe, OHD, and BAO have been performed.
Further, in order to reduce the number of the free variables,

FIG. 10. The trajectory of fr; sg in the s−r plane corresponds
to the best-fitted parameters obtained from joint analysis of
SNeþ OHDþ BAO. The arrow shows the direction of the
evolution of the trajectory.

FIG. 11. The trajectory of fr; qg in the q−r plane for the
best-fitted parameters obtained from joint analysis of SNeþ
OHDþ BAO. The arrow shows the direction of the evolution of
the trajectory.
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we select to use the present value of the Hubble function,
i.e., H0 ¼ 67.8 km sec−1Mpc−1. The results are given in
Tables I and II. In Figs. 1–4, we have plotted the contour
maps obtained from the datasets. According to the MCMC
analysis, it is found that the best-fitting values of model
parameters from SNe and SNeþ BAO are little different
than those obtained from SNeþ OHD and SNeþ
OHDþ BAO. The later best-fit values are compatible with
the ΛCDM model.
Using the best-fit values, we plot the evolutions of the

scale factor, the deceleration parameter, and the effective
equation of state parameter. From Fig. 5, it has been found
that the model starts from a big bang followed by
decelerated expansion at early times, with a transition to
an accelerated epoch at later times, corresponding to the
defined constraints. In some other constraints, the model
predicts an eternally expanding universe, beginning with
a big bang in the past followed by decelerated expansion
and a smooth transition to an accelerated expansion.
Table II gives the transition point atr from best-fitted
values obtained from different datasets.
We have also discussed the evolution of the deceleration

parameter q and the effective equation of state weff . From
Fig. 6, it is observed that there is a transition from the
decelerated phase to the accelerated phase. The present-day
value of q0 and transition redshift are found from each
observational dataset. In general, q → −1 as a → ∞, which

corresponds to a de Sitter model of the Universe. We have
also plotted the trajectories for weff for best-fitted values of
parameters in Fig. 7. In each case, the model does not cross
the phantom divide line. Irrespective of the values of
parameters, weff → −1 as z → −1.
The Hubble function of the model with error bar fits into

the ΛCDM model for best-fitted values obtained from
SNeþ OHD and SNeþ OHDþ BAO (see Fig. 8). The
age of the Universe obtained from SNeþ OHD and SNe +
OHD +BAO for best-fitting values is the same as that
predicted by the ΛCDM model. However, it is compara-
tively higher than those obtained from SNe and SNeþ
BAO, as shown in Fig. 9.
We have discussed the statefinder diagnostic for the

model. In Fig. 10, we have plotted the trajectory of fr; sg in
the s − r plane. The trajectory is different from that of the
ΛCDM model. The model shows quintessence-like behav-
ior. However, as a → ∞, the statefinder parameter fr; sg →
f1; 0g corresponds to the ΛCDM point.
We have analyzed the validity of GSL in the present

model and found that the GSL of thermodynamics is
valid with the apparent horizon as the boundary for
0 < ðβ þ γÞ < 1 and ϵþ 3ð1 − βÞ < 3γ.
In summary, it is clear that the present work keeps itself

in the domain of cosmology, and more specifically, in
accelerating cosmology, which is a certain plight to under-
stand the evolution of the Universe.
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