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Future space-borne interferometers will be able to detect gravitational waves at 10−3 to 10−1 Hz. In this
band extreme-mass-ratio inspirals (EMRIs) can be promising gravitational-wave sources. In this paper, we
investigate the possibility of testing the hypothesis that the small body is moving in Kerr spacetime against
the alternative that the small body is moving in a parametrized non-Kerr metric by matching gravitational
waveforms. EMRI snapshots from either equatorial geodesics or inclined geodesics suffer from the
“confusion problem.” Our results show that, within the time scale before significant (radiation-driven)
orbital evolution takes place, small and moderate deviations from the Kerr spacetime [jδij < 1 in the
notation of Ni, Jiang, and Bambi J. Cosmol. Astropart. Phys. 09 (2016) 014] can be discerned only when
the Kerr spin parameter is extreme. In geodesic cases, most waveforms related to a non-Kerr metric can be
mimicked by the waveform templates produced from a Kerr black hole. However, when radiation reaction
is taken into consideration, the signals that are originally degenerate with each other will gradually separate
and finally break the confusion. Depending on the mass ratio and other parameters of the system, the time
needed to break the degeneracy can vary from several hours to several months.
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I. INTRODUCTION

LIGO’s detection of the black hole (BH) merger event
GW150914 has opened the era of gravitational-wave
(GW) astronomy [1]. The observation of GW170817 [2]
and its electromagnetic counterpart led to multimessenger
astronomy [3]. Electromagnetic observations have deep-
ened our understanding of the Universe since the birth of
astronomy and the new messenger—gravitational waves—
might bring more discoveries. With ground-based detectors
[4,5], space interferometers [6], and pulsar-timing arrays
[7] we may observe merger events, EMRIs, primordial
GWs, etc. These observations, which were previously
inaccessible, could potentially deepen our understanding
of the Universe and fundamental physics.
Current ground-based gravitational-wave detectors are

able to detect GWs in a relatively high frequency band. The
Laser Interferometer Space Antenna (LISA [8]), Taiji [9],
and TianQin [10], planned to launch in 2030s, will extend
the observation band down to the millihertz range. LISA
Pathfinder has demonstrated the desired accuracy in its
noise spectrum [11], and future LISA missions could
yield important scientific discoveries. By analyzing GW
signals in the LISA band, we can study the merger history

of BHs [12], probe stellar dynamics [13], and test gravity
theories [14].
An extreme-mass-ratio inspiral (EMRI), e.g., a stellar-

mass compact object (1 − 10 M⊙) orbiting around a super-
massive black hole, is a promising source of GW signals
in the LISA band [15–17]. Although a relatively accurate
method to generate waveforms, the Teukolsky-based
method [18–23] is computationally expansive. Some fur-
ther approximations, i.e., numerical kludge [24], analytic
kludge [25] etc., have made the calculation feasible. The
analysis of EMRI signals is also sophisticated. Due to the
low signal-to-noise ratio, matched filtering has to be utilized
in the analysis, and both generating waveform templates and
matching signals require enormous computational power.
Markov chain Monte Carlo and machine learning methods
might shed some light on this problem [26,27].
One scientific goal of LISA is to test general relativity

and the Kerr metric in the strong-field regime, e.g., around
BHs. Several previous works have demonstrated possible
constraints that LISA can set on alternative metrics or
theories of gravity. Reference [28] determined the bound
that LISA can set on the coupling constant ω in scalar-
tensor theory. Reference [29] studied the influence of the
BH quadrupole moment, and Ref. [30] gave estimated the
parameter limits of the “bumpy BH metric” constrained by
EMRI detection. A summary of previous works on possible*wbhan@shao.ac.cn
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tests of gravity theories using LISA can be found
in Ref. [31].
The “confusion problem” is one challenge we may

encounter in data analysis. One kind of confusion comes
from white dwarf binaries and other unresolved sources, as
studied in Ref. [32]. This kind of confusion is treated as
noise and contributes to in increase in the noise spectrum.
Another kind of confusion is intrinsic to the model, namely,
two EMRI waveforms with different parameters can be
almost identical, which is the “stealth Bias” analyzed in
Refs. [33,34]. By “identical” we mean that their overlap (as
defined in the Sec. III) is over 0.97. Both kinds of confusion
problems were discussed in previous works [29,31–33].
They can be approximately accounted for in the Fisher
matrix analysis of error estimation. However, the second
kind of confusion can be hard to analyze when the two
confused signals confused are relatively far away in param-
eter space, before enough observation time has passed so that
the radiation reaction might break the confusion.
The stealth bias was demonstrated in an early work [35]

for a special case, i.e., in an approximate metric describing
a BHþ torus and the Kerr metric, the confusion problem
exists for gravitational-wave emission from equatorial
orbits, before radiation reaction becomes significant.
However, as suggested in Ref. [33], a parametrized post-
Einsteinian framework should be adopted when treating
systems with such a stealth bias. Therefore, we extended
the analysis to a continuously parametrized metric and
general inclined eccentric orbits. Our results show that the
confusion problem still exists for general geodesics.
However, as stated in Refs. [29,31], radiation reaction
could play the role of breaking the confusion and our
results for orbits with evolution induced by radiation
reaction are consistent with this. The degeneracy between
signals can be broken within a few hours or a few months in
the situations we have considered, depending on the mass
ratio. On the other hand, we expect that the signals from
extremely small-mass-ratio systems will stay confused with

the Kerr signal for several months. Systems with mass
ratios lower than 10−8 may exist in astrophysical environ-
ments and be observable [36,37].
In order to test the no-hair theorem, i.e., astrophysical

BHs are described only by mass and spin, many methods
of model-independent parametrization for BH metrics have
been proposed. The Johannsen-Psaltis (JP) metric [38] and
the Johannsen metric [39], which expand the metric
component in power series of M

r , are widely used in testing
Kerr hypothesis. However, as mentioned in Ref. [40], the
Johannsen metric has some convergence deficiencies in
the strong-field regime. Such a problem can be solved by
the Konoplya-Rezzolla-Zhidenko (KRZ) parametrization
proposed in Ref. [41], which expands the metric functions
in power series of cos θ. Here we apply the lowest-order
KRZ metric and adopt the choice of deformation param-
eters used in Ref. [42], which also studied the Kerr metric.
The rest of this paper is organized as follows. In Sec. II a

general parametrization for BH spacetime is discussed.
Section III introduces the “kludge” waveform generation
method and matched filtering procedure that use. Then,
in Sec. IV we present our results about the “confusion”
problem. Finally, we summarize and discuss the results
in Sec. V.

II. GENERAL PARAMETRIZATION OF THE
METRIC AROUND A BLACK HOLE

In order to test the Kerr hypothesis or general relativity in
a model-independent manner, one usually turns to a general
parametrization of the metric describing astrophysical BHs.
Instead of using a metric derived from a specific theory, a
general metric could enable model-independent tests of the
Kerr hypothesis. One reasonable choice is to expand the
metric functions in power series of 1

r2þa2 cos2 θ, as adopted
by Johannsen and Psaltis. [38]. In Boyer-Lindquist
coordinates, the metric—which we refer to as the JP
metric—reads

ds2 ¼ −½1þ hðr; θÞ�
�
1 −

2Mr
Σ

�
dt2 −

4aMr × sin2θ
Σ

½1þ hðr; θÞ�dtdϕþ Σ½1þ hðr; θÞ�
Δþ a2sin2θhðr; θÞ dr

2

þ Σdθ2 þ
�
sin2θ

�
r2 þ a2 þ 2a2Mrsin2θ

Σ

�
þ hðr; θÞ a

2ðΣþ 2MrÞsin4θ
Σ

�
dϕ2; ð1Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2; hðr; θÞ ¼
X∞
k¼0

�
ϵ2k þ ϵ2kþ1

Mr
Σ

��
M2

Σ

�
k
: ð2Þ

When testing the Kerr metric, one usually hopes that the alternative metric still preserves the symmetries of the Kerr
metric, which are related to three constants of motion. A general form of the metric that has three constants of motion was
proposed by Johannsen [39]. The line element of this parametrization in Boyer-Lindquist coordinates—which we refer to as
the Johannsen metric—is
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ds2 ¼ −
Σ̃½Δ − a2A2ðrÞ2sin2θ�

½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2
dt2 −

a½ðr2 þ a2ÞA1ðrÞA2ðrÞ − Δ�Σ̃sin2θ
½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2

dtdϕ

þ Σ̃sin2θ½ðr2 þ a2Þ2A1ðrÞ2 − a2Δsin2θ�
½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2

dϕ2 þ Σ̃
ΔA5ðrÞ

dr2 þ Σ̃dθ2; ð3Þ

whereΔ is defined in the sameway as for the JP metric, and
the functions AiðrÞ; i ¼ 1, 2, 5 and Σ̃ are expanded in
power series of M

r ,

AiðrÞ ¼ 1þ
X∞
n¼2

αin

�
M
r

�
n
;

Σ̃ ¼ Σþ fðrÞ;

fðrÞ ¼
X∞
n¼3

ϵn
Mn

rn−2
: ð4Þ

The Johannsen metric and JP metric were adopted in
several works that tested the Kerr metric, utilizing the iron

line [43,44], x-ray polarization [45], and black hole
shadows [46]. However, as mentioned in Refs. [40,41],
the Johannsen metric has several deficiencies. One major
problem is expanding the function in power series of 1=r,
so that all elements in the series are almost equally
important near the horizon, which puts a burden on testing
the Kerr hypothesis in the strong-field regime. As we will
discuss in Sec. IV, we have to study the dynamics as close
to the horizon as possible to mitigate the “confusion.” This
convergence problem can be solved by expanding the
metric functions in power series of cos θ, as done in
Ref. [41]. The line element around an axisymmetric black
hole proposed by Konoplya, Rezzolla, and Zhidenko—
which we refer to as the KRZ metric—is [41]

ds2 ¼ −
N2ðr̃; θÞ −W2ðr̃; θÞsin2θ

K2ðr̃; θÞ dt2 − 2Wðr̃; θÞr̃sin2θdtdϕ

þ K2ðr̃; θÞr̃2sin2θdϕ2 þ Σðr̃; θÞ
�

B2ðr̃; θÞ
r̃2N2ðr̃; θÞ dr̃

2 þ dθ2
�
; ð5Þ

where r̃ ¼ r=M, ã ¼ a=M, Σ is defined the same as in the JP metric, and the functions Kðr̃; θÞ, Nðr̃; θÞ, Wðr̃; θÞ, and
Bðr̃; θÞ can be expanded in power series of cos θ. Here we use the same deformation parameter as in Ref. [42], namely, δi,
i ¼ 1, 2, 3, 4, 5, 6, 7, 8 which is related to the metric functions by

N2 ¼ ð1 − r0=r̃Þ½1 − ϵ0r0=r̃þ ðk00 − ϵ0Þr20=r̃2 þ δ1r30=r̃
3�

þ
�
a20r30=r̃

3 þ a21r40=r̃
4 þ k21r30=r̃

3

�
1þ k22ð1 − r0=r̃Þ

1þ k23ð1 − r0=r̃Þ
�
−1
�
cos2θ; ð6Þ

B ¼ 1þ δ4r20=r̃
2 þ δ5r20 cos

2 θ=r̃2; ð7Þ

W ¼ ½w00r20=r̃
2 þ δ2r30=r̃

3 þ δ3r30=r̃
3 cos2 θ�=Σ; ð8Þ

K2 ¼ 1þ aW=rþ
�
k00r20=r̃

2 þ k21r30=r̃
3

�
1þ k22ð1 − r0=r̃Þ

1þ k23ð1 − r0=r̃Þ
�
−1
cos2θ

�
=Σ; ð9Þ

r0 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
; a20 ¼ 2ã2=r30; a21 ¼ −ã4=r40 þ δ6; ϵ0 ¼ ð2 − r0Þ=r0; k00 ¼ ã2=r20;

k21 ¼ ã4=r40 − 2ã2=r30 − δ6; w00 ¼ 2ã=r20; k22 ¼ −ã2=r20 þ δ7; k23 ¼ ã2=r20 þ δ8; ð10Þ

This is a lowest-order metric expression, as shown in the
Appendix of Ref. [41], where we replace a01, w01, w21, b01,
and b21 with δ1, δ2, δ3, δ4, and δ5, respectively. δ1 is related
to the deformation of gtt, δ2 and δ3 are related to the
rotational deformation, and δ4 and δ5 are related to the

deformation of grr. The KRZ parametrization only pre-
serves stationarity and axisymmetry. When each δi is set
to 0, we recover the Kerr metric. In this paper we mainly
consider the influence of δ1 and δ2. To get a sense of the
influence of the deformation parameters, in Fig. 1 we plot
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the horizon for different values of δ1 with the spin
parameter a ¼ 0.8. The horizon is the location where grr
diverges and in the KRZ metric this is equivalent to solving
N2 ¼ 0. Although the inner horizon has no direct relation
to our study, it is a strong indicator of a BH’s deformation.
The inner horizon will disappear when δ1 has a slightly
positive value.

III. KLUDGE WAVEFORM AND
SIGNAL ANALYSIS

In this section we review the kludge waveform gener-
ation method and signal analysis approach. Throughout
this section, natural units (G ¼ c ¼ 1) are assumed, greek
letters (μ; ν; σ;…) are used to stand for indices running
from 0 to 3, and Einstein summation is assumed.
The numerical kludge method, proposed in Ref. [24],

generates EMRI waveforms with radiation fluxes in a
relatively fast and accurate way. The procedure is as
follows. Regarding the stellar-mass object as a point
particle, we first calculate the trajectory of the particle in
a given metric by integrating the geodesic equations
augmented with the radiation flux; then, we use the
quadrupole formula to obtain the gravitational wave from
the test-particle geodesics.
In our case, to calculate the geodesics we use

_uμ ¼ −Γμ
ρσuρuσ; ð11Þ

_xμ ¼ uμ; ð12Þ

where xμ is the Boyer-Lindquist coordinate of the particle,
uμ is the 4-velocity, and Γμ

ρσ is the Christoffel connection.
We do not use the conservation of particle mass, energy,
and angular momentum to reduce the equations, but rather
to monitor numerical error. Specifically, at each step of
integration we check the conservation quantities, namely,
the modulus of the 4-velocity, the energy E, and the
z component of angular momentum Lz, defined by

juj ¼ −1 ¼ gμνuμuν; ð13Þ

E ¼ −ut ¼ −gttut − gtϕuϕ; ð14Þ

Lz ¼ uϕ ¼ gtϕut þ gϕϕuϕ: ð15Þ

In Kerr cases, we also check the Carter constant [47],

Q ¼ ðgθθuθÞ2 þ cos2θ
�
a2ðη2 − E2Þ þ

�
Lz

sin θ

�
2
�
: ð16Þ

During the calculation, we keep the relative drift of
conserved quantities within 10−7.
For stable bounded geodesics in Kerr spacetime, three

parameters—the eccentricity e, semilatus p, and inclination
angle ι—can be used to characterize an orbit. They are
defined by

e ¼ ra − rp
ra þ rp

; p ¼ 2rarp
ra þ rp

; ι ¼ π

2
− θmin; ð17Þ

where ra is apastron, rp is periastron, and θmin is the
minimum of the θ coordinate along the geodesics. In Kerr
spacetime, we can determine the three orbital parameters e,
p, ι from the three conserved quantities E, Lz, Q and vice
versa [48]. In KRZ non-Kerr spacetime, we continue to
use these definitions, i.e., for a numerically generated
trajectory we still define (e, p, ι) from (ra, rp, θmin) by
the relation above.
For inclined orbits in Kerr spacetime, the relation

between (ra, rp, θmin) and (E;Lz;Q) is given by [see
Eqs. (30) and (31) in Ref. [48]]

P2jr¼ra;θ¼π=2 − ðr2 þ ðLz − aEÞ2 þQÞΔjr¼ra;θ¼π=2 ¼ 0;

ð18Þ

P2jr¼rp;θ¼π=2 − ðr2 þ ðLz − aEÞ2 þQÞΔjr¼rp;θ¼π=2 ¼ 0;

ð19Þ

Q ¼ cos2 θmin

�
a2ð1 − E2Þ þ L2

z

sin2 θmin

�
; ð20Þ

where P ¼ Eðr2 þ a2Þ − aLz and Δ ¼ r2 − 2Mrþ a2.

FIG. 1. Event horizon in the xz plane with the influence of δ1,
where x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

sin θ cosϕ and z≡ r cos θ. The dashed lines
of different colors indicate the inner horizon r−, and the solid
lines indicate the outer horizon rþ.
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For equatorial orbits in a stationary and axisymmetric general metric, we can analytically determine e, p from E;Lz and
vice versa by the relation (juj ¼ −1 with ur ¼ 0 at apastron and periastron)

gttjr¼ra;θ¼π=2E
2 þ gϕϕjr¼ra;θ¼π=2L

2
z − 2gtϕjr¼ra;θ¼π=2ELz ¼ −1;

gttjr¼rp;θ¼π=2E
2 þ gϕϕjr¼rp;θ¼π=2L

2
z − 2gtϕjr¼rp;θ¼π=2ELz ¼ −1: ð21Þ

The effect of radiation reaction is included by replacing
Eq. (11) with

duμ

dτ
¼ −Γμ

ρσuρuσ þ F μ; ð22Þ

where the radiation force F μ is recovered from the
adiabatic radiation fluxes ( _E; _Lz; _Q) as

_Eut ¼ −gttF t − gtϕFϕ;

_Lzut ¼ gtϕF t þ gϕϕFϕ;

_Qut ¼ 2g2θθu
θF θ þ 2cos2θa2E _Eþ 2cos2θ

Lz
_Lz

sin2θ
;

gμνuμF ν ¼ 0: ð23Þ

We use the flux expressions of the second post-
Newtonian approximations with the corrections described

in Ref. [24]. Equation (23) can be deduced by taking
derivatives with respect to proper time in Eqs. (13)–(16).
After generating the trajectory, we transform ðr; θ;ϕÞ

into ðx; y; zÞ using the definition of spherical coordinates
(rather than the Boyer-Lindquist coordinates), namely,
x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, and z ¼ r cos θ. Then
we use the quadrupole formula, i.e.,

h̄jkðt; xÞ ¼ 2

r
½T̈jkðt0Þ�t0¼t−r; ð24Þ

Ijk ¼ μx0jpx0kp; ð25Þ

where h̄μν ¼ hμν − 1
2
ημνηρσhρσ is the trace-reversed metric

perturbation.
We transform the waveform into transverse-traceless

gauge [see Eqs. (17) and (23) in Ref. [24]] and we get
the plus and cross components of the waveform observed at
latitudinal angle Θ and azimuthal angle Φ:

hþ ¼ hΘΘ − hΦΦ

¼ fcos2Θ½hxxcos2Φþ hxy sin 2Φhyysin2Φ� þ hzzsin2Θ − sin 2Θ½hxz cosΦþ hyz cosΦ�g
− ½hxxsin2Φ − hxy sin 2Φþ hyycos2Φ�; ð26Þ

h× ¼ 2hΘΦ

¼ 2

�
cosΘ

�
−
1

2
hxx sin 2Φþ hxy cos 2Φþ 1

2
hyy sin 2Φ

�
þ sinΘ½hxz sinΦ − hyz cosΦ�

�
: ð27Þ

With these “plus” and “cross” components, we define our waveforms as h ¼ hþ þ ih×.
Matched filtering is the standard technique used in LISA analyses. In real EMRI data analyses, a large bank of waveform

templates will be compared with the detected signal to find the matched template. Here we mainly adopt the fitting factor as
a measure of similarity between two waveforms within the LISA band.
The inner product between a signal aðtÞ and a template bðtÞ is defined by their cross correlation [49],

ðajbÞ ¼ 4ℜ
Z

ã�ðfÞb̃ðfÞ
SnðfÞ

df ¼ 2

Z
ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ

SnðfÞ
df; ð28Þ

where SnðfÞ is the power spectral density of LISA noise. In our calculation, the analytic fit to the noise spectrum is the same
as that used in Ref. [24].
The overlap (fitting factor) between the signal and template is defined as [50] FFða; bÞ ¼ ðajbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðajaÞðbjbÞ
p . It is worth noting

that the standard fitting factor should be maximized over both time and phase shift. The fitting factor defined by time shift ts
and phase shift ϕs is ffðts;ϕs; aðtÞ; bðtÞÞ ¼ ðaðtÞjbðtþtsÞeiϕs Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðajaÞðbjbÞ
p . So the maximized fitting factor should be [51]
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FFða; bÞ ¼ max
ts;ϕs

ðajbðtþ tsÞeiϕsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp : ð29Þ

In the present work, we directly use the match function
from the PyCBC Library [52]. When the overlap between
two waveforms is above 0.97, we say that the waveform
of this template is discovered in the signal. However, if a
non-Kerr signal has an overlap with a Kerr template above
0.97, we could mistake the signal as being emitted from
around a Kerr BH, i.e., the confusion problem mentioned
in Ref. [13].
A weaker criterion (FF > 0.95) was used in Ref. [13]

when estimating the confusion. The limit adopted in
template generation methods is 0.97 [48] or 0.99 [53],
where the approximated models are believed to be faithful
enough to more accurate fiducial models if the resulting
waveforms have overlaps of over 0.97 or 0.99. However, as
can be seen in Sec. IV, whether we choose 0.95, 0.97, or
0.99 does not substantially affect the conclusions. The
overlap achieved by varying (M, a) is larger than 0.99 in
most of the parameter space, but that achieved by varying
ðe; pÞ is less than 0.9 in orbits with parameters close to
the last stable orbit (or more precisely, as shown in Fig. 4,
the overlap becomes lower as we go from the upper right
to the lower left part of the e-p plane.), while the overlap
quickly drops below 0.8 when changing the parameter by
about 0.1% without matching orbital frequencies.

IV. NUMERICAL RESULTS AND ANALYSIS

Whenwe try to identify short EMRI signals, the confusion
problem (as described in Ref. [13]) could prevent us from
discerning non-Kerr and Kerr signals. Namely, an overlap
over 0.97 might exist between non-Kerr and Kerr signals
with certain parameters. However, this confusion can be
eliminated by taking radiation reaction into consideration. In
Secs. IVA and IVB we show the confusion problem when
matching gravitational waveforms from equatorial and
inclined geodesic orbits. In Sec. IV C we show the effect
of radiation reaction on breaking the degeneracy.

A. Equatorial geodesic orbit

Given a waveform in a spacetime with nonzero defor-
mation, determining whether the “confusion problem”
exists by searching over the entire parameter space would
be computationally impossible. A better way is to have
some idea about which waveform in Kerr spacetime is most
similar to the non-Kerr signal and look at their overlap.
Here we search for the existence of confusion using a
similar method to that in Ref. [35], i.e., we look at
waveforms generated from geodesics with the same orbital
frequency. The orbital frequencies in Kerr spacetime were
given in Ref. [54]. In equatorial orbits, there are two
frequencies ωϕ and ωr related to the motion of the ϕ and r
coordinates.

FIG. 2. “Plus” and “cross” components of gravitational waves emitted by equatorial orbits in non-Kerr and Kerr spacetimes, where we
vary ðM;aÞ or ðe; pÞ to equate the orbital frequencies. The non-Kerr waveform is ðδ1; a;M; e; pÞ ¼ ð0; 2; 0.5; 2 × 105; 0.5; 6.0Þ. The
yellow and red solid lines are the “plus” and “cross” components of the non-Kerr waveforms. The black and violet dotted lines are the
“plus” and “cross” components of Kerr waveforms with the same orbital frequencies as non-Kerr orbits when varying ðM;aÞ. The blue
and green dashed lines are the “plus” and “cross” components of Kerr waveforms with the same orbital frequencies as non-Kerr orbits
when varying ðe; pÞ.
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We set ts ¼ 0, ϕs ¼ 0 and use ffð0; 0; aðtÞ; bðtÞÞ as a
measure of degeneracy. Since FFða; bÞ ≥ ffð0; 0; aðtÞ;
bðtÞÞ, it is sufficient for the two signals to be degenerate
if ffð0; 0; aðtÞ; bðtÞÞ > 0.97. In most cases, ffð0; 0; aðtÞ;
bðtÞÞ coincides with the maximum overlap when the initial
conditions of the orbits are the same.
For equatorial motion, we set the initial t and ϕ to 0

in view of stationarity and axisymmetry and set the
initial r ¼ rmax, so the orbit is uniquely determined by
the orbital eccentricity e, semilatus rectum p, deformation
parameters δi, BH massM, and BH spin a. As described in
Ref. [35], we can achieve the same orbital frequency as
non-Kerr orbits by varying the orbital parameters e, p or
BH parameters M, a. So we need to consider orbits
determined by ðδ; a;M; e; pÞ, ð0; a;M; eKerr; pKerrÞ, and
ð0; aKerr;MKerr; e; pÞ. A comparison of waveforms gener-
ated by orbits with the same orbital frequency is shown in
Fig. 2. We calculated the waveforms for 100 000 s (about
1 day), and in the figure we show a magnification around

the last 1000 s The overlap between waveforms with
varying BH mass and spin is over 0.99.
According to Ref. [13], orbits with the same orbital

frequencies ωr and ωϕ can generate gravitational waveforms
that could potentially be confused with non-Kerr signals.
Therefore, the overlap between a non-Kerr waveform and
several Kerr waveforms should have a local maximum
around the parameter leading to the same orbital frequency.
We checked this result by looking at overlaps between
waveforms defined by ðδ1;a;M;e;pÞ¼ð0.2;0.5;2×105;
0.5;6Þ and ðδ1;a;M;e;pÞ¼ð0;0.5;2×105;eKerr;pKerrÞ with
varying eKerr and pKerr. First we looked at the overlap
distribution over a relatively large range of ðe; pÞ and find
that the highest local maximum is located around the point
whose parameter values correspond to identical orbital
frequencies. Then, we searched near (eKerr, pKerr) with the
same orbital frequency and found that the aforementioned
point is approximately located at the peak of the overlap
distribution, as shown in Fig. 3.

FIG. 3. Distribution of the overlap between waveforms defined by ðδ1; a;M; e; pÞ ¼ ð0.2; 0.5; 2 × 105; 0.5; 6Þ and ðδ1; a;M; e; pÞ ¼
ð0; 0.5; 2 × 105; eKerr; pKerrÞ in the (eKerr, pKerr) plane. The blue cross marks the same ωr and ωϕ at ðeKerr; pKerrÞ ¼ ð0.409248;
6.481170Þ. The grid size is 50 × 50.

FIG. 4. Distribution of the overlap between waveforms with ðδ1; a;M; e; pÞ ¼ ð0.2; 0.5; 2 × 105; eKRZ; pKRZÞ and Kerr waveforms
with identical ωr and ωϕ by varying eKerr, pKerr (left panel) and varying M, a (right panel) in the ðeKRZ; pKRZÞ plane. The grid size is
100 × 100. The blank region contains unstable orbits.
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Then we investigated the confusion problems for dif-
ferent non-Kerr signals. First we studied the signals from
different orbits, i.e., different eKRZ, pKRZ. Since metric
deformation is more evident near the BH horizon, we
look at waveforms generated by trajectories close to the
innermost bound orbit. We compare waveforms defined by
ðδ1; a;M; e; pÞ ¼ ð0.2; 0.5; 2 × 105; eKRZ; pKRZÞ and Kerr
orbits with the same orbital frequencies by varying ðe; pÞ or
ðM;aÞ on a 100 × 100 grid of ðe; pÞ. Contour plots of the
waveform overlap when varying ðe; pÞ and ðM; aÞ are

shown in Fig. 4. The confusion problem exists when
varying ðM; aÞ for most of the parameter region we
considered.
Furthermore, the confusion problem exists for a large

range of the deformation parameter. On top of that, when
changing the deformation parameter, we found an almost
linear relation between δi and varied BH spin/mass (aKerr
and MKerr), as shown in Fig. 5 and 6. Since we are
considering equatorial orbits, i.e., cos θ ¼ 0, only δ1, δ2,
and δ4 can influence the results. Figure 7 shows that the

FIG. 5. Relation between the relative varying spin/mass values when equating the orbital frequencies, i.e., the orbits of
ðδ1; a0;M0; e; pÞ and ð0; a0 þ δa;M0 þ δM; e; pÞ have the same orbital frequency in the δa

a0
− δ1 (left) and δM

M0
− δ1 (right) planes.

FIG. 6. The same as in Fig. 5, but for δ2 (top panels) and δ4 (bottom panels).

SHUO XIN, WEN-BIAO HAN, and SHU-CHENG YANG PHYS. REV. D 100, 084055 (2019)

084055-8



slope of this “linear” relation varies greatly for different
ðe; pÞ, so the relation is not a property intrinsic to the
metric, but rather dependent on the orbit. The linearity is
not a result of a small deformation. In fact, as shown in the
figures above, the spin varies by up to 1–2 times the spin in
the KRZ metric. The linearity does not hold for δM − δ2,
but since it is not our major concern and the mass here is
just a time scale, we did not explore this further.
Therefore, for given orbital parameters ðe; pÞ we can

regard the introduction of δi as adding the black hole spin
and mass proportionally. This sets a limit for the range of
the deformation parameters within which we can vary
ðMKerr; aKerrÞ. The upper limit is set by requiring aKerr < 1
and the lower limit is set by requiring aKerr > 0 or a stable
orbit, e.g., for ðe; pÞ ¼ ð0.5; 6.0Þ, when aKerr is small, the
orbit is no longer stable and bounded. Figure 8 shows the

upper and lower bounds of the deformation parameters with
respect to BH spin for orbits with e ¼ 0.5, p ¼ 6.0.

B. Inclined geodesic orbit

Equatorial orbits require some special conditions, i.e.,
the number of orbital frequencies is equal to the number
of Kerr BH parameters. Therefore, in general we can solve
for the mass and spin by equating the two frequencies
determined by KRZ orbit, and the resulting geodesics are
almost identical. However, no EMRIs will be perfectly
equatorial. Instead, general EMRIs come from inclined
orbits, which have three orbital frequencies. In such cases
we usually cannot equate the three frequencies by only
varying the BH parameters.
However, we found that by varying ðM;a; pÞ to equate

three orbital frequencies, the resulting gravitational wave-
forms also have an overlap over 0.97, even though the
orbits are apparently not identical. The upper and middle
panels of Fig. 9 show the time series of motion in the r and
θ directions and trajectories for the last 5000 s, where the
total time is 3 × 106 s. Motion in the θ direction almost
overlaps, but it has a few distortions. Motion in the r
direction has the same frequency but different amplitude,
which is basically due to varying the semilatus p. However,
the gravitational-wave signals are almost identical, as
shown in the bottom panel.
Similar to the equatorial cases, the requirements that

aKerr < 1 and that we have stable orbits set a bound on the
deformation parameters. However, since there is no Carter-
like constant in the KRZ metric, we cannot control the
orbital parameters ðe; p; ιÞ in non-Kerr cases in simple
ways. Therefore, we try to just control the initial conditions
so that the orbital parameters are at least near the desired

FIG. 7. The same as in Fig. 5, but only for the δa=a0 − δ2
relations for different orbits.

FIG. 8. Ranges of parameters that lead to degeneracy. The ranges are projected onto δi-aKRZ parameter plane with other parameters set
to e ¼ 0.5, p ¼ 6.0 and M ¼ 2 × 105. Each point on the plane indicates an EMRI system with e ¼ 0.5, p ¼ 6.0, M ¼ 2 × 105 and δi,
aKRZ set by the coordinate in the plot. Colors are indexed as follows. Blue: the system is degenerate with another one in Kerr spacetime
by frequency matching. Red: the corresponding system in Kerr spacetime by frequency matching has a spin larger than 1 (aKerr > 1).
Yellow: the system does not exist. Left panel: for δ1 while δ2 is set to 0. Right panel: for δ2 while δ1 is set to 0.
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values, e.g., ðe; p; ιÞ ¼ ð0.2; 8; π=4Þ. Technically, given δi,
aKRZ, and the reference orbital parameters, we calculate the
energy EKerr and angular momentum Lz−Kerr in Kerr
spacetime with spin equal to aKRZ; then, we set the initial
coordinates as θ ¼ π=2, ϕ ¼ 0, t ¼ 0, and r ¼ p

1−e, set
E;Lz equal to their Kerr values (which determines the
velocity in the t and ϕ directions), set ur ¼ 0, and
determine uθ using the modulus of the 4-velocity. The
upper and lower bounds on the deformation parameters
determined in this way are shown in Fig. 10. MKRZ is
106 M⊙ and the total time is 2 × 106 s.

C. Orbits with radiative evolution

In the previous sections we only considered the geodesic
orbits, which represents only a snapshot of EMRIs before

radiation reaction plays an important role. However, the
stealth bias [33] can be broken by including radiation
reaction, as we will discuss below. We use ν to denote the
mass ratio.
In this section, since we are considering the breaking

of degeneracy by radiative evolution, the overlaps are
maximized to give the fitting factor. For a given evolution
time tevo and two signals aðtÞ and bðtÞ, we input the two
time series aðtÞjt¼tevo

t¼0 and bðtÞjt¼tevo
t¼0 with the designed

power spectral density of LISA noise into the match
function implemented in the PyCBC library [52].
As shown in Fig. 11, for equatorial orbits the pair of

EMRI signals—which are degenerate when only geodesic
orbits are considered—dephase with each other when
radiation reaction is included. To illustrate the role of

FIG. 9. Orbits and GW waveforms of a KRZ orbit and a Kerr orbit with the same orbital frequencies. Top left panel: Time series of
motion in the r direction for the last 5000 s. Top right panel: Time series of motion in the θ direction for the last 5000 s. Middle left panel:
Trajectories for the last 5000 s. Middle right panel: Projection onto the x-y plane of the trajectories for the last 5000 s. Bottom panel:
“Plus” component of the EMRI waveform for the last 20 000 s. The orbital parameters and BH spin/mass are ðe; p; ι; spin;MÞ ¼
ð0.432; 6.819; 0.780; 0.5; 106Þ. The deformation parameter of the KRZ orbit is δ1 ¼ 0.2.
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radiation reaction in breaking the degeneracy, Fig. 12
shows the evolution of the fitting factor between two
signals that are degenerate with each other in geodesic
cases for different mass ratios. It is clear that the overlap

drops below 0.97 within 30 000 s for the cases we
considered with a central BH mass of about 2 × 105 M⊙.
As shown in Fig. 13, for inclined orbits the EMRI

signals with a mass ratio of 10−4 break the degeneracy on
a time scale of 104 ∼ 105 seconds. The evolution of the
fitting factor is shown in Figs. 14 and 15 for different
mass ratios and semilatus, where the central BH mass is

FIG. 11. Top panel: EMRI signals from geodesic orbits with ðδ1; a;M; e; pÞ ¼ ð0.2; 0.5; 200000; 0.5; 6Þ (blue solid line) and
ðδ1; a;M; e; pÞ ¼ ð0; 0.617491; 201020; 0.5; 6Þ (red dotted line). Bottom panel: Same as in the top panel but for evolving orbits with a
mass ratio of 10−4.

FIG. 10. The same as in Fig. 8 but for inclined orbits, and where
the waveform at each point is determined by setting the initial
E, Lz to be the same as in the corresponding Kerr orbit. See text
for details.

FIG. 12. Evolution of the fitting factor between EMRI
signals with ðδ1; a; M; e; pÞ ¼ ð0.2; 0.5; 200000; 0.5; 6Þ and
ðδ1;a;M;e;pÞ¼ð0;0.617491;201020;0.5;6Þ for different mass
ratios (ν). Blue lines: ν ¼ 10−4. Red lines: ν ¼ 5 × 10−5. Green
lines: ν ¼ 10−5.
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about 106 M⊙. The trend of the “dephasing time” (the
time required for the overlap of signals to drop below
0.97) with respect to the mass ratio ν is shown in Fig. 16.
From the plot the approximate relation t ∝ 1ffiffi

ν
p is clear.

The systems with even smaller mass ratios [36,37] or that
start with larger semilatus p may require up to years to
break the degeneracy.
As a final comment, we note that we are considering

systems where the small compact objects are relatively

close to the central BH, i.e., the semilatus p is small.
The leading-order radiation fluxes are highly dependent
on p, namely, _E ∝ p−5, _Lz ∝ p−7=2. According to Fig. 16,
the dephasing time has a strong dependence on the
semilatus p. We expect that the effect of radiation would
be much smaller when the waveform starts from an earlier
stage of the EMRI with a larger separation. In these
situations, the time required to break the degeneracy could
be even longer.

FIG. 13. Top panel: EMRI signals from geodesic orbits with ðδ1; a;M; e; p; ιÞ ≈ ð0.2; 0.5; 1000000; 0.432; 6.819; 0.780Þ (blue solid
line) and ðδ1; a;M; e; p; ιÞ ≈ ð0; 0.553; 937173; 0.432; 7.172; 0.780Þ (red dotted line). Bottom panel: Same as in the top panel but for
evolving orbits with a mass ratio of 10−4.

FIG. 14. Left panel: Evolution of the fitting factor between EMRI signals with ðδ1; a;M; e; p; ιÞ ≈ ð0.2; 0.5; 1000000; 0.432;
6.819; 0.780Þ and ðδ1; a;M; e; p; ιÞ ≈ ð0; 0.553; 937173; 0.432; 7.172; 0.780Þ. Blue solid line: ν ¼ 10−4. Red dotted line: ν ¼ 5 × 10−5.
Green dashed line: ν ¼ 10−5. Right panel: Same as in the left panel, but for lower mass ratios. Blue solid line: ν ¼ 10−6. Red dotted line:
ν ¼ 10−7. Green dashed line: ν ¼ 10−8.
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V. CONCLUSION AND DISCUSSION

LIGO’s detections of GW signals have opened up the era
of gravitational-wave physics and astronomy. Future LISA
missions will be able to extend our observations over a
broader spectrum of GW signals. One LISA’s scientific
goals is to test the Kerr metric or no-hair theorem in
the strong-field regime, but the “confusion problem” is still
a challenge. In this paper, we considered the general

parametrized metric of axisymmetric BHs, namely, the
KRZ metric. With a modified numerical kludge method
for waveform generation, we investigated the confusion
between GW signals emitted from orbits in the Kerr metric
and KRZ non-Kerr metric. We mainly considered the
deformation parameters δ1 and δ2 which represent the
deformation of the Kerr metric components gtt and grr,
respectively. For both geodesic and evolving orbits, we
studied the overlap between waveforms with the same
orbital frequencies.
Although radiation reaction can break the degeneracy,

the time required to break the degeneracy varies as the mass
ratio changes. For mass ratios smaller than 10−9 and
starting with a larger semilatus p, this time could be
comparable to the designed running time of LISA and
the motion of the system can be approximated by geo-
desics. The results for geodesic orbits show that the
confusion exists in a large range of the parameter space
for both equatorial and inclined geodesics, within the
small- and medium-deviation (δi < 1) regions. However,
for high spin and a deviation δi > 0, it is still possible to
distinguish the background metric by imposing the physical
restriction aKerr < 1. In the equatorial orbit cases, for given
orbital parameters ðe; pÞ the increase of δi is almost
equivalent to proportionally adding the spin and mass of
a BH to the Kerr metric. This means that in most cases a
waveform generated in the KRZ metric without radiative
evolution can be mimicked by waveform templates with the
Kerr black hole. This induces that one may not recognize
deviations from the no-hair theorem. Therefore, when using
short EMRI signals via the matched filtering method to test
the Kerr spacetime, care must be taken to check for any
confusion.
For systems where the confusion can be broken within a

few days, we can use EMRI signals to test the no-hair
theorem or the Kerr metric. The Fisher matrix can be
exploited to estimate the extent to which the signal can
constrain the non-Kerr parameters in alternative metrics.
Similar studies have been done for several specific models
[28,30]. In our future works, we will estimate the con-
straints that EMRI signals can put on parameters in a
general parametrized metric.
One way to analyze data instantaneously or data from a

system with a mass ratio smaller than about 10−8 without
stealth bias might be multimessenger measurements. It has
been understood for a long time that x-ray emission (e.g.,
the iron line) can be used to measure BH spin [55],
assuming the Kerr hypothesis. With the iron line, we are
also able to put constraints on alternative metrics [56].
There has been some work constraining deformation in the
JP metric [43], Johannsen metric [44], and KRZ metric
[42]. EMRIs are extremely sensitive to small deviations,
i.e., a 0.1% deviation of parameters could lead to a
significant change in the overlap, but with degeneracy

FIG. 15. Evolution of the fitting factor between EMRI signals
with ðδ1;a;M;e;p; ιÞ≈ð0.2;0.5;1000000;0.502;12.020;0.779Þ
and ðδ1; a;M; e; p; ιÞ ≈ ð0; 0.538; 945615; 0.502; 12.511; 0.779Þ
for different mass ratios ν. Blue solid line: ν ¼ 5 × 10−3. Red
dotted line: ν ¼ 10−3. Green dashed line: ν ¼ 10−4. Yellow dash-
dotted line: ν ¼ 10−5.

FIG. 16. The relation between the “dephasing time” (the time
required for the fitting factor of two signals to drop below 0.97)
and mass ratio ν. Blue triangles: Match between signals defined
by ðδ1; a;M; e; p; ιÞ ≈ ð0.2; 0.5; 1000000; 0.502; 12.020; 0.779Þ
and ðδ1;a;M;e;p; ιÞ≈ð0;0.538;945615;0.502;12.511;0.779Þ.
Red dots: Match between signals defined by ðδ1; a;M; e; p; ιÞ ≈
ð0.2; 0.5; 1000000; 0.502; 12.020; 0.779Þ and ðδ1; a;M; e; p; ιÞ≈
ð0; 0.538; 945615; 0.502; 12.511; 0.779Þ. Dashed lines are fitted
scaling laws.
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between the deformation parameters, the BH spin, and
mass. Graphically, the confidence level projected onto the
(δi, a,M) parameter space would be an infinitely long tube
with narrow openings. By combining iron line data and
GW signals, we can possibly break the degeneracy in the
analysis. Naively thinking, while we can match the GW
signal from a non-Kerr BH with parameters ðδi; aKRZ;
MKRZÞ with a Kerr signal ð0; aKerr;MKerrÞ, the para-
meters ð0; aKerr;MKerrÞ might lie outside of the 3σ level
in the iron line fitting. Also, an accretion disk may have a
large impact on the EMRI dynamics [57,58], although a
simple model suggested that the degeneracy with Kerr
spacetime will still exist if we consider the modification to
the spacetime metric by a dust torus around a central
BH [35].
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