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In this work, we study nonsingular bounce cosmology in the context of the Lagrange multiplier
generalized FðRÞ gravity theory of gravity. We specify our study by using a specific variant form of the
well-known matter bounce cosmology, with scale factor aðtÞ ¼ ða0t2 þ 1Þn, and we demonstrate that for
n < 1=2, the primordial curvature perturbations are generated deeply in the contraction era. Particularly, we
show explicitly that the perturbation modes exit the horizon at a large negative time during the contraction
era, which in turn makes the “low-curvature” regime, the era for which the calculations of observational
indices related to the primordial power spectrum can be considered reliable. Using the reconstruction
techniques for the Lagrange multiplier FðRÞ gravity, we construct the form of effective FðRÞ gravity that
can realize such a cosmological evolution, and we determine the power spectrum of the primordial
curvature perturbations. Accordingly, we calculate the spectral index of the primordial curvature
perturbations and the tensor-to-scalar ratio, and we confront these with the latest observational data.
We also address the issue of stability of the primordial metric perturbations, and to this end, we determine
the form of FðRÞ which realizes the nonsingular cosmology for the whole range of cosmic time
−∞ < t < ∞, by solving the Friedmann equations without the “low-curvature” approximation. This study
is performed numerically though, due to the high complexity of the resulting differential equations. By
using this numerical solution, we show that the stability is achieved for the same range of values of the free
parameters that guarantee the phenomenological viability of the model. We also investigate the energy
conditions in the present context. The phenomenology of the no-singular bounce is also studied in the context
of a standard FðRÞ gravity. We find that the results obtained in the Lagrange multiplier FðRÞ gravity model
have differences in comparison to the standard FðRÞ gravity model, where the observable indices are not
simultaneously compatible with the latest Planck results, and also the standard FðRÞ gravity model is plagued
with instabilities of the perturbation. These facts clearly justify the importance of the Lagrange multiplier
field in making the observational indices compatible with the Planck data and also in removing the
instabilities of the metric perturbations. Thereby, the bounce with the aforementioned scale factor is
adequately described by the Lagrange multiplier FðRÞ gravity, in comparison to the standard FðRÞ model.
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I. INTRODUCTION

According to standard cosmology, the early Universe was
dense and hot and it seems that the timelike geodesics have a
focal point or a focal bundle, which in most cases is assumed
that it leads to the big bang primordial singularity. The big
bang singularity is an assumption or a direct consequence
of classical equations of motion; however, this singularity
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cannot be perceived as a point in spacetime, but as an initial
spacelike three dimensional hypersurface, due to the fact that
if it was a point, this would lead to infinitely causally
disconnected regions in the Universe. Apart from these
theoretical conceptual problems, it is known that any singu-
larity in a classical Universemust be dressed inside a horizon.
It is possible that the big bang singularity, which is a past
spacelike singularity, is just a manifestation of the underlying
quantum theory of gravity, as in classical electrodynamics
Coulomb potential singularities at the origin of the potential,
which are resolved in the context of quantum electrodynam-
ics.Having these inmind, it is apparent that the theorieswhich
conceptually lead to a big bang singularity are haunted by
the above conceptual problems.
An alternative theory that is free from the above problems

is the so-called big bounce theory, or bouncing cosmology in
general [1–46]. Bouncing cosmologies are free from pri-
mordial initial singularities, since the Universe initially
contracts until it reaches a minimal size, and then bounces
off at a specific cosmic time instance and starts to expand
again. This process can be repeated for an infinite number of
times; this is why sometimes bouncing cosmologies are also
known as cyclic cosmologies. Bounce cosmology is also
appealing since it is derived as a cosmological solution from
loop quantum cosmology theory [47–62].
Among various bouncing models proposed over the last

several years, the matter bounce scenario [6,15,16,52,
62–73] earned special attention, since it can provide a
nearly scale invariant power spectrum of primordial cur-
vature perturbations. The matter bounce scenario is essen-
tially characterized by the Universe evolved through a
nearly matter dominated epoch at very early times in the
contracting phase, in order to obtain an approximately scale
invariant power spectrum, and gradually evolves towards a
bounce where all the parts of the Universe become in causal
contact [74], solving the horizon problem. After it bounces
off, it enters a regular expanding phase, in which it matches
the behavior of the standard big bang cosmology. However
in order to obtain a viable matter bounce scenario, it is
expected that the underlying model is consistent with
various observational constraints that are put by the latest
Planck data. Moreover there are several conceptual issues
that are not clear in the framework of matter bounce
scenario. First, in an exact matter bounce scenario, materi-
alized by using a single scalar field model, the power
spectrum is exactly scale invariant, which is in tension with
the observational constraints. The inconsistency of spectral
index in the context of matter bounce scenario was also
confirmed in [70] from a slightly different point of view.
Second, according to the Planck 2018 data, the running of
the spectral index is constrained to be −0.0085� 0.0073.
However, for the single scalar field matter bounce scenario
model, the running of the index becomes zero and hence
does not comply with the observations. At this stage it
deserves mentioning that the running of the spectral index

is still not a parameter of the standard model of cosmology.
In other words, αs is consistent with the value 0. Indeed,
one cannot say that αs is different than zero by much more
than 1σ. All this to say that it is a little harsh to confirm that
a model does not comply with observations when it is
within 2σ. At most, predicting αs ¼ 0 could be in slight
tension (< 2σ) with observations. Predicting running in
excess of the measured value (by more than 2σ for instance)
is a bigger issue. Third, in the simplest model of matter
bounce scenario, the amplitude of tensor fluctuation is
comparable to that of curvature perturbation and thus the
value of tensor-to-scalar ratio is of the order ∼Oð1Þ, which
is in conflict with the Planck constraints. However, in a
quasimatter bounce scenario (instead of an exact matter
bounce), according to which the scale factor of the Universe

evolves as t
2

3ð1þwÞ (with w ≠ 0), deeply in the contracting era,
it is possible to recover the consistency of spectral index
and the running index even in a single scalar field model,
but the tensor-to-scalar ratio is still problematic. Moreover,
in the context of standard FðRÞ gravity, neither matter
bounce nor quasimatter bounce are consistent with the
Planck data, as we will demonstrate at a later section.
Motivated by the above arguments, we shall consider a

variant nonsingular bounce with scale factor aðtÞ ¼
ða0t2 þ 1Þn in the context of the Lagrange multiplier
FðRÞ theory of gravity [75] and try to explore whether
the matter bounce (n ¼ 1=3) or the quasimatter bounce
[n ∼Oð1=3Þ] scenario is viable in such a generalized FðRÞ
gravity [76,77] framework. Our discussions are extended
to investigate the stability conditions of the primordial
metric perturbations and the energy conditions in the
present context. We further study the phenomenology of
the aforementioned bouncing model in the context of
standard FðRÞ gravity. By comparing the results obtained
from the Lagrange multiplier FðRÞ gravity with that of the
standard FðRÞ gravity model, we establish the importance
of the Lagrange multiplier field from various perspectives.
The paper is organized as follows: In Sec. II, we briefly

discuss the generalized FðRÞ gravity model in the presence
of a Lagrange multiplier term. Sections III, IV, and V are
devoted to the explicit calculation of the power spectrum, the
observational indices, the stability conditions of the primor-
dial perturbations and the investigation of the energy con-
ditions in the Lagrange multiplier FðRÞ gravity model.
Section VI is devoted on the realization of the bouncing
model under study with standard FðRÞ gravity, and its
comparisonwith that of theLagrangemultiplierFðRÞgravity
model. The conclusions follow at the end of the paper.

II. ESSENTIAL FEATURES OF LAGRANGE
MULTIPLIER F(R) GRAVITY

Let us briefly recall the formalism of the Lagrange
multiplier FðRÞ gravity developed in Ref. [75]. The action
of the model is
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S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½FðRÞ þ λð∂μΦ∂μΦþ GðRÞÞ�; ð1Þ

where κ2 ¼ 1
M2 with M being the four dimensional Planck

mass ∼1019 GeV. Here, FðRÞ and GðRÞ are two differ-
entiable functions of the Ricci scalar R, Φ is a scalar field
with a self-coupling kinetic term and the coupling is
determined by the function λ, known as the Lagrange
multiplier, in the action (1). It was shown in [75] that such
variant theory of FðRÞ gravity with the Lagrange multiplier
term is free of ghosts. The variation of the action with
respect to the function λ and with respect to the scalar field
Φ lead to the following equations of motion:

∂μΦ∂μΦþ GðRÞ ¼ 0; ∇μðλ∂μΦÞ ¼ 0: ð2Þ

On the other hand, by varying the action with respect to the
metric tensor gμν, we obtain

1

2
FðRÞgμν − ðF0ðRÞ þ λG0ðRÞÞRμν − λ∂μΦ∂νΦ

þ ð∇μ∇ν − gμν∇2ÞðF0ðRÞ þ λG0ðRÞÞ ¼ 0: ð3Þ

As we are interested in cosmological scenario in the present
context, we shall assume that the background geometry
is described by a flat Friedman-Robertson-Walker (FRW)
metric,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð4Þ

where aðtÞ is the scale factor of the Universe. As it is
evident from Eq. (4), the Universe is considered to be
homogeneous and isotropic and thus the function λ and the
scalar field are taken as functions of the cosmic time t.
In effect of the metric given in Eq. (4), the field equations
in (2) take the following form:

− _Φ2 þGðRÞ ¼ 0;
d
dt

ða3λ _ΦÞ ¼ 0; ð5Þ

which can be solved as

_Φ ¼
ffiffiffiffiffiffiffiffiffiffiffi
GðRÞ

p
; a3λ _Φ ¼ E; ð6Þ

with E being a constant of the integration. Using these
solutions along with the FRW metric, we obtain the
temporal and spatial component of Eq. (3) as follows:

−
FðRÞ
2

þ 3ð _H þH2Þ
�
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
�
−
E

ffiffiffiffi
G

p

a3

− 3H
d
dt

�
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
�

¼ 0; ð7Þ

and

FðRÞ
2

− ð _H þ 3H2Þ
�
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
�

þ
�
d2

dt2
þ 2H

d
dt

��
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
�

¼ 0; ð8Þ

respectively, where HðtÞ ¼ _a
a is the Hubble rate. It may be

noticed that for E ¼ 0, the gravitational equations become
identical with those of standard FðRÞ gravity. Having the
equations at hand, our next task is to reconstruct the forms
of FðRÞ andGðRÞ that can realize a bouncing cosmology of
specific form, which is the subject of the next section.

III. REALIZATION OF BOUNCING COSMOLOGY

In the present section, we shall investigate which func-
tional forms of FðRÞ and GðRÞ can realize a bouncing
Universe cosmological scenario, with the following scale
factor:

aðtÞ ¼ ða0t2 þ 1Þn; ð9Þ

where a0 and n are the model free parameters, with a0
having mass dimension [þ2], while n is dimensionless.
The Universe’s evolution in a general bouncing cosmology,
consists of two eras: an era of contraction and an era
of expansion. It is obvious that the above scale factor
describes a contracting era for the Universe, when t → −∞,
then the Universe reaches a bouncing point at t ¼ 0 at
which the Universe has a minimal size, and then the
Universe starts to expand again, for cosmic times t > 0.
Hence, the Universe in this scenario never develops a
crushing type big bang singularity. It may be mentioned
that for n ¼ 1=3, the scale factor describes the matter
bounce scenario. Equation (9) leads to the following
Hubble rate and its first derivative:

HðtÞ ¼ 2nt
t2 þ 1=a0

; _HðtÞ ¼ −2n
t2 − 1=a0

ðt2 þ 1=a0Þ2
: ð10Þ

With the help of the above expressions, the Ricci scalar is
found to be

RðtÞ ¼ 12H2 þ 6 _H ¼ 12n

�ð4n − 1Þt2 þ 1=a0
ðt2 þ 1=a0Þ2

�
: ð11Þ

Using Eq. (11), one can determine the cosmic time as a
function of the Ricci scalar, that is the function t ¼ tðRÞ. As
a result, the Hubble rate and its first derivative can be
expressed in terms of R (however this statement holds for
all analytic functions of t) and also the differential operator
d
dt can be written as

d
dt ¼ _RðRÞ d

dR. By plugging the resulting
expressions in Eqs. (7) and (8), we obtain differential
equations which determine the functional form of FðRÞ,
GðRÞ fully in terms of R, and by solving those differential
equations, the forms of FðRÞ and GðRÞ can be found.
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However the differential equations will become cumber-
some to provide analytic solutions and thus we consider the
low-curvature limit of the theory, that is, R

a0
≪ 1 for the

purpose of reconstruction. This approximation will prove to
be quite useful since as we show in a later section, the
primordial perturbations of the matter bounce scenario
are generated deeply in the contraction era, at t → −∞
(t2 ≫ 1=a0), in which case H ≪ ffiffiffiffiffi

a0
p

and therefore the
curvature is quite small (Ra0 ≪ 1).
During the low-curvature regime (or at large negative

time), RðtÞ can be written as RðtÞ ∼ 12nð4n−1Þ
t2 from Eq. (11).

This helps to express the scale factor, the Hubble rate, its
first derivative, and the differential operators d=dt, d2=dt2,
in terms of the Ricci scalar R as follows:

aðRÞ ¼ ½12nan0ð4n− 1Þ�n
Rn ; HðRÞ ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

12nð4n− 1Þ

s
;

_HðRÞ ¼ −2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

12nð4n− 1Þ

s
; ð12Þ

and

d
dt

¼ −24nð4n − 1Þ
�

R
12nð4n − 1Þ

�
3=2 d

dR
;

d2

dt2
¼ 1

3nð4n − 1Þ
�
R3

d2

dR2
þ 3

2
R2

d
dR

�
; ð13Þ

respectively. By plugging back these expressions to
Eqs. (7) and (8), and by introducing JðRÞ ¼ FðRÞþ
2E

ffiffiffiffiffiffiffiffi
GðRÞ

p
a3ðRÞ , we get the following differential equations:

2

ð4n − 1ÞR
2
d2J
dR2

−
ð1 − 2nÞ
ð4n − 1ÞR

dJ
dR

− JðRÞ ¼ 0; ð14Þ

and

FðRÞ ¼ ð6n − 1Þ
3nð4n − 1ÞR

dJ
dR

−
ð3 − 4nÞ

3nð4n − 1ÞR
2
d2J
dR2

−
2

3nð4n − 1ÞR
3
d3J
dR3

: ð15Þ

Equation (14) has the following solution:

JðRÞ ¼ ARρ þ BRδ; ð16Þ

where ρ ¼ 1
4
½3 − 2n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nð5þ nÞp � and δ¼1

4
½3−2nþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4nð5þnÞp � and also A and B are integration constants
having mass dimension ½2 − 2ρ� and ½2 − 2δ�, respectively.
This solution of JðRÞ along with Eq. (15) lead to the
following functional form of FðRÞ:

FðRÞ ¼ A

� ð6n − 1Þ
3nð4n − 1Þ ρ −

ð3 − 4nÞ
3nð4n − 1Þ ρðρ − 1Þ

−
2

3nð4n − 1Þ ρðρ − 1Þðρ − 2Þ
�
Rρ

þ B

� ð6n − 1Þ
3nð4n − 1Þ δ −

ð3 − 4nÞ
3nð4n − 1Þ δðδ − 1Þ

−
2

3nð4n − 1Þ δðδ − 1Þðδ − 2Þ
�
Rδ

¼ CRρ þDRδ; ð17Þ

where C and D are the corresponding coefficients of Rρ

and Rδ, respectively. With these solutions, the effective
fðRÞ can be written as

fðRÞ ¼ FðRÞ þ λGðRÞ ¼ 1

2
½JðRÞ þ FðRÞ�

¼ 1

2
ðAþ CÞRρ þ 1

2
ðBþDÞRδ ð18Þ

where we use the solution of λðtÞ ¼ E
a3

ffiffiffi
G

p . Thus Eqs. (16),

(17), and (18) are the main results of the present section. In
the next section we address concretely the cosmological
perturbations issue and we shall confront the theory with
the observational data.

IV. COSMOLOGICAL PERTURBATION:
OBSERVABLE QUANTITIES AND THE

STABILITY CONDITION

In this section we shall study the first order metric
perturbations of the theory at hand, following Refs. [78–80],
where the scalar and tensor perturbations are calculated for
various variants of higher curvature gravity models. Scalar,
vector, and tensor perturbations are decoupled, as in general
relativity, so that we can focus our attention on tensor and
scalar perturbations separately.

A. Scalar perturbations

The scalar perturbation of FRW background metric is
defined as follows:

ds2 ¼ −ð1þ 2ΨÞdt2 þ aðtÞ2ð1 − 2ΨÞδijdxidxj; ð19Þ

where Ψðt; x⃗Þ denotes the scalar perturbation. In principle,
perturbations should always be expressed in terms of gauge
invariant quantities, in our case the comoving curvature
perturbation defined as ℜ ¼ Ψ − aHv, where vðt; x⃗Þ is
the velocity perturbation. However, we shall work in the
comoving gauge condition, where the velocity perturbation
is taken as zero, thus with such gauge fixing ℜ ¼ Ψ.
Thereby, we can work with the perturbed variable Ψðt; x⃗Þ.
The perturbed action up to Ψ2 order is [78]
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δSψ ¼
Z

dtd3x⃗aðtÞzðtÞ2
�
_Ψ2 −

1

a2
ð∂iΨÞ2

�
; ð20Þ

where zðtÞ has the following expression:

zðtÞ ¼ aðtÞ
ðHðtÞ þ 1

2f0ðRÞ
df0ðRÞ
dt Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E

ffiffiffiffi
G

p

a3
þ 3

2f0ðRÞ
�
df0ðRÞ
dt

�
2

s
:

ð21Þ
It is evident from Eq. (20), that c2s ¼ 1, which guarantees the
absence of ghost modes or equivalently one may argue that
the model is free from gradient instability. Also stability of
the scalar perturbations is ensured if zðtÞ2 > 0. This stability
issue must be checked for all cosmic times, including the
bouncing point, in which case the low-curvature approxi-
mation does not hold true anymore, and it will be thoroughly
studied at a later section. Specifically, we will examine the
stability of perturbation by reconstructing FðRÞ and GðRÞ
beyond the low-curvature limit, numerically, due to the
complexity of the resulting differential equations when the
low-curvature approximation does not hold true anymore.
However at present, we concentrate on determining

various observable quantities and specifically, the spectral
index of the primordial curvature perturbations, the tensor-
to-scalar ratio, and the running of the spectral index, which
are eventually determined at the time of horizon exit. For the
scale factor we consider in the present paper, the horizon exit
occurs during the low-curvature regime deeply in the
contracting era. Thereby, for the purpose of finding the
observable parameters, the condition R=a0 ≪ 1 stands as a
viable approximation.
In the low-curvature limit, we determine various terms

present in the expression of zðtÞ [see Eq. (21)] as

aðtÞ
ðHðtÞ þ 1

2f0ðRÞ
df0ðRÞ
dt Þ

¼ an0ð12nð4n − 1ÞÞnþ1=2

Rnþ1=2

×

2
642n −

ðρ − 1Þ
h
1þ δðδ−1ÞðBþDÞ

ρðρ−1ÞðAþCÞR
δ−ρ

i
h
1þ δðBþDÞ

ρðAþCÞR
δ−ρ

i
3
75
−1

;

and

2E
ffiffiffiffi
G

p

a3
þ 3

2f0ðRÞ
�
df0ðRÞ
dt

�
2

¼ Rρ

2
64ðA − CÞ

�
1þ ðB −DÞ

ðA − CÞ R
δ−ρ

�

þ
ρðAþ CÞðρ − 1Þ2

h
1þ δðδ−1ÞðBþDÞ

ρðρ−1ÞðAþCÞR
δ−ρ

i
2

4nð4n − 1Þ
h
1þ δðBþDÞ

ρðAþCÞR
δ−ρ

i
3
75:

Consequently zðtÞ takes the following form:

zðtÞ ¼
ffiffiffi
3

p
an0½12nð4n − 1Þ�n

ffiffiffiffiffiffiffiffiffiffiffi
PðRÞp

QðRÞ
1

Rnþ1=2−ρ=2 ; ð22Þ

where PðRÞ and QðRÞ are defined as follows:

PðRÞ¼

2
644nð4n−1ÞðA−CÞ

�
1þðB−DÞ

ðA−CÞR
δ−ρ

�

þ
ρðAþCÞðρ−1Þ2

h
1þ δðδ−1ÞðBþDÞ

ρðρ−1ÞðAþCÞR
δ−ρ

i
2

h
1þ δðBþDÞ

ρðAþCÞR
δ−ρ

i
3
75; ð23Þ

and

QðRÞ ¼

2
642n −

ðρ − 1Þ
h
1þ δðδ−1ÞðBþDÞ

ρðρ−1ÞðAþCÞR
δ−ρ

i
h
1þ δðBþDÞ

ρðAþCÞR
δ−ρ

i
3
75: ð24Þ

Before moving further, at this stage, we check whether
QðRÞ goes to zero or equivalently zðtÞ → ∞ at some point
in time. This issue is known to occur in Horndeski theories;
see for example [81–83]. It is important to examine because
as we will show, the Mukhanov-Sasaki equation (which is
essential to determine the observable quantities) has a term
containing 1=zðtÞ and moreover the Mukhanov variable
(v ¼ zΨ) diverges at the point when zðtÞ goes to infinity.
As mentioned earlier, the perturbations generate in the low
curvature regime deeply in the contracting era and thus the
above expression of Q can be simplified as follows:

QðRÞ ¼ ð2n − ρþ 1Þ − δðδ − ρÞðBþDÞ
ρðAþ CÞ Rδ−ρ ð25Þ

where ρ ¼ 1
4
½3 − 2n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nð5þ nÞp �, δ ¼ 1

4
½3 − 2nþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nð5þ nÞp �, and A, B are two integration constants.
Further, recall, the explicit expressions of C and D [see
Eq. (17)] are given by

C ¼ A

� ð6n − 1Þ
3nð4n − 1Þ ρ −

ð3 − 4nÞ
3nð4n − 1Þ ρðρ − 1Þ

−
2

3nð4n − 1Þ ρðρ − 1Þðρ − 2Þ
�

D ¼ B

� ð6n − 1Þ
3nð4n − 1Þ δ −

ð3 − 4nÞ
3nð4n − 1Þ δðδ − 1Þ

−
2

3nð4n − 1Þ δðδ − 1Þðδ − 2Þ
�

Putting these expressions of C and D into Eq. (25) we get

NONSINGULAR BOUNCE COSMOLOGY FROM LAGRANGE … PHYS. REV. D 100, 084056 (2019)

084056-5



QðRÞ ¼ ð2n − ρþ 1Þ −
Bδðδ − ρÞð1þ ð6n−1Þ

3nð4n−1Þ δ −
ð3−4nÞ

3nð4n−1Þ δðδ − 1Þ − 2
3nð4n−1Þ δðδ − 1Þðδ − 2ÞÞ

Aρð1þ ð6n−1Þ
3nð4n−1Þ ρ −

ð3−4nÞ
3nð4n−1Þ ρðρ − 1Þ − 2

3nð4n−1Þ ρðρ − 1Þðρ − 2ÞÞ
Rδ−ρ: ð26Þ

Using the forms of ρ and δ (in terms of n), it can be checked
that the above expression ofQ is a positive definite quantity
(or does not hit to the value zero) for n > 1

4
. Moreover we

will show in the later sections that the observable quantities
are compatible with Planck observations for the parametric
regime 0.27≲ n≲ 0.40 (i.e., for n > 1=4). Therefore QðtÞ
does not hit to zero or equivalently zðtÞ does not tend to
infinity for the parametric values which are consistent with
the Planck observations. It may be mentioned that such
nondivergent character of zðtÞ has been investigated here in
the low curvature regime (or at large negative time where
the perturbation modes are generated). Thus there remains
the possibility that zðtÞ goes to infinity in the large
curvature regime near the bounce phase; however, this
may not be a physical issue and may be resolved by
studying the perturbations near this singularity in the
perturbation equations in another gauge.
Equation (20) clearly indicates that Ψðt; x⃗Þ is not

canonically normalized and to this end we introduce the
well-known Mukhanov-Sasaki variable as v ¼ zℜ (¼ zΨ
as we are working in the comoving gauge). The corre-
sponding fourier mode of the Mukhanov-Sasaki variable
satisfies

d2vk
dτ2

þ
�
k2 −

1

zðτÞ
d2z
dτ2

�
vkðτÞ ¼ 0; ð27Þ

where τ ¼ R
dt=aðtÞ is the conformal time and vkðτÞ is the

Fourier transformed variable of vðt; x⃗Þ for the kth mode.
Equation (27) is quite difficult to solve analytically in
general, since the function z depends on the background
dynamics. However the equation can be solved analytically
in the regime R=a0 ≪ 1 as we now show. The conformal
time (τ) is related to the cosmic time (t) as τ ¼ R

dt
aðtÞ ¼

1
an
0
ð1−2nÞ t

1−2n for n ≠ 1=2; however, we will show that the

observable quantities are compatible with Planck data [84]
for n < 1=2 and thus we can safely work with the
aforementioned expression of τ ¼ τðtÞ. Using this, we
can express the Ricci scalar as a function of the conformal
time,

RðτÞ ¼ 12nð4n− 1Þ
t2

¼ 12nð4n− 1Þ
½an0ð1− 2nÞ�2=ð1−2nÞ

1

τ2=ð1−2nÞ
: ð28Þ

Having this in mind, along with Eq. (22), we can express z
in terms of τ as follows:

zðτÞ ¼
ffiffiffi
3

p
an0½12nð4n − 1Þ�n

ffiffiffiffiffiffiffiffiffi
PðτÞp

QðτÞ τ
2nþ1−ρ
1−2n : ð29Þ

The above expression of z ¼ zðτÞ yields the expression of
1
z
d2z
dτ2, which is essential for the Mukhanov equation,

1

z
d2z
dτ2

¼ ξðξ− 1Þ
τ2

�
1þ 2ðδ− ρÞ

ðξ− 1Þ Rδ−ρ
�

δðρ− δÞðBþDÞ
ρðAþCÞð2n− ρþ 1Þþ

δð1− ρÞð1þ ρ− 2δÞðBþDÞþ 4ðB−DÞnþ 16ðB−DÞn2
ρð1− ρÞ2ðAþCÞþ 4ðA−CÞnþ 16ðA−CÞn2

��
;

ð30Þ
with ξ ¼ ð2nþ1−ρÞ

ð1−2nÞ . Recall ρ ¼ 1
4
½3 − 2n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nð5þ nÞp � and δ ¼ 1

4
½3 − 2nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nð5þ nÞp �, which clearly indicate
that δ − ρ is a positive quantity. Thus the term within parentheses in Eq. (30) can be safely considered to be small in the
low-curvature regime R=a0 ≪ 1. As a result, 1

z
d2z
dτ2 becomes proportional to 1=τ2 i.e., 1

z
d2z
dτ2 ¼ σ=τ2 with

σ ¼ ξðξ− 1Þ
�
1þ 2ðδ− ρÞ

ðr− 1Þ Rδ−ρ
�

δðρ− δÞðBþDÞ
ρðAþCÞð2n− ρþ 1Þ þ

δð1− ρÞð1þ ρ− 2δÞðBþDÞ þ 4ðB−DÞnþ 16ðB−DÞn2
ρð1− ρÞ2ðAþCÞ þ 4ðA−CÞnþ 16ðA−CÞn2

��
;

ð31Þ

which is approximately a constant in the era, when the
primordial perturbation modes generate deep inside the
Hubble radius. In effect, and in conjunctionwith the fact that
c2s ¼ 1, the Mukhanov equation can be solved as follows:

vðk; τÞ ¼
ffiffiffiffiffiffiffiffi
πjτjp
2

½c1ðkÞHð1Þ
ν ðkjτjÞ þ c2ðkÞHð2Þ

ν ðkjτjÞ�; ð32Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffi
σ þ 1

4

q
and c1 and c2 are integration constants.

Assuming the Bunch-Davies vacuum initially, these inte-
gration constants become c1 ¼ 0 and c2 ¼ 1, respectively.
Having the solution of vkðτÞ at hand, next we proceed to
evaluate the power spectrum (defined for the Bunch-Davies
vacuum state) corresponding to the kth scalar perturbation
mode, which is defined as follows:

NOJIRI, ODINTSOV, OIKONOMOU, and PAUL PHYS. REV. D 100, 084056 (2019)

084056-6



PΨðk; τÞ ¼
k3

2π2
jΨkðτÞj2 ¼

k3

2π2

���� vkðτÞzðτÞ
����2: ð33Þ

In the superhorizon limit, using the mode solution in
Eq. (32), we have

PΨðk; τÞ ¼
�
1

2π

1

zjτj
ΓðνÞ

Γð3=2Þ
�
2
�
kjτj
2

�
3−2ν

: ð34Þ

By using Eq. (34), we can determine the observable
quantities like spectral index of the primordial curvature
perturbations and the running of spectral index. Before
proceeding to calculate these observable quantities, we will
consider first the tensor power spectrum, which is necessary
for evaluating the tensor-to-scalar ratio.

B. Tensor perturbations

Let us now focus on the tensor perturbations, and the
tensor perturbation on the FRW metric background is
defined as follows:

ds2 ¼ −dt2 þ aðtÞ2ðδij þ hijÞdxidxj; ð35Þ

where hijðt; x⃗Þ is the tensor perturbation. The tensor
perturbation is itself a gauge invariant quantity, and the
tensor perturbed action up to quadratic order is given by

δSh ¼
Z

dtd3x⃗aðtÞzTðtÞ2
�
_hij

_hij −
1

a2
ð∂khijÞ2

�
; ð36Þ

where zTðtÞ is given by

zTðtÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
f0ðRÞ

p
: ð37Þ

Therefore, the speed of the tensor perturbation propagation
is c2T ¼ 1. Moreover the tensor perturbation is stable if the
condition z2T > 0 is satisfied, and in a later section we shall
examine in detail whether this condition is satisfied.
Similar to scalar perturbation, the Mukhanov-Sasaki

variable for tensor perturbation is defined as ðvTÞij ¼
zThij which, upon performing the Fourier transformation,
satisfies the following equation:

d2vTðk; τÞ
dτ2

þ
�
k2 −

1

zTðτÞ
d2zT
dτ2

�
vTðk; τÞ ¼ 0: ð38Þ

By using Eq. (37), along with the condition R=a0 ≪ 1, we

evaluate zTðτÞ and 1
zT ðτÞ

d2zT
dτ2 and these read

zTðτÞ ¼ an0½12nð4n − 1Þ�nSðτÞτ2nþ1−ρ
1−2n ð39Þ

and

1

zT

d2zT
dτ2

¼ ξðξ − 1Þ
τ2

�
1 −

2δðδ − ρÞðBþDÞ
ðr − 1ÞρðAþ CÞ Rδ−ρ

�
; ð40Þ

respectively, where SðRðτÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðAþCÞ

2

q
½1þ δðBþDÞ

ρðAþCÞR
δ−ρ�1=2

and also we use R ¼ RðτÞ from Eq. (28). Due to the fact
that δ − ρ is positive, the variation of the term in the
parentheses in Eq. (40) can be regarded to be small in the

low-curvature regime and thus 1
zT

d2zT
dτ2 becomes proportional

to 1=τ2, that is 1
zT

d2zT
dτ2 ¼ σT=τ2, with

σT ¼ ξðξ − 1Þ
�
1 −

2δðδ − ρÞðBþDÞ
ðr − 1ÞρðAþ CÞ Rδ−ρ

�
; ð41Þ

and recall ξ ¼ ð2nþ1−ρÞ
ð1−2nÞ . The above expressions yield the

tensor power spectrum, defined with initial state the Bunch-
Davies vacuum, so we have

Phðk; τÞ ¼ 2

�
1

2π

1

zT jτj
ΓðνTÞ
Γð3=2Þ

�
2
�
kjτj
2

�
3−2νT

: ð42Þ

The factor 2 arises due to the two polarization modes of the

gravity wave, and νT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σT þ 1

4

q
where σT is defined

in Eq. (41).
Now we can explicitly confront the model at hand with

the latest Planck observational data [84], so we shall
calculate the spectral index of the primordial curvature
perturbations ns and the tensor-to-scalar ratio r, which are
defined as follows:

ns ¼ 1þ ∂ lnPΨ

∂ ln k
����
τ¼τh

; r ¼ Phðk; τÞ
PΨðk; τÞ

����
τ¼τh

: ð43Þ

Equations (34) and (42) immediately lead to the explicitly
form of ns and r as follows:

ns ¼ 4 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ

p
; r ¼ 2

�
zðτÞ
zTðτÞ

�
2

τ¼τh

; ð44Þ

where σ, zðτÞ, and zTðτÞ are given in Eqs. (31), (28), and
(39), respectively. As it is evident from the above equations,
ns and r are evaluated at the time of horizon exit, when
k ¼ aH, or equivalently at τ ¼ τh. It may be noticed that ns
and r depend on the dimensionless parameters Rh

a0
and n

with Rh ¼ RðτhÞ. We can now directly confront the spectral
index and the tensor-to-scalar ratio with the Planck 2018
constraints [84], which constrain the observational indices
as follows:

ns ¼ 0.9649� 0.0042; r < 0.064: ð45Þ
For the model at hand, ns and r are within the Planck
constraints for the following ranges of parameter values:
0.01 ≤ Rh

a0
≤ 0.07 and 0.27≲ n≲ 0.40 and this behavior

is depicted in Fig. 1. The viable range of Rh=a0 is in
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agreement with the low-curvature condition R=a0 ≪ 1 that
we have considered in our calculations. Moreover the range
of the parameter n clearly indicates that the matter bounce
scenario, for which n ¼ 1=3, is well described by the
generalized FðRÞ gravity model with the Lagrange multi-
plier term. At this stage it is worth mentioning that in
scalar-tensor theory (with an exponential scalar potential),
the matter bounce scenario is not consistent with the Planck
observations. Moreover the matter bounce scenario also
does not fit well even in the standard FðRÞ gravity, as we
also confirm in a later section. However, here we show that
in the presence of the Lagrange multiplier generalized FðRÞ
gravity, the matter bounce may be considered as a good
bouncing model, which allows the simultaneous compat-
ibility of ns and r with observations.
The results seem to indicate that r can be suppressed

below the current observational bound. One can attribute
this to the fact that either scalar fluctuations have been
enhanced or that tensor fluctuations have been suppressed in
comparison to the “standard” model with Einstein gravity
and matter contraction. So, we want to explore which effect
comes into play. For Einstein gravity with a scalar field, the
gravitational equations of motion turn out to be

H2 ¼ 1

3

�
1

2
_Φ2 þ VðΦÞ

�
;

2 _H þ 3H2 þ 1

2
_Φ2 − VðΦÞ ¼ 0: ð46Þ

Considering the scale factor aðtÞ ¼ ða0t2 þ 1Þn along
with the help of the above equations of motion, we get the
scalar field dynamics and the Ricci scalar as follows:

_ΦðtÞ ¼ 2
ffiffiffi
n

p
t

;

RðtÞ ¼ 12nð4n − 1Þ
t2

: ð47Þ

The above solutions are valid under the approximation
t2 ≫ 1=a0 which is a valid one as the perturbations
generate at large negative time deeply in the contracting

era. Using the form of the scale factor, we obtain the
conformal time in terms of the cosmic time as τ ∝ t1−2n.
These expressions lead to the power spectrum for scalar and
tensor perturbations in the case of the standard model of
Einstein gravity with matter contraction as follows:

P̄Ψðk; τÞ ¼
�
1

2π

1

z̄jτj
Γðν̄Þ

Γð3=2Þ
�
2
�
kjτj
2

�
3−2ν̄

: ð48Þ

and

P̄hðk; τÞ ¼
2

M2
Pl

�
1

2π

1

z̄T jτj
Γðν̄TÞ
Γð3=2Þ

�
2
�
kjτj
2

�
3−2ν̄T

; ð49Þ

respectively, where the quantities with bar denote the
respective quantities in Einstein gravity and MPl is
the Planck mass. Moreover the explicit expressions of
the barred quantities are the following:

z̄ ¼ aðtÞ _Φ
H

����
th

¼ ½12nð4n − 1Þ�nffiffiffi
n

p
�
a0
Rh

�
n
;

z̄T ¼ aðtÞ
2

����
th

¼ 1

2
½12nð4n − 1Þ�n

�
a0
Rh

�
n
;

ν̄ ¼ ν̄T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð4n − 1Þ
ð1 − 2nÞ2 þ 1

4

s
; ð50Þ

where th is the horizon crossing time, RðthÞ ¼ Rh, and the
factor of 1=2 in the expression of z̄T ensures that the
perturbed action for tensor modes is truly canonically
normalizedwhenwritten in terms of theMukhanov variable.
Therefore it is clear that for matter or quasimatter bounce in
Einstein gravity, the scalar and tensor power spectrums
are comparable to each other and thus the tensor to scalar

ratio (r ¼ P̄h
P̄Ψ
) becomes of the order unity. However in the

LagrangemultiplierFðRÞ gravity model, the tensor to scalar
ratio gets suppressed and matches with the Planck con-
straints even formatter or quasimatter bounce (aswe showed
earlier). In order to compare the perturbations of Lagrange
multiplier FðRÞ gravity model with that of the standard
model of Einstein gravity, we give plots of the ratio of the
respective power spectrums i.e.,Ph=P̄h andPΨ=P̄Ψ in terms
of the parameter Rh=a0 with n ¼ 1=3 (see Fig. 2). To obtain
the plots, we use the horizon crossing relation k ¼ aH.
Figure 2 clearly demonstrates that the tensor power spectrum
gets suppressed in the Lagrange multiplier FðRÞ model in
comparison to Einstein gravity, while the scalar power
spectrums remain of same order in both the aforementioned
models. This leads to a suppressed tensor-to-scalar ratio in
the Lagrange multiplier FðRÞ gravity with respect to the
standard Einstein model. However the presence of a
Lagrange multiplier term may also effect the production
of non-Gaussianities, as is also known for k-essence theories
[85] and Horndeski theories [86]. We hope to address this
issue in a future work.

0.02

n s
0.970

0.968

0.966

0.964

0.962

0.960

0.958

0.03 0.04 0.05 0.06
r

FIG. 1. Parametric plot of ns vs r for 0.01 ≤ Rh
a0

≤ 0.07 and
0.27≲ n≲ 0.40.
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Furthermore, the running of the spectral index is defined
as follows:

α ¼ dns
d ln k

����
τ¼τh

; ð51Þ

and this is constrained by Planck 2018 results as
α ¼ −0.0085� 0.0073. Thus, it is also important to
calculate the running of spectral index before concluding
the viability of a model. By using the expression of σ [see
Eq. (31)] and R ¼ RðτÞ [see Eq. (28)], we get

α¼ 4ξðδ−ρÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ξðξ−1Þp Rδ−ρ

h

�
δðρ−δÞðBþDÞ

ρðAþCÞð2n−ρþ1Þþ
δð1−ρÞð1þρ−2δÞðBþDÞþ4ðB−DÞnþ16ðB−DÞn2

ρð1−ρÞ2ðAþCÞþ4ðA−CÞnþ16ðA−CÞn2
�
: ð52Þ

To arrive at the above result, we use the horizon crossing
relation of kth mode k ¼ aH to determine djτj

d ln k ¼ −jτj i.e.,
the horizon exit time jτj increases as the momentum of the
perturbation mode decreases, as expected. Equation (52)
indicates that as similar to ns and r, the running index (α)
also depends on the parameters Rh=a0 and n. Taking
Rh=a0 ¼ 0.05, we give a plot of α with respect to n in
Fig. 3. As it can be seen in Fig. 3, the parameter α takes
negative values, crossing zero near about n ≃ 0.30. Thus α
lies within the Planck constraint for 0.30≲ n ≲ 0.40, which
includes the matter bounce scenario. For the Lagrange
multiplier generalized FðRÞ gravity model, we showed that

the pure matter bounce scenario as well as the quasimatter
bounce scenario are consistent with Planck observations.
Therefore the generalized FðRÞ gravity with the Lagrange
multiplier has a richer phenomenology in comparison to
scalar-tensor or standard FðRÞ gravity model, which fails to
describe in a viable way these two bouncing cosmology
scenarios.

C. Stability of the scalar and tensor perturbations

As can be seen by Eqs. (20) and (36), the scalar and
tensor perturbations are stable if the conditions zðtÞ2 > 0

and zTðtÞ2 > 0 are satisfied, respectively. Recall that zðtÞ
and zTðtÞ have the following expressions:

zðtÞ2¼ aðtÞ2
ðHðtÞþ 1

2f0ðRÞ
df0ðRÞ
dt Þ2

�
2E

ffiffiffiffi
G

p

a3
þ 3

2f0ðRÞ
�
df0ðRÞ
dt

�
2
�
;

ð53Þ

and

zTðtÞ2 ¼ a2f0ðRÞ; ð54Þ

as shown in Eqs. (21) and (37). However, as we mentioned
earlier, the stability condition has to be checked for all
cosmic times, including the bouncing point which occurs

FIG. 2. Left: Ph=P̄h vs Rh=a0 for the purpose of weak energy condition. Right: PΨ=P̄Ψ vs Rh=a0 with n ¼ 1=3.

FIG. 3. Parametric plot of α vs n for Rh
a0

¼ 0.05 and
0.26≲ n≲ 0.40.
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at t ¼ 0, where the low-curvature approximation no longer
holds true. Thus, it will not be justified if we use the form of
FðRÞ obtained in Eq. (17) to check the stability near the
bouncing point. On the other hand, if we find the form of
FðRÞ in the large-curvature regime (R=a0 ≳ 1), then such
form of FðRÞ cannot be used to examine the stability away
from the bouncing point. Thereby, the best way to inves-
tigate the stability condition is to determine the forms of
FðRÞ and GðRÞ for the whole range of time −∞ < t < ∞,
and then use such forms of FðRÞ,GðRÞ in the expression of
zðtÞ and zTðtÞ. For this purpose, we solve Eqs. (7) and (8)
numerically, and proceed as follows: First we analytically
solve Eqs. (7) and (8) in the large-curvature limit (Ra0 ≳ 1) to
estimate the boundary conditions necessary for the numeri-
cal solution. Using such boundary conditions, we then
solve the equations numerically.

1. The large curvature limit

In the large-curvature limit (or equivalently the small
cosmic time limit), the scale factor in Eq. (9) becomes

aðtÞ ¼ 1þ a0nt2: ð55Þ

The corresponding Hubble rate and the Ricci scalar reads

HðtÞ ¼ 2na0t; RðtÞ ¼ 12na0½1þ ð4n − 3Þa0t2�: ð56Þ

The above expression for the Ricci scalar can be easily
inverted to get the function t ¼ tðRÞ, by which we
determine the Hubble rate, its first derivative, and the
differential operators expressed in terms of R (with the
condition R

a0
≳ 1) as follows:

HðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðR − 12na0Þ
3ð4n − 3Þ

s
;

_HðRÞ ¼ 2na0 −
ðR − 12na0Þ
2ð4n − 3Þ ; ð57Þ

H
d
dt

¼ 4na0ðR − 12na0Þ
d
dR

;

d2

dt2
¼ 24na20ð4n − 3Þ d

dR

þ 48na20ð4n − 3ÞðR − 12na0Þ
d2

dR2
: ð58Þ

With the above expressions, the gravitational equations (7)
and (8) become

12na0ð12na0 − RÞJ00ðRÞ

þ 3

�
2na0 −

ð12na0 − RÞ
ð3 − 4nÞ

�
1

2
−
n
3

��
J0ðRÞ − JðRÞ

2
¼ 0;

ð59Þ

and

FðRÞ=2 ¼
�
2na0 þ

�
n −

1

2

� ð12na0 − RÞ
ð3 − 4nÞ

�
J0ðRÞ

þ ½8na0ð12na0 − RÞ þ 24na20ð3 − 4nÞ�J00ðRÞ
− 48na20ð3 − 4nÞð12na0 − RÞJ000ðRÞ; ð60Þ

respectively, with JðRÞ ¼ FðRÞ þ 2E
ffiffiffiffiffiffiffiffi
GðRÞ

p
a3ðRÞ . The solution of

Eq. (59) is given in terms of the confluent hypergeometric
function as follows:

JðRÞ ¼ d

�
2R
a0

�
3=2

U

�
−

ð3þ 2nÞ
2ð3 − 2nÞ ;

5

2
;−

ð3 − 2nÞ
2ð3 − 4nÞ

þ ð3 − 2nÞR=a0
24nð3 − 4nÞ

�
; ð61Þ

where d is an integration constant and has mass dimension
[þ2]. The asymptotic behavior of the confluent hyper-
geometric function is given by U½a; b; x� ∼ x−a when x is
large and thus, in the large curvature limit, the solution
JðRÞ becomes

JðRÞ ∼ d23=2
� ð3 − 2nÞ
24nð3 − 4nÞ

� ð3þ2nÞ
2ð3−2nÞ

�
R
a0

�ð6−2nÞ=ð3−2nÞ
: ð62Þ

Since the mass dimension of the integration constant d is

[þ2], without loss of generality we can take d as d ¼
a0
23=2

½24nð3−4nÞð3−2nÞ �
ð3þ2nÞ
2ð3−2nÞ (as a0 also has a mass dimension [þ2]),

which immediately leads to the form of JðRÞ as

JðRÞ ∼ a0

�
R
a0

�ð6−2nÞ=ð3−2nÞ
: ð63Þ

Consequently the form of FðRÞ can be obtained from
Eq. (60), and is given by the following expression:

FðRÞ ∼ a0
ð1 − 2nÞð6 − 2nÞ
ð3 − 2nÞð3 − 4nÞ

�
R
a0

�ð6−2nÞ=ð3−2nÞ
: ð64Þ

Thus the effective form of fðRÞ is expressed as follows:

fðRÞ ¼ FðRÞ þ E
ffiffiffiffiffiffiffiffiffiffiffi
GðRÞp

a3ðRÞ ¼ 1

2
½JðRÞ þ FðRÞ�

∼ a0

�
1þ ð1 − 2nÞð6 − 2nÞ

ð3 − 2nÞð3 − 4nÞ
��

R
a0

�ð6−2nÞ=ð3−2nÞ
: ð65Þ

Equations (18) and (65) indicate that in the low-curvature
regime, fðRÞ goes as fðRÞ ∝ Rρ, and in the large-curvature
regime fðRÞ ∝ Rð6−2n=ð3−2nÞÞ. Recall, ρ ¼ 1

4
½3 − 2n−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nð5þ nÞp � which is negative for n > 0.25, and as
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shown earlier, the present model is consistent with the
Planck results for 0.27≲ n≲ 0.4, hence ρ is negative, in
order to ensure the viability of the model. Furthermore,
ð6−2nÞ
3−2n which is the exponent in the large-curvature expres-
sion of fðRÞ is greater than unity. Therefore, it is clear that
in the low-curvature regime fðRÞ is proportional to an
inverse power of Ricci scalar ∝ R−jρj, while in the large-
curvature limit, fðRÞ is given by a higher power of R. Such
functional forms of fðRÞ gravity are used quite frequently
in the literature, since they allow unification of early with
late-time acceleration. However, in the present paper, we
get such form of fðRÞ in the context of a symmetric
bouncing Universe, where the scale factor evolves as
aðtÞ ¼ ða0t2 þ 1Þn.

2. Numerical study of the stability of perturbations

Now we proceed to the numerical solution study of the
stability of the perturbations. Using the above forms of
JðRÞ and FðRÞ as boundary conditions along with the

expression RðtÞ ¼ 12n½ð4n−1Þt2þ1=a0
ðt2þ1=a0Þ2 �, we solve Eqs. (7)

and (8) numerically, with the cosmic time t being the

independent variable. Moreover, a0 and n are taken as
a0 ¼ 1 (in reduced Planck units) and n ¼ 1=3, respectively,
so in effect we consider the matter bounce scenario.
However, it may be mentioned that the n ¼ 1=3 case makes
the model consistent with the Planck 2018 constraints, as
confirmed in the previous section. The numerical solution of
fðRÞ in terms of R is obtained by using the expression

RðtÞ ¼ 12n½ð4n−1Þt2þ1=a0
ðt2þ1=a0Þ2 � and is presented in Fig. 4.

It is evident from Fig. 4 that fðRÞ decreases in the regime
R=a0 ≪ 1, while in R=a0 ≳ 1, fðRÞ increases as a function
of the Ricci scalar. This is expected from the analytic
solutions of fðRÞ in the two limiting cases; see Eqs. (18)
and (65). In the small and large-curvature regimes, f0ðRÞ is
given by −jρj

R1þjρj < 0 and ð6−2nÞ
ð3−2nÞR

3=ð3−2nÞ > 0, respectively,

which justify the numerical solution of fðRÞ in Fig. 4.
By plugging this numerical solution of fðRÞ into the

expressions of zðtÞ2 and zTðtÞ2, we can check the stability
condition of the metric perturbations for a wide range of the
cosmic time. It may be noticed that zðtÞ2 and zTðtÞ2 carry a
common factor aðtÞ2 which is always positive. Thus the
stability condition of the scalar and tensor perturbations are
given by zðtÞ2=aðtÞ2 > 0 and zTðtÞ2=aðtÞ2 > 0, respec-
tively. Using the numerical solution shown in Fig. 4, we
give plots for zðtÞ2=aðtÞ2 and zTðtÞ2=aðtÞ2 (with respect to
the cosmic time) in the left and right plots of Fig. 5,
respectively, where we take a0 ¼ 1 and n ¼ 1=3. From
Fig. 5 it is evident that both the scalar and tensor perturba-
tions are stable in the present context. Moreover, as we
mentioned earlier, the squared speed of the perturbations are
unity (i.e., c2s ¼ c2T ¼ 1) which guarantees the absence of
any ghostmodes from the presentmodel. Thus for thematter
bounce scenario materialized with the Lagrange multiplier
FðRÞ gravity model, there exists a range of the free
parameters, for which the model becomes compatible with
the latest Planck 2018 observations, and also becomes free
from instabilities of the metric perturbations.

FIG. 4. Numerical solution of f ¼ fðRÞ with R being the
independent variable. We take a0 ¼ 1 (in reduced Planck unit)
and n ¼ 1=3.

FIG. 5. Left: z2=a2 vs t for the purpose of the stability of the scalar perturbation. Right: z2T=a
2 vs t for the purpose of stability of the

tensor perturbation. In both cases, we take a0 ¼ 1 (in the reduced Planck unit) and n ¼ 1=3.
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V. ENERGY CONDITION

A crucial drawback in most of the bouncing models is
the violation of the null energy condition, which is also a
vital ingredient of the Hawking-Penrose theorems, in the
context of Einstein’s general relativity. Here we check the
energy conditions in the context of the Lagrange multiplier
FðRÞ gravity model. For this purpose, we determine the
effective energy density ρeff and pressure peff from Eqs. (7)
and (8), as follows:

ρeff ¼
1

2ðF0ðRÞ þ EG0
a3

ffiffiffi
G

p Þ

�
FðRÞ − E

ffiffiffiffi
G

p

a3

þ 3

�
d2

dt2
þH

d
dt

��
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
��

;

ρeff þ peff ¼ −
1

ðF0ðRÞ þ EG0
a3

ffiffiffi
G

p Þ

�
E

ffiffiffiffi
G

p

a3
þ
�
−
d2

dt2
þH

d
dt

�

×

�
F0ðRÞ þ EG0

a3
ffiffiffiffi
G

p
��

: ð66Þ

By using the above expressions along with the numerical
solution of fðRÞ determined in the previous section, we
give the plots of ρeff and ρeff þ peff (with respect to cosmic
time) in the left and right plots of Fig. 6, respectively, for
n ¼ 1=3, E ¼ 1, a0 ¼ 1 (in reduced Planck units). As it
can be seen in Fig. 6, ρeff remains positive for the whole
time regime (or equal to zero at the bouncing point), while
ρeff þ peff becomes negative near the bouncing point. This
indicates that the null energy condition is violated, which
further implies that the weak energy condition is neces-
sarily violated. At this stage, we want to mention that the
holonomy-corrected generalized FðRÞ gravity model or the
presence of extra spatial dimension, where H2 is propor-
tional to linear powers, as well as quadratic powers of the

energy density, may play a significant role to rescue the null
energy condition for a nonsingular bounce.
However before moving to the next section, we want to

state that the present paper studies “quasimatter bounce” in
a Lagrange multiplier FðRÞ gravity model, which is found
to yield a nearly scale-invariant power spectra of scalar and
tensor perturbations adiabatically. However, at the back-
ground level of the contracting era, it is also known that
matter (or quasimatter) contraction is not an attractor, and
worse, it is unstable to the growth of anisotropies (more
explicitly the anisotropy grows with the scale factor as 1=a6

which is known as the Belinskii-Khalatnikov-Lifshitz
(BKL) instability; see [87,88]). Thus the present model
remains at the level of a toy model with this respect.
However in the ekpyrotic bounce scenario (instead of
matter or quasimatter bounce) [17,89,90], the BKL insta-
bility does not occur and it will be an interesting avenue
to explore the possible effects of a Lagrange multiplier term
in an ekpyrotic bounce scenario, which is expected to be
studied in a near future work.

VI. STANDARD FðRÞ GRAVITY AND THE
COMPARISON WITH LAGRANGE

MULTIPLIER FðRÞ GRAVITY

In this section, we consider the standard FðRÞ gravity to
study the realization of the bouncing universe of Eq. (9) and
we shall compare the results with those obtained for the
Lagrange multiplier FðRÞ gravity model. The action for a
vacuum FðRÞ gravity model is given by

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ; ð67Þ

where 1
κ2
¼ M2 with M being again the four-dimensional

Planck mass. The action in Eq. (67) leads to the following
Friedmann equations of motion:

FIG. 6. Left: ρeff vs t for the purpose of weak energy condition. Right: ρeff þ peff vs t for the purpose of null energy condition. In both
cases, we take E ¼ 1, a0 ¼ 1 (in reduced Planck units) and n ¼ 1=3.
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−
FðRÞ
2

þ 3ð _H þH2ÞF0ðRÞ − 3H
dF0

dt
¼ 0;

FðRÞ
2

− ð _H þ 3H2ÞF0ðRÞ þ
�
d2

dt2
þ 2H

d
dt

�
F0ðRÞ ¼ 0;

ð68Þ
with H being the Hubble rate. We should note that Eqs. (7)
and (8) become identical with Eq. (68) by choosing E ¼ 0,
since for E ¼ 0, the Lagrange multiplier field λðtÞ goes to
zero and thus the gravitational equations of a Lagrange
multiplier FðRÞ gravity model become identical with that
of a standard FðRÞ gravity. As we discussed earlier, for the
purpose of determining the observable quantities, the low-
curvature limit i.e., R=a0 ≪ 1, is a viable approximation.
Recall that, in the regime R=a0 ≪ 1, the Ricci scalar can be

written as RðtÞ ¼ 12nð4n−1Þ
t2 . This along with the expressions

of the Hubble rate, its first derivative, and the differential
operators, as determined in Eq. (13), will enable us to
express the gravitational equations as follows:

2

ð4n − 1ÞR
2F00ðRÞ − ð1 − 2nÞ

ð4n − 1ÞRF
0ðRÞ − FðRÞ ¼ 0; ð69Þ

which can be solved as

FðRÞ ¼ a0

��
R
a0

�
ρ

þ
�
R
a0

�
δ
�
; ð70Þ

with ρ ¼ 1
4
½3 − 2n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nð5þ nÞp � and δ ¼ 1

4
½3 − 2nþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nð5þ nÞp �. Equation (70) represents the recon-
structed form of FðRÞ gravity for the bouncing scale factor
aðtÞ ¼ ða0t2 þ 1Þn. This form of FðRÞ matches with the
reconstructed form of effective fðRÞ [see Eq. (18), apart
from the coefficients] in a Lagrange multiplier higher
curvature model in the low curvature regime.
Before moving towards the perturbation, at this stage we

want to study whether this form of FðRÞ [in Eq. (70)]
passes the astrophysical tests in low curvature regime. An
example of the test is matter instability, which is related to
the fact that the spherical body solution in general relativity
may not be the solution in modified gravity theory. The
matter instability may appear when the energy density or
the curvature is large compared with the average density or
curvature in the universe, as is the case inside of a planet.
Following [77], we immediately write the potential [UðRbÞ,
with Rb being the perturbed Ricci scalar] for the perturbed
Ricci curvature over Einstein gravity as

UðRbÞ ¼
Rb

3
−
Fð1ÞðRbÞFð3ÞðRbÞRb

3Fð2ÞðRbÞ2
−

Fð1ÞðRbÞ
3Fð2ÞðRbÞ

þ 2FðRbÞFð3ÞðRbÞ
3Fð2ÞðRbÞ2

−
Fð3ÞðRbÞRb

3Fð2ÞðRbÞ2
ð71Þ

where we denote dkFðRÞ=dRk ¼ FðkÞðRÞ. If UðRbÞ > 0,
the perturbation grows with time, and the system becomes
unstable. Recall ρ < 0 and δ > 0 and thus the term Rρ

dominates over Rδ in the low curvature regime. Thus we
can approximate FðRÞ ∼ Rρ in the low curvature regime
which immediately leads to the potential as

UðRbÞ ¼ −
2ðjρj þ 2Þ

9jρjðjρj þ 1ÞRb þ
ðjρj þ 2Þ

3jρjðjρj þ 1ÞR
2þjρj
b : ð72Þ

In the low curvature regime, the first term dominates in the
above expression of UðRbÞ and thus UðRbÞ becomes less
than zero. This indicates that the model considered here
passes the matter instability test. However more checks of
this theory should be done in order to conclude if the model
is a realistic one or not, which we expect to study in a
future work.
Having the reconstructed form of FðRÞ in hand, we

proceed to study the cosmological perturbations in this
model and the perturbed metric is given by

ds2 ¼ −ð1þ 2Ψ̃Þdt2 þ aðtÞ2ð1 − 2Ψ̃Þðδij þ h̃ijÞdxidxj;
ð73Þ

where Ψ̃ðt; x⃗Þ and h̃ijðt; x⃗Þ are scalar and tensor perturbed
variable, respectively. The tilde quantities are reserved for
the pure FðRÞ gravity model, in order to make a compari-
son with the Lagrange multiplier FðRÞ gravity model.
Using the same procedure as discussed in Sec. IV, we
obtain the first order perturbed equations in the FðRÞ
gravity model as follows:

d2ṽ
dτ2

þ
�
k2 −

1

z̃
d2z̃
dτ2

�
ṽðτÞ ¼ 0;

d2ṽT
dτ2

þ
�
k2 −

1

z̃T

d2z̃T
dτ2

�
ṽTðτÞ ¼ 0; ð74Þ

where τ is the conformal time given by τ ¼ t1−2n
an
0
ð1−2nÞ.

Moreover z̃ðτÞ, z̃TðτÞ are the scalar, tensor type
Mukhanov-Sasaki variable, respectively, and have the
following forms:

z̃½τðtÞ� ¼ aðtÞ
ðHðtÞ þ 1

2F0ðRÞ
dF0ðRÞ

dt Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2F0ðRÞ
�
dF0ðRÞ

dt

�
2

s
;

z̃T ½τðtÞ� ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
F0ðRÞ

p
: ð75Þ

Comparing the above expression with Eqs. (21) and (37), it
is clearly observed that for E ¼ 0, the scalar and tensor type
Mukhanov-Sasaki variables in a standard FðRÞ gravity
model become the same as that of the Lagrange multiplier
FðRÞ gravity model, as expected. Using Eq. (75), we
further obtain the following expressions (in the low-
curvature regime) which are important towards solving
the Mukhanov equations:
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1

z̃
d2z̃
dτ2

¼ ξðξ − 1Þ
τ2

�
1þ 2ðδ − ρÞ

ðξ − 1Þ ðR=a0Þδ−ρ
�

δðρ − δÞ
ρð2n − ρþ 1Þ

þ δð1þ ρ − 2δÞ
ρð1 − ρÞ

��
; ð76Þ

and

1

z̃T

d2z̃T
dτ2

¼ ξðξ − 1Þ
τ2

�
1 −

2δðδ − ρÞ
ðξ − 1Þρ ðR=a0Þδ−ρ

�
; ð77Þ

and recall that ξ ¼ ð2nþ1−ρÞ
ð1−2nÞ . As δ − ρ is a positive quantity,

the terms in the parentheses in Eqs. (76) and (77), can be
safely considered to be small in the low-curvature regime
and consequently z̃00ðτÞ=z̃ and z̃T 00ðτÞ=z̃T become propor-
tional to 1=τ2. In effect, the solutions of the Mukhanov
variables are expressed in terms of the Hankel function as
discussed earlier in Sec. IV. With these solutions, we obtain
the spectral index ñs and the tensor-to-scalar ratio r̃ for the
standard FðRÞ gravity model as follows:

ñs ¼ 4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξðξ − 1Þ

�
1þ 2ðδ − ρÞ

ðξ − 1Þ ðRh=a0Þδ−ρ
�

δðρ − δÞ
ρð2n − ρþ 1Þ þ

δð1þ ρ − 2δÞ
ρð1 − ρÞ

��s
; ð78Þ

and

r̃ ¼ 2

�
z̃ðτÞ
z̃TðτÞ

�
2
����
τ¼τh

¼ 3

�
1

F0ðRÞðHðtÞ þ 1
2F0ðRÞ

dF0ðRÞ
dt Þ

�
2
�
dF0ðRÞ

dt

�
2
����
t¼th

; ð79Þ

respectively, where th is the time of horizon exit and
Rh ¼ RðthÞ. Similarly to the previously discussed La-
grange multiplier FðRÞ gravity model, see Sec. IV, the
spectral index and tensor to scalar ratio of the FðRÞ gravity
model depend on the parameters Rh=a0 and n (both are
dimensionless parameters). With these expressions, we can
confront the observational parameters of the models with
the Planck 2018 results. For the FðRÞ gravity model, the
spectral index (ñs) lies within the Planck constraints for a
narrow regime of the parameters as 10−4 ≲ Rh

a0
≲ 3 × 10−4

and 0.1860 ≤ n ≤ 0.1866. However for these values of the
free parameters, the tensor-to-scalar ratio takes values in the
range 1.9915≲ r̃≲ 1.9940 and hence is not compatible
with the Planck results. Thereby, we can argue that ñs ad r̃
are not simultaneously compatible with the Planck con-
straints for a bouncing universe [with aðtÞ ¼ ða0t2 þ 1Þn]
in the standard FðRÞ model, in contrast to the Lagrange
multiplier FðRÞ gravity model. This clearly indicates the
importance of the Lagrange multiplier field λðtÞ, present in
action (1) in making the compatibility of the observational
parameters with the Planck results. Furthermore the run-
ning of the spectral index is determined as

α̃ ¼ dns
d ln k

����
τ¼τh

¼ 4ξðδ − ρÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξðξ − 1Þp �

Rh

a0

�
δ−ρ

�
δðρ − δÞ

ρð2n − ρþ 1Þ

þ δð1þ ρ − 2δÞ
ρð1 − ρÞ

�
; ð80Þ

where we used the relation of horizon crossing of the kth
mode, that is k ¼ aH. It turns out that α̃ lies within the
Planck constraints α ¼ −0.0085� 0.0073 for 0.1860 ≤
n ≤ 0.1866 along with Rh=a0 ¼ 2 × 10−4 (the regime
where ñs is also compatible with the Planck results) and
this is demonstrated in Fig. 7. Thus in conclusion, in the
FðRÞ model, the spectral index and the running index are
consistent with the Planck results while the tensor-to-scalar
ratio is not. However, the presence of the field λðtÞ in the
FðRÞ gravity model makes all three parameters simulta-
neously compatible with observational constraints. This
makes it clear that the field λðtÞ has a significant con-
tribution on the observational parameters. Next we proceed
to explore the stability condition of the FðRÞ model. In
order to investigate the stability condition, we need to
determine the form of FðRÞ for the whole duration of
the bounce, and for this purpose we solve Eq. (68) numeri-
cally. However, before going to the numerical solution,

FIG. 7. Parametric plot of α̃ vs n for Rh=a0 ¼ 2 × 10−4.
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we reconstruct the form of FðRÞ for aðtÞ ¼ ða0t2 þ 1Þn in
the large-curvature regime R=a0 ≳ 1, which will act as
boundary condition in determining the numerical solution.
In the large curvature regime the FðRÞ gravitational
equation becomes

12na0ð12na0 − RÞF00ðRÞ

þ 3

�
2na0 −

ð12na0 − RÞ
ð3 − 4nÞ

�
1

2
−
n
3

��
F0ðRÞ − FðRÞ

2
¼ 0:

ð81Þ
The solution of Eq. (81) is given in terms of the hyper-
geometric function, and by using the asymptotic behavior
of the hypergeometric function, we can write the solution of
FðRÞ in regime R=a0 ≳ 1 as follows:

FðRÞ ∼ a0

�
R
a0

�ð6−2nÞ=ð3−2nÞ
: ð82Þ

By using the above expression as a boundary condition
along with a0 ¼ 1, n ¼ 0.186, we obtain the numerical
solution of FðRÞ from Eq. (68). This is depicted in Fig. 8.
As it can be seen in Fig. 8, the FðRÞ starts from zero (at
R ∼ 0) and gradually increases with the Ricci scalar, unlike
the case of the Lagrange multiplier FðRÞ gravity model,

where fðRÞ actually diverges at R ¼ 0 (see Fig. 4). This
feature occurs due to the different viability regime of the
parameter n, which makes the corresponding model con-
sistent with the Planck results. In the Lagrange multiplier
FðRÞ gravity model, the viability range of n is given
by 0.27≲ n≲ 0.40, which makes ρð¼ 1

4
½3 − 2n−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nð5þ nÞp �Þ a negative quantity. Thus the effective
fðRÞ behaves as an inverse power of R in the low-curvature
regime and diverges at R ¼ 0, as shown in Fig. 4. On the
other hand, for the standard FðRÞ model the viability
regime of n, in terms of spectral index and running index, is
given by 0.1860≲ n≲ 0.1866 which makes ρ a positive
quantity. As a result FðRÞ behaves as a positive power of R
in the low-curvature regime and goes to zero at R ¼ 0, as
depicted in Fig. 8. By using the numerical solution of FðRÞ,
we give the plots of z̃2=a2 and z̃2T=a

2 (with respect to time)
in the left and right plots of Fig. 9 to check the stability of
the scalar (Ψ̃) and tensor (h̃ij) perturbation, respectively.
Figure 9 clearly reveals that, for the FðRÞ model at hand,
the scalar perturbation is not stable while the tensor
perturbation is, in contrast to the case of the generalized
Lagrange multiplier FðRÞ gravity, where both the scalar
and tensor perturbations are found to be stable; see Fig. 5.
Actually, the absence of the Lagrange multiplier field
destabilizes the scalar perturbations without affecting
though the stability of the tensor perturbations. Regarding
the energy conditions in the FðRÞ model, it turns out that
the weak energy condition is satisfied while the null energy
condition is violated near the bouncing point, for the
bouncing universe described by aðtÞ ¼ ða0t2 þ 1Þn. The
comparison of the standard vacuum FðRÞ gravity with that
of the Lagrange multiplier FðRÞ gravity is shown in Table I.
Thus the bouncing universe with aðtÞ ¼ ða0t2 þ 1Þn is

well described by the Lagrange multiplier FðRÞ model in
comparison to the standard FðRÞ gravity. However the
presence of the Lagrange multiplier field cannot rescue the
null energy condition. In this regard, we want to mention
that the holonomy corrected generalized FðRÞ gravity

FIG. 8. Numerical solution of FðRÞ with n ¼ 0.186 and a0 ¼ 1.

FIG. 9. Left: z2=a2 vs t for the purpose of the stability of the scalar perturbation. Right: z2T=a
2 vs t for the purpose of stability of the

tensor perturbation. In both cases, we take a0 ¼ 1 (in reduced Planck units) and n ¼ 0.186.
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where H2 is proportional to linear as well as squared of the
effective energy density, may rescue the energy condition
and we defer this task to a near future work.

VII. COMOVING HUBBLE RADIUS: VIABILITY
OF THE LOW-CURVATURE LIMIT

Before concluding, let us comment on an interesting
issue, related to the viability of the low-curvature approxi-
mation that we have considered in calculating the scalar and
tensor power spectrum in Sec. IV. In the context of thematter
bounce cosmology, which is obtained by taking n ¼ 1=3 in
Eq. (9), the primordial perturbations of the comoving
curvature, which originate from quantum vacuum fluctua-
tions, were at subhorizon scales during the contracting era in
the low-curvature regime, that is, theirwavelengthwasmuch
smaller than the comoving Hubble radius which is defined
by rh ¼ 1

aH. In the matter bounce evolution, the Hubble
horizon radius decreases in size, and this causes the
perturbation modes to exit from the horizon eventually,
with this exit occurring when the contracting Hubble
horizon becomes equal to thewavelength of these primordial
modes. However, in the present context, we consider a larger
class of bouncing models of the form aðtÞ ¼ ða0t2 þ 1Þn, in
the presence of a generalized Lagrange multiplier FðRÞ
gravity. In such a higher curvaturemodel, it turns out that the
observable quantities lie within the Planck constraints when
the parameter values are taken in the range 0.01≲ Rh

a0
≲ 0.07

and 0.27≲ n≲ 0.40 and moreover, by calculating the
observable quantities, we have assumed that the horizon
exit of the perturbation modes occurred during the low-
curvature regime of the contracting era. Thus, it will be
important to check what are the possible values of n which
make the low-curvature limit a viable approximation in
calculating the power spectrum for the bouncing model
aðtÞ ¼ ða0t2 þ 1Þn.
The expression of the scale factor in Eq. (9) immediately

leads to the comoving Hubble radius,

rh ¼
ð1þ a0t2Þ1−n

2a0nt
: ð83Þ

Thereby rh diverges at t ≃ 0, as expected because theHubble
rate goes to zero at the bouncing point. Furthermore, the
asymptotic behavior of rh is given by rh ∼ t1−2n, thus
rhðjtj → ∞Þ diverges for n < 1=2, otherwise rh goes to
zero asymptotically. Hence, for n < 1=2, the comoving
Hubble radius decreases initially in the contracting era and
then diverges near the bouncing point, unlike in the case
n > 1=2where the Hubble radius increases from the infinite
past and gradually diverges at t ¼ 0. As a result, the possible
range of n which leads the perturbation modes to exit the
horizon at large negative time and make the low-curvature
limit a viable approximation in calculating the power
spectrum, is given by 0 < n < 1=2. Moreover this range
of n also supports the range 0.27≲ n ≲ 0.40, which makes
the observable quantities simultaneously compatible with
the Planck 2018 results. In Fig. 10 we plot the comoving
Hubble radius and a perturbation mode as functions of the
cosmic time for n ¼ 0.30.

VIII. CONCLUSIONS

In this paper, we considered a variant matter bounce
cosmology with aðtÞ ¼ ða0t2 þ 1Þn, in the context of the
Lagrange multiplier FðRÞ gravity model. For such model, it
was shown that for n < 1=2, the perturbation modes, which
were generated during the contacting era, exit from the
comovingHubble radius at large negative time, deeply in the
contracting era, which in turn makes the low-curvature limit
a viable approximation in calculating the observable quan-
tities. Thuswe constructed the formof effectivefðRÞgravity
that may materialize the above cosmic scenario, and con-
sequently we determined the scalar and tensor power
spectrums in the low-curvature regime. These lead to the
expressions of various observable quantities like spectral
index of primordial scalar perturbations, the tensor-to-scalar
ratio, and the running of spectral index, which were found to
depend on the dimensionless parameters Rh=a0 and n, with
Rh being theRicci curvature at horizon exit. It turned out that
such observable quantities are simultaneously compatible
with the Planck 2018 constraints for the parameters chosen

TABLE I. Comparison of observable quantities, stability of the
perturbations, and the energy conditions for the Lagrange
multiplier FðRÞ model and the standard FðRÞ gravity.
Observable quantities,
stability of energy
conditions

Lagrange
multiplier

FðRÞ model

Standard
FðRÞ
model

1. Observable quantities Viable Not viable
2. Scalar perturbation Stable Not stable
3. Tensor perturbation Stable Stable
4. Weak energy condition Violated Violated
5. Null energy condition Violated Violated

FIG. 10. Comoving Hubble radius (blue curve) and a pertur-
bation mode (yellow curve) with respect to cosmic time for
n ¼ 0.30.
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in the range 0.01≲ Rh
a0
≲ 0.07 and 0.27≲ n ≲ 0.40. It may

be noticed that this range of n is supported by the range
0 < n < 1=2whichmakes the low-curvature approximation
a valid approximation in calculating the power spectrums.
The stability condition of the metric perturbations had to be
checked for all cosmic times, including the bouncing point
time instance t ¼ 0, where the low-curvature approximation
does not hold true. For the purpose of examining the stability
conditions, we determined the fðRÞ gravity beyond the low-
curvature regime, in particular, for the whole range of time
(−∞ < t < ∞) by solving the Friedmann equationswithout
the low-curvature approximation, however, numerically.
The numerical solution clearly depicted that in the low-
curvature regime,fðRÞ is proportional to an inverse power of
the Ricci scalar, while in the large curvature limit, fðRÞ is
given by a higher power (higher than one) of R. Such
characteristics of fðRÞ gravity have been widely used in the
literature mainly in order to unify the early-time with the
late-time acceleration.
By using the obtained numerical solutions, we checked

the stability conditions and as a result we found that both
the scalar and tensor perturbations were stable for the same
range of parameter values, which guaranteed the phenom-
enological viability of the model. Moreover the Mukhanov-
Sasaki equations suggest that the squared speed of the
gravity waves is unity, which confirmed the absence of any
ghost modes. We further calculated the effective energy
density and pressure in the present context in order to
investigate the energy conditions. As a consequence, we
found that both the null energy and the weak energy
conditions are violated near the bouncing point. The
phenomenology of the present nonsingular bounce is also

discussed in the context of a standard FðRÞ gravity model.
We found that the results obtained in the Lagrange
multiplier FðRÞ gravity model are in contrast with the
standard FðRÞ model for which the spectral index and
the running index are simultaneously compatible with the
Planck results; however, the tensor-to-scalar ratio is not.
Also the scalar perturbation is stable but the model is
plagued with the instability of the tensor perturbation and
finally, the weak energy condition is satisfied while the null
energy condition is violated.
The above features clearly justify the importance of the

Lagrange multiplier field in making the observational
indices compatible with the Planck data and also in
removing the instability of the metric perturbations.
Therefore the bouncing universe with aðtÞ ¼ ða0t2 þ 1Þn
is well described by the Lagrange multiplier FðRÞ gravity
model in comparison to the standard FðRÞmodel. However
the presence of the Lagrange multiplier field cannot evade
the violation of null energy condition. In this regard, we
want to mention that the holonomy-corrected higher
curvature model may rescue the null energy condition
and we hope to address this issue in a future work.
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