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Spinfoam amplitudes with small spins can have interesting semiclassical behavior and relate to
semiclassical gravity and geometry in four dimensions. We study the generalized spinfoam model
[spinfoams for all loop quantum gravity (LQG) [Kaminski et al., Spin-foams for all loop quantum gravity,
Classical Quantum Gravity 27, 095006 (2010); Erratum, Classical Quantum Gravity 29, 049502(E) (2012),
Ding et al., Generalized spinfoams, Phys. Rev. D 83, 124020 (2011)] with small spins j but a large number
of spin degrees of freedom (d.o.f.), and find that it relates to the simplicial Engle-Pereira-Rovelli-Livine-
Freidel-Krasnov model with large spins and Regge calculus by coarse-graining spin d.o.f. Small-j
generalized spinfoam amplitudes can be employed to define semiclassical states in the LQG kinematical
Hilbert space. Each of these semiclassical states is determined by a four-dimensional Regge geometry. We
compute the entanglement Rényi entropies of these semiclassical states. The entanglement entropy
interestingly coarse grains spin d.o.f. in the generalized spinfoam model, and satisfies an analog of the
thermodynamical first law. This result possibly relates to the quantum black hole thermodynamics in
[Ghosh and Perez, Black Hole Entropy and Isolated Horizons Thermodynamics, Phys. Rev. Lett. 107,
241301 (2011); 108, 169901(E) (2012)].
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate of non-
perturbative and background-independent theory of quan-
tum gravity. A covariant approach of LQG is developed
by the spinfoam formulation, in which the quantity
playing the central role is the spinfoam amplitude [1,2].
Four-dimensional spinfoam amplitudes give transition
amplitudes of boundary three-dimensional (3D) quantum
geometry states in LQG and formulate the LQG version of
the quantum gravity path integral. The spinfoam formu-
lation is a successful program for demonstrating the
semiclassical consistency of LQG. The recent progress
on the semiclassical analysis reveals that spinfoam ampli-
tudes relate to the semiclassical Einstein gravity in the large
spin regime, e.g., [3–10].
Although the analysis of the large spin spinfoam

amplitude has been fruitful for demonstrating the semi-
classical behavior, there are good reasons to expect that
some even more interesting semiclassical behavior of
spinfoams, or in general LQG, should appear in the regime
where spins are all small. There are two motivations for the
semiclassical analysis in the small spin regime:

First, recall that the large spin semiclassicality is moti-
vated by requiring the geometrical surface area aS to be
semiclassical, i.e., aS ≫ l2

P where lP is the Planck length.
The requirement leads to the spin j ≫ 1 provided the area
spectrum aS ¼ 8πγl2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, if we assume that there
is only a single spin-network link colored by j intersecting
the surface S. Large j is a sufficient condition for the
semiclassical area but clearly not necessary. Indeed if
we relax this assumption and allow more than one
intersecting link l, the area spectrum may become aS ¼
8πγl2

P

P
N
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

which sums “area elements”
8πγl2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

at l.N is the total number of intersecting
links. Then the semiclassical surface area aS ≫ l2

P can be
achieved not only by large j and smallN but also by small j
and large N. For instance, all j ¼ 1=2 and N ≫ 1 lead to
aS ≫ l2

P. Therefore we anticipate that small spins (with a
large number of intersecting links) should also lead to
semiclassical behaviors of LQG.
The second motivation comes from the statistical inter-

pretation of black hole entropy in LQG: The black hole
horizon with a fixed total area punctured by a large
number of spin-network links l. The punctures are colored
by spins jl, each of which contributes area element
8πγl2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

to the horizon. The black hole entropyhanm@fau.edu
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counts the total number of microstates which give the same
total horizon area [11–13]. It turns out that the total number
of states is dominant by states at punctures with small jl,
while the number of states decays exponentially as j
becomes large. The fact that small j’s dominate the semi-
classical horizon area and entropy suggests that small spins
should play an important role in the semiclassical analysis
of LQG.
This work takes the first step to study systematically the

semiclassical behavior of LQG in the small spin regime, in
particular in the spinfoam formulation. From the above
motivation, given a surface S punctured by N spin-network
links, the semiclassical area of S can be given not only
by small N and large j but also by large N and small j.
Section II generalizes this observation to quantum poly-
hedra represented by intertwiners [SU(2) invariant tensors]
at spin-network nodes. We find among intertwiners with a
fixed large rank N ≫ 1 (quantum polyhedra with N facets
f), there are a subclass of small-j and large-N coherent
intertwiners kfjfg; fξfgiN ðf ¼ 1;…; NÞ relating to the
large-J and rank-4 coherent intertwiner kfJΔg; fξΔgi4
ðΔ ¼ 1;…; 4Þ and having the semiclassical behavior as
geometrical flat tetrahedra. Δ are four groups of intertwiner
legs f, and everyΔ contains a large numberNΔ ≫ 1 of f’s.
The subclass of coherent intertwiners exhibiting semi-
classical behaviors are defined by the parallel restriction
on ξf’s

ξf ¼ ξf0 ≡ ξΔ up to a phase ∀ f; f0 ∈ Δ; ð1:1Þ

i.e., ξf, ξf0 give the same unit 3-vector n⃗Δ ¼ hξΔjσ⃗jξΔi
where σ⃗ are Pauli matrices. Geometrical tetrahedra result-
ing from these intertwiners have face areas proportional
to JΔ ¼Pf∈Δ jf and face normals n⃗Δ. JΔ is large since
NΔ ≫ 1 and jf ≠ 0. This result has a simple geometrical
picture: Given a classical flat tetrahedron, we may partition
every face Δ into NΔ facets f, while the face area sums the
facet areas and the facet normals are parallel among facets
in a Δ. By partitioning tetrahedron faces into facets, the
tetrahedron becomes a polyhedron with a total number of
N ¼P4

Δ¼1NΔ facets, each of which has a small area [see
Fig. 1(a)]. The correspondence between polyhedra and
intertwiners in LQG [14] relates f to intertwiner legs
(and tetrahedron faces Δ to four groups of intertwiner
legs) and facet areas and normals to coherent intertwiner
labels [see Fig. 1(b)]. These parallel normals motivates
the above parallel restriction. Beyond the semiclassical
behaviors of these intertwiners, quantum corrections to
semiclassical tetrahedron geometries are of Oð1=JΔÞ ¼
Oð1=NΔÞ, which thus is suppressed by large rank N (or
NΔ). The above result demonstrates that at the level of
quantum polyhedra, we can trade small jf and large rank
N ≫ 1 for large JΔ and small rank N ¼ 4 to obtain the
semiclassicality.

Note that the above semiclassical result still holds if we
replace the tetrahedron by polyhedra in case their numbers
of faces Δ are still small. A similar idea as the above is
applied in [15] to relate LQG states to holographic tensor
networks, and relates to [16].
Section III generalizes the small-j semiclassical analysis

to the spinfoam vertex amplitude in four dimensions. The
vertex amplitude Av is associated with a four-dimensional
cell B4 whose boundaries are closed and made by gluing
five polyhedra α ¼ 1;…; 5, each of which has a large
numberNα of facets [see Fig. 1(c)]. Every pair of polyhedra
share a large number NΔ of facets, where Δ ¼ α ∩ β is the

(a) (b)

(c)

FIG. 1. (a) The classical tetrahedron geometry emergent from a
rank-N coherent intertwiner kfjfg; fξΔeiφfgiN with small spins
but large rank. The tetrahedron with four large faces is also a
polyhedron with N small facets, while normals n⃗f of small
polyhedron facets f’s are parallel if f’s are in the same large
tetrahedron face. The flat large tetrahedron faces are composed
by many small facets. Each tetrahedron face area Ja¼1;…;4 is a
sum of small areas jf. (b) The rank-N coherent intertwiner
kfjfg; fξΔeiφfgiN with small spins jf can be illustrated as a spin-
network node connecting to N links, where each link is dual to a
polyhedron facet f and colored by jf. (c) A spinfoam vertex
amplitude defined by a spin-network with five nodes (α ¼ 1;
…; 5), connected as shown in the figure. Nodes are colored by
intertwiners kfjf; fξαfgiNα

of large rank but small spins. Geo-
metrically, each node corresponds to a polyhedron of many facets
as in (a), and the vertex amplitude glues five polyhedra to form a
close boundary of a 4D region. fjfg; fξαfg are boundary data of
the vertex amplitude.
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face made by facets shared by two polyhedra α, β. Ignoring
the fine partition of Δ, B4 relates to a 4-simplex where Δ
relates to triangles of the 4-simplex. Av depends on the
boundary data which contain small spins jf and five
intertwiners kfjfg; fξαfgiNα

of quantum polyhedra. To
be concrete, we consider Av to be the generalized spinfoam
vertex [17,18] (in the Euclidean signature with 0 < γ < 1)
which admits nonsimplicial cells. We write Av in terms of
coherent intertwiners and impose the parallel restriction
Eq. (1.1) to boundary data ξαf with f ∈ Δ. We find that up

to an overall phase, Av with small jf and large NΔ is
identical to the Engle-Pereira-Rovelli-Livine-Freidel-
Krasnov (EPRL-FK) vertex amplitude of 4-simplex with
large spins JΔ ≫ 1, where ten Δ become triangles of the
4-simplex and JΔ ¼Pf∈Δ jf similar to the case of poly-
hedra. Because of large JΔ, the same asymptotic analysis as
in [19] can be applied to Av and gives the following
asymptotic formula relating to the 4-simplex Regge actionP

Δ γJΔΘΔ (the triangle area aΔ ¼ 8πγl2
PJΔ):

Av ¼ ðoverall phaseÞ
�
2π

N

�
12
�
2N γ

þ− cos

�X
Δ
γJΔΘΔ

�
þN γ

þþe
P

Δ
JΔΘΔ þN γ

−−e
−
P

Δ
JΔΘΔ

��
1þO

�
1

N

��
: ð1:2Þ

We refer the reader to [19] for expressions of
N γ

þ−;N
γ
þþ;N γ

−−. The expansion parameter N is the order
of magnitude of NΔ ∼ JΔ.
Section IV generalizes the discussion to spinfoam

amplitude AðKÞ on cellular complexes K in four dimen-
sions. The 4D cell ofK is B4 to define vertex amplitudes Av
as above. We again apply the generalized spinfoam
formulation to define the amplitude on K. By the above
relation between B4 and 4-simplex, K relates to a unique
simplicial complex Ks, where decomposing triangles Δ ∈
Ks into facets f gives K. In the above analysis of a single
Av, the parallel restriction can be applied since ξαf are
boundary data. However, for the spinfoam amplitude AðKÞ
we do need to consider internal ξαf beyond the parallel
restriction since individual ξαf’s are integrated independ-
ently in AðKÞ. We write the spinfoam amplitude as a sum
over spins AðKÞ ¼Pfjfg AfjfgðKÞ and focus on AfjfgðKÞ
in Sec. IV. AfjfgðKÞ has the standard integral expression:

AfjfgðKÞ ¼
Y
f

AΔðjfÞ
Z

½dξαfdg�vα�eS;

S ¼
X
�

X
v;f

2j�f ln hξαfjg�−1
vα g�vβjξβfi; ð1:3Þ

where the face amplitude AΔðjfÞ is 2jf þ 1 to a certain
power depending only on Δ. It turns out that the stationary
phase analysis can still be applied to AfjfgðKÞ with small
nonzero jf but large NΔ. It is clear from the discussion in
the last paragraph that AfjfgðKÞ reduces to the simplicial
EPRL-FK spinfoam amplitude with large spins JΔ ¼P

f∈Δ jf if we impose by hand the parallel restriction to
internal ξαf’s. We prove that all critical points of the large
JΔ simplicial EPRL-FK amplitude give critical points of
AfjfgðKÞ if we relate the critical data by JΔ ¼Pf∈Δ jf,

internal ξαΔ ¼ ξαf (up to a phase), and g�vα is identified
between simplicial EPRL-FK and AfjfgðKÞ. We denote

these critical points by ðg�vα; ξαΔÞc½JΔ�. Some of these
critical points relate to Regge geometries in four dimen-
sions similar to the simplicial EPRL-FK amplitude [9,20].
At these critical points, JΔ is identified to be the area of the
triangle Δ. The application of critical points to the sta-
tionary phase analysis is discussed in Sec. IX.
The relation between the simplicial EPRL-FK amplitude

and AðKÞ suggests a new viewpoint that the EPRL-FK
model with spins JΔ can be an effective theory emergent
from a more fundamental theory formulated by AðKÞ with
jf. The EPRL-FK model is obtained from AðKÞ by coarse
graining from jf to JΔ and imposing the parallel restriction
[more rigorously, the EPRL-FK model appears as a partial
amplitude in AðKÞ after integrating out the nonparallel ξαf
as shown in Sec. IX]. The EPRL-FK amplitude with given
JΔ is a collection of a large number of microdegrees of
freedom fjfg satisfying JΔ ¼Pf∈Δ jf at all Δ. Critical
points from the EPRL-FK model and Regge geometries are
“macrostates” which contain fjfg as “microstates.” This
picture is interesting and turns out to be important in the
computation of entanglement entropy.
Before the analysis of the full amplitude AðKÞ in Sec. IX,

Secs. V–VII make a modification of the amplitude by
imposing weakly the parallel restriction to internal ξαf’s,
and apply the modified amplitude to the study of entangle-
ment entropy in LQG (see, e.g., [15,21–26] for some
existing studies of entanglement entropy in LQG). The
modified amplitude is used to define a class of states in
the LQG Hilbert space: Given a 4-manifold M4 with
boundary Σ and consider K (whose 4-cells are B4) as a
cellular decomposition of M4 (e.g., Fig. 2). The boundary
complex ∂K ⊂ Σ gives the dual graph ∂K� ⊂ Σ. HΣ is
defined as the LQG kinematical Hilbert space on ∂K� and
is spanned by the spin-network states jTj⃗;⃗iiwith spins j⃗ and
intertwiners ⃗i on links and nodes of ∂K�. In Sec. V, we
construct a class of states jψi ∈ HΣ as finite linear
combinations of spin networks jTj⃗;⃗ii weighted by spinfoam
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amplitudes whose boundary data are j⃗, ⃗i. In terms of
coherent intertwiners,

jψi ¼
X0

fjfg

Y
f

AΔðjfÞ
Z
Ng;ξ

½dg�vαdξαf�eSþNV jTj⃗;ξ⃗i; ð1:4Þ

where jTj⃗;ξ⃗i are spin networks with coherent intertwiners.
V is a potential which imposes the parallel restriction when
N → ∞. jψi depends on a choice of the isolated critical
point ðg�vα; ξαΔÞc½JΔ�where ξαf ¼ ξαΔ (up to phases) satisfy
the parallel restriction.

P0
fjfg is constrained by

P
f∈Δ jf ¼

JΔ and thus is a finite sum.
R ½dg�vαdξαf� is over a

neighborhoodNg;ξ which contains a unique isolated critical
point ðg�vα; ξαΔÞc½JΔ�. jψi has a nice semiclassical property:
the weight of jTj⃗;ξ⃗i is peaked (in the space of boundary ξ⃗) at
the boundary value ξ⃗ from the critical data ðg�vα; ξαΔÞc½JΔ�.
The implementation of the parallel restriction by V makes
the entanglement entropy of jψi computable with tools
from the stationary phase approximation.
We subdivide Σ into 2 subregions A and Ā, such that the

boundary S between A and Ā is triangulated by Δ ⊂ Ks.
Accordingly the Hilbert space is split by HΣ ≃HA ⊗ HĀ
(here HΣ has to be suitably enlarged to include some non-
gauge-invariant states in order to define the split and
entanglement entropy; see Sec. VII for details). The
reduced density matrix ρA and the nth Rényi entanglement
entropy SnðAÞ are defined by

ρA ¼ trĀjψihψ j; SnðAÞ ¼
1

1 − n
ln

trðρnAÞ
trðρAÞn

; ð1:5Þ

while the von Neumann entropy is given by SðAÞ ¼
limn→1 SnðAÞ. Entanglement entropies characterize the
amount of entanglement from jψi between d.o.f. in A
and Ā. Section VII computes the Rényi entropy SnðAÞ and
shows that SnðAÞ is a function of “macrostates” JΔ; NΔ:

SnðAÞ ≃
X
Δ⊂S

½λΔðnÞJΔ þ σΔðnÞNΔ�; ð1:6Þ

where λΔðnÞ; σΔðnÞ depend on the ratio JΔ=NΔ. When K
and S are chosen such that allΔ ∈ S are shared by the same
number of B4 ’s, λΔðnÞ ¼ λðnÞ; σΔðnÞ ¼ σðnÞ become in-
dependent of Δ. In this case,

SnðAÞ ≃ λðnÞJS þ σðnÞNS; ð1:7Þ

where JS ¼PΔ⊂S JΔ and NS ¼PΔ⊂S NΔ are total area
and total number of facets of S.
Section VI demonstrates an important intermediate step

toward SnðAÞ: Computing trðρnAÞ reduces to a quantity
which can be interpreted as counting microstates fjfg in a
statistical ensemble with fixed “macrostate” JΔ; NΔ at a
given Δ. The computation has an interesting analog to the
statistical ensemble of identical systems, in which JΔ; NΔ
are the total energy and total number of identical systems.
This counting of microstates is similar to the black hole
entropy counting in LQG [11].
Section VIII points out that the resulting Rényi entan-

glement entropy SnðAÞ and its differential give an analog of
the thermodynamical first law:

δSnðAÞ ≃
X
Δ⊂S

½λΔðnÞδJΔ þ σΔðnÞδNΔ�; ð1:8Þ

or δSnðAÞ ≃ λðnÞδJS þ σðnÞδNS; ð1:9Þ

where in Eq. (1.9), K and S are chosen such that all Δ ∈ S
are shared by the same number of B4 ’s. Since JS is an
analog of the total energy, Eq. (1.9) suggests the analog
between λðnÞ−1 and the temperature, as well as between
−σðnÞ=λðnÞ and the chemical potential. In the most general
situation Eq. (1.8), the temperature and chemical potential
are not constants over S. S is in a nonequilibrium state,
although every plaquette Δ is in equilibrium. Interestingly,
Eq. (1.9) is very similar to the thermodynamical first law
derived from the quantum isolated horizon in [11], if we
relate SnðAÞ to the black hole entropy, JS to the horizon
area (proportional to the quasilocal energy observed by the
near-horizon Unruh observer), and NS to the total number
of spin-network punctures on the horizon.
The above analogy with thermodynamics is clearly a

consequence from coarse graining in the spinfoam
model AðKÞ. The entanglement entropy effectively coarse
grains the microdegrees of freedom fjfg collected by the
macrostate JΔ; NΔ.
The above discussion mostly focuses on the spinfoam

small-j amplitudes with the implementation of parallel
restriction. Section IX studying the full amplitude AðKÞ in
Eq. (1.3) by removing parallel restrictions to all internal
ξαf’s, while integrating out explicitly all nonparallel d.o.f.
of ξαf at every Δ. As a result, the amplitude becomes a sum

FIG. 2. A 4-manifold (viewed from five dimensions) with a
boundary 3-manifold Σ. The state jψi given by Eq. (5.7) is
constructed by the spinfoam amplitude on a cellular partitionK of
M4. The boundary Σ is subdivided into region A and its
complement Ā. The subdivision A and Ā is adapted to K, in
the sense that the boundary S between A and Ā is triangulated by
Δ’s, each of which is made by a large number of facets f in K.
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over Ising configurations at all Δ, where at each Δ some
ξαf are parallel ξαf ¼ ξαΔ while others are antiparallel
ξαf ¼ JξαΔ [Jðξ1; ξ2ÞT ¼ ð−ξ̄2; ξ̄1ÞT ; that ξ’s are antipar-
allel means that n⃗ ¼ hξjσ⃗jξi are antiparallel]. The ampli-
tude constrained by the parallel restriction is identified as a
partial amplitude in the sum and relates to the simplicial
EPRL-FK amplitude, while all other partial amplitudes are
made by flipping a certain number of ξαf from ξαΔ to JξαΔ.
Importantly, all partial amplitudes in the sum can be studied
by stationary phase approximation. All partial amplitudes,
whose numbers of antiparallel ξαf are much less than the
numbers of parallel ξαf at all Δ’s, are dominated by
contributions from critical points ðg�vα; ξαΔÞc½JΔ� satisfying
the parallel restriction. In particular, 4D Regge geometries
can still be realized as a subset of critical points in the full
amplitude AðKÞ. However, for partial amplitudes whose
numbers of antiparallel ξαf are comparable to the numbers
of parallel ξαf at certain Δ’s, they give critical points
corresponding to semiclassically degenerate tetrahedron
geometries. The 4D geometrical interpretations of these
critical points are not clear at the moment.

II. QUANTUM POLYHEDRON AND
PARALLEL RESTRICTION

In LQG, polyhedron geometries are quantized by inter-
twiners kiiN ∈ InvSUð2Þðj1;…; jNÞ which are invariant in
the tensor product of N SU(2) unitary irreps Hj1 ⊗ � � � ⊗
HjN (spins j ≥ 1=2 label the irreps) [27–29]. In this paper
we always assume j’s to be small but the rankN to be large:
N ≫ 1. Denoting by L⃗f SU(2) generators acting on the fth
irrepHjf (f ¼ 1;…; N), every invariant tensor kii satisfiesP

N
f¼1 L⃗fkiiN ¼ 0, which is a quantum analog of the

classical closure condition
P

N
f¼1 afn⃗f ¼ 0 (af ∈ R; n⃗f

unit 3-vectors). faf; n⃗fgNf¼1 satisfying this condition
uniquely determines a geometrical polyhedron with N
facets, such that af is the area of the facet f while n⃗f is
the unit normal vector of f [30].
An overcomplete basis of InvSUð2Þðj1;…; jNÞ can be

chosen to be coherent intertwiners [27]

kfjfg; fξfgiN ¼
Z
SUð2Þ

dh ⊗
N

f¼1
hjjf; ξfi; ð2:1Þ

where dh is the Haar measure and jj; ξi is the SU(2)
coherent state in spin-j irrep labeled by ξ ¼ ðξ1; ξ2ÞT
normalized by the Hermitian inner product

jj; ξi ¼ gðξÞjj; ji; gðξÞ ¼
�
ξ1 −ξ̄2

ξ2 ξ̄1

�
: ð2:2Þ

Suppose j are all large, kfjfg; fξfgiN gives a semiclassical
flat polyhedron geometry with N facets, which have areas

af ∝ jf and normals n⃗f ¼ hξfjσ⃗jξfi (σ⃗ are Pauli matrices)
[14,27]. However, when j are small, this semiclassical
geometry is lost, since the quantum fluctuation is of order
1=j. However, as we see below, some different semi-
classical polyhedron geometries can still be found from
some kfjfg; fξfgiN with small j.
An observation is that a subclass of small-spin and large-

rank coherent intertwiners relate to large-spin coherent
intertwiners with small rank. Let us consider the small rank
to be four as an example (generalizations to other small
ranks are trivial): we make a partition of f1;…; Ng into
four sets, say f1;…; N1g; fN1 þ 1;…; N1 þ N2g; fN1 þ
N2 þ 1;…; N1 þ N2 þ N3g; fN1 þ N2 þ N3 þ 1;…; Ng,
where each set has a large number NΔ ≫ 1 elements, and
we use Δ ¼ 1;…; 4 to label these four sets. We restrict to a
subclass of coherent states denoted by kfjfg; fξΔgiN,
asking ξf’s are parallel up to a phase when f ∈ Δ:

Parallel restriction∶ ξf ¼ ξΔeiφf ;

or n⃗f ¼ n⃗Δ; ∀ f ∈ Δ: ð2:3Þ

Parallel ξf’s up to phases make parallel normals n⃗f’s.
Intuitively, this restriction makes a tetrahedron with four
large flat faces from a polyhedron with many small facets
[see Fig. 1(a)].
The squared norm of kfjfg; fξΔeiφfgiN is computed

by factorizations of coherent states jj; ξi ¼ jξi⊗2j and
Eq. (2.3):

kkfjfg; fξΔeiφfgiNk2 ¼
Z

dh
Y4
Δ¼1

hξΔjhjξΔi2JΔ ;

JΔ ≡X
f∈Δ

jf: ð2:4Þ

Although jf are small, JΔ ≫ 1 because NΔ ≫ 1 and
jf ≥ 1

2
. When above JΔ’s satisfy triangle inequalities,

Eq. (5.16) is of the same expression as the square norm
of the rank-4 coherent intertwiner kfJΔg; fξΔgi4 if we
relate the above JΔ to the large spins of the rank-4
intertwiner. Thus the same stationary phase analysis in
[27] can be applied to Eq. (5.16) and shows that Eq. (5.16)
is exponentially suppressed unless the following closure
condition holds for the coherent state labels:

X4
Δ¼1

JΔn⃗Δ ¼
XN
f¼1

jfn⃗f ¼ 0; ð2:5Þ

where n⃗Δ ¼ hξΔjσ⃗jξΔi and thus n⃗f ¼ n⃗Δ for all f ∈ Δ.
Comparing to the classical closure condition of polyhe-
dron, Eq. (2.5) uniquely determines a classical flat geo-
metrical tetrahedron, whose face areas are proportional to
JΔ ≫ 1 and face normals are n⃗Δ. However, here JΔ
emerges from summing many small jf’s. Equation (2.5)
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may still be interpreted as a classical closure condition of a
polyhedron withN facets with small areas jf’s, while facets
compose large flat faces of the tetrahedron. The quantum
correction of the classical geometry is ofOð1=JΔÞ and thus
is suppressed by the large rank.
The above demonstrates that the classical tetrahedron

geometry can emerge from intertwiners with small j’s but
large rank NΔ → ∞. The geometrical picture of the
tetrahedron/polyhedron is illustrated in Fig. 1(a).
Importantly, rank-N intertwiners have many more d.o.f.

than tetrahedra. There are coherent intertwiners with ξf’s
beyond the parallel restriction, while kfjfg; fξΔgiN only

span a subspace. In addition, the same tetrahedron geom-
etry with areas JΔ may come from different spin configu-
rations fjfg satisfying JΔ ≡Pf∈Δ jf.
Lemma 2.1: Given four JΔ satisfying the triangle

inequality such that ⊗4
Δ¼1 HJΔ has a nontrivial invariant

subspace, any spin configuration fjfgf∈Δ satisfying
JΔ ≡Pf∈Δ jf leads to a nontrivial invariant subspace
in ⊗4

Δ¼1⊗f∈Δ Hjf .
Proof: It is convenient to consider coherent intertwiners

satisfying the parallel restriction Eq. (2.3) and use the
factorization property jj; ξi ¼ jξi⊗2j,

kfjfg; fξΔeiφfgiN ¼ ei
P

f
2jfφf

Z
SUð2Þ

dh ⊗
4

Δ¼1
⊗
f∈Δ

hjjf; ξΔi ¼ ei
P

f
2jfφf

Z
SUð2Þ

dh ⊗
4

Δ¼1
⊗
f∈Δ

ðhjξΔiÞ⊗2jf

¼ ei
P

f
2jfφf

Z
SUð2Þ

dh ⊗
4

Δ¼1
ðhjξΔiÞ⊗2JΔ ¼ ei

P
f
2jfφf

Z
SUð2Þ

dh ⊗
4

Δ¼1
hjJΔ; ξΔi: ð2:6Þ

The right-hand side gives up to a phase the rank-4 coherent
intertwiner, which is nonzero by the assumption that
JΔ satisfies the triangle inequality. Therefore kfjfg;
fξΔeiφfgiN is nonzero, and thus the invariant subspace
in ⊗4

Δ¼1⊗f∈Δ Hjf is nontrivial. ▪

III. SPINFOAM VERTEX AMPLITUDE

We extend our discussion of small-j semiclassicality to
LQG dynamics in the spinfoam formulation. We first focus
on a class of spinfoam vertex amplitudes asssociated with a
4D spacetime region B4 whose closed boundary is made by
gluing five polyhedra (labeled by α; β ¼ 1;…; 5) through
facets. Each polyhedron has Nα ≫ 1 facets, and every pair
of polyhedra α, β share a large number NΔ ≫ 1 facets. Δ
denotes the interface between α, β made by NΔ facets f.

We apply the generalized spinfoam formulation to
construct amplitude on nonsimplicial B4 [17,18]. The
vertex amplitude of B4 evaluates a spin network with five
nodes (dual to polyhedra), and each pair of nodes α, β is
connected by NΔ links. See Fig. 1(c) for an illustration.
Links connecting nodes are dual to f’s shared by polyhedra
and colored by spins jf. We color every node α by
rank-Nα coherent intertwiners kfjfg; fξαfgiNα

studied
above (jf ≠ 0 but small), while making the parallel
restriction as in Eq. (2.3):

ξαf ¼ ξαΔeiφαf ∀ f ∈ Δ: ð3:1Þ

The vertex amplitude Avðjf; ξαfÞ (in the Euclidean signa-
ture) describes a local transition in B4 of boundary
geometrical states ⊗5

α¼1 kfjfg; fξαfgiNα
:

Av ¼
Z

½dg�α �
Y
�

Y
α<β

Y
f∈ðα;βÞ

hj�f ; ξαfjg�−1
α g�β jj�f ; ξβfi ¼

Z
½dg�α �e

P
�
P

f
2j�f ln hξαf jg�−1

α g�β jξβfi; ð3:2Þ

where ðgþα ; g−α Þ ∈ Spinð4Þ associates with each node and j�f ¼ ð1� γÞjf=2 with γ < 1. We have applied the factorization
property of the coherent state in the above. By the parallel restriction,

Av ¼
Y
Δ;f

e2ijfðφβf−φαfÞ
Z

½dg�α �e
P

�
P

Δ
2J�Δ ln hξαΔjg�−1

α g�β jξβΔi; J�Δ ¼
X
f∈Δ

j�f ; ð3:3Þ

where ten JΔ ¼Pf∈ðα;βÞ jf ≫ 1 emerge as summing jf
over facets f ∈ Δ. JΔ are all large since NΔ ≫ 1 and
jf ≥ 1

2
.
Q

Δ;f e
2ijfðφβf−φαfÞ is an overall phase since Eq. (3.1)

restricts ξαf parallel up to a phase.

Although Av is a generalized spinfoam vertex with
boundary polyhedra and small spins, the integral
Eq. (3.3) has the same expression as the EPRL-FK 4-
simplex amplitude (boundary states are rank-4 intertwiners)
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[19,31,32] if we relate JΔ to actual spins in the EPRL-FK
amplitude.
Definition 3.1: Given an integral

R
D dnxeSðxÞ, its sta-

tionary points x0 are solutions of ∇⃗Sðx0Þ ¼ 0, and its
critical points are stationary points with ReðSðx0ÞÞ ¼ 0.
Since Re ln hξ0jξi ¼ ln jhξ0jξij ≤ lnðkξ0k · kξkÞ ¼ 0 by

the Schwarz inequality, the exponents in Eqs. (3.2) and
(3.3) are nonpositive. The critical points of Av in Eq. (3.2)
are solutions of

ĝ�vβn⃗βf ¼ ĝ�vαn⃗αf;
X
f⊂α

jfκαΔn⃗αf ¼ 0; ð3:4Þ

where the first equation comes from ReðSÞ ¼ 0. καΔ ¼ �1

appears when ∂g�vα acts on g�vα or g�−1
vα . ĝ�vα ∈ SOð3Þ is the

three-dimensional irrep of g�vα. When the parallel restriction

is imposed to boundary data. The critical equations,
Eq. (3.4), reduce to

ĝ�vβn⃗βΔ ¼ ĝ�vαn⃗αΔ;
X
Δ⊂α

JΔκαΔn⃗αΔ ¼ 0; ð3:5Þ

which are also critical equations from Eq. (3.3).
The same asymptotic analysis as in [19] is valid for

Eq. (3.3) as JΔ ≫ 1. Here we adapt results in [19] to our Av:
When the boundary data jf, ξΔ satisfy the closure condition
as in Eq. (2.5), and give flat geometrical tetrahedra that are
glued (with Δ matching in shapes and orientation match-
ing) to form a closed boundary of a flat nondegenerate
4-simplex, the asymptotics of Av relates to the Regge action
of the 4-simplex: If we define N to be the order of
magnitude of NΔ [N ∼ NΔ ∼ JΔ since all jf ∼Oð1Þ], then
Av has the following asymptotic formula:

Av ¼ ðoverall phaseÞ
�
2π

N

�
12
�
2N γ

þ− cos

�X
Δ
γJΔΘΔ

�
þN γ

þþe
P

Δ
JΔΘΔ þN γ

−−e
−
P

Δ
JΔΘΔ

��
1þO

�
1

N

��
: ð3:6Þ

We refer the reader to [19] for expressions of N γ
þ−;

N γ
þþ;N γ

−−. The asymptotics is dominant by contributions
from four critical points ðgþvα; g−vαÞ, ðg−vα; gþvαÞ, ðgþvα; gþvαÞ,
ðg−vα; g−vαÞ solving Eq. (3.5) with the boundary condition.
ΘΔ is the 4D dihedral angle between a pair of tetrahedra in
the geometrical 4-simplex. The quantity inside the cosine is
the Regge action of classical gravity when we identify the
tetrahedron face area aΔ as

aΔ ¼ 8πγJΔl2
P ¼

X
f∈Δ

af; af ¼ 8πγjfl2
P: ð3:7Þ

The large tetrahedron face area is given by summing small
areas of polyhedron facets. lP is the Planck length.

IV. SPINFOAM AMPLITUDES ON COMPLEXES

Our semiclassical analysis with small spins can be
generalized to spinfoam amplitudes on cellular complexes
with arbitrarily many cells. We construct a generalized
spinfoam amplitude on a complex K whose cells C are
similar to B4 (every ∂C are made by five polyhedra α of
large numbers of facets f, though different C may have
different numbers of facets). N ∼ NΔ ≫ 1 are assumed. Cs
are glued in K by sharing boundary polyhedra. K deter-
mines a simplicial complex Ks by substituting all poly-
hedra and C with tetrahedra and 4-simplices. We associate
Av with every C, and write the spinfoam amplitude on K
by [20,28]

AðKÞ ¼
X
fjfg

Y
f

AfðjfÞ
Z

½dξαfdg�vα�eS; ð4:1Þ

S ¼
X
�

X
v;f

2j�f ln hξαfjg�−1
vα g�vβjξβfi; ð4:2Þ

where Af is the face amplitude given by [33] (see the
Appendix for explanations)

AfðjfÞ ¼ AΔðjfÞ ¼ ð2jf þ 1ÞnvðΔÞþ1 for internal f;

AfðjfÞ ¼ AΔðjfÞ ¼ ð2jf þ 1ÞnvðΔÞþ2 for boundary f;

ð4:3Þ

nvðΔÞ is the number of B4 sharing f ∈ Δ in K and equals
the number of 4-simplices sharing Δ in Ks. Af depends on
nvðΔÞ in the coherent state formulation since ð2jþ
1Þ R dξjj; ξihj; ξj ¼ 1 where dξ is the standard normalized
measure on the unit sphere.

P
fjfg and

R ½dξαf� sum

coherent state labels of all internal facets f. Each
R
dξαf

is over S2. Different from Av where we can apply the
parallel restriction to boundary data, AðKÞ sums independ-
ently ξαf’s at different internal f’s, so we need to take into
account fluctuations beyond the parallel restriction. When
K has a boundary, we still make the parallel restriction to
boundary ξαf’s.
S has the following gauge symmetry:
(i) Continuous: (1) A diagonal Spin(4) action at σ,

g�vα → h�v g�vα for all α at v by ðhþv ; h−v Þ ∈ Spinð4Þ;
(2) At any internal α, jξαfi → hαjξαfi and g�vα →
g�vαh−1α for all v having α at boundaries; and
(3) jξαfi → eiθαf jξαfi at any internal jξαfi.

(ii) Discrete: gþvα→�gþvα and independently g−vα→�g−vα.
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If we expand S at ξαf satisfying the parallel restriction, i.e.,
e−iφαfξαf ¼ ξαΔ þ δξαf; ∀ f ∈ Δ, thenδξαf are fluctuations
of ξαf away from the parallel restriction. Notice that ξαf →
eiφαfξαf at internal f’s are gauge symmetries of S,

S ¼ S0 þ
X
f

2jfΦΔ½ξαf�;

S0 ¼
X
�

X
v;Δ

2J�Δ lnhξαΔjg�−1
vα g�vβjξβΔi;

ΦΔ ¼
X
�

1� γ

2

X
v

½lnhξαfjg�−1
vα g�vβjξβfi

− lnhξαΔjg�−1
vα g�vβjξβΔi� ¼ OðδξÞ; ð4:4Þ

whereJ�Δ is thesameas inEq. (3.3) and is largebyNΔ ≫ 1.JΔ
are assumed to satisfy the triangle inequality. S0 reduces to
Eq. (3.3) at each v and is the same as the EPRL-FK spinfoam
action used for large spin asymptotics on the simplicial
complex Ks.

A. Critical points satisfying parallel restriction

Critical points of S0, denoted by ðg�vα; ξαΔÞc½JΔ�, are
gauge equivalence classes of solutions of critical equations
ReðS0Þ¼∂g�vαS0¼∂ξαβS0¼0. These critical equations have

been well studied in [19,20,28] and reduce to [it is
straightforward to check that ∂ξαβS0 ¼ 0 follows from
ReðS0Þ ¼ 0]

g�vβjξβΔi ¼ eiϕ
�
αvβg�vαjξαΔi;

X
Δ⊂α

JΔκαΔðvÞn⃗αΔ ¼ 0; ð4:5Þ

where καΔðvÞ ¼ �1 when ∂g�vα acts on g�vα or g�−1
vα .

Theorem 4.1: Critical points of S0 are also critical
points of S.
Proof: We check that ReðSÞ¼∂S=∂g�vα¼∂S=∂ξαf¼0

at all critical points of S0. First of all, at any critical point
of S0,

ReðSÞjc ¼ ReðS0Þjc ¼ 0; ð4:6Þ
where jc means evaluating at any critical point ðg�vα;ξαΔÞc½JΔ�
of S0 where ξαf ¼ ξαΔ, ∀ f ∈ Δ.
If we write ξ ¼ ðξ1; ξ2Þ and define Jξ ¼ ð−ξ̄2; ξ̄1Þ, then ξ

and Jξ form an orthonormal basis in C2 with the Hermitian
inner product. When we perturb S, we write δξαf¼
εαfJξαfþ iηαfξαf where εαf ∈ C and ηαf ∈ R. The coef-
ficient in front of ξαf is purely imaginary because ξαf is
normalized. Since every ξαf is shared by two terms with
neighboring v’s

δξαfSjc ¼
X
�
ð1� γÞjf

�
εαf

hξβ0fjðg�v0β0 Þ−1g�v0αjJξαfi
hξβ0fjðg�v0β0 Þ−1g�v0αjξαfi

þ ε�αf
hJξαfjðg�vαÞ−1g�vβjξβfi
hξαfjðg�vαÞ−1g�vβjξβfi

�
c

¼ 0: ð4:7Þ

At the critical point, ξαf ¼ ξαΔ, ξβf ¼ ξβΔ at v and satisfy Eq. (4.5); similarly ξβ0f ¼ ξβ0Δ and satisfy Eq. (4.5) at v0. Then
δξαfS ¼ 0 by the orthogonality between ξ and Jξ.
For derivative in g�vα, we use δg�vα ¼ i

2
θ�vασ⃗g�vα (θvα ∈ R). At the critical point and by Eq. (4.5),

δg�vαSjc ¼
i
2
θ�vα
X
Δ
καΔð1� γÞ

X
f∈Δ

jf
hξαfjðg�vαÞ−1σ⃗g�vβjξβfi
hξαfjðg�vαÞ−1g�vβjξβfi

����
c
¼ i

2
θ�vαð1� γÞg�vα ·

X
Δ
καΔJΔn̂αΔjc ¼ 0; ð4:8Þ

where n̂αΔ ¼ hξαΔjσ⃗jξαΔi is a unit 3-vector. καΔ ¼ �1
relates to orientations of links in Fig. 1(c). We have chosen
orientations such that all links connecting α, β are oriented
parallel. ▪
Critical points of S0 have been completely classified

in the case that all tetrahedra reconstructed from the
closure condition are nondegenerate. We refer the reader
to [9,20,28,34] for details of the classification. When JΔ are
areas relating to edge lengths on Ks by (lij;ljk;lik are
three edge lengths of a triangle Δ)

γJΔðlÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2

ijl
2
jk þ l2

ikl
2
jk þ l2

ijl
2
ikÞ− l4

ij − l4
ik − l4

jk

q
;

ð4:9Þ
there are a subset G of critical points ðg�vα; ξαΔÞc½JΔ� of S0
that can be interpreted as nondegenerate 4D Regge

geometries, if the boundary condition of ξαΔ gives the
boundary 3D Regge geometry. Defining NαðvÞ by
N0

αðvÞ1þ iNi
αðvÞσi ¼ g−vαðgþvαÞ−1 (σi are Pauli matrices),

G is defined by critical points ðg�vα; ξαΔÞc½JΔ� with

det ðNα1ðvÞ; Nα2ðvÞ; Nα3ðvÞ; Nα4ðvÞÞ ≠ 0; ð4:10Þ

for all v ⊂ Ks and all four α1, α2, α3, α4 out of five α’s at v.
We have the following one-to-one correspondence [9,34]:

Critical points ðg�vα; ξαΔÞc½JΔ� ∈ G

↕

4Dnondegenerate Regge geometry onKs

and 4-simplex orientations: ð4:11Þ
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Triangles Δ in Regge geometries are made by polyhedron
facets as Fig. 1(c), and γJΔ is the area of Δ. Different
critical points may give the same Regge geometry but
different 4D orientations μðvÞ ¼ �1 at individual v. We
focus on critical points ðg�vα; ξαΔÞc½JΔ� ∈ G that are isolated.
Consider infinitesimal deformations ðg�vα; ξαΔÞ ↦

ðg�vα þ δg�vα; ξαΔ þ δξαΔÞ (including boundary data ξαΔ)
from ðg�vα; ξαΔÞc½JΔ� ∈ G with fixed JΔ, and ask whether
the deformation can reach another critical point [solution of
Eq. (4.5)]. Any infinitesimal deformation cannot break the
condition Eq. (4.10), so it cannot reach critical points
outside G. Moreover the deformation cannot flip the
orientation [9]. Therefore if the deformation reaches
another critical point ðg0�vα; ξ0αΔÞc½JΔ�, ðg0�vα; ξ0αΔÞc½JΔ� must
still belong to G and correspond to a different nondegen-
erate Regge geometry with the same set of areas γJΔ. In
other words, ðg�vα; ξαΔÞc½JΔ� and ðg0�vα; ξ0αΔÞc½JΔ� corre-
spond to two different nondegenerate Regge geometries
with the same set of areas. At any 4-simplex, Eq. (4.9) with
ten fixed areas gives ten quadratic equations for ten squared
edge lengths. These two different Regge geometries cor-
respond to two different solutions of these ten quadratic
equations with fixed JΔ at least one 4-simplex. And these
two different solutions are infinitesimally close to each
other, since one comes from the infinitesimal deformation
from the other. Then it implies the 10 × 10 matrix
∂J2Δ=∂l2

ij is degenerate at ðg�vα; ξαΔÞc½JΔ�. As a result, if
ðg�vα; ξαΔÞc½JΔ� gives Regge geometry with nondegenerate
∂J2Δ=∂l2

ij at all 4-simplices, ðg�vα; ξαΔÞc½JΔ� is an isolated
critical point. Note that the deformations considered
above include deformations of boundary data ξαΔ, so
ðg�vα; ξαΔÞc½JΔ� is isolated in a larger space of g�vα; ξαΔ
including boundary ξαΔ. It is easy to find isolated critical
points by numerically checking the determinant of
∂J2Δ=∂l2

ij. Some experience from numerics suggests that
degenerate ∂J2Δ=∂l2

ij might only happen at degenerate
4-simplices.
A critical point ðg�vα; ξαΔÞc½JΔ� ∈ G with a uniform

orientation μðvÞ ¼ μ at all v’s evaluates

S0jc ¼ μ

�X
Δ∈Ks

γJΔεΔ þ
X

Δ∈∂Ks

γJΔΘΔ

�

¼ iμ
8πl2

P

�X
Δ∈Ks

aΔεΔ þ
X

Δ∈∂Ks

aΔΘΔ

�
; μ ¼ �1;

ð4:12Þ
and is the Regge action on Ks [9,20,28,35,36]. jc means
evaluating at any critical point ðg�vα; ξαΔÞc½JΔ� of S0. εΔ and
ΘΔ are the deficit angles and dihedral angles hinged at
internal and boundary Δ’s. γJΔ are interpreted as triangle
areas aΔ ¼Pf∈Δ af made by facet areas af as in
Eq. (3.7). The validity of Eq. (4.12) has some topological
requirements on Ks: (1) all internal Δ are shared by an

even number of 4-simplices, and (2) Ks is a triangula-
tion of manifold M with trivial second cohomology
H2ðM;Z2Þ ¼ 0 [9]. The first requirement is generically
satisfied by triangulations used in Regge calculus; see
[9,37] for examples. The above result applies to, e.g.,M at
S4, S3 × I (where I is an interval in R), or a topologically
trivial region in R4.
Beyond the subset G, there are other critical points with

the BF-type and/or vector geometry critical data [9,19,20].
Each of these critical points has critical data of g�vα to satisfy
gþvα ¼ g−vα or equivalently det ðNα1ðvÞ; Nα2ðvÞ; Nα3ðvÞ;
Nα4ðvÞÞ ¼ 0 at certain v’s. The difference between the
BF-type and vector geometry critical data is that the BF-
type data still associate with nondegnerate 4-simplices,
while vector geometries are degenerate 4-simplices.

B. Critical points violating parallel restriction

The converse of Theorem 4.1 is not true. There exist
critical points of S which are not critical points of S0.
Critical points of S satisfy

ĝ�vβn⃗βf ¼ ĝ�vαn⃗αf;
X
f⊂α

jfκαΔn⃗αf ¼ 0: ð4:13Þ

Theorem 4.2: Every critical point of S that is not a
critical point of S0 either (1) relates to a critical point of S0,
ðg�vα; ξαΔÞc½JΔ�, by gþvα ≠ g−vα and ξαf ¼ JξαΔ up to a phase
at some internal f ∈ Δ, or (2) satisfies gþvα ¼ g−vα for all v, α
modulo discrete gauge.
Proof: Wewrite ĝ�αβ ≡ ðĝ�vαÞ−1ðĝ�vβÞ, the first equation in

(4.13) gives ĝþαβn⃗βf ¼ n⃗αf and ĝ−αβn⃗βf ¼ n⃗αf and implies
ðĝþαβÞ−1ĝ−αβn⃗βf ¼ n⃗βf for all f ∈ Δ; i.e., n⃗βf at all f ∈ Δ are
eigenvectors of ðĝþαβÞ−1ĝ−αβ with a unit eigenvalue. It does
not constrain n⃗βf if ðĝþαβÞ−1ĝ−αβ ¼ 1. But when the SO(3)
matrix ðĝþαβÞ−1ĝ−αβ ≠ 1, its eigenspace with the unit eigen-
value is at most one dimensional. Therefore in this case, all
n⃗βf are collinear, thus n⃗βf¼�n⃗βf0 for any pair of f; f0 ∈ Δ,
and Eq. (4.13) reduces to Eq. (4.5) whose solution gives
ðg�vα; ξαΔÞc½JΔ�. Hence n⃗βf ¼ �n⃗αΔ, i.e., ξβf ¼ ξαΔ or JξαΔ
up to a phase. At each v, we have to gauge fix g�vα ¼ 1

at a certain α, then require that ðĝþαβÞ−1ĝ−αβ ≠ 1 is equivalent
to gþvβ ≠ g−vβ for all β ≠ α [gþvβ ¼ −g−vβ still implies
ðĝþαβÞ−1ĝ−αβ ¼ 1, but it is gauge equivalent to gþvβ ¼ g−vβ
by a discrete gauge transformation]. ▪
We may generalize the definition Eq. (4.10) of the

subclass G to include all critical points of S. It contains
critical points of S0, ðg�vα; ξαΔÞc½JΔ� ∈ G, and critical points
of S which flip some internal or boundary ξαf → JξαΔ.
Critical points in either class (1) or class (2) in Theorem 4.2
are isolated from ðg�vα; ξαΔÞc½JΔ� ∈ G because an infinitesi-
mal deformation from ðg�vα; ξαΔÞc½JΔ� at fixed JΔ cannot
flip ξαf → JξαΔ and cannot break the condition Eq. (4.10).
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Although we find critical points of S0 and S, we cannot
apply the stationary phase approximation of the integral at
the present stage since all jf’s are small. The critical points
in Theorem 4.2 seem useless. But we come back to the
computation of the integral in Sec. IX and see why these
critical points are useful to the stationary phase approxi-
mation of integrals.

V. SEMICLASSICAL STATES FROM
SPINFOAM AMPLITUDE

Spinfoam amplitudes can be used to construct quantum
states in LQGHilbert space. Given a 4-manifoldM4 with a
spatial boundary Σ as in Fig. 2, we make an arbitrary
cellular decomposition of M4. The cellular complex is
denoted by K. Spinfoam amplitudes can be defined on K
and denoted by AðKÞj⃗;⃗i where j⃗, ⃗i are spins and intertwiners
coloring the boundary dual complex ∂K�. On the other
hand, Σ associates with a LQG kinematical Hilbert space
HΣ in which spin-network states TG;j⃗;⃗iðU⃗Þ for all graphs G
colored by j⃗, ⃗i. U⃗ are SU(2) holonomies along links of G.
We define a linear combination of TG;j⃗;⃗i by identifying G ¼
∂K� and letting the coefficients be AðKÞj⃗;⃗i:

ΨKðU⃗Þ ¼
X
j⃗;⃗i

AðKÞj⃗;⃗iT∂K�;j⃗;⃗iðU⃗Þ: ð5:1Þ

One may even consider to sum over the cellular decom-
position and define ΨðU⃗Þ ¼PK ΨKðU⃗Þ. If we truncate the
sum in ΨK (or Ψ) to be finite, ΨK (or Ψ) is a state in the
kinematical Hilbert space HΣ. If the sums in ΨK are kept
infinite, ΨK may not be normalizable in HΣ, but one may
anticipate that ΨK is a physical state living in the dual
space of a dense subspace in HΣ. ΨK may be viewed as a
spinfoam analog of the Hartle-Hawking wave function.
When M4 has several disconnected boundaries Σ1;

Σ2;…;Σn in additional to Σ, a cellular decomposition K
of M4 induces boundary dual complexes ∂K�

1;…; ∂K�
n. A

state ΨKðU⃗Þ on Σ can be defined by choices of (initial)
states ϕa∈HΣa

ða ¼ 1;…; nÞ, whose spin-network decom-
positions are ϕa ¼

P
j⃗a ;⃗ia

Q
lð2jl þ 1ÞðϕaÞj⃗a ;⃗iaT∂K�

a;j⃗a;⃗ia
. ϕa

is based on a single graph ∂K�
a.ΨKðU⃗Þ can be constructed as

ΨKðU⃗Þ ¼
X
j⃗;⃗i

X
fj⃗a ;⃗iagna¼1

Yn
a¼1

ðϕaÞj⃗a ;⃗iaAðKÞj⃗;⃗i;fj⃗a ;⃗iagna¼1

× T∂K�;j⃗;⃗iðU⃗Þ: ð5:2Þ

It is useful to write Eqs. (5.1) and (5.2) in terms of
coherent intertwiners. For instance, if we considerK whose
cells are B4 as in Sec. IVand apply the spinfoam amplitude
AðKÞ as in Eq. (4.1), ΨKðU⃗Þ in Eq. (5.1) can be written as

ΨKðU⃗Þ ¼
X
fjfg

Y
f

AΔðjfÞ
Z

½dg�vαdξαf�eST∂K�;j⃗;ξ⃗ðU⃗Þ;

ð5:3Þ
while Eq. (5.2) can be written analogously. In Eq. (5.3),P

fjfg and
R
dξαf integrate all internal and boundary jf’s

and ξαf’s. Gauge symmetries of the integrand

g�vα∼ g�vαhα; ξαf ∼h−1α ξαf; ∀hα ∈ SUð2Þ; ξαf ∼ eiφξαf;

ð5:4Þ
apply to both internal and boundary α. Tj⃗;ξ⃗ðU⃗Þ are spin-
network states with coherent intertwiners (see Appendix for
convention):

T∂K�;j⃗;ξ⃗ðU⃗Þ ¼ tr
h
⊗

f∈∂K
RjfðUfÞ ⊗

α∈∂K
kfjfg;

fξαfgi ⊗
β∈∂K

hfjfg; fξβfgk
i
; ð5:5Þ

where kfjfg; fξαfgi are coherent intertwiners at polyhedra
α ∈ ∂K and are bras or kets depending on the orientation of
the spin-network graph. RjfðUfÞ satisfies the following
normalization:Z
SUð2Þ

dURj
mnðUÞRj0

m0n0 ðUÞ ¼ 1

dimðjÞ δj;j0δmm0δnn0 : ð5:6Þ

A. Truncated states jψi with parallel restriction

In the following we always consider states constructed
by spinfoam amplitudes on a fixed cellular complexK, plus
certain truncations. The resulting states are inside HΣ. We
again focus onK whose 4-cells are B4. The boundary ∂K is
a polyhedral decomposition of Σ.
We apply the following truncations to ΨK: (1) The sumP
fjfg is constrained by

P
f∈Δ jf ¼ JΔ with fixed JΔ at

every Δ. (2) The integral of
R ½dg�vαdξαf� is over a neighbor-

hood Ng;ξ (of both internal and boundary variables) at an
isolated critical point ðg�vα; ξαΔÞc½JΔ� ∈ G of S0 (the critical
point is isolated in the space of g�vα; ξαf including boundary
ξαf). Ng;ξ only contains a single critical point.1 The critical
data ðg�vα; ξαΔÞc½JΔ� are a gauge equivalence class by

1ψ contains integral over boundary ξ⃗; different boundary data ξ⃗
might lead to different critical points for the integral over g�vα and
internal ξαf . Here the assumption that Ng;ξ only contains a single
critical point means that arbitrary changes of boundary data ξ⃗
withinNg;ξ do not lead to any other critical point inNg;ξ different
from ðg�vα; ξαΔÞc½JΔ�.Ng;ξ satisfying the requirement is nontrivial.
Indeed, if an infinitesimal change of boundary data ξ⃗ leads to
another critical point in Ng;ξ different from ðg�vα; ξαΔÞc½JΔ�,
then the new critical point has to be infinitesimally close to
ðg�vα; ξαΔÞc½JΔ�. Otherwise this new critical point can be excluded
by redefining Ng;ξ. But it violates the assumption that
ðg�vα; ξαΔÞc½JΔ� is isolated.
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Eq. (5.4), and other gauge transformations mentioned in
Sec. IV, ðg�vα; ξαΔÞc½JΔ�, include the data of boundary
JΔ; ξαΔ. (3) We impose the parallel restriction to ξαf by
a real gauge invariant potential Vα;ΔðξαfÞ at every pair of
internal and boundary α, Δ, such that the minimum
Vα;ΔðξαfÞ ¼ 0 gives the parallel restriction. The truncated
state is denoted by ψ :

ψðU⃗Þ ¼
X0

fjfg

Y
f

AΔðjfÞ
Z
Ng;ξ

½dg�vαdξαf�

× eS
Y
α;Δ

e−NVα;ΔT∂K�;j⃗;ξ⃗ðU⃗Þ: ð5:7Þ

An example of Vα;ΔðξαfÞ may be an analog of the 2D
spin-chain Hamiltonian: Vα;ΔðξαfÞ ¼

P
hf;f0ið1 − n⃗αf ·

n⃗αf0 Þ where hf; f0i are close-neighbor pairs. Our following
discussion does not reply on details of Vα;Δ. N is of the
same order of magnitude as JΔ.

P0
fjfg only sums nonzero

jf in Eq. (5.7).
P0

fjfg constrained by
P

f∈Δ jf ¼ JΔ is a

finite sum, so ψ ∈ HΣ.
Sending the coupling constant of Vα;Δ to infinityN → ∞

independent of JΔ imposes strongly the parallel restriction
which reduces the vertex amplitude used in Eq. (5.7) to

the EPRL-FK 4-simplex amplitude. Equation (5.7) is a
generalization from the following analog using large-J
EPRL-FK amplitudes on the simplicial complex Ks:

ψEPRL-FKðU⃗Þ ¼
Y
Δ
AΔðJΔÞ

Z
Ng;ξ

½dg�vαdξαΔ�eS0T∂K�
s ;J⃗;ξ⃗

ðU⃗Þ:

ð5:8Þ
The generalization from ψEPRL-FK to ψ releases mildly the
d.o.f. of nonparallel ξαf’s in Δ, but releases a large number
of microdegrees of freedom of small jf’s at every Δ.
Spinfoam amplitude with the parallel restriction imposed
by VαΔ is constructed for the purpose of defining ψ which
has the semiclassical property discussed below and gives
interesting entanglement entropy (see Sec. VII). The
computation of the amplitude without the parallel restric-
tion is discussed in Sec. IX.
Given that ψ associates with a unique critical point

ðg�vα; ξαΔÞc½JΔ�, when ðg�vα; ξαΔÞc½JΔ� ∈ G corresponds to
a Regge spacetime geometry, ψ may be viewed as a
semiclassical state associated with the Regge spacetime
geometry. Indeed, if the boundaries j⃗ and ξ⃗ in T∂K�;j⃗;ξ⃗ are

consistent with the boundary data of ðg�vα; ξαΔÞc½JΔ�, its
coefficient gives

X0

fjfg

Y
f

AΔðjfÞ
Z
Ng;ξ

½dg�vαdξαf�eS
Y
α;Δ

e−NVα;Δ ¼
Z
Ng;ξ

½dg�vαdξαΔ�
�
2π

N

�P
Δ∈iðKÞðNΔ−1Þ eS0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detHVðξαΔÞ
p X0

fjfg

Y
f

AΔðjfÞ
�
1þO

�
1

N

��

¼
�
2π

N

�
24Nvþ2

P
Δ∈K

NΔ eS0jcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHV jcÞdetð−H0jcÞ

p X0

fjfg

Y
f

AΔðjfÞ
�
1þO

�
1

N

��
:

ð5:9Þ

In the first step we choose a f0 in every Δ and define
ξαf0 ≡ ξαΔ, then integrate out ξαf’s (f ≠ f0) by N ≫ 1, and
reduce S to S0 which depends on jf only through JΔ. In the
second step we apply the stationary phase approximation of
the integral with S0 in Ng;ξ which contains a single critical
point.HV andH0 are Hessianmatrices of

P
α;Δ Vα;Δ and S0,

and are assumed to be nondegenerate. If the boundary ξ⃗ in
T∂K�;j⃗;ξ⃗ is away from the boundary data of ðg�vα; ξαΔÞc½JΔ�,
critical equations from S0 have no solution in Ng;ξ, so the
integral is suppressed exponentially by large JΔ. It shows

that coefficients in Eq. (5.7) as a function of boundary ξ⃗ is
peaked at the boundary data of ðg�vα; ξαΔÞc½JΔ�. ψ is a
spinfoam analog of the Hartle-Hawking state.
In addition, ψ also explicitly depends on the size of the

neighborhoodNg;ξ. But as we are going to see in a moment,
the squarednormofψ and entanglement entropyonlymildly
depend on the size Ng;ξ through the subleading order.

B. Squared norm of jψi
The squared norm of jψi is computed as follows:

hψ jψi ¼
X0

fjfg;fj0fg

Y
f

AΔðjfÞAΔðj0fÞ
Z
Ng;ξ×Ng;ξ

½dg�vαdg0�vαdξαfdξ0αf�eSþS̄
Y
α;Δ

e−N½Vα;ΔðξαfÞþVα;Δðξ0αfÞ�

×
Y
f⊂Σ

δjf;j0f
2jf þ 1

Y
α⊂Σ

Z
SUð2Þ

dgαe
P

f∈∂α2jf ln hξ0αf jgαjξαfi
Y
β⊂Σ

Z
SUð2Þ

dgαe
P

f∈∂α2jf ln hξβf jgαjξ0βfi; ð5:10Þ
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where j0f; g0�vα; ξ0αf denote variables from hψ j. S and S̄ are from jψi and hψ j, and thus depend on unprimed and primed
variables, respectively. j0f ¼ jf for f ⊂ Σ. 2jf þ 1 in the denominator comes from the normalization Eq. (5.6). We have
applied the integral expressions of inner products between coherent intertwiners:

hfjfg;fξ0αfgjjfjfg;fξαfgi¼
Z
SUð2Þ

dgαe
P

f∈∂α2jf lnhξ0αf jgαjξαfi: ð5:11Þ

hα in the integrand of hψ jψi can be removed by a gauge transformation Eq. (5.4).
We may define a total action by collecting all exponents in the integrand:

Stot ¼ S½jf; g�vα; ξαf� þ S½j0f; g0�vα; ξ0αf� − N
X
α;Δ

½Vα;Δðξ0αfÞ þ Vα;ΔðξαfÞ�

þ
X
α⊂Σ

X
f∈∂α

2jf lnhξ0αfjgαjξαfi þ
X
β⊂Σ

X
f∈∂β

2jf lnhξβfjgβjξ0βfi: ð5:12Þ

We may choose a f0 in every Δ and define ξαf0 ≡ ξαΔ. The large N implements the parallel restriction and reduces S to S0,P
f∈Δ 2jf lnhξ0αfjξαfi to 2JΔ lnhξ0αΔjξαΔi up to Oð1=NÞ after integrating out nonparallel ξαf’s. The integral in hψ jψi

reduces to

Z
Ng;ξ×Ng;ξ

½dg�vαdg0�vαdξαΔdξ0αΔdgαdgβ�
ð2π=NÞ2

P
Δ∈K

ðNΔ−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detHVðξαΔÞ detHVðξ0αΔÞ

p eS
0
tot

�
1þO

�
1

N

��

S0tot ¼ S0 þ S̄0 þ
X
α⊂Σ

X
Δ⊂α

2JΔ lnhξ0αΔjgαjξαΔi þ
X
β⊂Σ

X
Δ⊂β

2JΔ lnhξβΔjgβjξ0βΔi; ð5:13Þ

where HVðξαΔÞ is the Hessian matrix of
P

α;Δ Vα;ΔðξαfÞ evaluated at the minimum. Equation (5.13) can be computed by
stationary phase approximation. The critical equation of this integral is given by Eq. (4.5) from S0 and in addition

gβjξ0βΔi ¼ eiφβΔ jξβΔi; ∀Δ ⊂ β; β ⊂ Σ; ð5:14Þ

from Reð2JΔ lnhξβΔjgβjξ0βΔiÞ ¼ 0. Equation (5.14) implies that jξ0βΔi and jξβΔi are related by a gauge transformation. A
critical point ðg�vα; ξαΔÞc½JΔ� of S0 gives rise to a critical point of S0tot by double copying, i.e., ðg0�vα; ξ0αΔÞc½JΔ� ¼
ðg�vα; ξαΔÞc½JΔ�modulo gauge equivalence. A gauge transformation jξβΔi ↦ e−iφβΔgβjξβΔi, g�vβ ↦ g�vβg

−1
β identifies jξβΔi ¼

jξ0βΔi by Eq. (5.14). Ng;ξ contains a single critical point ðg�vα; ξαΔÞc½JΔ�, which implies that Ng;ξ ×Ng;ξ contains a single
critical point made by double copying. S0tot vanishes at the critical point2, so Eq. (5.13) is estimated by

�
2π

N

�
24Nvþ2

P
Δ∈K

NΔ 1

det ðHV jcÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−H0
totjcÞ

p �
1þO

�
1

N

��
; ð5:15Þ

whereNv is the total number of B4 inK and 24Nv þ 2
P

Δ∈K NΔ is the total number of integration variables in ψðU⃗Þ.H0
totjc

is the Hessian matrix of S0tot evaluated at the critical point and is assumed to be nondegenerate.
We observe that the leading order in Eq. (5.15) depends on fjfg only through their sum JΔ, so it is a constant in the sum

over fjfg in hψ jψi. Therefore inserting the above estimate of the integral,

hψ jψi ¼
�
2π

N

�
24Nvþ2

P
Δ∈K

NΔ 1

det ðHV jcÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−H0
totjcÞ

p Y
Δ∈iðKsÞ

ΓΔ½JΔ�2
Y
Δ⊂Σ

Γ0
Δ½JΔ�

�
1þO

�
1

N

��
; ð5:16Þ

where iðKsÞ is the interior of the simplicial complex Ks determined by K, and ΓΔ;Γ0
Δ are given by

2At the critical point, we apply the gauge transformation jξβΔi ↦ gβjξβΔi to boundary ξβΔ’s and set phase conventions such that
jξβΔi ¼ jξ0βΔi (set φβΔ ¼ 0 by gauge transformation). They make lnhξβΔjgβjξ0βΔi vanish and identify the complex conjugate of S0 to be
S̄0. S0 þ S̄0 vanishes since S0 is purely imaginary at the critical point.
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ΓΔ½JΔ� ¼
X0

fjf∈Δg

Y
f

AΔðjfÞ ¼
X0

fjf∈Δg

Y
f

ð2jf þ 1ÞnvðΔÞþ1;

Γ0
Δ½JΔ� ¼

X0

fjf∈Δg

Y
f

AΔðjfÞ2
2jþ 1

¼
X0

fjf∈Δg

Y
f

ð2jf þ 1Þ2nvðΔÞþ3: ð5:17Þ

VI. ANALOG WITH MICROSTATE COUNTING

Interestingly, ΓΔ½JΔ� and Γ0
Δ½JΔ� are two analogs of counting microstates corresponding to the macrostate (JΔ,NΔ),

where the microstates are fjfg with degeneracies ð2jf þ 1ÞnvðΔÞþ1 and ð2jf þ 1Þ2nvðΔÞþ3 at the level jf. Here we list
quantities in ΓΔ½JΔ� or Γ0

Δ½JΔ� as analogs with quantities in a statistical ensemble of identical systems:

NΔ ↔ total number of identical systems in the ensemble;

JΔ ↔ total energy of the ensemble;

j ↔ energy levels of the system;

ð2jþ 1Þ2nvðΔÞþ1 or ð2jþ 1Þ2nvðΔÞþ3 ↔ degeneracy at each energy leve;

ΓΔ½JΔ� or Γ0
Δ½JΔ� ↔ total number of microstates in the ensemble: ð6:1Þ

ΓΔ½JΔ� and Γ0
Δ½JΔ� are similar to the black hole entropy counting in LQG [11]

Here we focus on computing the boundary contribution Γ0
Δ½JΔ�. We define nj to be the number of facets f carrying the

nonzero spin j,

Γ0
Δ½JΔ� ¼

X0

fjf∈Δg

Y
f∈Δ

gΔðjfÞ ¼
X0

fnjg
NΔ!

Y
j≠0

gΔðjÞnj
nj!

; gΔðjÞ ¼
AΔðjÞ2
2jþ 1

¼ ð2jþ 1Þ2nvðΔÞþ3; ð6:2Þ

where
P∞

j¼1=2 jnj ¼ JΔ and
P∞

j¼1=2 nj ¼ NΔ is imposed to
P0

fnjg. ΓΔ½JΔ� is computed by simply replacing gΔðjÞ by

ð2jþ 1Þ2nvðΔÞþ1. Following the Darwin-Fowler method in statistical mechanics (see, e.g., [38]), we define the generating
functional

X∞
JΔ¼1=2

Γ0
Δ½JΔ�z2JΔ ¼

X
fnjg

NΔ!
Y∞
j¼1=2

gΔðjÞnjz2njj
nj!

¼
�X∞
j¼1=2

z2jgΔðjÞ
�
NΔ

; ð6:3Þ

where
P∞

JΔ¼1=2 relaxes the constraint
P∞

j¼1=2 jnj ¼ JΔ on
P

fnjg.
P

fnjg satisfies only one constraint,
P∞

j¼1=2 nj ¼ NΔ.P∞
j¼1=2 z

2jgΔðjÞ has a nonzero radius of convergence, so it is an analytic function of z at a neighborhood at z ¼ 0. Γ0
Δ½JΔ� is

given by a contour integral

Γ0
Δ½JΔ� ¼

1

2πi

I
z¼0

dz
1

z2JΔþ1

�X∞
j¼1=2

z2jgΔðjÞ
�
NΔ

¼ 1

2πi

I
z¼0

dz exp
�
NΔ ln

�X∞
j¼1=2

z2jgΔðjÞ
�
− ð2JΔ þ 1Þ lnðzÞ

�
: ð6:4Þ

The integration contour is a circle inside the domain where the generating function is analytic. The exponent in the integrand
is bounded along the contour. Given that both NΔ; JΔ ≫ 1, the above integral can be computed by the method of steepest
descent: If we denote the exponent by

NΔfðzÞ ≃ NΔ ln

�X∞
j¼1=2

z2jgΔðjÞ
�
− 2JΔ lnðzÞ; ð6:5Þ

then the variational principle ∂zfðz0Þ ¼ 0 gives
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P∞
j¼1=2 jz

2j
0 gΔðjÞP∞

j¼1=2 z
2j
0 gΔðjÞ

¼ JΔ
NΔ

: ð6:6Þ

There is always a solution on the positive real axis, z0 > 0,
which maximizes the integrand on the circle [38]. We
denote them by

z0 ¼ e−βΔ=2 and eμΔ ¼
X∞
j¼1=2

z2j0 gΔðjÞ: ð6:7Þ

The integral can be approximated by

Γ0
Δ½JΔ� ¼ eNΔfðz0Þ

�
1

2πNΔf00ðz0Þ
�1

2

�
1þO

�
1

NΔ

��
;

NΔfðz0Þ≡ μΔNΔ þ βΔJΔ; ð6:8Þ

where

f00ðz0Þ ≃
P∞

j¼1=2 2jð2j − 1Þz2j−20 gΔðjÞP∞
j¼1=2 z

2j
0 gΔðjÞ

− 4
JΔ2=NΔ

2 − JΔ=NΔ

z20
: ð6:9Þ

In all following numerical computations of z0, we always
check that f00ðz0Þ ≠ 0. Table I gives examples of solutions
z0 at different nvðΔÞ and JΔ=NΔ.

VII. ENTANGLEMENT RÉNYI ENTROPY

A. Second Rényi entropy

We subdivide the boundary slice Σ into two subregions A
and Ā [Fig. (2)]. The subdivision is assumed to be
compatible to the complexes K and Ks, in the sense that
the boundary S between A and Ā are triangulated by
triangles Δ ∈ Ks, each of which is made by a large number
of facets f ∈ K. Thus the spin-network functions Tj⃗;ξ⃗ðU⃗Þ
in the definition of ψðU⃗Þ are defined on graph G0 ¼ ∂K�
which have (many) links intersecting S, while S does not
intersect the spin-network nodes.
We improve the spin-network graph G0 by including all

intersecting points nS ¼ l ∩ S between S and links. nS
breaks l into 2 links l1, l2. The improved graph is denoted
by G. By the cylindrical consistency, all Tj⃗;ξ⃗ðU⃗Þ are also
spin networks on the improved graph G, since all Ul along
links intersecting S can be decomposed into Ul ¼ Ul1Ul2 .
The boundary Hilbert spaceHΣ is defined as follows: We

denote by LðGÞ, LðGAÞ, and LðGĀÞ the set of links in G,
GA ¼ G ∩ A, and GĀ ¼ G ∩ Ā,

HΣ ¼ HA ⊗ HĀ; where HΣ ¼ L2ðSUð2ÞÞ⊗jLðGÞj=gaugeðG0Þ;
HA ¼ L2ðSUð2ÞÞ⊗jLðGAÞj=gaugeðGAÞ; HĀ ¼ L2ðSUð2ÞÞ⊗jLðGĀÞj=gaugeðGĀÞ: ð7:1Þ

Here gaugeðG0Þ only includes gauge transformations
acting on nodes in G0 (without bivalent nodes nS’s).
The gaugeðGAÞ and gaugeðGĀÞ only include gauge trans-
formations acting on nodes in the interior of A and Ā.
Tj⃗;ξ⃗ðU⃗Þ and ψðU⃗Þ are also gauge invariant at all nS’s and
thus belong to a proper Hilbert subspace in HΣ. However,
this subspace does not admit a factorization into Hilbert
spaces associated with A and Ā. Therefore in our
discussion of quantum entanglement in jψi, we view
jψi as a state in the larger Hilbert space HΣ, although
some states in HΣ are not gauge invariant at bivalent
nodes nS’s.

We define a reduced density matrix ρA from jψi ∈ HΣ by
tracing out the d.o.f. in HĀ:

ρA ¼ trĀðρÞ; ρ ¼ jψihψ j: ð7:2Þ
The quantum entanglement in jψi can be quantified by the
nth Rényi entanglement entropy associated with A:

SnðAÞ ¼
1

1 − n
ln

trðρnAÞ
trðρAÞn

: ð7:3Þ

The von Neumann entanglement entropy is given by
SðAÞ ¼ limn→1 SnðAÞ.

TABLE I. Solutions z0 maximizing fðz0Þ at different nvðΔÞ and JΔ=NΔ [f00ðz0Þ are all nonzero].

JΔ=NΔ ¼ 0.6 JΔ=NΔ ¼ 0.7 JΔ=NΔ ¼ 0.8 JΔ=NΔ ¼ 0.9 JΔ=NΔ ¼ 1

nvðΔÞ ¼ 1 z0 ¼ 0.0257781 z0 ¼ 0.0505039 z0 ¼ 0.0742575 z0 ¼ 0.0971007 z0 ¼ 0.119083
nvðΔÞ ¼ 2 z0 ¼ 0.0119832 z0 ¼ 0.0244767 z0 ¼ 0.0374077 z0 ¼ 0.0506988 z0 ¼ 0.0642717
nvðΔÞ ¼ 3 z0 ¼ 0.00552678 z0 ¼ 0.0117148 z0 ¼ 0.0185671 z0 ¼ 0.0260657 z0 ¼ 0.0341736
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The trðρAÞ ¼ hψ jψi has been computed above. The
following task is to compute trðρnAÞ. Let us first focus on
the second Rényi entropy at n ¼ 2. The computation is
illustrated graphically in Fig. 3. The trðρ2AÞ is made by inner
products among four copies of ψ . The inner products inHĀ

take place between copies I and II and between III and IV,
while the inner products inHA take place between copies I
and IVand between II and III. The inner products of trðρ2AÞ
are computed in the same way as the above derivation
for hψ jψi:

trðρ2AÞ ¼
X0

fjðIÞf g;fjðIIÞf g;fjðIIIÞf g;fjðIVÞf g

Y
f

YIV
a¼I

AΔðjðaÞf Þ
Z
N×4

g;ξ

�YIV
a¼I

dgðaÞ�vα dξðaÞαf

�
eS

ðIÞþSðIIÞþSðIIIÞþSðIVÞ

×
Y
α;Δ

e−N½Vα;ΔðξðIÞαf ÞþVα;ΔðξðIIÞαf ÞþVα;ΔðξðIIIÞαf ÞþVα;ΔðξðIVÞαf Þ�Y
f⊂S

1

ð2jf þ 1Þ3
Y

f⊂ΣnS

1

2jf þ 1

×
Y
α⊂A

hfjðIVÞf g; fξðIVÞαf g
����fjðIÞf g; fξðIÞαfgihfjðIIÞf g; fξðIIÞαf g

����fjðIIIÞf ; fξðIIIÞαf gi

×
Y
β⊂Ā

hfjðIIIÞf g; fξðIIIÞβf g
����fjðIVÞf g; fξðIVÞβf gihfjðIÞf g; fξðIÞβfg

����fjðIIÞf g; fξðIIÞβf gi; ð7:4Þ

where jðaÞf , gðaÞ�vα , and ξðaÞαf are variables in the ath copy of ψ (a ¼ I;…; IV), and SðaÞ depends on the variables labeled by a.
We apply the convention in the above formula that hfjg; fξgkfj0g; fξ0gi ¼ δjj

0 hfjg; fξgkfjg; fξ0gi. A factor 1=ð2jf þ 1Þ3
appearing for each f ⊂ S comes from the following inner products at f:

Z
dUAdUĀdU

0
AdUĀ

0 X
kðIÞ;kðIIÞ;kðIIIÞ;kðIVÞ

R
jðIÞf

mðIÞkðIÞ ðUAÞR
jðIÞf

kðIÞnðIÞ ðUĀÞR
jðIIÞf

mðIIÞkðIIÞ ðU0
AÞR

jðIIÞf

kðIIÞnðIIÞ ðUĀÞ

× R
jðIIIÞf

mðIIIÞkðIIIÞ
ðU0

AÞR
jðIIIÞf

kðIIIÞnðIIIÞ
ðU 0̄

AÞR
jðIVÞf

mðIVÞkðIVÞ
ðUAÞR

jðIVÞf

kðIVÞnðIVÞ
ðU 0̄

AÞ

¼
�

1

2jf þ 1

�
4

δj
ðIÞ
f jðIIÞf δj

ðIIÞ
f jðIIIÞf δj

ðIIIÞ
f jðIVÞf δj

ðIVÞ
f jðIÞf

X
kðIÞ;kðIIÞ;kðIIIÞ;kðIVÞ

δkðIÞkðIIÞδkðIIÞkðIIIÞδkðIIIÞkðIVÞδkðIVÞkðIÞ

× δnðIÞnðIIÞδmðIIÞmðIIIÞδnðIIIÞnðIVÞδmðIÞmðIVÞ

¼
�

1

2jf þ 1

�
3

δj
ðIÞ
f jðIIÞf δj

ðIIÞ
f jðIIIÞf δj

ðIIIÞ
f jðIVÞf δj

ðIVÞ
f jðIÞf δnðIÞnðIIÞδmðIIÞmðIIIÞδnðIIIÞnðIVÞδmðIÞmðIVÞ ; ð7:5Þ

(a) (b)

FIG. 3. (a) The inner product hψ jψi is taken in bothHA andHĀ between two copies of jψi. (b) In trðρ2AÞ, the inner products inHĀ are
taken between copies I and II and between III and IV of jψi, while the inner products in HA are taken between copies I and IV and
between II and III. If the inner products are understood as gluing manifolds and their path integrals, the manifold for trðρ2AÞ has a branch
cut whose branch points make the boundary S between A and Ā.
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whereUAUĀ is the holonomy along the link intersecting S and dual to f in Σ (see Fig. 4). The above inner products identify

four spins of f from four different copies of ψ : jðIÞf ¼ jðIIÞf ¼ jðIIIÞf ¼ jðIVÞf ¼ jf. The total action in Eq. (7.4) is given by

Sð2Þtot ¼ SðIÞ þ SðIIÞ þ SðIIIÞ þ SðIVÞ − N
X
α;Δ

½Vα;ΔðξðIÞαf Þ þ Vα;ΔðξðIIÞαf Þ þ Vα;ΔðξðIIIÞαf Þ þ Vα;ΔðξðIVÞαf Þ�

þ
X
α⊂A

X
f⊂α

2jðIVÞf lnhξðIVÞαf jgαjξðIÞαf i þ
X
α⊂A

X
f⊂α

2jðIIÞf lnhξðIIÞαf jg0αjξðIIIÞαf i

þ
X
β⊂Ā

X
f⊂α

2jðIIIÞf lnhξðIIIÞβf jgβjξðIVÞβf i þ þ
X
β⊂Ā

X
f⊂α

2jðIÞf lnhξðIÞβf jg0βjξðIIÞβf i: ð7:6Þ

The situation at f ⊂ S is illustrated in Fig. 4. The large N again imposes the parallel restriction to ξαf and reduces Sð2Þtot to

S0ð2Þtot ¼ SðIÞ0 þ SðIIÞ0 þ SðIIIÞ0 þ SðIVÞ0

þ
X
α⊂A

X
Δ⊂α

2JðIVÞΔ lnhξðIVÞαΔ jgαjξðIÞαΔi þ
X
α⊂A

X
Δ⊂α

2JðIIÞΔ lnhξðIIÞαΔ jg0αjξðIIIÞαΔ i

þ
X
β⊂Ā

X
Δ⊂α

2JðIIIÞΔ lnhξðIIIÞβΔ jgβjξðIVÞβΔ i þ þ
X
β⊂Ā

X
Δ⊂α

2JðIÞΔ lnhξðIÞβΔjg0βjξðIIÞβΔ i: ð7:7Þ

A large-JΔ stationary phase analysis similar to hψ jψi shows that the integration domain of Eq. (7.4) again only contains a

single critical point, which is four copies of ðg�vα; ξαΔÞc½JΔ� with their boundary data identified according to Fig. 3. Sð2Þtot
vanishes at the critical point.
The asymptotic behavior of the integral depends on jf only through their sum JΔ, so similar to the computation of hψ jψi,

trðρ2AÞ ≃
�
2π

N

�
48Nvþ4

P
Δ∈K

NΔ 1

det ðHV jcÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−H0ð2Þ
tot jcÞ

q
×
Y

Δ∈iðKsÞ
ΓΔ½JΔ�4

Y
Δ⊂iðAÞ

Γ0
Δ½JΔ�2

Y
Δ⊂iðĀÞ

Γ0
Δ½JΔ�2

Y
Δ⊂S

Γð2Þ
Δ ½JΔ�

�
1þO

�
1

N

��
; ð7:8Þ

FIG. 4. The situation that f ⊂ S is contained in a single B4 in K, the figure draws four copies of faces in K� dual to a f ⊂ S from four
copies of ψ in computing the second Rényi entropy.UA,UĀ;U

0
A; UĀ

0 in Eq. (7.5) are holonomies along links labeled by A, Ā. Integrating
these holonomies glues four copies of dual faces.
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where H0ð2Þ
tot jc is the Hessian matrix of S0ð2Þtot evaluated at the critical point and is assumed to be nondegenerate. Δ ⊂ S are

special because they are shared by all four copies of ψ in trðρ2AÞ. Γð2Þ
Δ for Δ ⊂ S is given by

Γð2Þ
Δ ½JΔ� ¼

X0

fjf∈Δg

Y
f∈Δ

gð2ÞΔ ðjfÞ; gð2ÞΔ ðjÞ ¼ AΔðjÞ4
ð2jþ 1Þ3 ¼ ð2jþ 1Þ4nvðΔÞþ5: ð7:9Þ

Similar to Γ0
Δ, Γ

ð2Þ
Δ can also be viewed as an analog of microstate counting, where gð2ÞΔ ðjÞ corresponds to the degeneracy of

microstates at the level j. The label (2) indicates that it is for computing the second Rényi entropy,

Γð2Þ
Δ ½JΔ� ≃ eNΔfð2Þðzð2Þ0

Þ
�

1

2πNΔfð2Þ00ðzð2Þ0 Þ

�1
2

�
1þO

�
1

NΔ

��
; NΔfð2Þðzð2Þ0 Þ≡ μð2ÞΔ NΔ þ βð2ÞΔ JΔ; ð7:10Þ

where fð2ÞðzÞ and zð2Þ0 are given by

NΔfð2ÞðzÞ ≃ NΔ ln

�X∞
j¼1=2

z2jgð2ÞΔ ðjÞ
�
− 2JΔ lnðzÞ;

P∞
j¼1=2 j½zð2Þ0 �2jgð2ÞΔ ðjÞP∞
j¼1=2 ½zð2Þ0 �2jgð2ÞΔ ðjÞ

¼ JΔ
NΔ

: ð7:11Þ

The second equation in Eq. (7.11) comes from the variation principle of fð2ÞðzÞ. We denote

zð2Þ0 ¼ e−β
ð2Þ
Δ =2; eμ

ð2Þ
Δ ¼

X∞
j¼1=2

½zð2Þ0 �2jgð2ÞΔ ðjÞ: ð7:12Þ

Table II gives examples of solutions z0 at different nvðΔÞ and JΔ=NΔ.
Combining Eq. (7.8) with Eq. (7.10) for trðρ2AÞ and Eq. (5.16) for hψ jψi ¼ trðρAÞ gives the following second Rényi

entropy:

S2ðAÞ ¼ − ln
trðρ2AÞ
trðρAÞ2

¼ − ln

Q
Δ⊂SΓ

ð2Þ
ΔQ

Δ⊂SΓ0 2
Δ

detð−H0
totjcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−H0ð2Þ
tot jcÞ

q �
1þO

�
1

N

��

≃
X
Δ⊂S

NΔ½2fðz0Þ − fð2Þðzð2Þ0 Þ� ¼
X
Δ⊂S

½ð2βΔ − βð2ÞΔ ÞJΔ þ ð2μΔ − μð2ÞΔ ÞNΔ�; ð7:13Þ

where ln detð−H0
totjcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−H0ð2Þ
tot jcÞ

p is subleading and negligible as JΔ ∼ NΔ ≫ 1.

The z0, z
ð2Þ
0 or βΔ; μΔ; β

ð2Þ
Δ ; μð2ÞΔ clearly depend on JΔ; NΔ. If we fix JΔ and let NΔ vary,

∂½NΔfðz0Þ�
∂NΔ

¼ μΔ þ NΔ

�
JΔ
NΔ

þ ∂μΔ
∂βΔ

� ∂βΔ
∂NΔ

¼ μΔ;
∂μΔ
∂βΔ ¼

P
je

−βΔjð−jÞgΔðjÞP
je

−βΔjgΔðjÞ
¼ −

JΔ
NΔ

;

∂½NΔfð2Þðz0Þ�
∂NΔ

¼ μð2ÞΔ þ NΔ

 
JΔ
NΔ

þ ∂μð2ÞΔ

∂βð2ÞΔ

!
∂βð2ÞΔ
∂NΔ

¼ μð2ÞΔ ;
∂μð2ÞΔ

∂βð2ÞΔ

¼
P

je
−βð2ÞΔ jð−jÞgð2ÞΔ ðjÞP
je

−βð2ÞΔ jgð2ÞΔ ðjÞ
¼ −

JΔ
NΔ

: ð7:14Þ

Therefore,

TABLE II. Solutions z0 maximizing fð2Þðz0Þ at different nvðΔÞ and JΔ=NΔ [fð2Þ00ðz0Þ are all nonzero].

JΔ=NΔ ¼ 0.6 JΔ=NΔ ¼ 0.7 JΔ=NΔ ¼ 0.8 JΔ=NΔ ¼ 0.9

nvðΔÞ ¼ 1 z0 ¼ 0.00552678 z0 ¼ 0.0117148 z0 ¼ 0.0185671 z0 ¼ 0.0260657
nvðΔÞ ¼ 2 z0 ¼ 0.0011542 z0 ¼ 0.00260368 z0 ¼ 0.00441412 z0 ¼ 0.00664713
nvðΔÞ ¼ 3 z0 ¼ 0.000236694 z0 ¼ 0.000560573 z0 ¼ 0.00100989 z0 ¼ 0.00163299
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∂½2NΔfðz0Þ − NΔfð2Þðzð2Þ0 Þ�
∂NΔ

¼ 2μΔ − μð2ÞΔ : ð7:15Þ

S2ðAÞ is extremized at the value of the ratio JΔ=NΔ which

gives 2μΔ ¼ μð2ÞΔ at every Δ. The extremal value of S2ðAÞ
gives

S2ðAÞ ≃
X
Δ⊂S

ð2βΔ − βð2ÞΔ ÞJΔ: ð7:16Þ

If the complex K and the entangling surface S are chosen
such that nvðΔÞ is a constant for all Δ ⊂ S (every Δ ⊂ S is

shared by the same number of B4 ’s), βΔ and βð2ÞΔ are

constants independent of Δ; in this case, S2ðAÞ satisfies the
area law

S2ðAÞ ≃ c
X
Δ⊂S

JΔ ¼ c
8πγl2

P
aS; c ¼ 2βΔ − βð2ÞΔ ; ð7:17Þ

where aS ¼ 8πγl2
P

P
Δ⊂S JΔ is the total area of S. The

relation between aS and JΔ is given by the geometrical
interpretation of the critical point ðg�vα; ξαΔÞc½JΔ� ∈ G.
But in general the extremal S2ðAÞ may satisfy a weighted

area law Eq. (7.16) with different weights 2βΔ − βð2ÞΔ at
different Δ.
To see if 2μΔ ¼ μð2ÞΔ maximizes S2ðAÞ, we compute the

second derivative:

∂2½NΔfðz0Þ�
∂N2

Δ
¼ ∂μΔ

∂βΔ
∂βΔ
∂NΔ

¼ −
1

NΔ

1
N2

Δ
J2Δ

hj2i − 1
; hj2i≡

P∞
j¼1=2 j

2e−βjgΔðjÞP∞
j¼1=2 e

−βjgΔðjÞ
;

∂2½NΔfð2Þðzð2Þ0 Þ�
∂N2

Δ
¼ ∂μð2ÞΔ

∂βð2ÞΔ

∂βð2ÞΔ
∂NΔ

¼ −
1

NΔ

1
N2

Δ
J2Δ

hj2ið2Þ − 1
; hj2ið2Þ ≡

P∞
j¼1=2 j

2e−β
ð2Þ
Δ jgð2ÞΔ ðjÞP∞

j¼1=2 e
−βð2ÞΔ jgð2ÞΔ ðjÞ

;

∂2½2NΔfðz0Þ − NΔfð2Þðzð2Þ0 Þ�
∂N2

Δ
¼ 1

NΔ

 
1

N2
Δ

J2Δ
hj2ið2Þ − 1

−
2

N2
Δ

J2Δ
hj2i − 1

!
: ð7:18Þ

The following list provides some values of JΔ=NΔ which give 2μΔ ¼ μð2ÞΔ at different nvðΔÞ:

nvðΔÞ ¼ 1∶ JΔ=NΔ ¼ 0.802182; 2βΔ − βð2ÞΔ ¼ 2.41769; NΔ
∂2½2NΔfðz0Þ − NΔfð2Þðzð2Þ0 Þ�

∂N2
Δ

¼ −10.3142;

nvðΔÞ ¼ 2∶ JΔ=NΔ ¼ 0.782484; 2βΔ − βð2ÞΔ ¼ 2.38741; NΔ
∂2½2NΔfðz0Þ − NΔfð2Þðzð2Þ0 Þ�

∂N2
Δ

¼ −11.0869;

nvðΔÞ ¼ 3∶ JΔ=NΔ ¼ 0.762613; 2βΔ − βð2ÞΔ ¼ 2.35677; NΔ
∂2½2NΔfðz0Þ − NΔfð2Þðzð2Þ0 Þ�

∂N2
Δ

¼ −12.0193:

The negative second derivative implies that 2μΔ ¼ μð2ÞΔ gives the maximum of S2ðAÞ. Figure 5 plots

F 2

�
nvðΔÞ;

JΔ
NΔ

�
≔

NΔ

JΔ
½2fðz0Þ − fð2Þðzð2Þ0 Þ�; S2ðAÞ ¼

X
Δ⊂S

JΔF 2

�
nvðΔÞ;

JΔ
NΔ

�
ð7:19Þ

at different nvðΔÞ, and suggests that when JΔ is fixed, 2μΔ ¼ μð2ÞΔ indeed gives the global maximum of S2ðAÞ.
The above result shows that fixing JΔ, the second Rényi entropy S2ðAÞ, as a function of NΔ is in general bounded by an

(weighted) area law,

S2ðAÞ ≤
X
Δ⊂S

ð2βΔ − βð2ÞΔ ÞJΔ; ð7:20Þ

where the bound is saturated at JΔ=NΔ which gives 2μΔ ¼ μð2ÞΔ . The bound becomes an area law if nvðΔÞ is a constant for
all Δ ⊂ S.
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B. Higher Rényi entropy

The computation of higher Rényi entropy SnðAÞ with n > 2 is a simple generalization of the second Rényi entropy
computation. The trðρnAÞ includes 2n copies of jψi or hψ j in the computation illustrated by Figs. 3 and 4. Equation (7.8) is
modified to

trðρnAÞ ≃
�
2π

N

�
24nNvþ2n

P
Δ∈K

NΔ 1

det ðHV jcÞn
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−H0ðnÞ
tot jcÞ

q
×
Y

Δ∈iðKsÞ
ΓΔ½JΔ�2n

Y
Δ⊂iðAÞ

Γ0
Δ½JΔ�n

Y
Δ⊂iðĀÞ

Γ0
Δ½JΔ�n

Y
Δ⊂S

ΓðnÞ
Δ ½JΔ�

�
1þO

�
1

N

��
: ð7:21Þ

Here ΓðnÞ
Δ for Δ ⊂ S is computed similar to Γð2Þ

Δ ,

ΓðnÞ
Δ ½JΔ� ¼

X0

fjf∈Δg

Y
f∈Δ

gðnÞΔ ðjfÞ; gðnÞΔ ðjÞ ¼ AΔðjÞ2n
ð2jþ 1Þ2n−1 ¼ ð2jþ 1Þ2nðnvðΔÞþ1Þþ1: ð7:22Þ

As a result,

SnðAÞ ¼
1

1 − n
ln

trðρnAÞ
trðρAÞn

¼ 1

1 − n
ln

Q
Δ⊂SΓ

ðnÞ
ΔQ

Δ⊂SΓ0
Δ
n

detð−H0
totjcÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−H0 ðnÞ
tot jcÞ

q �
1þO

�
1

N

��

≃
X
Δ⊂S

�
βðnÞΔ − βΔn

1 − n
JΔ þ μðnÞΔ − μΔn

1 − n
NΔ

�
; ð7:23Þ

FIG. 5. Plots of F 2½nvðΔÞ; JΔ=NΔ� in Eq. (7.27) at nvðΔÞ ¼ 1;…; 4 and JΔ=NΔ ∈ ½0.51; 10�.

SEMICLASSICAL BEHAVIOR OF SPINFOAM AMPLITUDE … PHYS. REV. D 100, 084049 (2019)

084049-19



where βðnÞΔ ; μðnÞΔ satisfies

e−β
ðnÞ
Δ =2 ¼ zðnÞ0 ; eμ

ðnÞ
Δ ¼

X∞
j¼1=2

½zðnÞ0 �2jgðnÞΔ ðjÞ; ð7:24Þ

and zðnÞ0 ∈ ð0; 1Þ solves
P∞

j¼1=2 j½zðnÞ0 �2jgðnÞΔ ðjÞP∞
j¼1=2 ½zðnÞ0 �2jgðnÞΔ ðjÞ

¼ JΔ
NΔ

: ð7:25Þ

Similar to S2ðAÞ, if we fix JΔ and let NΔ vary, SnðAÞ
maximizes at μðnÞΔ ¼ μΔn and thus is bounded by a
weighted area law,

SnðAÞ ≤
X
Δ⊂S

βðnÞΔ − βΔn
1 − n

JΔ; ð7:26Þ

where JΔ relates to the area of Δ by the geometrical
interpretation of the critical point ðg�vα; ξαΔÞc½JΔ� in defin-
ing jψi. Figure 7 plots

FIG. 6. Plots of F 3½nvðΔÞ; JΔ=NΔ� at nvðΔÞ ¼ 1;…; 4 and JΔ=NΔ ∈ ½0.51; 10�.

FIG. 7. Plots of F n½nvðΔÞ; JΔ=NΔ ¼ 1� at nvðΔÞ ¼ 1, 2 and n ¼ 2;…; 7.
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F n

�
nvðΔÞ;

JΔ
NΔ

�
≔

NΔ

JΔ

�
βðnÞΔ − βΔn

1 − n
JΔ
NΔ

þ μðnÞΔ − μΔn
1 − n

�
;

SnðAÞ ¼
X
Δ⊂S

JΔF n

�
nvðΔÞ;

JΔ
NΔ

�
ð7:27Þ

at n ¼ 3 and nvðΔÞ ¼ 1;…; 4. Figures 6 and 7 plot F n at
JΔ=NΔ ¼ 1, nvðΔÞ ¼ 1, 2, and n ¼ 2;…; 7.

VIII. ANALOGOUS THERMODYNAMICAL
FIRST LAW

The Rényi entanglement entropy SnðAÞ derived in the
last section is a function of the “macrostate” JΔ; NΔ and has
an interesting analog with entropy in thermodynamics. In
Sec. VI, we give an analog between JΔ; NΔ and the total
energy and total number of identical systems of a statistical
ensemble.

Theorem 8.1: The differential of SnðAÞ with respect to
JΔ; NΔ gives the following analog of the thermodynamical
first law:

δSnðAÞ ¼
X
Δ⊂S

½λΔðnÞδJΔ þ σΔðnÞδNΔ�; ð8:1Þ

where λΔðnÞ ¼ βðnÞΔ −βΔn
1−n and σΔðnÞ ¼ μðnÞΔ −μΔn

1−n . When all Δ ∈
S have the same nvðΔÞ, βðnÞΔ ; βΔ; μ

ðnÞ
Δ ; μΔ become indepen-

dent of Δ. In this case λΔðnÞ≡ λðnÞ and σΔðnÞ≡ σðnÞ
becomes independent of Δ, δSnðAÞ reduces to

δSnðAÞ ¼ λðnÞδJS þ σðnÞδNS; ð8:2Þ
where JS ¼PΔ⊂S JΔ and NS ¼PΔ⊂S NΔ are total area
and total number of facets in S.
Proof: Equation (8.1) can be checked by computing

∂SnðAÞ=∂JΔ and ∂SnðAÞ=∂NΔ:

∂SnðAÞ
∂JΔ ¼ 1

1 − n

�∂βðnÞΔ
∂JΔ JΔ þ ∂μðnÞΔ

∂βðnÞΔ

∂βðnÞΔ
∂JΔ NΔ þ βðnÞΔ

�
−

n
1 − n

�∂βΔ
∂JΔ JΔ þ ∂μΔ

∂βΔ
∂βΔ
∂JΔNΔ þ βΔ

�
;

∂SnðAÞ
∂NΔ

¼ 1

1 − n

�∂βðnÞΔ
∂NΔ

JΔ þ ∂μðnÞΔ

∂βðnÞΔ

∂βðnÞΔ
∂NΔ

NΔ þ μðnÞΔ

�
−

n
1 − n

�∂βΔ
∂NΔ

JΔ þ ∂μΔ
∂βΔ

∂βΔ
∂NΔ

NΔ þ μΔ

�
: ð8:3Þ

The definitions μðnÞΔ ¼ ln½P∞
j¼1=2 e

−βðnÞΔ jgðnÞΔ ðjÞ� and μΔ ¼ ln½P∞
j¼1=2 e

−βΔjgΔðjÞ� imply

∂μðnÞΔ

∂βðnÞΔ

¼
P∞

j¼1=2ð−jÞe−β
ðnÞ
Δ jgðnÞΔ ðjÞP∞

j¼1=2 e
−βðnÞΔ jgðnÞΔ ðjÞ

¼ −
JΔ
NΔ

;
∂μΔ
∂βΔ ¼

P∞
j¼1=2ð−jÞe−βΔjgΔðjÞP∞

j¼1=2 e
−βΔjgΔðjÞ

¼ −
JΔ
NΔ

: ð8:4Þ

Inserting in Eq. (8.3), we obtain

∂SnðAÞ
∂JΔ ¼ βðnÞΔ − βΔn

1 − n
¼ λΔðnÞ;

∂SnðAÞ
∂NΔ

¼ μðnÞΔ − μΔn
1 − n

¼ σΔðnÞ: ð8:5Þ

▪
Equation (8.2) suggests the analog between λðnÞ−1 and

the temperature, as well as between −σðnÞ=λðnÞ and the
chemical potential. In the most general situation, Eq. (8.1),
the temperature and chemical potential are not constants
over the surface S. So S are in a nonequilibrium state,
although every Δ is in equilibrium.
Interestingly Eq. (8.2) shares similarities with the ther-

modynamical first law of the LQG black hole proposed in
[11]. There the authors propose that the quantum isolated
horizon is a statistical ensemble of identical spin-network
punctures (quantum hairs) on the horizon, and the quasi-
local energy of the horizon observed by the near-horizon

Unruh observer is proportional to the total area aBH of the
horizon. Then a thermodynamical first law is derived by
statistics on the quantum isolated horizon

δSBH ¼ λδJBH þ σδNBH; JBH ≡ aBH
8πγl2

P
; ð8:6Þ

where SBH is the black hole entropy, NBH is the total
number of punctures on the horizon, λ relates to the Unruh
temperature of the observer, and σ relates to the chemical
potential. We immediately see the similarity between
Eq. (8.2) and the above δSBH by relating the entangling
surface S to the black hole horizon, SnðAÞ to SBH, JS to
JBH, and NS to NBH.

IX. REMOVING THE PARALLEL RESTRICTION

Most of the above discussions rely on the parallel
restriction on ξαf in spinfoam amplitude. In this section,
we relax parallel restrictions to internal ξαf’s and compute
the spinfoam amplitude
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AðKÞ¼
X
fjfg

Y
f

AΔðjfÞ
Z
½dξαfdg�vα�

Y
f;v;�

hξαfjg�−1
vα g�vβjξβfi2j

�
f :

ð9:1Þ

Instead of imposing the potential VαΔðξαfÞ to suppress the
nonparallel ξαf’s, we are going to integrate out democrati-
cally all nonparallel ξαf’s in the following analysis.

We again assume all jf ≠ 0, at a polyhedron α and
among the facets f ∈ Δ (Δ is internal), and we choose one
f0 and set

jξαf0i≡ jξαΔi; ð9:2Þ

for all α containing f0.
For any other f ∈ Δ and f ≠ f0, we write

jξαfi ¼ aαfjξαΔi þ bαfjJξαΔi; aαf ¼ cos

�
θαf
2

�
eiϕαf=2; bαf ¼ i sin

�
θαf
2

�
e−iϕαf=2; ð9:3Þ

since jξαfi ∈ C2 where jξαΔi; jJξαΔi is a basis, ϕαf ∈ ½0; 2πÞ and θαf ∈ ½0; πÞ, and we have the gauge equivalence
jξαfi ∼ eiφjξαfi. We insert the above relation into the following building block of the integrand in AðKÞ:

hξαfjg�−1
vα g�vβjξβfi2j

�
f ¼ ðāαfaβfhξαΔjg�−1

vα g�vβjξβΔi þ b̄αfbβfhJξαΔjg�−1
vα g�vβjJξβΔi

þ āαfbβfhξαΔjg�−1
vα g�vβjJξβΔi þ b̄αfaβfhJξαΔjg�−1

vα g�vβjξβΔiÞ2j
�
f : ð9:4Þ

Applying the multinomial expansion to hξαfjg�−1
vα g�vβjξβfi2j

�
f gives

¼
X

k�f ðvÞþl�f ðvÞþm�
f ðvÞþn�f ðvÞ¼2j�f

2j�f !

k�f ðvÞ!l�f ðvÞ!m�
f ðvÞ!n�f ðvÞ!

ā
k�f ðvÞþm�

f ðvÞ
αf b̄

l�f ðvÞþn�f ðvÞ
αf a

k�f ðvÞþn�f ðvÞ
βf b

l�f ðvÞþm�
f ðvÞ

βf

hξαΔjg�−1
vα g�vβjξβΔik

�
f ðvÞhJξαΔjg�−1

vα g�vβjJξβΔil
�
f ðvÞhξαΔjg�−1

vα g�vβjJξβΔim
�
f ðvÞhJξαΔjg�−1

vα g�vβjξβΔin
�
f ðvÞ; ð9:5Þ

where k�f ðvÞ; l�f ðvÞ; m�
f ðvÞ; n�f ðvÞ ∈ Zþ ∪ f0g. Applying the product over � and all f ≠ f0 ∈ Δ,

Y
f≠f0;�

hξαfjg�−1
vα g�vβjξβfi2j

�
f

¼
X

fk�f ðvÞgf;fl�f ðvÞgf;fm�
f ðvÞgf;fn�f ðvÞgf

k�
f
ðvÞþl�

f
ðvÞþm�

f
ðvÞþn�

f
ðvÞ¼2j�

f

Y
f≠f0;�

2j�f !

k�f ðvÞ!l�f ðvÞ!m�
f ðvÞ!n�f ðvÞ!

×
Y
f≠f0

ā

P
�

k�f ðvÞþ
P
�

m�
f ðvÞ

αf b̄

P
�

l�f ðvÞþ
P
�

n�f ðvÞ
αf a

P
�

k�f ðvÞþ
P
�

n�f ðvÞ
βf b

P
�

l�f ðvÞþ
P
�

m�
f ðvÞ

βf

× hξαΔjg�−1
vα g�vβjξβΔiK

�
ΔðvÞhJξαΔjg�−1

vα g�vβjJξβΔiL
�
ΔðvÞhξαΔjg�−1

vα g�vβjJξβΔiM
�
ΔðvÞhJξαΔjg�−1

vα g�vβjξβΔiN
�
ΔðvÞ; ð9:6Þ

where

K�
ΔðvÞ ¼

X
f≠f0

k�f ðvÞ; L�
ΔðvÞ ¼

X
f≠f0

l�f ðvÞ; M�
ΔðvÞ ¼

X
f≠f0

m�
f ðvÞ; N�

ΔðvÞ ¼
X
f≠f0

n�f ðvÞ; ð9:7Þ

satisfying

K�
ΔðvÞ þ L�

ΔðvÞ þM�
ΔðvÞ þ N�

ΔðvÞ ¼ 2ðJ�Δ − j�f0Þ ≫ 1: ð9:8Þ

Therefore at least one of K�
ΔðvÞ; L�

ΔðvÞ;M�
ΔðvÞ; N�

ΔðvÞ has to be large.
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We integrate nonparallel ξαf (f ≠ f0) by integrating θαf and ϕαf with the standard unit-sphere measure. Explicitly,

1

4π

Z
2π

0

dϕαf

Z
π

0

dθαf sinðθαfÞā
P
�

k�f ðvÞþ
P
�

m�
f ðvÞ

αf b̄

P
�

l�f ðvÞþ
P
�

n�f ðvÞ
αf a

P
�

k�f ðv0Þþ
P
�

n�f ðv0Þ
αf b

P
�

l�f ðv0Þþ
P
�

m�
f ðv0Þ

αf

¼ ei
π
2
½
P

�l
�
f ðv0Þþ

P
�m

�
f ðv0Þ−ð

P
�l

�
f ðvÞþ

P
�n

�
f ðvÞÞ�

×
1

4π

Z
2π

0

dϕαfe
i
ϕαf
2
½
P

�k
�
f ðv0Þþ

P
�n

�
f ðv0Þþ

P
�l

�
f ðvÞþ

P
�n

�
f ðvÞ−ð

P
�k

�
f ðvÞþ

P
�m

�
f ðvÞþ

P
�l

�
f ðv0Þþ

P
�m

�
f ðv0ÞÞ�

×
Z

π

0

dθαf sinðθαfÞ
�
cos

�
θαf
2

��P
�k

�
f ðvÞþ

P
�m

�
f ðvÞþ

P
�k

�
f ðv0Þþ

P
�n

�
f ðv0Þ

�
sin

�
θαf
2

��P
�l

�
f ðvÞþ

P
�n

�
f ðvÞþ

P
�l

�
f ðv0Þþ

P
�m

�
f ðv0Þ

:

ð9:9Þ

Recall that
P

� k�f ðv0Þ þ
P

� l�f ðvÞ þ ðP� k�f ðvÞ þ
P

� l�f ðv0ÞÞ ¼ 4
P

� j�f ¼ 4jf is even; thus
P

� k�f ðv0Þ þP
� l�f ðvÞ − ðP� k�f ðvÞ þ

P
� l�f ðv0ÞÞ is also even. Therefore the ϕαf-integral constraints

X
�
k�f ðv0Þ þ

X
�
n�f ðv0Þ −

�X
�
l�f ðv0Þ þ

X
�
m�

f ðv0Þ
�
¼
X
�
k�f ðvÞ þ

X
�
m�

f ðvÞ −
�X

�
l�f ðvÞ þ

X
�
n�f ðvÞ

�
: ð9:10Þ

Recall that
P

� k�f ðvÞ þ
P

� n�f ðvÞ þ
P

� l�f ðvÞ þ
P

�m�
f ðvÞ ¼ 2jf independent of v, and we obtain

X
�
k�f ðv0Þ þ

X
�
n�f ðv0Þ ¼

X
�
k�f ðvÞ þ

X
�
m�

f ðvÞ≡ kf;
X
�
l�f ðv0Þ þ

X
�
m�

f ðv0Þ ¼
X
�
l�f ðvÞ þ

X
�
n�f ðvÞ≡ lf

with kf þ lf ¼ 2jf. The integral (9.9) reduces to

1

2

Z
π

0

dθαf sinðθαfÞ
�
cos

�
θαf
2

��
2kf
�
sin

�
θαf
2

��
2lf ¼ kf!lf!

ðkf þ lf þ 1Þ! : ð9:11Þ

Inserting the results into Eqs. (9.12) and (9.1), we write the integral as a sum of partial amplitudes,

Z
½dg�vαdξαf�

Y
f;v;�

hξαfjg�−1
vα g�vβjξβfi2j

�
f

¼
X

fk�f ðvÞg;fl�f ðvÞg
fm�

f
ðvÞg;fn�

f
ðvÞg

Z
½dg�vαdξαΔ�

Y
Δ;v;�

Y
f∈Δ
f≠f0

2j�f !

k�f ðvÞ!l�f ðvÞ!m�
f ðvÞ!n�f ðvÞ!

kf!lf!

ð2jf þ 1Þ! hξαΔjg
�−1
vα g�vβjξβΔiK̃

�
ΔðvÞ

× hJξαΔjg�−1
vα g�vβjJξβΔiL

�
ΔðvÞhξαΔjg�−1

vα g�vβjJξβΔiM
�
ΔðvÞhJξαΔjg�−1

vα g�vβjξβΔiN
�
ΔðvÞ; ð9:12Þ

where

K̃�
ΔðvÞ ¼ K�

ΔðvÞ þ 2j�f0 : ð9:13Þ

We introduce shorthand notations to write

Z
½dg�vαdξαf�

Y
f;v;�

hξαfjg�−1
vα g�vβjξβfi2j

�
f ≡ X0

fK̃�
ΔðvÞg;fL�

ΔðvÞg
fM�

Δ ðvÞg;fN�
f
ðvÞg

Y
Δ

wΔ

Z
½dg�vαdξαΔ�eSKLMN ; ð9:14Þ

where the above sum is constrained by
P

� K̃�
Δðv0Þ þ

P
�N�

Δðv0Þ ¼
P

� K̃�
ΔðvÞ þ

P
�M�

ΔðvÞ≡ K̃Δ,
P

� L�
Δðv0Þ þP

� M�
Δðv0Þ ¼

P
� L�

ΔðvÞ þ
P

�N�
ΔðvÞ≡ LΔ, and K̃�

ΔðvÞ þ L�
ΔðvÞ þM�

ΔðvÞ þ N�
ΔðvÞ ¼ 2J�Δ ,

SEMICLASSICAL BEHAVIOR OF SPINFOAM AMPLITUDE … PHYS. REV. D 100, 084049 (2019)

084049-23



SKLMN ¼
X
Δ;v;�

½K̃�
ΔðvÞ ln hξαΔjg�−1

vα g�vβjξβΔi þ L�
ΔðvÞ ln hJξαΔjg�−1

vα g�vβjJξβΔi

þM�
ΔðvÞ ln hξαΔjg�−1

vα g�vβjJξβΔi þ N�
ΔðvÞ ln hJξαΔjg�−1

vα g�vβjξβΔi�; ð9:15Þ

wΔ ¼
X0

fk�f ðvÞg;fl�f ðvÞg
fm�

f
ðvÞg;fn�

f
ðvÞg

Y
f∈Δ
f≠f0

Y
v

�
2j�f !

k�f ðvÞ!l�f ðvÞ!m�
f ðvÞ!n�f ðvÞ!

:
kf!lf!

ð2jf þ 1Þ!
�
: ð9:16Þ

The sum in wΔ is constrained by
P

� k�f ðv0ÞþP
� n�f ðv0Þ ¼

P
� k�f ðvÞ þ

P
�m�

f ðvÞ≡ kf,
P

� l�f ðv0Þ þP
� m�

f ðv0Þ ¼
P

� l�f ðvÞ þ
P

� n�f ðvÞ≡ lf, K�
ΔðvÞ¼P

f≠f0k
�
f ðvÞ, L�

ΔðvÞ¼
P

f≠f0 l
�
f ðvÞ,M�

ΔðvÞ¼
P

f≠f0m
�
f ðvÞ,

N�
ΔðvÞ ¼

P
f≠f0 n

�
f ðvÞ.

The new action SKLMN is the old action S in Eq. (4.1)
with ξαf (f ∈ Δ) becoming either parallel ξαf ¼ ξαΔ or
antiparallel ξαf ¼ JξαΔ. Configurations with some ξαf’s
being parallel and others being antiparallel have been
discussed in Theorem 4.2 for critical points of S. These
critical points also appear in the new action. In contrast to S,
here at least one of K�

ΔðvÞ; L�
ΔðvÞ;M�

ΔðvÞ; N�
ΔðvÞ has to be

large, so it allows us to apply the stationary phase
approximation to the integral with the new action
SKLMN . The critical points in Theorem 4.2 becomes useful
here for computing integrals.
The integral

R ½dg�vαdξαΔ�eSKLMN has the following
feature:
Lemma 9.1:

R ½dg�vαdξαΔ�eSKLMN prefers large K�
ΔðvÞ or

L�
ΔðvÞ and zero M�

ΔðvÞ; N�
ΔðvÞ:

R ½dg�vαdξαΔ�eSKLMN with
nonzero M�

ΔðvÞ; N�
ΔðvÞ is of Oð1=NÞ comparing to the

integral with zero M�
ΔðvÞ; N�

ΔðvÞ.
Proof: Suppose M�

ΔðvÞ is large [the argument of large
N�

ΔðvÞ is similar],

hξαΔjg�−1
vα g�vβjJξβΔiM

�
ΔðvÞ ¼ eM

�
ΔðvÞ ln hξαΔjg�−1

vα g�vβ jJξβΔi ð9:17Þ

participates the integral over ξαΔ [we interchange the
integral of ξαΔ and the finite sum in Eq. (9.12)]. By the
stationary phase analysis, this factor in the integrand leads
to that critical point the integral must satisfy,

g�vβjJξβΔi ¼ eiφ
�
αvβg�vαjξαΔi; i:e:; hξαΔjg�−1

vα g�vβjξβΔi ¼ 0;

ð9:18Þ

in order that the integrand is not suppressed exponen-
tially. But the integral contains a factor contributed by f0:

hξαΔjg�−1
vα g�vβjξβΔi2j

�
f0 which vanishes at the above critical

points. Therefore the integral is of Oð1=NÞ by stationary
phase analysis and in a neighborhoodD containing a single
critical point xc,

Z
D
dnxaðxÞeNSðxÞ ¼

�
2π

N

�
n=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−HÞp
× eNSðxcÞ

�
aðxcÞ þO

�
1

N

��
; ð9:19Þ

which is of Oð1=NÞ if aðxcÞ ¼ 0. The same argument with
critical equation, Eq. (9.18), also applies to large N�

ΔðvÞ.
We cannot have, e.g., both K�

ΔðvÞ [or L�
ΔðvÞ] andM�

ΔðvÞ
[or N�

ΔðvÞ] large; otherwise the integral is suppressed
exponentially. Indeed Eq. (9.18) is contradicting the first
equation in Eq. (4.5), which is a critical equation from large
K�

ΔðvÞ. The integrand is always suppressed exponentially if
both K�

ΔðvÞ [or L�
ΔðvÞ] and M�

ΔðvÞ [or N�
ΔðvÞ] are large.

Therefore either K�
ΔðvÞ or L�

ΔðvÞ has to be large, and
then the critical points must satisfy

g�vβjξβΔi¼eiφ
�
αvβg�vαjξαΔi or g�vβjJξβΔi¼e−iφ

�
αvβg�vαjJξαΔi:

ð9:20Þ
There is no contradiction between the two equations since J
commutes with g ∈ SUð2Þ. Either one of them gives

hξαΔjg�−1
vα g�vβjJξβΔi ¼ hJξαΔjg�−1

vα g�vβjξβΔi ¼ 0: ð9:21Þ

Then if M�
ΔðvÞ or N�

ΔðvÞ is nonzero, the integral is of
Oð1=NÞ by the same reason as the above. ▪
We set M�

ΔðvÞ ¼ N�
ΔðvÞ ¼ 0 and define

SKL ¼
X
v;Δ;�

K̃�
ΔðvÞ ln hξαΔjg�−1

vα g�vβjξβΔi

þ
X
v;Δ;�

L�
ΔðvÞ ln hJξαΔjg�−1

vα g�vβjJξβΔi: ð9:22Þ

K̃�
ΔðvÞ and L�

ΔðvÞ satisfy
P

� K̃�
Δðv0Þ ¼

P
� K̃�

ΔðvÞ≡ K̃Δ,P
�L�

Δðv0Þ¼
P

�L�
ΔðvÞ≡LΔ, and K̃�

ΔðvÞþL�
ΔðvÞ¼ 2J�Δ .

Since ReðSKLÞ ≤ 0, the condition for preventing the inte-
grand from being exponentially suppressed, ReðSKLÞ¼0,
is equivalent to

g�vβjξβΔi ¼ eiφ
�
αvβg�vαjξαΔi: ð9:23Þ

The action SKL has several scaling parameters K̃�
ΔðvÞ;

L̃�
ΔðvÞ which may not all be large. But Eq. (9.23) is for

all cases.
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When we compute δξSKL, we write δξαΔ ¼ εαΔJξαΔ þ iηαΔξαΔ and δJξαΔ ¼ −ε̄αΔξαΔ − iηαΔJξαΔ where εαΔ ∈ C and
ηαΔ ∈ R. The coefficient in front of ξαΔ is purely imaginary because ξαΔ is normalized. Since every ξαΔ is shared by two
terms with neighboring v’s,

δξαΔSKL ¼
X
�

�
K̃�

Δðv0Þεαf
hξβ0fjðg�v0β0 Þ−1g�v0αjJξαfi
hξβ0fjðg�v0β0 Þ−1g�v0αjξαfi

þ K̃�
ΔðvÞε̄αf

hJξαfjðg�vαÞ−1g�vβjξβfi
hξαfjðg�vαÞ−1g�vβjξβfi

þ iðK̃�
Δðv0Þ − K̃�

ΔðvÞÞηαΔ
�

−
X
�

�
L�
Δðv0Þε̄αf

hJξβ0fjðg�v0β0 Þ−1g�v0αjξαfi
hJξβ0fjðg�v0β0 Þ−1g�v0αjJξαfi

þ L�
ΔðvÞεαf

hξαfjðg�vαÞ−1g�vβjJξβfi
hJξαfjðg�vαÞ−1g�vβjJξβfi

þ iðL�
Δðv0Þ − L�

ΔðvÞÞηαΔ
�
¼ 0

ð9:24Þ
by Eqs. (9.23) and the orthogonality between ξ; Jξ.
For the derivative in g�vα, we use δg�vα ¼ i

2
θ�vασ⃗g�vα (θvα ∈ R). At the critical point and by Eq. (4.5),

δg�vαS ¼ i
2
θ�vα
X
Δ⊂α

καΔðvÞ
�
K̃�

ΔðvÞ
hξαfjðg�vαÞ−1σ⃗g�vαjξαfi
hξαfjðg�vαÞ−1g�vαjξαfi

þ L̃�
ΔðvÞ

hJξαfjðg�vαÞ−1σ⃗g�vαjJξαfi
hJξαfjðg�vαÞ−1g�vαjJξαfi

�

¼ i
2
θ�vαð1� γÞg�vα ·

X
Δ⊂α

καΔðvÞ½K̃�
ΔðvÞ − L̃�

ΔðvÞ�n⃗αΔ; ð9:25Þ

where καΔðvÞ ¼ �1 satisfying καΔðvÞ ¼ −καΔðv0Þ appears when ∂g�vα acts on g�vα or g�−1
vα . δg�vαS ¼ 0 is equivalent toX

Δ⊂α
καΔðvÞ½K̃�

ΔðvÞ − L�
ΔðvÞ�n⃗αΔ ¼ 0: ð9:26Þ

However, there is a subtlety when jK̃�
ΔðvÞ − L�

ΔðvÞj is small. Notice that hJξαΔjg�−1
vα g�vβjJξβΔi is the complex conjugate

of hξαΔjg�−1
vα g�vβjξβΔi,

SKL ¼
X
v;Δ;�

½K̃�
ΔðvÞ − L�

ΔðvÞ� ln hξαΔjg�−1
vα g�vβjξβΔi þ 2

X
v;Δ;�

L�
ΔðvÞRe½ln hJξαΔjg�−1

vα g�vβjJξβΔi�: ð9:27Þ

We assume K̃�
ΔðvÞ ≥ L̃�

ΔðvÞ, while other cases can be
worked out analogously. If all K̃�

ΔðvÞ; L̃�
ΔðvÞ are large at

v, Δ but both K̃�
ΔðvÞ − L̃�

ΔðvÞ are small, then the first term
in Eq. (9.27) is subleading, and the contribution from thisΔ
is negligible in Eq. (9.25). Equation (9.26) with one or
more Δ absent corresponds to a semiclassically degenerate
tetrahedron.
Equation (9.25) is valid when K̃þ

ΔðvÞ − L̃þ
ΔðvÞ or/and

K̃−
ΔðvÞ − L̃−

ΔðvÞ is/are large for all involved Δ’s. The
number of parallel ξαf ¼ ξαΔ is much greater than the
number of antiparallel ξαf ¼ JξαΔ. In this case, L̃þ

ΔðvÞ ≪
JþΔ and K̃þ

ΔðvÞ ≃ JþΔ [or/and L̃−
ΔðvÞ ≪ J−Δ and K̃−

ΔðvÞ ≃ J−Δ],
we obtain the standard tetrahedron closure conditionX

Δ⊂α
JΔκαΔðvÞn⃗αΔ ¼ 0 ð9:28Þ

and recover the critical equations as Eq. (4.5). The solutions
of critical equations, Eqs. (9.23) and (9.28), are the same as
the situation with the parallel restriction imposed and have
been discussed in Sec. IV. This result shows that critical
points ðg�vα; ξαΔÞc½JΔ�, used extensively in Secs. IV, V, and
VII, indeed have nontrivial contributions in the stationary

approximation of the amplitude AðKÞ without the parallel
restriction.
Depending on the choice of JΔ, degenerate tetrahedra

may still appear even when K̃�
ΔðvÞ ≫ L�

ΔðvÞ, similar to the
simplical EPRL/FK amplitude. But the discussion below
Eq. (9.27) shows that degenerate tetrahedra become generic
in the present situation. The origin of these degenerate
tetrahedra is the antiparallel ξαf ¼ JξαΔ coming from
integrating nonparallel ξαf’s. The study of critical points
with degenerate tetrahedra is beyond the scope of the
present paper, so it is postponed to future research.
Although the integrals with nonzero M�

ΔðvÞ; N�
ΔðvÞ are

of Oð1=NÞ comparing to the integrals with M�
ΔðvÞ ¼

N�
ΔðvÞ ¼ 0, we can still perform the same stationary phase

analysis to these integrals with small M�
ΔðvÞ; N�

ΔðvÞ by
using Eq. (9.19), where critical equations, Eqs. (9.23) and
(9.28), still apply. The dual situation with large M�

ΔðvÞ;
N�

ΔðvÞ and small K̃�
ΔðvÞ; L�

ΔðvÞ can be analyzed in a similar
way, by simply interchanging the roles M�

ΔðvÞ; N�
ΔðvÞ ↔

K̃�
ΔðvÞ; L�

ΔðvÞ, and ξαΔ ↔ JξαΔ for some α. The integral
with all M�

ΔðvÞ; N�
ΔðvÞ; K̃�

ΔðvÞ; L�
ΔðvÞ large is suppressed

exponentially as discussed in Lemma 9.1.
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X. DISCUSSION AND OUTLOOK

This paper explores the semiclassical behavior of LQG
in small spins and obtains promising results such as the
entanglement entropy with thermodynamical analog and
Regge geometries emerging from critical points in the
stationary phase analysis. There are more interesting
perspectives which should be investigated in the future.
In our work, we have seen the small-j semiclassicality

always relates to coarse graining; e.g., a semiclassical
Regge geometry with JΔ as a macrostate is a collection
of microstates fjfg, and the entanglement entropy coarse
grains the microstates and gives an analog thermodynam-
ical first law. Moreover, the EPRL-FK model with JΔ as
d.o.f. may be viewed as a coarse-grained effective theory
whose fundamental fine-grained theory is the generalized
spinfoam model with jf as d.o.f.. This result opens up a
possibility that spinfoam models such as EPRL-FK might
not be fundamental but rather coarse-grained effective
theories emergent from some fine-grained theories which
are more fundamental. In our work, we only consider to
coarse grain the face d.o.f. such as spins jf, but do not
consider to coarse grain bulk d.o.f. such as intertwiners or
spinfoam vertices in the fine-grained theory. It would be
more interesting to coarse grain/fine grain these bulk d.o.f.
(there have been some attempts in the literature, e.g., [39–
46]). It might be possible that there exists a fine-grained
fundamental theory such that the EPRL-FK model emerges
from coarse graining both face and bulk d.o.f. This
anticipated fine-grained theory might closely relate to
the continuum limit of spinfoam formulation.
As is mentioned in Sec. VIII, the analog thermodynam-

ical first law from the entanglement entropy is similar to
the first law of the LQG black hole in [11]. This similarity
may orient us toward an explanation of black hole entropy
from the entanglement entropy in spinfoam formulation.
Understanding quantum black hole in spinfoam formu-
lation or other full LQG framework is a long-standing open
issue. Our work suggests a new routine toward formulating
a black hole in spinfoam. The idea is to consider spinfoam
amplitude on a 4-manifold as a subregion in a black hole
spacetime such as the Kruskal spacetime, and the spatial
boundary Σ to be the spatial slice at the moment T ¼ 0 of
time reflection symmetry. We may set the critical point
ðg�vα; ξαΔÞc½JΔ� to correspond to a discrete Kruskal geom-
etry (in this subregion). Σ can be subdivided by the horizon
(bifurcate sphere) into A and Ā. So we can compute the
entanglement Rényi entropy SnðAÞ similar to this work.
This computation has to be carried out in the Lorentzian
spinfoam model, but the derivation and result should be
carried over. Then the thermodynamical first law from SnðAÞ
should be directly related to the black hole thermodynamics.
It would be interesting to relate the entanglement entropy

from spinfoam to Jacobson’s proposal [47]: The semi-
classical Einstein equation can be derived from δSðAÞ ¼ 0

where SðAÞ is the entanglement entropy and satisfies the
area law. We hope to relate the entanglement entropy
derived here to recent works [9,35] which relate spinfoam
amplitude to the Einstein equation.
There are other interesting questions on the semiclassical

analysis of the fine-grained spinfoam model AðKÞ, e.g.,
how to understand the critical points with degenerate
tetrahedra and their 4D geometrical interpretation. It would
also be interesting if a semiclassical state ψ could be
defined with the fine-grained spinfoam model without
imposing the parallel restriction and still could be applied
to computing entanglement entropy.
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APPENDIX: FACE AMPLITUDE

We follow the choice of face amplitude in [33]. The
spinfoam amplitude in holonomy representation gives

ψðU⃗Þ ¼
X
j⃗;⃗i

Y
f

dimðjfÞ
Y
v

Avðjf; iαÞTj⃗;⃗iðU⃗Þ ðA1Þ

in terms of normalized intertwiners hiα; i0αi ¼ δi;i0 . U⃗ are
boundary SU(2) holonomies. All face amplitudes are
dimðjfÞ ¼ 2jf þ 1 at internal and boundary f. The boun-
dary state (neglecting the contracted indices)

Tj⃗;⃗iðU⃗Þ ¼
Y

boundary f

RjfðUfÞ
Y

boundaryα

iα ðA2Þ

is the boundary spin-network basis whose normalization is
given by

hRj
mn; R

j0
m0n0 i ¼

1

dimðjÞ δj;j0δmm0δnn0 : ðA3Þ

In terms of coherent intertwiners,

ψðU⃗Þ ¼
X
j⃗

Y
f

dimðjfÞ
Z

d ξ⃗
Y
v

Avðj⃗; ξ⃗ÞTj⃗;ξ⃗ðU⃗Þ; ðA4Þ

where Tj⃗;ξ⃗ðU⃗Þ is given by replacing iα in Tj⃗;⃗iðU⃗Þ with
coherent intertwiners. But every integral

R
dξαf ¼

dimðjfÞ
R
dξαf by the resolution of identity for coherent
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states dimðjÞ R dξjj; ξihj; ξj ¼ 1 where dξ is the normal-
ized measure on the unit sphere. AðKÞ in Eq. (4.1)
computes the coefficients in front of Tj⃗;ξ⃗ðU⃗Þ, and so
gives

AfðjfÞ ¼ AΔðjfÞ ¼ ð2jf þ 1ÞnvðΔÞþ1 for internal f;

AfðjfÞ ¼ AΔðjfÞ ¼ ð2jf þ 1ÞnvðΔÞþ2 for boundary f:

ðA5Þ
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