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We consider the Einstein-Hilbert action without a cosmological constant in five dimensions and
implement the Kaluza-Klein (KK) reduction by compactifying the fifth direction on a circle of small but
finite radius. For a nonzero compactification radius, the four-dimensional spectrum contains massless and
massive KK modes. For the massive KK modes, we retain four KK tensor modes and one KK scalar mode
after gauge fixing. We treat those massive KK modes as stochastic sources of gravitational waves (GWs)
with characteristic dependence of the frequencies on the size of the extra dimension. Using the
observational bounds on the size of the extra dimension and on the characteristic strain, we make an
order estimation on the frequencies and amplitudes of the massive KK modes that can contribute to
the GWs.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the LIGO
and Virgo Collaborations [1–9] from the merging of a pair
of heavy black holes seems to be consistent with the
prediction of Einstein’s general relativity. The GW due to
the merging of a neutron star pair has also been observed
subsequently [10,11], opening new possibilities for astro-
nomical observation and cosmological research. Shortly
after general relativity was established, the idea to unify
gravity and the electromagnetic force, known as the
Kaluza-Klein (KK) reduction [12–16], was born. This
was an innovative attempt based on the idea of the existence
of extra dimensions, and later the presence of extra
dimensions became an essential element in the study of
unified theories, such as string or M-theories. For this
reason, if one finds a way to test the existence of extra
dimensions in nature, a new horizon of understanding of

physics will be opened. Despite many attempts, such a test
has not been successful so far.
The current theoretical prediction of the GW is based on

general relativity in four dimensions with no reference to
the extra dimensions. However, if we are living in a
universe with extra dimensions, there can be some rem-
nants of the extra dimensions in the detection of the GW.
The remnants may encode some information of the extra
dimensions, such as the size of the extra dimension and the
dynamics of fluctuation modes. Earlier attempts to explain
the effect of extra dimensions on GW can be found in
Refs. [17–27].
In this paper, we consider the KK reduction of the

Einstein-Hilbert action in five dimensions without a cos-
mological constant, which has one compactified spatial
dimension of small but finite size L [28]. For nonzero L, the
momenta of massive KK modes contain the information of
the size of the extra dimension. We explicitly show that
these massive modes contribute to metric fluctuations,
which can have effects on the GW detections. To see the
leading contribution in the small L limit, we analyze the
five-dimensional Einstein equation up to quadratic order
in the metric fluctuations. We briefly summarize the
procedure below.
The background manifold in our setting is given by

M4 × S1, where M4 is the four-dimensional Minkowski
space [29]. Then, the five-dimensional metric is expressed
as [30]
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gpqðx; yÞ ¼ gð0Þpq ðx; yÞ þ hpqðx; yÞ; ð1:1Þ

where gð0Þpq represents the background metric, hpq is the
metric fluctuation, and x, y are the coordinates for the
fourth and fifth dimensions, respectively. In order to
investigate the effect of the extra dimension on the
four-dimensional GW, we insert Eq. (1.1) into the five-
dimensional Einstein equation and keep terms up to
quadratic order in hpq. We expand the fluctuations in
terms of the spherical harmonics YIðyÞ on S1 as hpqðx; yÞ ¼P∞

I¼0 h
I
pqðxÞYIðyÞ and then project the Einstein equations

on those spherical harmonics in order to obtain the
equations of motion for each KK mode hIpq [31]. With
an appropriate gauge choice, we show that the set of
dynamical fields is composed of the massless graviton zero
mode ĥ0μν, two massless vector zero modes v0μ, one massless
scalar zero mode s0, the massive KK scalar modes hI , and
the massive KK graviton modes ĥIμν, with I ¼ 1; 2;…. The
massive KK modes, hI and ĥIμν, behave as matter fields and
play the role of the source for metric fluctuations in the
equation of motion for the massless graviton ĥ0μν. This is
given by

□h̄0μν ¼ −
16πG4

c4
Tμν; ð1:2Þ

whereG4 is the four-dimensional Newton constant, and h̄0μν
denotes the trace-reversed graviton mode defined as h̄0μν ≡
ĥ0μν − 1

2
gμνĥ

0ρ
ρ satisfying the Lorenz gauge∇μh̄0μν ¼ 0. The

energy-momentum tensor Tμν is built from the massive KK
modes and their derivatives.
The form of the Tμν in Eq. (1.2) is complicated and

noncanonical in the sense that it includes higher deriva-
tives. This makes the task of understanding the effect of the
massive KK modes on the four-dimensional GW highly
nontrivial. In order to simplify the problem, we assume that
the sources of GWs from the extra dimension are stochas-
tic. This assumption is realized by the ergodic average of
Tμν denoted by hTμνi [32,33]. The equation of motion for
the massive KK tensor modes implies that it is traceless and
transverse. Because of these properties, the ergodic average
of the energy-momentum tensor hTμνi is fully simplified.
The resulting energy density ρGW ¼ hT00i of the GW is
given by

ρGW ∝
Z

d ln f

�
1 −

�
cI

2πfL

�
2
�
f3ShðfÞ; ð1:3Þ

where I ¼ 0; 1;… denotes the index of spherical harmon-
ics, f is the frequency of the massive KKmodes (but can be
identified with the frequency of GWs), and ShðfÞ is the
spectral density of the massive KK tensor modes. This
result contains a characteristic factor

CIðfÞ≡ 1 −
�

Ic
2πfL

�
2

; ð1:4Þ

which determines the contributions of massive modes to the
energy density of the GW only at the specific frequencies.
From the positiveness of CIðfÞ in Eq. (1.4), we see that
there exists a minimum value of the frequency in the GW
detection. For instance, the minimum frequency is given by

fmin ≥ 4.8 × 1011 ðHzÞ; ð1:5Þ

for the upper bound on L ≤ 10−4 m. The smaller the size of
the extra dimension, the higher the minimum frequency.
The frequency ranges for the current GW detectors are far
below the minimum frequency of our model. Therefore, in
order to see the effect of extra dimensions on GWs, a new
generation of detectors with higher frequency ranges is
required. From the various stochastic background GW
observational limits [34–40], one can also estimate the
amplitude of the massive KK modes that corresponds to
this minimum frequency. We present such order estimation
in Sec. III B.
This paper is organized as follows. In Sec. II, we

investigate the formalism of the effective four-dimensional
gravitational waves from the KK reduction of the five-
dimensional theory to the effective four-dimensional grav-
ity theory. The four-dimensional massless graviton obtains
the source from the massive modes. We show how to
calculate this source term in the stochastic method in
Sec. III. We conclude in Sec. IV.

II. DIMENSIONAL REDUCTION
WITH MASSIVE KK MODES

We consider the KK reduction of the five-dimensional
Einstein-Hilbert action without a cosmological constant to
obtain the four-dimensional gravity theory. The KK reduc-
tion involves compactification of one spatial coordinate on
a circle of radius L. For a finite L, the compactification
results in four-dimensional KK towers, which are the tensor
modes hIμν, the vector modes vIμ, and scalar modes sI, with
I ¼ 0; 1; 2;…. The masses of these KK modes are propor-
tional to ð ILÞ. In the L → 0 limit, all massive KK modes
(I ≠ 0) are decoupled from the zero modes (h0μν, v0μ, s0).
However, if L is small but not zero, there exist nontrivial
couplings among the massless and a few lower massive KK
modes. In this paper, with an appropriate gauge choice, we
get rid of the KK massive vector modes and investigate the
couplings of the massless KK modes to the remaining
massive KK modes. The result is the four-dimensional
linearized Einstein equation without a cosmological con-
stant, but with the energy-momentum tensor determined by
the massive KK modes. In this section, we present the
detailed procedures.
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In this paper, we consider the five-dimensional Einstein-
Hilbert action without a cosmological constant,

S ¼ 1

16πG5

Z
d4xdy

ffiffiffiffiffiffi
−ĝ

p
R̂; ð2:1Þ

where y denotes the coordinate of the extra dimension with
S1 geometry. The five-dimensional Einstein equation is

R̂pq −
1

2
ĝpqR̂ ¼ 0: ð2:2Þ

In order to implement the KK reduction including massive
KKmodes, we introduce a metric fluctuation δĝpq ¼ hpq as

ĝpq ¼ gpq þ hpq; ð2:3Þ

where gpq is the background metric. We plug Eq. (2.3) into
Eq. (2.2) and expand the latter up to quadratic order in the
fluctuations. Since the background metric gpq is flat, the
perturbed Einstein equation becomes

δR̂pq −
1

2
ðgpqgrsδR̂rs þ grshpqδR̂rs þ gpqδĝrsδR̂rsÞ ¼ 0:

ð2:4Þ

Inserting δĝpq ¼ −hpq þ hprhqr with hpq ≡ gprgqshrs into
Eq. (2.4), we obtain the equations for the fluctuations up to
quadratic order in hpq,

∇r∇phrq þ∇r∇qhrp −∇2hpq −∇q∇ph

− gpqð∇r∇shrs −∇2hÞ þQpq ¼ 0; ð2:5Þ

with

Qpq ¼ −∇rðhrsð∇phsq þ∇qhsp −∇shpqÞÞ

þ 1

2
∇qhrs∇phrs þ hrs∇q∇phrs ð2:6Þ

þ 1

2
∇rhssð∇phrq þ∇qhrp −∇rhpqÞ þ∇rhsq∇rhsp

−∇rhsq∇shpr þ
1

2
gpq∇rðhrsð2∇thst −∇shttÞÞ

−
3

4
gpq∇thrs∇thrs þ

1

2
gpq∇rhst∇shtr −

1

2
gpqhrs∇2hrs

−
1

4
gpq∇rhssð2∇shrs −∇rhttÞ

þ 1

2
gpqhrsð∇t∇rhts þ∇t∇shtr −∇2hrs

−∇r∇shttÞ þ hpq∇2hrr − hpq∇r∇shrs; ð2:7Þ

where Qpq stands for terms that are quadratic in the
fluctuations. Our goal in this section is to implement the

KK reduction and obtain the four-dimensional linearized
Einstein equation with a source from the five-dimensional
equation in Eq. (2.5). The resulting equations contain
information on the size of extra dimensions only if we
take into account the massive KK modes.
The line element of the flat background metric with the

compactified fifth direction has the form

ds2 ¼ ĝpqdxpdxq ¼ ημνdxμdxν þ dy2; ð2:8Þ

where y ¼ Lψ with 0 ≤ ψ < 2π. The following procedure
is identical to the Scherk-Schwarz formalism, which
reduces d̂-dimensional gravity to d ¼ d̂ − 1-dimensional
effective theory [41]. Using the metric in Eq. (2.8), we split
Eq. (2.5) into ðμ; νÞ, ðμ; 5Þ, and (5,5) components to obtain
the equations of motion for the tensor, vector, and scalar
fields. See the Appendix A. Since the fifth direction is
compactified, one can expand the fluctuations as

hμνðx;ψÞ ¼ hIμνðxÞYIðψÞ;
hμμðx;ψÞ ¼ hIðxÞYIðψÞ;
hμ5ðx;ψÞ ¼ v0μðxÞY0 þ vIμðxÞ∇5YIðψÞ;
h55ðx;ψÞ ¼ sIðxÞYIðψÞ; ð2:9Þ

where YI’s with I ¼ 0; 1;… are the spherical harmonics on
S1, which satisfy the eigenequation ∇2

5Y
I ¼ ∂2

∂y2 Y
I ¼

1
L2

∂2
∂ψ2 YI ¼ ΛIYI with ΛI ¼ − I2

L2. In order to obtain con-

sistent gauge transformations for the four-dimensional
fields, we use ∇5YI instead of YI , in the expansion of
hμ5. We normalize the spherical harmonics as

YIðψÞ ¼
ffiffiffi
2

p
cosðIψÞ ð2:10Þ

so that they obey the orthonormal condition

1

2π

Z
2π

0

dψYIðψÞYJðψÞ ¼
�
2 ðI ¼ J ¼ 0Þ
δIJ ðI; J > 0Þ:

A. Gauge fixing

Under an infinitesimal coordinate transformation
x0p ¼ xp − ξp, the metric fluctuation transforms as

δξhpq ¼ ∇pξq þ∇qξp: ð2:11Þ

Expanding the gauge function in terms of the spherical
harmonics as

ξμðx; yÞ ¼ ξIμðxÞYIðyÞ;
ξ5ðx; yÞ ¼ ξ0ðxÞY0 þ ξIðxÞ∇5YIðyÞ; ð2:12Þ

and using Eq. (2.9) in Eq. (2.11), we obtain
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δξhIμνðxÞ¼∇μξ
I
νðxÞþ∇νξ

I
μðxÞ;

δξv0μ¼∇μξ
0; δξvIμðxÞ¼∇μξ

IðxÞþξIμðxÞ; ðI≠0Þ;
δξsIðxÞ¼2ΛIξIðxÞ: ð2:13Þ

Combining the tensor, the vector, and the scalar
KK modes in Eq. (2.13), we obtain the gauge-invariant
massive KK tensor modes for I ≠ 0,

ĥIμνðxÞ ¼ hIμνðxÞ − ð∇μvIνðxÞ þ∇νvIμðxÞÞ þ
1

ΛI ∇μ∇νsIðxÞ:
ð2:14Þ

In this paper, we fix the 5 gauge degrees of freedom (d.o.f.)
for the nonzero modes as follows:

vIμðxÞ ¼ 0; sIðxÞ ¼ hIðxÞ; ð2:15Þ

where I ≠ 0. Then, the gauge-invariant massive KK tensor
modes are reduced to

ĥIμνðxÞ ¼ hIμνðxÞ þ
1

ΛI ∇μ∇νhIðxÞ: ð2:16Þ

In the next subsection, we see that the massive KK scalar
modes hI and tensor modes ĥIμν play the role of the matter
fields in the linearized Einstein equations of the massless
four-dimensional graviton mode.
In addition to the five gauge conditions in Eq. (2.15), we

have five more constraints, which follow from the equa-
tions of motion for the nonzero modes. As a result, we get
5 physical d.o.f. of the massive KK modes for every
I ¼ 1; 2;…. See the discussion after Eq. (2.26).
For the zero modes, we use a different set of constraints

to remove unphysical d.o.f. From the gauge transforma-
tions for the zero modes in Eq. (2.13), namely, δξh0μν ¼
∇μξ

0
ν þ∇νξ

0
μ, δξv0μ ¼ ∇μξ

0 and δξs0 ¼ 0, we obtain five
constraints. We combine some of these gauge constraints
with some of the five additional constraints, which are
obtained from the equations of motion for the zero modes,
to impose the transverse-traceless (TT) conditions on the
four-dimensional graviton mode. In the next subsection, we
introduce the four-dimensional graviton mode ĥ0μν and
impose the TT gauge ∇μĥ0μν ¼ 0, gμνĥ0μν ¼ 0.

B. Linearized Einstein equations

In order to obtain the equations of motion for various KK
modes, we split Eq. (2.5) into ðμ; νÞ, ðμ; 5Þ, (5,5) compo-
nents and use the expansions in terms of the spherical
harmonics given in Eq. (2.9). Then, the equations of motion
for the Ith KK modes are obtained by projecting on YI or
∇5YI [42]. In particular, the equations of motion for the
zero modes (I ¼ 0) are given by

∇ρ∇μh0ρν þ∇ρ∇νh0ρμ −□h0μν −∇μ∇νðh0 þ s0Þ
− gμνð∇ρ∇σh0ρσ −□ðh0 þ s0ÞÞ þQ0

μν ¼ 0; ð2:17Þ

∇μ∇νv0ν −□v0μ þQ0
μ ¼ 0; ð2:18Þ

□h0 −∇ρ∇σh0ρσ þQ0
h ¼ 0; ð2:19Þ

where Q0
μν, Q0

μ, and Q0
h are the projections of the quadratic

terms in Eq. (2.5) on Y0, and they are composed of the
massive KK modes hIμν, hI (I ≠ 0). The explicit forms of
Q0

μν and Q0
h are given in Eqs. (A3) and (A9), The explicit

form of Q0
μ is omitted because the equation of motion for

the vector zero mode in Eq. (2.18) is decoupled from the
scalar and the tensor zero modes, which means Q0

μ is
irrelevant to obtain the equation of motion for the four-
dimensional graviton. The equation of motion for the scalar
zero mode s0 is obtained by combining the trace of
Eq. (2.17) with Eq. (2.19), which results in

□s0 þQ0
s ¼ 0; ð2:20Þ

where Q0
s is given in Eq. (A11). Now we can plug

Eqs. (2.19) and (2.20) into Eq. (2.17) to obtain

∇ρ∇μh0ρν þ∇ρ∇νh0ρμ −□h0μν −∇μ∇νðh0 þ s0Þ
− gμνðQ0

h þQ0
sÞ þQ0

μν ¼ 0: ð2:21Þ

Before we proceed further, we would like to comment on
the fact that the massless KK zero modes cannot contribute
to the quadratic terms in the above equations. Naively, the
projection of Eq. (2.5) on Y0 produces quadratic terms that
are composed of both the massless and the massive KK
modes. For instance, the equation for the massless KK
tensor mode can be rewritten as

∇ρ∇μh0ρν þ∇ρ∇νh0ρμ −□h0μν −∇μ∇νðh0 þ s0Þ
¼ Q̃0

μνðhIμν; hIÞ þ Q̂0
μνðh0μν; s0; v0μÞ; ð2:22Þ

where Q̃0
μνðhIμν; hIÞ contains only the massive KK modes

whereas Q̂0
μνðh0μν; s0; v0μÞ comes from the massless modes.

Now, if we introduce an order parameter of small fluctua-
tions and write the zero mode as h0μν ¼ λa0μν þOðλ2Þ, then
in order for Q̃0

μνðhIμν; hIÞ to be of the same order as the
linear terms in Eq. (2.22), the nonzero modes must be
hIμν ¼

ffiffiffi
λ

p
aIμν þOðλÞ. Thus, Q̂0

μνðh0μν; s0; v0μÞwill be second
order in λ and can be dropped from the linearized equations
for zero modes. For this reason, the quadratic terms in the
equations of motion for the massless KKmodes can contain
only the massive KK modes.
We can simplify the quadratic terms in the above

equations by using the equations of motion for the massive
modes. As those quadratic terms are already second order
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in the fluctuations, the linear order of the massive modes is
sufficient for the purpose of such simplification. After
fixing the gauge as in Eq. (2.15), the linear order equations
of motion for the massive modes, which are obtained by
projecting Eq. (2.5) on YI or ∇5YI, are given by

∇μ∇ρhIρν þ∇ν∇ρhIρμ − ð□þ ΛIÞhIμν − 2∇μ∇νhI

− gμν½∇ρ∇σhIρσ − ΛIhI − 2□hI� ¼ 0; ð2:23Þ

□hI ¼ −ΛIhI; ð2:24Þ

∇ρhIρμ ¼ ∇μhI: ð2:25Þ

Combining Eqs. (2.24) and (2.25), we obtain one more
constraint, which is

hI ¼ −
1

ΛI ∇μ∇νhIμν: ð2:26Þ

The five constraints from Eqs. (2.25) and (2.26) will
eliminate 5 d.o.f. among the 15 d.o.f. in hIpq. An additional
5 d.o.f. are removed by the gauge fixing in Eq. (2.15). This
will leave us with 5 physical d.o.f. for the nonzero modes at
each I ¼ 1; 2;….
For the zero modes, the TT gauge, which was introduced

in the previous subsection, removes 5 unphysical d.o.f.
from ĥ0μν. We then use the remaining five constraints to
remove 3 more unphysical d.o.f. from ĥ0μν and 2 unphysical
d.o.f. from v0μ. As a result, we have 5 physical d.o.f. for the

zero modes as well. For clarity, we summarize the physical
d.o.f. for the massless and massive modes in Table I.
Now inserting Eqs. (2.24) and (2.25) into Eq. (2.23), we

obtain the linearized equation for the massive KK tensor
mode,

□hIμν ¼ −ΛIhIμν: ð2:27Þ

The mass of these KK modes is inversely proportional to
the size of the compactified fifth dimension. Thus, we can
constrain this size if we can measure the mass of the KK
modes. We will discuss this in Sec. III.
Finally, we can use Eqs. (2.24), (2.25), and (2.27) to

simplify the quadratic terms in Eqs. (2.20) and (2.21). After
the simplification, we combine Eqs. (2.20) and (2.21) to
obtain the equation of motion for the four-dimensional
massless graviton mode,

LEĥ
0
μν −

1

4
∇σhIρν∇ρhIσμ þ

1

4
∇σhIρν ∇σhIμρ þ

1

8
∇μhIρσ∇νhIρσ þ

1

4
hIρσ∇ν∇μhIρσ þ

1

4
hIρσ∇ρ∇σhIμν

−
1

4
hIρσ½∇ρ∇μhIσν þ∇ρ∇νhIσμ� −

ΛI

4
hIρν hIμρ þ

1

4
ΛIhIhIμν þ

1

8
∇μhI∇νhI þ

1

4
hI∇μ∇νhI

þ gμν

�
ΛI

16
hIρσhIρσ þ

1

8
hIρσ∇ρ∇σhI þ

1

8
∇ρhI∇ρhI −

ΛI

16
hIhI

�
¼ 0; ð2:28Þ

where we have defined the four-dimensional massless
graviton ĥ0μν ¼ h0μν þ 1

2
gμνs0. Here, we introduced the

Einstein operator

LEAμν ¼
1

2
ð−□Aμν þ∇ρ∇μAρν þ∇ρ∇νAρμ −∇μ∇νA

ρ
ρÞ:

ð2:29Þ

The result in Eq. (2.28) is the linearized Einstein equation
with the source for the four-dimensional graviton. One can
see that the massive KK modes become the source of the
four-dimensional massless graviton. Compared to the usual

four-dimensional graviton which does not contain the
source for the linear order perturbation, the effective
four-dimensional massless graviton obtains the source from
the massive KK modes in the compactified five-dimen-
sional universe.
We can write Eq. (2.28) more formally as

LEĥ
0
μν ¼ 8πGN

�
Tμν½hIρσ; hI� −

1

2
gμνT½hIρσ; hI�

�
; ð2:30Þ

where the energy-momentum tensor is given by

TABLE I. The physical d.o.f. of five-dimensional fields and
four-dimensional fields. Instead of 2 physical d.o.f. of hμν, we

choose 4 physical d.o.f. for ĥIμν by removing 2 d.o.f. of vIμ.

Modes
Five-dimensional

fields d.o.f.
Four-dimensional

fields d.o.f. Mass

ĥ0μν 2 0

I ¼ 0 h0pq 5 v0μ 2 0

s0 1 0

I ≠ 0 hIpq 5 ĥIμν 4 I=L

hI 1 I=L
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Tμν½hIρσ; hI� ¼ −
1

32πGN

�
∇σhIρν ∇σhIμρ −∇σhIρν∇ρhIσμ þ

1

2
∇μhIρσ∇νhIρσ

þ hIρσ∇ν∇μhIρσ þ hIρσ∇ρ∇σhIμν − hIρσ½∇ρ∇μhIσν þ∇ρ∇νhIσμ�

− ΛIhIρν hIμρ þ ΛIhIhIμν þ
1

2
∇μhI∇νhI þ hI∇μ∇νhI

−
gμν
4

½3∇τhIρσ∇τhIρσ − 2∇ρhIστ∇σhIρτ − 3ΛIhIρσhIρσ þ 3∇ρhI∇ρhI − ΛIhIhI�
�
: ð2:31Þ

We note that even though hI appears in the energy-momentum tensor, it is not an independent d.o.f. since it is expressed in
terms of hIμν as in Eq. (2.26).
For later convenience, we rewrite Eq. (2.31) in terms of the gauge-invariant massive KK tensor mode defined in

Eq. (2.16). From Eq. (2.24), we obtain ∇μĥIμν ¼ 0 and gμνĥIμν ¼ 0. Thus,

Tμν½ĥIρσ; hI� ¼ −
1

16πGN

�
1

2
ĥIρσ∇ρ∇σĥ

I
μν −

1

2
ĥIρσ∇ρ∇μĥ

I
σν −

1

2
ĥIρσ∇ρ∇νĥ

I
σμ þ

1

2
ĥIρσ∇ν∇μĥ

I
ρσ

þ 1

2
∇σĥIρν ∇σĥ

I
μρ −

1

2
∇σĥIρν∇ρĥIσμ þ

1

4
∇μĥ

Iρσ∇νĥ
I
ρσ −

ΛI

2
ĥIρν ĥ

I
μρ

−
1

4ΛI ∇μ∇ρ∇σhI∇νĥ
I
ρσ −

1

4ΛI ∇ν∇ρ∇σhI∇μĥ
I
ρσ −

1

2ΛI ∇ρ∇σhI∇ρ∇σĥ
I
μν

þ 1

2ΛI ∇ρ∇σhI∇ρ∇μĥ
I
σν þ

1

2ΛI ∇ρ∇σhI∇ρ∇νĥ
I
μσ −

1

2ΛI ∇ρ∇σhI∇μ∇νĥ
I
ρσ

þ 1

2ΛI Λ
I∇μ∇ρhIĥIρν þ

1

2ΛI Λ
I∇ν∇ρhIĥIμρ þ

1

2
ΛIhIĥIμν

þ 1

4ðΛIÞ2 ∇μ∇ρ∇σhI∇ν∇ρ∇σhI −
1

2ΛI ∇μ∇ρhI∇ν∇ρhI þ
1

4
∇μhI∇νhI

−
1

2
gμν

�
3

4
∇τĥ

Iρσ∇τĥIρσ −
1

2
∇σĥIρτ∇ρĥIτσ −

3ΛI

4
ĥIρσĥIρσ −

1

2ΛI ∇τ∇ρ∇σhI∇τĥ
I
ρσ

þ 3

2
∇ρ∇σhIĥIρσ þ

1

4ðΛIÞ2∇
τ∇ρ∇σhI∇τ∇ρ∇σhI −

3

4ΛI ∇ρ∇σhI∇σ∇ρhI

þ 3

4
∇ρhI∇ρhI −

ΛI

4
hIhI

��
: ð2:32Þ

Even though it is redundant to rewrite the Tμν in Eq. (2.32),
this form will further simplify our calculations in the
subsequent sections. For comparison, we shortly review
how to obtain the effective energy-momentum tensor of the
four-dimensional gravitational waves on the flat universe in
Appendix B. It is important to notice that the effective
energy-momentum tensor obtained there is different from
the above energy-momentum tensor of our model.

III. EFFECT OF THE EXTRA DIMENSION
IN GW DETECTION

In this section, we show the effect of massive KK modes
on the dynamics of the four-dimensional graviton. In order
to compare with the observation, we derive the analytic
form of the stochastic average of the energy-momentum

tensor obtained in the previous section. We perform the
order estimation to put a new constraint on the size of the
extra dimension. It is expected that there will be more
accurate GW data available in the future, and we believe
our results provide a tangible formalism on how to use the
GW data to get some information about the extra
dimension.

A. Stochastic average of the energy-momentum tensor

The energy in GW is described by averaging the energy-
momentum tensor over several wavelengths or periods.
Thus, we need to average the energy-momentum tensor in
our model given in Eq. (2.32), which is built from the
nonzero modes hI and ĥIμν. Inserting the plane wave
solution ĥIμν ¼ AI

μνeipμxμ into Eq. (2.27), we obtain
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□ĥIμν þ ΛIĥIμν ¼ ð−pμpμ þ ΛIÞĥIμν ¼ 0 → m2
I

¼ −
ΛIℏ2

c2
¼
�
Iℏ
cL

�
2

; ð3:1Þ

where we have used the dispersion relation

ω2
I

c2
− jk⃗Ij2 ¼

m2
I c

2

ℏ2
ð3:2Þ

and the definition ΛI ¼ − I2

L2. We can regard both hI and ĥIμν
as random variables, which can be identified with a
stochastic background. Thus, using the dispersion
relations, we calculate the ensemble average of the energy-
momentum tensor. In order to perform the time average, we
use the plane wave expansion of hIðx⃗; tÞ in terms of the
Fourier transformation [32,33],

hIðx⃗; tÞ ¼
Z

d3k
ð2πÞ3 ½B̃

Iðk⃗Þeikμxμ þ B̃I�ðk⃗Þe−ikμxμ �; ð3:3Þ

where the four-vectors in the exponent are kμ ¼ ðω=c; k⃗Þ,
xμ ¼ ðct; x⃗Þ, and we have suppressed the index I in (ωI , k⃗I)
for simplicity. Using the dispersion relation in Eq. (3.2), we
can write d3k as

d3k ¼ jk⃗j2djk⃗jd2n̂ ¼
�
1þ c2

ω2
ΛI

�1
2 ω2

c3
dωd2n̂

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
cI

2πfL

�
2

s �
2π

c

�
3

f2dfd2n̂;

ð3:4Þ

where d2n̂ ¼ −dðcos θÞdϕ denotes the integration over the
solid angle and in the last step we have replaced ω by 2πf.
Similarly

kμxμ ¼ −ωtþ jk⃗jn̂ · x⃗¼ −2πf

 
t−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�

cI
2πfL

�
2

s
n̂ · x⃗
c

!
:

ð3:5Þ

Using Eqs. (3.4) and (3.5), Eq. (3.3) becomes

hIðx⃗; tÞ ¼
Z

∞

ϵ
df
Z

d2n̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ic

2πfL

�
2

s

×

�
f2

c3
B̃Iðf; n̂Þe−2πifðt−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð cI

2πfLÞ2
p

n̂·x⃗
c Þ þ ðc:cÞ

�

≡
Z

∞

−∞
df
Z

d2n̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ic

2πfL

�
2

s

× h̃Iðf; n̂Þe−2πifðt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð cI

2πfLÞ2
p

n̂·x⃗
c Þ; ð3:6Þ

where ϵ ¼ mc2=ð2πℏÞ and in the second line we used
B̃I�ðf; n̂Þ ¼ B̃Ið−f; n̂Þ. Here, (c.c) means the complex

conjugate, and we also introduced h̃Iðf; n̂Þ≡ f2

c3 B̃
Iðf; n̂Þ.

We emphasize that the integral range in Eq. (3.6) is not well
defined for jfj < ϵ because it will produce tachyonic
modes as shown in Eq. (3.2). The real integral ranges in
the second equality of Eq. (3.6) are ½−∞;−ϵ� and ½ϵ;∞�.
However, this detail is not important because, as we will see
later, the quantities we need to compare with the data are
the integrands of Eqs. (3.8), (3.14), and (3.15).
From the above plane wave solution and assumption on

the stochastic properties of the nonzero modes, we can
replace the ensemble average of the energy-momentum
tensor with the temporal average. This is given by

hhI�ðx⃗; tÞhIðx⃗; tÞi

¼
Z

∞

−∞
df
Z

d2n̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ic

2πfL

�
2

s

×
Z

∞

−∞
df0
Z

d2n̂0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ic

2πf0L

�
2

s

× hh̃I�ðf; n̂Þh̃Iðf0; n̂0Þie2πifðt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð cI

2πfLÞ2
p

n̂·x⃗
c Þ

× e
−2πif0ðt−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð cI

2πf0LÞ2
p

n̂0 ·x⃗
c Þ
: ð3:7Þ

Note that since hIðx⃗; tÞ is a real mode, we could write
hhI�ðx⃗; tÞhIðx⃗; tÞi instead of hhIðx⃗; tÞhIðx⃗; tÞi because the
former way of writing is commonly used in the literature.
Now, we use the definition of the stochastic property

hh̃�ðf; n̂Þh̃ðf0; n̂0Þi≡ 1
2
δðf − f0Þ δ2ðn̂;n̂0Þ

4π ShðfÞ. The function
ShðfÞ is called the spectral density of the stochastic
background hIðx⃗; tÞ. Then, we obtain

hhI�ðx⃗; tÞhIðx⃗; tÞi¼ 1

2

Z
∞

−∞
df
Z

d2n̂

�
1−
�

Ic
2πfL

�
2
�
ShðfÞ
4π

¼
Z

∞

ϵ
df

�
1−
�

Ic
2πfL

�
2
�
ShðfÞ; ð3:8Þ

where we have used Shð−fÞ ¼ ShðfÞ in the second line.
One can repeat the same process for ĥIρσ to obtain

ĥIρσðx⃗; tÞ ¼
Z

d3k
ð2πÞ3 ½A

I
ρσðk⃗Þeikμxμ þAI�

ρσðk⃗Þe−ikμxμ �

¼
Z

∞

−∞
df
Z

d2n̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ic

2πfL

�
2

s

× h̃Iρσðf; n̂Þe−2πifðt−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð cI

2πfLÞ2
p

n̂·x⃗
c Þ; ð3:9Þ

where we have defined h̃Iρσðf; n̂Þ≡ f2

c3 Aρσðf; n̂Þ. If we
adopt the stochastic background of the GW generated
from hIμν, then
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h̃Iμνðf; n̂Þ ¼
X
A

h̃IAðf; n̂ÞϵAμν; ð3:10Þ

where ϵAμν are the polarization tensors and A labels the
polarization modes (A ¼ 1; 2;…; 4) as shown in Table I. If
one assumes that the stochastic backgrounds of GWs are
stationary, then the ergodic average becomes

hh̃I�ρσðf; n̂Þh̃ρσIðf0; n̂0Þi
≡X

A

ϵAρσ
X
A0

ϵA
0ρσhh̃I�A ðf; n̂Þh̃IA0 ðf0; n̂0Þi

¼
X
A

ϵAρσϵ
Aρσδðf − f0Þ δ

2ðn̂; n̂0Þ
4π

1

2
ShIðfÞ; ð3:11Þ

where we have used hh̃I�A ðf; n̂Þh̃IA0 ðf0; n̂0Þi≡
δðf − f0Þ δ2ðn̂;n̂0Þ

4π δAA0 1
2
ShIðfÞ. Now using Eqs. (3.9) and

(3.11), the average for the tensor modes becomes

hĥρσðx⃗; tÞĥρσðx⃗; tÞi

¼
X
A

ϵAρσϵ
Aρσ

Z
∞

ϵ
df

�
1 −

�
cI

2πfL

�
2
�
ShI ðfÞ

¼
X
A

ϵAρσϵ
Aρσ

Z
∞

f¼ϵ
d ln f

�
1 −

�
cI

2πfL

�
2
�
fShIðfÞ

≡
P

Aϵ
A
ρσϵ

Aρσ

2

Z
∞

f¼ϵ
ðd ln fÞh2cðfÞ; ð3:12Þ

where the definition of characteristic strain is
hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ðcI=2πfLÞ2ÞfShI

p
. For I ¼ 0, we recover

the usual four-dimensional characteristic strain
ffiffiffiffiffiffiffiffiffiffiffi
2fShI

p
.

The dimension of ShI is [ Hz
−1], and hc is dimensionless.

Finally, we can calculate hTμνi using the above stochas-

tic properties of hI and ĥIμν. The energy-momentum tensor
for our model is given in Eq. (2.32), and it looks very
complicated. However, once we substitute the above
plane wave solutions for the massive scalar and tensor
modes, most of the terms are either vanishing because
of the transverse condition ∇μĥIμν → kμĥIμν ¼ 0 or they
cancel each other because any two contracted covariant
derivatives of the form h∇ρð∇ � � � hIÞ∇ρð∇ � � � hIμνÞi
become ΛIhð∇ � � � hIÞð∇ � � � hIμνÞi, where the ellipses
denote multiple covariant derivatives. As a result, we get
a very remarkable simplification, and only two terms in
Eq. (2.32) survive,

hTμνi ¼ −
c4

16πG

	
1

2
ĥIρσðxαÞ∇μ∇νĥ

I
ρσðxαÞ

þ 1

4
∇μĥ

IρσðxαÞ∇νĥ
I
ρσðxαÞ




¼ c4

16πG

P
Aϵ

A
ρσϵ

Aρσ

4

Z
∞

f¼ϵ
d ln fkμkν

×

�
1 −

�
cI

2πfL

�
2
�
fShIðfÞ: ð3:13Þ

Thus, the energy density of the GW ðρgw ¼ hT00iÞ is
given by

ρgw ¼
Z

∞

f¼ϵ
d ln f

dρgw
d ln f

¼ c2π
4G

P
Aϵ

A
ρσϵ

Aρσ

4

×
Z

∞

f¼ϵ
d ln f

�
1 −

�
cI

2πfL

�
2
�
f3ShIðfÞ; ð3:14Þ

where the first step amounts to expressing the energy
density of the GWas an integral over d ln f of some spectral
density and the second step is substituting hT00i from
Eq. (3.13). One can also define the logarithmic derivative of
the energy density contrast of the GW as

ΩgwðfÞ≡ 1

ρcr

dρgw
d ln f

¼ 2π2

3H2
0

P
Aϵ

A
ρσϵ

Aρσ

4

×

�
1 −

�
cI

2πfL

�
2
�
f3ShIðfÞ

¼ 2π2

3H2
0

f2hcðfÞ2 ¼
8π2

3H2
0

f4jh̃ðfÞj2; ð3:15Þ

where ρcr ≡ 3c2
8πGH

2
0 is the critical energy density, H0 is the

present value of the Hubble constant, and jh̃ðfÞj ¼
hcðfÞ=ð2fÞ is the so-called frequency-domain strain. We
have also used the fact that

P
A ϵ

A
ρσϵ

Aρσ ¼ 8 in the second
equality because the four massive tensor modes ĥIμν
contribute to the sources of the stochastic background GW.

B. Order estimations

In this section, we elaborate on the observational
applications of our model by using both GW experiments
and particle physics ones.

1. Gravitational wave application

One of the main properties of our model is the existence
of the lower limit of the frequency which can contribute as a
source of the four-dimensional GWs. From Eq. (3.15) we
notice that we first need to make sure 1 − Ic

2πfL is positive.
This means that the KK modes below a specific frequency
cannot contribute as the source of the effective four-
dimensional massless gravitational waves. Thus, we obtain
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the lower limit on the frequency fmin for the first massive
mode (I ¼ 1) for a given upper bound on the size of the
extra dimension Lmax,

fmin ≥
c

2πLmax
: ð3:16Þ

There have been various upper limits on the size of the extra
dimension depending on the methods of measurements
[43]. One way to put the limit on the Lmax is to use the
deviations of the Newtonian gravitational law, and this
gives a value of around 100 μm [43]. In this case, we can
put the lower limit on the frequency as Oð1011Þ Hz.
Another method is based on the Randall-Sundrum (RS)
model which proposes the 1=TeV (i.e., 10−18 m) scale
warped extra dimension in order to explain the hierarchy of
the electroweak scale [44]. Thus, the RS model estimates
the lowest value of the frequency to be Oð1025Þ Hz. The
smaller the size of the extra dimension, the higher the
frequency of the modes that can contribute as the source of
the massless four-dimensional GWs. Therefore, we pro-
pose high-frequency detectors in order to measure the very
small extra dimension by using the GWs.
Next, we use the observational limit on the magnitude of

the dimensionless energy density in GWs, ΩgwðfÞ, to
constrain the magnitude of the characteristic strain hc by
using Eq. (3.15). There are various limits on the ΩgwðfÞ at
fixed frequencies from various observations [34–40]. We
show these in Table II. If we adopt the Planck result [40]

and use the fact that ΩgwðfPlÞ
f2Pl

¼ ΩgwðfKKÞ
f2KK

, then we can estimate

the magnitude of h̃ as

h̃ ¼ hc
2f

¼
ffiffiffiffiffiffiffiffiffiffiffi
3Ωgw

8

r
H0

πf2
¼ hcðPlÞ

2fðKKÞ

≤
3.78 × 10−25

2 × 1011
≃ 10−36 ðHz−1Þ: ð3:17Þ

2. Particle physics application

Due to our detailed calculation for the KK reduction with
the finite size of the extra dimension, one can also estimate

the size of the extra dimension by using the results of
particle physics observations. From the definition of masses
of KK modes, one obtains L ¼ Iℏ

mIc
. We can find L from the

stable radion mass bound. In our model, hI in Eq. (2.15)
corresponds to this radion. Given a stabilization mecha-
nism, the radion mass can, in principle, be calculated. The
required ansatz is that the radion fluctuation about the RS
background solves the linearized Einstein equations. Then,
we incorporate the backreaction of the bulk scalar vacuum
expectation value into the metric. Treating the backreaction
as a perturbation about the RS solution, the mass bound is
given by [45–47]

Oð10 GeVÞ ≤ mI ≤ Oð1 TeVÞ: ð3:18Þ
Thus, if we adopt this constraint to the mass-length relation
in Eq. (3.2), then we obtain

10−19 m ≤ L ≤ 10−17 m: ð3:19Þ

IV. CONCLUSIONS

In order to examine the effect of the extra dimension in
our observational four-dimensional phenomena, one needs
to consider the small but finite size of the extra dimensions.
The conventional KK reduction, where only the massless
KK zero modes are kept to obtain four-dimensional gravity
theory, fails to provide evidence on higher-dimensional
gravity models. In the limit of vanishing size of extra
dimensions, neglecting the massive KK modes is feasible,
whereas, for the small but finite size of the extra dimen-
sions, the massive KK modes can have measurable effects
on the four-dimensional gravity theory. In this paper, we
investigate the effective four-dimensional gravity theory
obtained from the KK reduction of the Einstein-Hilbert
action without the cosmological constant in a compactified
five-dimensional manifold.
In our model, the KK reduction produces sets of both

massless and massive dynamical fields. The massless fields
are composed of a tensor mode and a vector mode, each
with 2 dynamical d.o.f., and a scalar mode with 1
dynamical d.o.f. The massive fields also have 5 d.o.f.,
and we choose four massive tensor modes and one massive

TABLE II. Various observational upper limits on Ωgw of the stochastic GWs. The LIGO and Virgo results at different frequencies give
different values of ΩgwðfÞ, and thus the hc’s are different.

ΩgwðfÞ f ðHzÞ Experiments hc h̃ Reference

0.044 3 × 10−4 Cassini 2 × 10−15 8.32 × 10−11 [34]
3.88 × 1017 0.035–0.830 TOBA 7.71 × 10−9 7.71 × 10−8 [35]
1.2 × 108 0.05–0.1 Seismic 1.29 × 10−13 8.61 × 10−13 [36]
0.035–0.15 0.005–0.3 Earth’s ring 5.51 × 10−19 9.19 × 10−19 [37]
5.6 × 10−6 41.5–169

LIGO and Virgo
1.91 × 10−23 9.08 × 10−26 [38]

1.8 × 10−4 170–600 2.95 × 10−23 3.83 × 10−26

1.2 × 105 0.1–1 Apollo Seismic 2.93 × 10−16 1.47 × 10−16 [39]
10−15 0.1–1 Planck 2.68 × 10−26 1.34 × 10−26 [40]
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scalar mode. The massive modes act as the matter field and
become the sources of the massless fields in the GW
equation. In particular, the energy-momentum tensor in the
equation of motion of the effective four-dimensional
massless graviton is composed of the massive tensor and
scalar KK modes.
In Ref. [23], the authors claim that there exists one

longitudinal massive graviton mode in the KK reduction of
five-dimensional gravity theory. Their model is quite
similar to ours; however, we treat all the massive KK
modes as the stochastic background of the massless
graviton modes. Thus, the four-dimensional effective grav-
iton is massless, as we have shown in Sec. II. Our result is
also consistent with the previous works [41,48–50].
From the observational upper limit on the size of the

extra dimension, we will be able to obtain a lower limit on
the frequency of the GW. A higher minimum frequency is
required to probe the very small size of the extra dimension.
Also, from the various stochastic background GW obser-
vations, we estimate the amplitude of the massive KK
modes h̃ρσ ∼ 10−31 Hz−1. Therefore, we propose that high
frequency and very sensitive experiments of GWs are
required in order to investigate the information on the
five-dimensional compactified extra dimension. However,
this high sensitivity might be improved if one considers
higher extra dimensional models. As a side remark, we also
obtain a bound on the size of the extra dimension as
10−19m ≤ L ≤ 10−17m, from the mass bounds on the KK

modes. If the observations of the particle physics provide
more stringent bounds on the mass of the KK modes, this
can narrow the frequency searching window.
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APPENDIX A: DECOMPOSITION OF
QUADRATIC ORDER EQUATIONS
AND HARMONIC EXPANSIONS

We decompose Eqs. (2.5) into the ðμ; νÞ, ðμ; 5Þ, and (5,5)
components. As a result, we obtain the following set of
equations.

(i) ðμ; νÞ components:
Choosing the free indices ðp; qÞ in Eq. (2.5) to be

ðμ; νÞ, we obtain

∇ρ∇μhρν þ∇ρ∇νhρμ þ∇a∇μhaν þ∇a∇νhaμ − ð∇ρ
ρ þ∇a

aÞhμν −∇μ∇νðhρρ þ haaÞ
− gμνð∇ρ∇σhρσ þ 2∇ρ∇ahρa þ∇a∇bhab − ð∇ρ∇ρ þ∇a∇aÞðhσσ þ hbbÞÞ þQμν ¼ 0; ðA1Þ

where Qμν is the quadratic part in Eq. (2.6). Since we are considering a flat background metric, we note that
∇ρ∇σ ¼ ∇σ∇ρ. In order to obtain the equation of motion for the tensor zero mode h0μν, we expand the fluctuation hpq
in Eq. (A1) in terms of the spherical harmonic in Eq. (2.9) and project the resulting equations on Y0. Using the gauge
fixing (2.15), we obtain

∇ρ∇μh0ρν þ∇ρ∇νh0ρμ −□h0μν −∇μ∇νðh0 þ s0Þ − gμνð∇ρ∇σh0ρσ −□ðh0 þ s0ÞÞ þQ0
μν ¼ 0; ðA2Þ

where

Q0
μν ¼ −

1

2
∇ρhIρσð∇μhIσν þ∇νhIσμÞ þ

1

4
∇μhIρσ∇νhIρσ þ

1

2
∇ρhIρσ∇σhIμν −

1

2
∇σhIρν∇ρhIσμ

þ 1

2
∇σhIρν ∇σhIμρ −

1

2
hIρσ∇ρ∇μhIσν −

1

2
hIρσ∇ρ∇νhIσμ þ

1

2
hIρσ∇ν∇μhIρσ

−
ΛI

2
hIρν hIμρ þ

1

4
∇ρhIð∇μhIρν þ∇νhIρμÞ −

1

4
∇ρhI∇ρhIμν þ

1

2
hIμν□hI þ 3ΛI

4
hIhIμν

−
1

4
∇ρhI∇ρhIμν þ

1

4
∇ρhIð∇μhIρν þ∇νhIρμÞ þ

1

2
hIμν□hI þ ΛI

4
hIμνhI

þ 1

4
∇μhI∇νhI þ

1

2
hI∇μ∇νhI þ

1

2
hIρσ∇ρ∇σhIμν −

1

2
∇ρ∇σhIρσhIμν

þ gμν

�
1

2
∇ρhIρσ∇τhIστ −

3

8
∇τhIρσ∇τhIρσ þ

1

4
∇σhIρτ∇ρhIστ −

1

2
hIρσ□hIρσ −

ΛI

8
hIρσhIρσ
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þ hIρσ∇ρ∇τhIστ −
1

2
∇ρhIρσ∇σhI −

1

2
hIρσ∇ρ∇σhI þ

1

8
∇ρhI∇ρhI −

ΛI

8
hIhI

−
1

2
∇ρhIρσ∇σhI −

1

2
hIρσ∇ρ∇σhI þ

1

4
∇ρhI∇ρhI −

ΛI

4
hIhI

−
1

4
∇ρhI∇ρhI −

1

2
hI□hI

�
: ðA3Þ

For later convenience, we take the trace of the above equation,

□h0 þ 3

2
□s0 −∇ρ∇σh0ρσ þ

1

2
∇ρhIρσ∇τhIστ −

3

8
∇τhIρσ∇τhIρσ þ

1

4
∇σhIρτ∇ρhIστ

þ 1

2
hIρσ∇ρ∇τhIστ þ hIρσ∇τ∇ρhIστ −

3

4
hIρσ□hIρσ −

1

2
ΛIhIρσhIρσ −

1

2
∇ρhIρσ∇σhI

−
3

4
hIρσ∇ρ∇σhI −

1

4
∇ρ∇σhIρσhI þ

1

8
∇ρhI∇ρhI þ

1

4
hI□hI þ 1

8
ΛIhIhI −

3

4
∇ρhIρσ∇σhI

− hIρσ∇ρ∇σhI þ
3

8
∇ρhI∇ρhI þ

1

4
hI□hI −

3ΛI

8
hIhI −

3

8
∇ρhI∇ρhI −

3

4
hI□hI ¼ 0: ðA4Þ

(ii) ðμ; 5Þ components:
The ðμ; a0 ¼ 5Þ components of Eq. (2.5) are given by

∇ρ∇μhρa0 þ∇ρ∇a0hρμ þ∇a∇μhaa0 þ∇a∇a0haμ − ð∇ρ
ρ þ∇a

aÞhμa0 −∇μ∇a0 ðhρρ þ haaÞ
− gμa0 ð∇ρ∇σhρσ þ 2∇ρ∇ahρa þ∇a∇bhab − ð∇ρ∇ρ þ∇a∇aÞðhσσ þ hbbÞÞ þQμ5 ¼ 0: ðA5Þ

Projecting on Y0 and∇5YI, we obtain the equation of motion for the vector zero mode and some constraint equations
for hIμν,

∇μ∇νv0ν −□v0μ þQ0
μ ¼ 0; ∇νhIμν −∇μhI þQI

μ ¼ 0; ðA6Þ

where we have used the gauge fixing in Eq. (2.15), and ðQ0
μ; QI

μÞ are quadratic terms, whose explicit forms are not
needed for what we want to accomplish in this paper.

(iii) (5,5) components:
The ða0 ¼ 5; b0 ¼ 5Þ components of Eq. (2.5) are

∇ρ∇a0hρb0 þ∇ρ∇b0hρa0 þ∇a∇a0hab0 þ∇a∇b0haa0 − ð∇ρ
ρ þ∇a

aÞha0b0 −∇a0∇b0 ðhρρ þ haaÞ
− ga0b0 ð∇ρ∇σhρσ þ 2∇ρ∇ahρa þ∇a∇bhab − ð∇ρ∇ρ þ∇a∇aÞðhσσ þ hbbÞÞ þQa0b0 ¼ 0: ðA7Þ

Again, we expand Eq. (A7) in terms of the spherical harmonic (2.9) and project the resulting equation on Y0. With
our gauge fixing condition (2.15), we obtain

□h0 −∇ρ∇σh0ρσ þQ0
h ¼ 0; ðA8Þ

where

Q0
h ¼

1

2
∇ρhIρσ∇τhIστ −

3

8
∇τhIρσ∇τhIρσ þ

1

4
∇σhIρτ∇ρhIστ

þ hIρσ∇ρ∇τhIστ −
1

2
hIρσ□hIρσ þ

ΛI

8
hIρσhIρσ −

1

2
∇ρhIρσ∇σhI −

1

2
hIρσ∇ρ∇σhI

þ 1

8
∇ρhI∇ρhI −

ΛI

8
hIhI −

1

2
hI∇ρ∇σhIρσ þ

1

2
hI□hI: ðA9Þ
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Combining Eqs. (A4) and (A8), we obtain the equation of motion for zero modes s0,

□s0 þQ0
s ¼ 0; ðA10Þ

where

Q0
s ≡ −

�
−
1

3
hIρσ∇ρ∇τhIστ þ

1

6
hIρσ□hIρσ þ

5ΛI

12
hIρσhIρσ þ

1

2
∇ρhI∇σhIρσ þ

1

6
hI∇ρ∇σhIρσ þ

1

6
hIρσ∇ρ∇σhI −

1

6
hI□hI

−
1

6
ΛIhIhI þ 2

3
hIρσ∇ρ∇σhI −

1

3
hI∇ρ∇σhIρσ −

1

4
∇ρhI∇ρhI −

1

6
hI□hI þ ΛI

4
hIhI

þ 1

4
∇ρhI∇ρhI þ

1

3
hI□hI þ 1

2
hI□hI

�
: ðA11Þ

Inserting Eqs. (A8) and (A10) into Eq. (A2), we obtain

□h0μν ¼ ∇ρ∇μh0ρν þ∇ρ∇νh0ρμ −∇μ∇νðh0 þ s0Þ − 1

2
∇ρhIρσð∇μhIσν þ∇νhIσμÞ þ

1

2
∇ρhIρσ∇σhIμν þ

1

4
∇μhIρσ∇νhIρσ

−
1

2
∇σhIρν∇ρhIσμ þ

1

2
∇σhIρν ∇σhIμρ þ

1

2
hIρσ∇ρ∇σhIμν −

1

2
∇ρ∇σhIρσhIμν −

1

2
hIρσ∇ρ∇μhIσν −

1

2
hIρσ∇ρ∇νhIσμ

þ 1

2
hIρσ∇ν∇μhIρσ þ

1

4
∇ρhIð∇μhIρν þ∇νhIρμÞ −

ΛI

2
hIρν hIμρ −

1

4
∇ρhI∇ρhIμν þ

1

2
hIμν□hI þ 3ΛI

4
hIhIμν

þ 1

4
∇ρhIð∇μhIρν þ∇νhIρμÞ −

1

4
∇ρhIμν∇ρhI þ 1

2
hIμν□hI þ ΛI

4
hIμνhI þ

1

4
∇μhI∇νhI þ

1

2
hI∇μ∇νhI

þ gμν

�
1

6
hIρσ□hIρσ −

1

3
hIρσ∇ρ∇τhIστ þ

ΛI

6
hIρσhIρσ þ

1

6
hI∇ρ∇σhIρσ þ

1

6
hIρσ∇ρ∇σhI −

1

6
hI□hI −

ΛI

6
hIhI

þ 1

6
hIρσ∇ρ∇σhI þ

1

6
hI∇ρ∇σhIρσ −

1

6
hI□hI −

1

6
hI□hI

�
: ðA12Þ

Combining Eqs. (A8), (A10), and (A12), we have the relation

LEĥ
0
μν −

1

4
∇ρhIρσ∇μhIσν −

1

4
∇ρhIρσ∇νhIσμ þ

1

4
∇ρhIρσ∇σhIμν þ

1

8
∇μhIρσ∇νhIρσ −

1

4
∇σhIρν∇ρhIσμ þ

1

4
∇σhIρν ∇σhIμρ

−
1

4
∇ρ∇σhIρσhIμν −

1

4
hIρσ∇ρ∇μhIσν −

1

4
hIρσ∇ρ∇νhIσμ þ

1

4
hIρσ∇ρ∇σhIμν þ

1

4
hIρσ∇ν∇μhIρσ −

ΛI

4
hIμρh

Iρ
ν

−
1

8
∇ρhIμν∇ρhI þ 1

8
ð∇μhIρν þ∇νhIρμÞ∇ρhI þ 1

4
hIμν□hI þ 3ΛI

8
hIμνhI

þ 1

8
ð∇μhIρν þ∇νhIρμÞ∇ρhI −

1

8
∇ρhIμν∇ρhI þ 1

4
hIμν□hI þ ΛI

8
hIμνhI þ

1

8
∇μhI∇νhI þ

1

4
hI∇μ∇νhI

þ gμν

�
−
1

4
hIρσ∇τ∇ρhIτσ þ

1

8
hIρσ□hIρσ þ

3ΛI

16
hIρσhIρσ þ

1

8
hIρσ∇ρ∇σhI

þ 1

8
∇ρ∇σhIρσhI −

1

8
hI□hI −

ΛI

8
hIhI þ 1

8
∇ρhIρσ∇σhI þ

1

4
hIρσ∇ρ∇σhI

−
1

16
∇ρhI∇ρhI −

1

8
hI□hI þ ΛI

16
hIhI þ 1

16
∇ρhI∇ρhI þ

1

8
hI□hI

�
¼ 0; ðA13Þ

where ĥ0μν ¼ h0μν þ 1
2
gμνs0 is the effective four-dimensional graviton.
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APPENDIX B: EFFECTIVE ENERGY-
MOMENTUM TENSOR FROM GW

PERTURBATION

In this Appendix, we briefly review the four-dimensional
energy-momentum tensor from GW perturbation, in order
to show the analogy with what we did in Sec. III. In Sec. II,
starting from the flat five-dimensional gravity theory and
applying the KK reduction including terms that are of
quadratic order in the metric perturbation, we have obtained
the four-dimensional effective gravity theory with matter. A
similar situation has been considered in four-dimensional
gravity when a source of the GW is far from the observer. In
this case, the energy carried by a wave as it leaves a source
can be written as an effective stress-energy tensor for the
wave by including the second-order perturbation. This is
the so-called Isaacson energy-momentum tensor [51].
We assume that the amount of energy associated with the

GW in a region of spacetime is large enough to contain
several wavelengths of gravitational radiation but is smaller
than any background curvature scale. In this case, one
needs to find an integral average of an effective energy-
momentum tensor over a volume large enough that bulk
contributions are greater than the boundary contributions.
Einstein field equations in a vacuum are written as

Gμν ¼ G
0

μν þ G
1

μν½hαβ� þG
2

μν½hαβ� þ � � � ¼ 0: ðB1Þ

One can write the metric in the flat spacetime with its
fluctuation as

gαβ ¼ ηαβ þ hαβ ¼ ηαβ þ λh
1

αβ þ λ2h
2

αβ þ � � � ; jhαβj ≪ 1;

ðB2Þ

where λ is a formal order parameter denoting the first-order

correction (h
1

) and the second-order correction (h
2

), respec-
tively. Then, one can rewrite Eq. (B1) by using Eq. (B2) as

Gμν ¼ G
0

μν þ λG
1

μν½h
1

αβ� þ λ2ðG1 μν½h
2

αβ� þG
2

μν½h
1

αβ�Þ
þOðλ3Þ þ � � �

¼ 0: ðB3Þ

The above equation should hold order by order in λ; then
the first-order and second-order corrections to the back-
ground metric are given by [52]

G
0

μν ¼ 0; ðB4Þ

G
1

μν½h
1

αβ� ¼ 0; ðB5Þ

G
1

μν½h
2

αβ� ¼ −G
2

μν½h
1

αβ� ¼
8πG
c4

TðGWÞ
μν ; ðB6Þ

where TðGWÞ
μν ≡ − c4

8πGG
2

μν½h
1

αβ� is the effective energy-
momentum tensor created by the first-order GW perturba-

tion. In order to make TðGWÞ
μν gauge invariant, one must

perform an integral average over a region of spacetime
large enough to contain several GW oscillations,

TGW
μν ¼ −

c4

8πG

D
R
2

μν −
1

2
ημνR

2E
; ðB7Þ

where hi represents the integral average. To perform the
above calculation, one uses the definition of the Ricci

tensor, Rμν ¼ ∂Γα
μν

∂xα −
∂Γα

αν∂xμ þ Γα
μνΓ

β
αβ − Γα

βνΓ
β
μα, and retains the

terms quadratic in hμν while applying the following tricks:
(i) adopt the TT gauge so that hTT0μ ¼ 0, δik∂hTTij =∂xk ¼ 0,
and δijhTTij ¼ 0; (ii) assume that under an integral average,
all terms of the form h∂Tμ���γ=∂xνi can be neglected since
such terms contribute only to the boundary of the region
and can be made arbitrarily small compared to the bulk by
expanding the region in which the integral average is
performed; and (iii) use □hTTij ¼ 0.
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