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Spinfoam amplitudes with small spins can have interesting semiclassical behavior and relate to
semiclassical gravity and geometry in four dimensions. We study the generalized spinfoam model
[spinfoams for all loop quantum gravity (LQG) [Kaminski et al., Spin-foams for all loop quantum gravity,
Classical Quantum Gravity 27, 095006 (2010); Erratum, Classical Quantum Gravity 29, 049502(E) (2012),
Ding et al., Generalized spinfoams, Phys. Rev. D 83, 124020 (2011)] with small spins j but a large number
of spin degrees of freedom (d.o.f.), and find that it relates to the simplicial Engle-Pereira-Rovelli-Livine-
Freidel-Krasnov model with large spins and Regge calculus by coarse-graining spin d.o.f. Small-j
generalized spinfoam amplitudes can be employed to define semiclassical states in the LQG kinematical
Hilbert space. Each of these semiclassical states is determined by a four-dimensional Regge geometry. We
compute the entanglement Rényi entropies of these semiclassical states. The entanglement entropy
interestingly coarse grains spin d.o.f. in the generalized spinfoam model, and satisfies an analog of the
thermodynamical first law. This result possibly relates to the quantum black hole thermodynamics in
[Ghosh and Perez, Black Hole Entropy and Isolated Horizons Thermodynamics, Phys. Rev. Lett. 107,

241301 (2011); 108, 169901(E) (2012)].
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate of non-
perturbative and background-independent theory of quan-
tum gravity. A covariant approach of LQG is developed
by the spinfoam formulation, in which the quantity
playing the central role is the spinfoam amplitude [1,2].
Four-dimensional spinfoam amplitudes give transition
amplitudes of boundary three-dimensional (3D) quantum
geometry states in LQG and formulate the LQG version of
the quantum gravity path integral. The spinfoam formu-
lation is a successful program for demonstrating the
semiclassical consistency of LQG. The recent progress
on the semiclassical analysis reveals that spinfoam ampli-
tudes relate to the semiclassical Einstein gravity in the large
spin regime, e.g., [3—10].

Although the analysis of the large spin spinfoam
amplitude has been fruitful for demonstrating the semi-
classical behavior, there are good reasons to expect that
some even more interesting semiclassical behavior of
spinfoams, or in general LQG, should appear in the regime
where spins are all small. There are two motivations for the
semiclassical analysis in the small spin regime:
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First, recall that the large spin semiclassicality is moti-
vated by requiring the geometrical surface area ag to be
semiclassical, i.e., ag > f% where ¢p is the Planck length.
The requirement leads to the spin j > 1 provided the area

spectrum ag = 87y£%+/j(j + 1), if we assume that there
is only a single spin-network link colored by j intersecting
the surface S. Large j is a sufficient condition for the
semiclassical area but clearly not necessary. Indeed if
we relax this assumption and allow more than one

intersecting link /, the area spectrum may become ag =

8myt %3 Z;V:I
8ryt%+/ji(j; + 1) at L. N is the total number of intersecting
links. Then the semiclassical surface area ag > ¢% can be
achieved not only by large j and small N but also by small j
and large N. For instance, all j = 1/2 and N > 1 lead to
ag > ¢2. Therefore we anticipate that small spins (with a
large number of intersecting links) should also lead to
semiclassical behaviors of LQG.

The second motivation comes from the statistical inter-
pretation of black hole entropy in LQG: The black hole
horizon with a fixed total area punctured by a large
number of spin-network links /. The punctures are colored
by spins j;, each of which contributes area element

87y£%+/ji(j, + 1) to the horizon. The black hole entropy

Ji(ji + 1) which sums “area elements”
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counts the total number of microstates which give the same
total horizon area [11-13]. It turns out that the total number
of states is dominant by states at punctures with small j,,
while the number of states decays exponentially as j
becomes large. The fact that small j’s dominate the semi-
classical horizon area and entropy suggests that small spins
should play an important role in the semiclassical analysis
of LQG.

This work takes the first step to study systematically the
semiclassical behavior of LQG in the small spin regime, in
particular in the spinfoam formulation. From the above
motivation, given a surface S punctured by N spin-network
links, the semiclassical area of S can be given not only
by small N and large j but also by large N and small j.
Section II generalizes this observation to quantum poly-
hedra represented by intertwiners [SU(2) invariant tensors]
at spin-network nodes. We find among intertwiners with a
fixed large rank N > 1 (quantum polyhedra with N facets
f), there are a subclass of small-j and large-N coherent
intertwiners ||{j/},{&/})y (f =1,...,N) relating to the
large-J and rank-4 coherent intertwiner |[[{Ja},{éa})s
(A=1,...,4) and having the semiclassical behavior as
geometrical flat tetrahedra. A are four groups of intertwiner
legs f, and every A contains a large number Ny > 1 of f’s.
The subclass of coherent intertwiners exhibiting semi-
classical behaviors are defined by the parallel restriction
on &’s

VY, fleA (L1

&r = E&p =&aup to a phase

ie., &, &p give the same unit 3-vector 7iy = (£a[G|Es)
where ¢ are Pauli matrices. Geometrical tetrahedra result-
ing from these intertwiners have face areas proportional
to Jo = D rea Jy and face normals 7iy. J, is large since
N> 1 and j; # 0. This result has a simple geometrical
picture: Given a classical flat tetrahedron, we may partition
every face A into N, facets f, while the face area sums the
facet areas and the facet normals are parallel among facets
in a A. By partitioning tetrahedron faces into facets, the
tetrahedron becomes a polyhedron with a total number of
N = >"%4_, Ny facets, each of which has a small area [see
Fig. 1(a)]. The correspondence between polyhedra and
intertwiners in LQG [14] relates f to intertwiner legs
(and tetrahedron faces A to four groups of intertwiner
legs) and facet areas and normals to coherent intertwiner
labels [see Fig. 1(b)]. These parallel normals motivates
the above parallel restriction. Beyond the semiclassical
behaviors of these intertwiners, quantum corrections to
semiclassical tetrahedron geometries are of O(1/J,) =
O(1/N,), which thus is suppressed by large rank N (or
N,). The above result demonstrates that at the level of
quantum polyhedra, we can trade small j, and large rank
N > 1 for large J, and small rank N =4 to obtain the
semiclassicality.

FIG. 1. (a) The classical tetrahedron geometry emergent from a
rank-N coherent intertwiner ||{j}, {£x¢™/})y with small spins
but large rank. The tetrahedron with four large faces is also a
polyhedron with N small facets, while normals 7i, of small
polyhedron facets f’s are parallel if f’s are in the same large
tetrahedron face. The flat large tetrahedron faces are composed
by many small facets. Each tetrahedron face area J,_; 4 is a
sum of small areas j;. (b) The rank-N coherent intertwiner
I{j¢}. {éa€™r})y with small spins j, can be illustrated as a spin-
network node connecting to N links, where each link is dual to a
polyhedron facet f and colored by j. (c) A spinfoam vertex
amplitude defined by a spin-network with five nodes (a =1,
...,5), connected as shown in the figure. Nodes are colored by
intertwiners [|{j, {£,s})y, of large rank but small spins. Geo-
metrically, each node corresponds to a polyhedron of many facets
as in (a), and the vertex amplitude glues five polyhedra to form a
close boundary of a 4D region. {j}.{&,s} are boundary data of
the vertex amplitude.

Note that the above semiclassical result still holds if we
replace the tetrahedron by polyhedra in case their numbers
of faces A are still small. A similar idea as the above is
applied in [15] to relate LQG states to holographic tensor
networks, and relates to [16].

Section III generalizes the small-; semiclassical analysis
to the spinfoam vertex amplitude in four dimensions. The
vertex amplitude A, is associated with a four-dimensional
cell By whose boundaries are closed and made by gluing
five polyhedra @ =1,...,5, each of which has a large
number N, of facets [see Fig. 1(c)]. Every pair of polyhedra
share a large number N, of facets, where A = a N f is the
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face made by facets shared by two polyhedra a, . Ignoring
the fine partition of A, B, relates to a 4-simplex where A
relates to triangles of the 4-simplex. A, depends on the
boundary data which contain small spins j, and five
intertwiners [|{j/}, {as})y, of quantum polyhedra. To
be concrete, we consider A, to be the generalized spinfoam
vertex [17,18] (in the Euclidean signature with 0 < y < 1)
which admits nonsimplicial cells. We write A, in terms of
coherent intertwiners and impose the parallel restriction
Eq. (1.1) to boundary data &, with f € A. We find that up

|

to an overall phase, A, with small j; and large N, is
identical to the Engle-Pereira-Rovelli-Livine-Freidel-
Krasnov (EPRL-FK) vertex amplitude of 4-simplex with
large spins J, > 1, where ten A become triangles of the
4-simplex and J, = Zfe A Jj similar to the case of poly-
hedra. Because of large J 5, the same asymptotic analysis as
in [19] can be applied to A, and gives the following
asymptotic formula relating to the 4-simplex Regge action
ST A7JaB, (the triangle area ay = 87y£%J,):

12
A, = (overall phase) <zﬁﬂ) {2./\/'7 _cos (ZyJA('DA) —H\/JfHeZA 130 4 N7 _e™2s JA@A] (1 + O(%)) (1.2)
A

We refer the reader to [19] for expressions of

" _ N ., N7_. The expansion parameter N is the order
of magnitude of Ny ~ J,.

Section IV generalizes the discussion to spinfoam
amplitude A(K) on cellular complexes K in four dimen-
sions. The 4D cell of K is B, to define vertex amplitudes A,
as above. We again apply the generalized spinfoam
formulation to define the amplitude on K. By the above
relation between B, and 4-simplex, KC relates to a unique
simplicial complex /C;, where decomposing triangles A €
IC, into facets f gives K. In the above analysis of a single
A,, the parallel restriction can be applied since &, are
boundary data. However, for the spinfoam amplitude A (/)
we do need to consider internal &, beyond the parallel
restriction since individual &,/’s are integrated independ-
ently in A(K). We write the spinfoam amplitude as a sum
over spins A(K) = >_y; 4 Ay;,3(K) and focus on Ay; , (K)
in Sec. IV. A(; 1(K) has the standard integral expression:

Ay 00) = [TAaip) / (45, dgE]e",
f

$=2_ 2; 27 In Eulgtr 5 1E) . (13)

where the face amplitude A, (j;) is 2j, + 1 to a certain
power depending only on A. It turns out that the stationary
phase analysis can still be applied to Ay; ;(K) with small
nonzero j, but large Ny. It is clear from the discussion in
the last paragraph that Ay; ;(KC) reduces to the simplicial
EPRL-FK spinfoam amplitude with large spins J, =
ZfeA Jr if we impose by hand the parallel restriction to
internal &,’s. We prove that all critical points of the large
Ja simplicial EPRL-FK amplitude give critical points of
Agj,y(K) if we relate the critical data by Jy =3 en jijs
internal £,5 = &, (up to a phase), and g, is identified
between simplicial EPRL-FK and Ay; ;(K). We denote

these critical points by (g, Exa).[Ja]. Some of these
critical points relate to Regge geometries in four dimen-
sions similar to the simplicial EPRL-FK amplitude [9,20].
At these critical points, J, is identified to be the area of the
triangle A. The application of critical points to the sta-
tionary phase analysis is discussed in Sec. IX.

The relation between the simplicial EPRL-FK amplitude
and A(K) suggests a new viewpoint that the EPRL-FK
model with spins J, can be an effective theory emergent
from a more fundamental theory formulated by A(KC) with
Jj- The EPRL-FK model is obtained from A(/C) by coarse
graining from j, to J, and imposing the parallel restriction
[more rigorously, the EPRL-FK model appears as a partial
amplitude in A(KC) after integrating out the nonparallel &,
as shown in Sec. IX]. The EPRL-FK amplitude with given
Ja is a collection of a large number of microdegrees of
freedom {j,} satisfying Jo = > ;cn jy at all A. Critical
points from the EPRL-FK model and Regge geometries are
“macrostates” which contain {j;} as “microstates.” This
picture is interesting and turns out to be important in the
computation of entanglement entropy.

Before the analysis of the full amplitude A(K) in Sec. IX,
Secs. V=VII make a modification of the amplitude by
imposing weakly the parallel restriction to internal &,’s,
and apply the modified amplitude to the study of entangle-
ment entropy in LQG (see, e.g., [15,21-26] for some
existing studies of entanglement entropy in LQG). The
modified amplitude is used to define a class of states in
the LQG Hilbert space: Given a 4-manifold M, with
boundary X and consider U (whose 4-cells are B,) as a
cellular decomposition of My (e.g., Fig. 2). The boundary
complex O C X gives the dual graph 0K* C . Hy is
defined as the LQG kinematical Hilbert space on 0K* and
is spanned by the spin-network states |T7;.> with spins j and

intertwiners i on links and nodes of 9K*. In Sec. V, we
construct a class of states |y) € Hy as finite linear
combinations of spin networks |T; 7) weighted by spinfoam
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S.(A) = ZMA(”)JA + oa(n)Nal, (1.6)
ACS
by =

FIG. 2. A 4-manifold (viewed from five dimensions) with a
boundary 3-manifold X. The state |y) given by Eq. (5.7) is
constructed by the spinfoam amplitude on a cellular partition /C of
M,. The boundary X is subdivided into region A and its
complement A. The subdivision A and A is adapted to K, in
the sense that the boundary S between A and A is triangulated by
A’s, each of which is made by a large number of facets f in .

-

amplitudes whose boundary data are j,
coherent intertwiners,

i.

In terms of

w) =" TTAst) / dgtde, eV T5),  (1.4)

[
Uy f R

where |Tj~.2> are spin networks with coherent intertwiners.

V is a potential which imposes the parallel restriction when
N — 0. |w) depends on a choice of the isolated critical
point (g, £4a)[Ja] Where &, = &£, (up to phases) satisfy
the parallel restriction. Z’{jf} is constrained by > rcp j; =

Ja and thus is a finite sum. [[dg;,dé,.] is over a
neighborhood M, - which contains a unique isolated critical
point (g%, E4a).[Ja]- [w) has a nice semiclassical property:
the weight of |T7,E> is peaked (in the space of boundary E) at

the boundary value £ from the critical data (G0 Ean) I Al
The implementation of the parallel restriction by V makes
the entanglement entropy of |w) computable with tools
from the stationary phase approximation.

We subdivide X into 2 subregions A and A, such that the
boundary S between A and A is triangulated by A C K,.
Accordingly the Hilbert space is split by Hy ~H, ® Hj;
(here Hy has to be suitably enlarged to include some non-
gauge-invariant states in order to define the split and
entanglement entropy; see Sec. VII for details). The
reduced density matrix p, and the nth Rényi entanglement
entropy S,(A) are defined by

, S.(A) = In

pa = traly) (w

while the von Neumann entropy is given by S(A) =
lim,_,; S, (A). Entanglement entropies characterize the
amount of entanglement from |y) between d.o.f. in A
and A. Section VII computes the Rényi entropy S, (A) and
shows that S, (A) is a function of “macrostates” J, Ny:

where A4 (n),04(n) depend on the ratio J,/N,. When K
and S are chosen such that all A € S are shared by the same
number of By’s, Ax(n) = A(n),ox(n) = o(n) become in-
dependent of A. In this case,

S, (A) ~A(n)Js+ o(n)Ng, (1.7)
where Js = > acsJa and Ng = > ,cg N, are total area
and total number of facets of S.

Section VI demonstrates an important intermediate step
toward S,(A): Computing tr(p’}) reduces to a quantity
which can be interpreted as counting microstates {j,} in a
statistical ensemble with fixed “macrostate” J,, N, at a
given A. The computation has an interesting analog to the
statistical ensemble of identical systems, in which J, N
are the total energy and total number of identical systems.
This counting of microstates is similar to the black hole
entropy counting in LQG [11].

Section VIII points out that the resulting Rényi entan-
glement entropy S, (A) and its differential give an analog of
the thermodynamical first law:

8S,(A) 2> [Aa(n)8]a + 0a(n)SNA],  (1.8)
AcS
or 6S,(A) ~A(n)éJs+ o(n)dNg, (1.9)

where in Eq. (1.9), KL and S are chosen such thatall A € S
are shared by the same number of B,’s. Since Jg is an
analog of the total energy, Eq. (1.9) suggests the analog
between A(n)~! and the temperature, as well as between
—o(n)/A(n) and the chemical potential. In the most general
situation Eq. (1.8), the temperature and chemical potential
are not constants over S. S is in a nonequilibrium state,
although every plaquette A is in equilibrium. Interestingly,
Eq. (1.9) is very similar to the thermodynamical first law
derived from the quantum isolated horizon in [11], if we
relate S, (A) to the black hole entropy, Js to the horizon
area (proportional to the quasilocal energy observed by the
near-horizon Unruh observer), and Ng to the total number
of spin-network punctures on the horizon.

The above analogy with thermodynamics is clearly a
consequence from coarse graining in the spinfoam
model A(K). The entanglement entropy effectively coarse
grains the microdegrees of freedom {j} collected by the
macrostate Jx, Ny.

The above discussion mostly focuses on the spinfoam
small-j amplitudes with the implementation of parallel
restriction. Section IX studying the full amplitude A(K) in
Eq. (1.3) by removing parallel restrictions to all internal
as’s, while integrating out explicitly all nonparallel d.o.f.
of &,y atevery A. As a result, the amplitude becomes a sum
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over Ising configurations at all A, where at each A some
o are parallel &, = £,4 while others are antiparallel
éaf = ]5(1A [J(§l7§2)T = (_EZ’EI)T; that é’S are antipar—
allel means that 77 = (£|6|€) are antiparallel]. The ampli-
tude constrained by the parallel restriction is identified as a
partial amplitude in the sum and relates to the simplicial
EPRL-FK amplitude, while all other partial amplitudes are
made by flipping a certain number of &, from &,p to JEya.
Importantly, all partial amplitudes in the sum can be studied
by stationary phase approximation. All partial amplitudes,
whose numbers of antiparallel &, are much less than the
numbers of parallel £, at all A’s, are dominated by
contributions from critical points (g, £,a).[/a] satisfying
the parallel restriction. In particular, 4D Regge geometries
can still be realized as a subset of critical points in the full
amplitude A(KC). However, for partial amplitudes whose
numbers of antiparallel £, are comparable to the numbers
of parallel &, at certain A’s, they give critical points
corresponding to semiclassically degenerate tetrahedron
geometries. The 4D geometrical interpretations of these
critical points are not clear at the moment.

II. QUANTUM POLYHEDRON AND
PARALLEL RESTRICTION

In LQG, polyhedron geometries are quantized by inter-
twiners [|i)y € Invgy()(jy, ..., jy) which are invariant in
the tensor product of N SU(2) unitary irreps H; ® -+ ®
H;, (spins j > 1/2 label the irreps) [27-29]. In this paper
we always assume j’s to be small but the rank N to be large:
N > 1. Denoting by L + SU(2) generators acting on the fth
irrep H;, (f = 1, ..., N), every invariant tensor ||i) satisfies
Z}Vzl l_:in) y =0, which is a quantum analog of the
classical closure condition Y, asi; =0 (a; € R, 7,
unit 3-vectors). {a, 7 f~}?:1 satisfying this condition
uniquely determines a geometrical polyhedron with N
facets, such that a, is the area of the facet f while 7i; is
the unit normal vector of f [30].

An overcomplete basis of Invgy()(ji, ..., jy) can be
chosen to be coherent intertwiners [27]

N
100y = [ a0 & Blirg). @D

where dh is the Haar measure and |j,&) is the SU(2)
coherent state in spin-j irrep labeled by &= (&', &2)T
normalized by the Hermitian inner product

i g<5>=(§ :f) 2)

Suppose j are all large, ||{;j},{&/})y gives a semiclassical
flat polyhedron geometry with N facets, which have areas

J»é) =g(&)

a; « j; and normals 7, = (&|o|€,) (o are Pauli matrices)
[14,27]. However, when j are small, this semiclassical
geometry is lost, since the quantum fluctuation is of order
1/j. However, as we see below, some different semi-
classical polyhedron geometries can still be found from
some |[{j}. {&/})y with small ;.

An observation is that a subclass of small-spin and large-
rank coherent intertwiners relate to large-spin coherent
intertwiners with small rank. Let us consider the small rank
to be four as an example (generalizations to other small
ranks are trivial): we make a partition of {1,..., N} into
four sets, say {l,....,N;},{N;+1,....N; + N>}, {N, +
Ny+1,....,N;+ Ny, + N3}, {N, + N, + N3+ 1,..., N},
where each set has a large number N, > 1 elements, and
we use A = 1, ..., 4 to label these four sets. We restrict to a
subclass of coherent states denoted by |[{j/}.{&a})n
asking &,’s are parallel up to a phase when f € A:

Parallel restriction: &; = e,

VfeA.

- -

or n = np, (23)
Parallel £;’s up to phases make parallel normals 7i;’s.
Intuitively, this restriction makes a tetrahedron with four
large flat faces from a polyhedron with many small facets
[see Fig. 1(a)].

The squared norm of [|{;j/},{éae™})y is computed
by factorizations of coherent states |j,&) = |£)®% and
Eq. (2.3):

4
G, {eac Pl = / an T (Ealnlés)™,
A=1
Ia=> s

fea

(2.4)

Although j, are small, Jo > 1 because Ny > 1 and
Jr= % When above J,’s satisfy triangle inequalities,
Eq. (5.16) is of the same expression as the square norm
of the rank-4 coherent intertwiner ||[{J},{&r})s if we
relate the above J, to the large spins of the rank-4
intertwiner. Thus the same stationary phase analysis in
[27] can be applied to Eq. (5.16) and shows that Eq. (5.16)
is exponentially suppressed unless the following closure
condition holds for the coherent state labels:

4 N
Z‘]AﬁA - Z]f?lf - 0,
A=1 f=1

where 7iy = (£5|0]E5) and thus 7, =7y for all f € A.
Comparing to the classical closure condition of polyhe-
dron, Eq. (2.5) uniquely determines a classical flat geo-
metrical tetrahedron, whose face areas are proportional to
Jao>1 and face normals are 7,. However, here J,
emerges from summing many small j,’s. Equation (2.5)

(2.5)
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may still be interpreted as a classical closure condition of a
polyhedron with N facets with small areas j’s, while facets
compose large flat faces of the tetrahedron. The quantum
correction of the classical geometry is of O(1/J,) and thus
is suppressed by the large rank.

The above demonstrates that the classical tetrahedron
geometry can emerge from intertwiners with small j’s but
large rank N, — co. The geometrical picture of the
tetrahedron/polyhedron is illustrated in Fig. 1(a).

Importantly, rank-N intertwiners have many more d.o.f.
than tetrahedra. There are coherent intertwiners with &’s
beyond the parallel restriction, while |[{j/},{&a})y only

|

H{J'f}, {é:Aei(pbe _ eiz/_zj‘f,pf/

SU(2)

= o' 2 / dh ®
SU@R) A=

1

The right-hand side gives up to a phase the rank-4 coherent
intertwiner, which is nonzero by the assumption that
Ja satisfies the triangle inequality. Therefore ||{;;},
{&a€'r})y is nonzero, and thus the invariant subspace
in ®1=1®f@ H; , is nontrivial. m

III. SPINFOAM VERTEX AMPLITUDE

We extend our discussion of small-;j semiclassicality to
LQG dynamics in the spinfoam formulation. We first focus
on a class of spinfoam vertex amplitudes asssociated with a
4D spacetime region B, whose closed boundary is made by
gluing five polyhedra (labeled by a,f =1, ...,5) through
facets. Each polyhedron has N, > 1 facets, and every pair
of polyhedra a, f share a large number N, > 1 facets. A
denotes the interface between «a,  made by N, facets f.

|

4 . .
dh ® ® hljjEs) = €' 2 2W/
A=1 feh

. . 4
(hles))®¥s = & 22101 / dh ® hlJa,Ex).
su@) A=l

span a subspace. In addition, the same tetrahedron geom-
etry with areas J, may come from different spin configu-
rations {j,} satisfying Jo =) en j-

Lemma 2.1: Given four J, satisfying the triangle
inequality such that ®?X_, H;, has a nontrivial invariant
subspace, any spin configuration {j,} rea satisfying
Ja = ZfeA Jr leads to a nontrivial invariant subspace
in @3 ®ea Hj,-

Proof: It is convenient to consider coherent intertwiners
satisfying the parallel restriction Eq. (2.3) and use the
factorization property |j, &) = |£)®%,

dh ® ® (h|ey))®Yr

Su(2)  A=lfea

(2.6)

|

We apply the generalized spinfoam formulation to
construct amplitude on nonsimplicial B, [17,18]. The
vertex amplitude of B, evaluates a spin network with five
nodes (dual to polyhedra), and each pair of nodes a, f is
connected by N, links. See Fig. 1(c) for an illustration.
Links connecting nodes are dual to f’s shared by polyhedra
and colored by spins j,. We color every node a by
rank-N,, coherent intertwiners |[{j}, {&ar})y, studied
above (j;#0 but small), while making the parallel
restriction as in Eq. (2.3):

Eup = Eqne™ P VY fEA. (3.1)

The vertex amplitude A, (jf, &) (in the Euclidean signa-
ture) describes a local transition in B, of boundary

geometrical states ®2_; [[{j/}. {&xr}) N,

i - ; 2% In (&, |Gt g
A, = / A TTTT TT G5 el g2 1% &) = / (dgiFle 2o 2oy 7 Il 551800 (32)

+ a<p fe(ap)

where (g}, g5 ) € Spin(4) associates with each node and j% =

(1£y)j;/2 with y < 1. We have applied the factorization

property of the coherent state in the above. By the parallel restriction,

A, = HeZijf(gaW—(pa,-) /[dgg:]ezi Y a2k (50:A|!1§4!Jﬁi\rf/m>7
Af

where ten J, = ) fe(ap) Jr > 1 emerge as summing j;
over facets f € A. J, are all large since Ny > 1 and
Jr =% Tla s €*r@m=a) is an overall phase since Eq. (3.1)
restricts £, parallel up to a phase.

5= (3.3)

fea

|

Although A, is a generalized spinfoam vertex with
boundary polyhedra and small spins, the integral
Eq. (3.3) has the same expression as the EPRL-FK 4-
simplex amplitude (boundary states are rank-4 intertwiners)
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[19,31,32] if we relate J, to actual spins in the EPRL-FK
amplitude.
Definition 3.1: Given an integral f D d"xeS™ | its sta-

tionary points x, are solutions of ﬁS(xO) =0, and its
critical points are stationary points with Re(S(xg)) = 0.

Since Reln (#]¢) = In(&]é)] < In(|&]|- €]) = 0 by
the Schwarz inequality, the exponents in Egs. (3.2) and
(3.3) are nonpositive. The critical points of A, in Eq. (3.2)
are solutions of

ng af» (34)

ijKaAﬁaf =0

fCa

g1ﬂnﬂf

where the first equation comes from Re(S) = 0. k,p = *1
appears when 9. acts on gy, or gi; . G, € SO(3) is the

three-dimensional irrep of g;,. When the parallel restriction
|

is imposed to boundary data. The critical equations,
Eq. (3.4), reduce to

E JAK(zAnaA = 0’

ACa

gfﬂﬁﬁA = gf‘aﬁaAv (35)
which are also critical equations from Eq. (3.3).

The same asymptotic analysis as in [19] is valid for
Eq. (3.3)as J, > 1. Here we adapt results in [19] toour A :
When the boundary data j;, £, satisfy the closure condition
as in Eq. (2.5), and give flat geometrical tetrahedra that are
glued (with A matching in shapes and orientation match-
ing) to form a closed boundary of a flat nondegenerate
4-simplex, the asymptotics of A, relates to the Regge action
of the 4-simplex: If we define N to be the order of
magnitude of Ny [N ~ N, ~ J, since all j; ~ O(1)], then
A, has the following asymptotic formula:

12
A, = (overall phase) (3\7;) {2./\/'7 _Cos <ZyJA®A> + N +€ZAJA®A + N7 _e ZAJA®A:| (1 + O(;J)) (3.6)

We refer the reader to [19] for expressions of N7 _,
N7, N7_. The asymptotics is dominant by contributions
from four critical points (gfs. Gra)s (Goas Gila)s (Gias Gila):
(Gpas Gow) SOlving Eq. (3.5) with the boundary condition.
®, is the 4D dihedral angle between a pair of tetrahedra in
the geometrical 4-simplex. The quantity inside the cosine is
the Regge action of classical gravity when we identify the
tetrahedron face area a, as

ay =8ryJalh = > ay, (3.7)

fea

The large tetrahedron face area is given by summing small
areas of polyhedron facets. #p is the Planck length.

IV. SPINFOAM AMPLITUDES ON COMPLEXES

Our semiclassical analysis with small spins can be
generalized to spinfoam amplitudes on cellular complexes
with arbitrarily many cells. We construct a generalized
spinfoam amplitude on a complex X whose cells C are
similar to B4 (every OC are made by five polyhedra a of
large numbers of facets f, though different C may have
different numbers of facets). N ~ N, > 1 are assumed. Cs
are glued in K by sharing boundary polyhedra. K deter-
mines a simplicial complex C, by substituting all poly-
hedra and C with tetrahedra and 4-simplices. We associate
A, with every C, and write the spinfoam amplitude on C
by [20,28]

m=ZH@mﬂmmma (4.1)

st f

2]f lIl éaf'gva g1[)"€ﬂf> (42)

v.f

where Ay is the face amplitude given by [33] (see the
Appendix for explanations)

= (2j; + 1)@+ for internal f,
= (2j; + 1)™®*2 for boundary f,
(4.3)

Ar(jr) = Aa(p)
As(jr) = Aa(p)

n,(A) is the number of B, sharing f € A in K and equals
the number of 4-simplices sharing A in ;. A, depends on
n,(A) in the coherent state formulation since (2j+
1) [dé|j, &) (j,&| = 1 where d€ is the standard normalized
measure on the unit sphere. } ., and Jldé,s] sum

coherent state labels of all internal facets f. Each [ dSyr
is over S2. Different from A, where we can apply the
parallel restriction to boundary data, A(K) sums independ-
ently £,;’s at different internal f’s, so we need to take into
account fluctuations beyond the parallel restriction. When
K has a boundary, we still make the parallel restriction to
boundary &,/’s.
S has the following gauge symmetry:
@) Continuous (1) A diagonal Spin(4) action at o,
Gy — hifgs, for all a at v by (h, h;) € Spin(4);
(2) At any internal a, |£,) = hy|&,s) and gi —
gibhz' for all v having a at boundaries; and
(3) |Eyp) — €% |E,;) at any internal |£,;).
(ii) Discrete: g}, — +gy, and independently g, — F g,
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If we expand S at £, satisfying the parallel restriction, i.e.,
el r = Eqn + 68, Y f € A, then 6,y are fluctuations
of &, away from the parallel restriction. Notice that &, —
"7 £, ¢ at internal f’s are gauge symmetries of S,

S =S80+ ) 2j;Paléwl.
f
SO = Z Z 2J§ ln<‘§aA|gij;:a_lgfﬁ‘§ﬂA>a
+ 0,A
—1 * Y +-1 +
q)A = Z 2 Z[ln<§af|gva 91;/j|§ﬂf>
+ v

0(5¢), (4.4)

- 1n<§aA|g;'ta_1.gqj):ﬁ|§[}’A>] =
where J7 is the same asin Eq. (3.3) andis large by Ny > 1.J
are assumed to satisfy the triangle inequality. S, reduces to
Eq. (3.3) at each v and is the same as the EPRL-FK spinfoam
action used for large spin asymptotics on the simplicial
complex /C,.

A. Critical points satisfying parallel restriction

Critical points of Sy, denoted by (g, Eon).[Ja), are
gauge equivalence classes of solutions of critical equations
Re(Sg) =0z So=0¢,,So =0. These critical equations have

|

been well studied in [19,20,28] and reduce to [it is
straightforward to check that aéaﬂso =0 follows from

Re(Sy) = 0]

ZJAKaA

ACa

g@ﬂ|§/}A> = € m/}gvawaA naA = 07 (45)

where K, (v) = £1 when 9+ acts on gy, or gy
Theorem 4.1: Critical points of S, are also critical
points of S.
Proof: We check that Re(S) =08S/0gi, =0S/0&,; =0
at all critical points of Sy. First of all, at any critical point
of SQ,

Re(S)|. = Re(So)[. =0, (4.6)

where |, means evaluating at any critical point (g, E,a ) . [/ a]
of Sy where &,r = &0, YV f € AL

If we write & = (&', £2) and define J& = (—&2, &'), then &
and J¢ form an orthonormal basis in C? with the Hermitian
inner product. When we perturb S, we write 6§, =
EqpdEar + iMapEar Where e, € C and 1,r € R. The coef-
ficient in front of &,/ is purely imaginary because &, is
normalized. Since every &, is shared by two terms with
neighboring v’s

[ (&prllg rﬁr)l

2 S| zi: )i \Ear Eprl (g5,

At the critical point, &,r = a, E5r =
Oc, fS 0 by the orthogonality between & and J¢.

For derivative in g%, we use 8¢, =

5af| gva

59%/;|5ﬁf>

i |J§(1f> <J§af|(gil)_lgviﬂ|§/}f>i|
* k =0 4.7
A P FATw 47)

sa at v and satisfy Eq. (4.5); similarly £y = £y 4 and satisfy Eq. (4.5) at v'. Then

i G,iaagw (0,, € R). At the critical point and by Eq. (4.5),

5gﬁs|c =

ei,Zm (1£9)>j i

fea

where i n = (E,0l0]E4a) 18 @ unit 3-vector. k,, = +1
relates to orientations of links in Fig. 1(c). We have chosen
orientations such that all links connecting «, f are oriented
parallel. u

Critical points of S, have been completely classified
in the case that all tetrahedra reconstructed from the
closure condition are nondegenerate. We refer the reader
to [9,20,28,34] for details of the classification. When J 5 are

areas relating to edge lengths on K by (¢, 7, £ are
three edge lengths of a triangle A)

1
1Is€) =\ A+ L+ . 2) — £~ 4~ 4

(4.9)

there are a subset G of critical points (g5, 4a).[Ja] Of So
that can be interpreted as nondegenerate 4D Regge

éafl(ng) lg?):/jlgﬁf> c 2

= i9%{11!(1 + y)gfa : ZKaAJAﬁaA|c = O’ (48)
A

|
geometries, if the boundary condition of &£,, gives the

boundary 3D Regge geometry. Defining N,(v) by
NOY(v)1 + iN(v)o; = gru(9ie)™" (o; are Pauli matrices),
G is defined by critical points (g, &,a).[Ja] With

det (N

@ (0): Na, (0), No, (v), Ng, () #0. - (4.10)

for all v C I, and all four a;, a,, a3, @, out of five a’s at v.
We have the following one-to-one correspondence [9,34]:

Critical points (gzivav éaA)c[JA] € g
¢
4D nondegenerate Regge geometry on /C

and 4-simplex orientations. (4.11)
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Triangles A in Regge geometries are made by polyhedron
facets as Fig. 1(c), and yJ, is the area of A. Different
critical points may give the same Regge geometry but
different 4D orientations p(v) = 1 at individual v. We
focus on critical points (gi,, €44 ). [Ja] € G that are isolated.

Consider infinitesimal ~deformations (g, &,0) =
(gl/i‘a + 59%01’ éaA + 55(1A) (inChlding boundary data gaA)
from (g%, &an).[Ja] € G with fixed J,, and ask whether
the deformation can reach another critical point [solution of
Eq. (4.5)]. Any infinitesimal deformation cannot break the
condition Eq. (4.10), so it cannot reach critical points
outside G. Moreover the deformation cannot flip the
orientation [9]. Therefore if the deformation reaches
another critical point (¢'5,, &) [Jals (¢ 5, &) [Ja] must
still belong to G and correspond to a dlfferent nondegen-
erate Regge geometry with the same set of areas yJ,. In
other words, (gti‘m éaA)c[JA] and (ng ) [JA] corre-
spond to two different nondegenerate Regge geometries
with the same set of areas. At any 4-simplex, Eq. (4.9) with
ten fixed areas gives ten quadratic equations for ten squared
edge lengths. These two different Regge geometries cor-
respond to two different solutions of these ten quadratic
equations with fixed J, at least one 4-simplex. And these
two different solutions are infinitesimally close to each
other, since one comes from the infinitesimal deformation
from the other. Then it implies the 10 x 10 matrix
9J3/0¢; is degenerate at (g, Ean) [Ja]. As a result, if
(g5, Ean) [ a] gives Regge geometry with nondegenerate

J3/0¢3; at all 4-simplices, (i, Eqa) [Ja] is an isolated
critical point. Note that the deformations considered
above include deformations of boundary data &,,, so
(g5, Ean) [Ja] is isolated in a larger space of gi, Eqn
including boundary &,,. It is easy to find isolated critical
points by numerically checking the determinant of
oJ%/ 6/2 Some experience from numerics suggests that

degenerate aJ%/ 81/” might only happen at degenerate

4-simplices.
A critical point (g5, &.n).[Ja] €G with a uniform
orientation u(v) = p at all v’s evaluates

Sole :ﬂ<ZVJA€A + Z }’JA@A>

AEK, A€k,

+ ) aA®A>

AEK, AedK

u==lI,

(4.12)

and is the Regge action on K, [9,20,28,35,36]. |, means
evaluating at any critical point (g, E,a) [/ a] Of Sp. €4 and
©, are the deficit angles and dihedral angles hinged at
internal and boundary A’s. yJ, are interpreted as triangle
areas ay = ) rcpdy made by facet areas a; as in
Eq. (3.7). The validity of Eq. (4.12) has some topological
requirements on /C;: (1) all internal A are shared by an

even number of 4-simplices, and (2) K is a triangula-
tion of manifold M with trivial second cohomology
H*(M,Z,) =0 [9]. The first requirement is generically
satisfied by triangulations used in Regge calculus; see
[9,37] for examples. The above result applies to, e.g., M at
§*, 83 x I (where I is an interval in R), or a topologically
trivial region in R*.

Beyond the subset G, there are other critical points with
the BF-type and/or vector geometry critical data [9,19,20].
Each of these critical points has critical data of g, to satisfy
Gia = Gra OF equivalently det (N, (v), Ny, (v), Ny, (v),
N, (v)) =0 at certain v’s. The difference between the
BF-type and vector geometry critical data is that the BF-
type data still associate with nondegnerate 4-simplices,
while vector geometries are degenerate 4-simplices.

B. Critical points violating parallel restriction

The converse of Theorem 4.1 is not true. There exist
critical points of S which are not critical points of S.
Critical points of S satisfy

> JiKaaias = 0. (4.13)

fca

gfﬂﬁﬁf = gAfaﬁafﬁ

Theorem 4.2: Every critical point of S that is not a
critical point of S either (1) relates to a critical point of S,
(gbi"a’ é:aA)c [JA]> by gj;z # Yoa and éaf = JfaA up to a phase
at some internal f € A, or (2) satisfies g\, = gy, forall v, @
modulo discrete gauge

Proof: We write gaﬂ = (G7,) 7" (G5;), the first equation in
(4.13) gives gaﬁn/,f =1, of and gaﬁnﬁf =1, «f and implies
(gaﬁ) Goplipr = Tigp forall f € Asie., iy atall f € A are
eigenvectors of (gA;ﬂ)‘lgA;ﬁ with a unit eigenvalue. It does
not constrain 7y if (g5,)7'g,; = 1. But when the SO(3)
matrix (gaﬂ) ! Gup # 1, its eigenspace with the unit eigen-
value is at most one dimensional. Therefore in this case, all
figy are collinear, thus 71z, = 114 for any pair of f, f € A,
and Eq. (4.13) reduces to Eq. (4.5) whose solution gives
(gg*:a! gaA)c[JA]' Hence ﬁﬂf = Zl:ﬁaA, i.e., gﬂf = gaA or JgaA
up to a phase. At each v, we have to gauge fix g, = 1
at a certain «, then require that ( gaﬂ) ! Jop # 1 is equivalent
to gy # g, for all p#a [g,;=
(945) 'G5 = 1, but it is gauge equivalent to g/, = gy
by a discrete gauge transformation]. [

We may generalize the definition Eq. (4.10) of the
subclass G to include all critical points of S. It contains
critical points of Sy, (g, £4a) [/ a] € G, and critical points
of § which flip some internal or boundary &, — J&,a.
Critical points in either class (1) or class (2) in Theorem 4.2
are isolated from (g3, £,x).[/a] € G because an infinitesi-
mal deformation from (g3, &,a).[Ja] at fixed J, cannot
flip &,y — J&,a and cannot break the condition Eq. (4.10).

—g,p still implies
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Although we find critical points of S, and S, we cannot
apply the stationary phase approximation of the integral at
the present stage since all j;’s are small. The critical points
in Theorem 4.2 seem useless. But we come back to the
computation of the integral in Sec. IX and see why these
critical points are useful to the stationary phase approxi-
mation of integrals.

V. SEMICLASSICAL STATES FROM
SPINFOAM AMPLITUDE

Spinfoam amplitudes can be used to construct quantum
states in LQG Hilbert space. Given a 4-manifold M, with a
spatial boundary X as in Fig. 2, we make an arbitrary
cellular decomposition of AM,. The cellular complex is
denoted by K. Spinfoam amplitudes can be defined on K

and denoted by A(KC); ; where j, 7 are spins and intertwiners
coloring the boundary dual complex OK*. On the other
hand, X associates with a LQG kinematical Hilbert space
‘Hs in which spin-network states ng,;(l_]' ) for all graphs G

colored by ; i. U are SU(2) holonomies along links of G.
We define a linear combination of T Gii by identifying G =

OK* and letting the coefficients be A(IC);J:

ZA(’C il o 53U ). (5.1)

One may even consider to sum over the cellular decom-

position and define W(U) = s Wi (U). If we truncate the
sum in Wi (or W) to be finite, Wi (or V) is a state in the
kinematical Hilbert space Hy. If the sums in Wy are kept
infinite, ¥x- may not be normalizable in Hy, but one may
anticipate that Wy is a physical state living in the dual
space of a dense subspace in Hy. Wi may be viewed as a
spinfoam analog of the Hartle-Hawking wave function.
When M, has several disconnected boundaries X,
%,,..., %, in additional to X, a cellular decomposition K
of M, induces boundary dual complexes 9K, ..., K. A

state W, (U) on £ can be defined by choices of (initial)
states ¢, € Hy, (a = 1, ..., n), whose spin-network decom-

pOSitiOﬂS are ¢a = Z_’ 7 H/(Z.]l + )(¢a)] i, leCd il ¢a
is based on a single graph 8/C* ¥ (U ) can be constructed as

=2 2 Hfﬁa,m

G adad,

x Ty 5:(U)-

/ JidJadai_,
(5.2)

It is useful to write Egs. (5.1) and (5.2) in terms of
coherent intertwiners. For instance, if we consider /C whose
cells are B, as in Sec. IV and apply the spinfoam amplitude

A(K) as in Eq. (4.1), W, (U) in Eq. (5.1) can be written as

#e(0) = 3[40y [ otz eT, . 52(0),

{gt 1
(5.3)

while Eq. (5.2) can be written analogously. In Eq. (5.3),
> U and [ d¢,, integrate all internal and boundary j’s

and &,,’s. Gauge symmetries of the integrand
g@i‘a ~ g;)t(lh(17 faf ~ h(;lgaf’ v ha € SU(2)7 érlf ~ ei(pgafv
(5.4)

apply to both internal and boundary a. T;g(l_} ) are spin-

network states with coherent intertwiners (see Appendix for
convention):

Ty 53(U) = [ fglCR]f Uy V)aglC sk

(&b ® {ish {a .

where ||{js}.{&,s}) are coherent intertwiners at polyhedra
a € 0K and are bras or kets depending on the orientation of
the spin-network graph. R//(U,) satisfies the following
normalization:

(5.5)

1

AURL (UVR”, (U) = ———8; 8O- (5.6
S SRR (0) = g5, (56)

A. Truncated states |y) with parallel restriction

In the following we always consider states constructed
by spinfoam amplitudes on a fixed cellular complex /C, plus
certain truncations. The resulting states are inside Hy. We
again focus on K whose 4-cells are B,. The boundary 0/ is
a polyhedral decomposition of Z.

We apply the following truncations to W.: (1) The sum
>_(j,} is constrained by >~ scp jr = J4 with fixed J, at
every A. (2) The integral of [[dgz,dé,f] is over a neighbor-
hood N, ; (of both internal and boundary variables) at an
isolated critical point (g7, &4n). [J Al € G of S (the critical
point is isolated in the space of g, &, f 1nclud1ng boundary
Eap)- N, ¢ only contains a single critical point. " The critical
data (g&,,&,).[/a] are a gauge equivalence class by

"y contains integral over boundary E; different boundary data Z’
might lead to different critical points for the integral over ¢, and
internal &,,. Here the assumption that 9t - only contains a single
critical point means that arbitrary changes of boundary data E
within 272,/ ¢ do not lead to any other critical point in ERQ « different
from (gis. Ega) e [Ja]. N, ¢ satisfying the requirement is nontrivial.

Indeed, if an infinitesimal change of boundary data Zj leads to
another critical point in RN, . different from (gi,. ). [/al,
then the new critical point has to be infinitesimally close to
(g Ean) [ 5. Otherwise this new critical point can be excluded
by redefining ... But it violates the assumption that

(g5 Ean) [ a] is isolated.
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Eq. (5.4), and other gauge transformations mentioned in
Sec. 1V, (g%, Eqan).[Ja]s include the data of boundary
Jas&an- (3) We impose the parallel restriction to &, by
a real gauge invariant potential V, »(&,s) at every pair of
internal and boundary a, A, such that the minimum
Vaa(&qr) = 0 gives the parallel restriction. The truncated
state is denoted by y:

Z HAA(]f / dgi)tadéaf]

Ut f

x eS| [e™Veo Ty 52(0).
a,A

(5.7)

An example of V,5(&,r) may be an analog of the 2D
spin-chain  Hamiltonian:  V,a(&ap) = D25y (1 = Figy -
f,p) where (f, f') are close-neighbor pairs. Our following
discussion does not reply on details of V, 5. N is of the
same order of magnitude as J,. Z’{jf} only sums nonzero

Jj¢ in Eq. (5.7). Z’{j/} constrained by > e jr=Ja is a
finite sum, so y € 7—(2.

Sending the coupling constant of V,  to infinity N — oo
independent of J, imposes strongly the parallel restriction
which reduces the vertex amplitude used in Eq. (5.7) to
|

S TIas00,

{irk S A

N

In the first step we choose a f, in every A and define
Eaf, = Ean, then integrate out &,4’s (f # fo) by N > 1, and
reduce S to Sy which depends on j only through J . In the
second step we apply the stationary phase approximation of
the integral with S in ¢, . which contains a single critical
point. Hy and H are Hessian matrices of Za, A Vaaand Sy,
and are assumed to be nondegenerate. If the boundary E in
T g+ 72 is away from the boundary data of (G Ean) el Al
critical equations from S, have no solution in 9, so the

integral is suppressed exponentially by large J,. It shows
|

(wly) =
{ib iy 1 Ny x Ny e
SIE=IIN
fC22]f+ 1 acx Su(2)

2n'> D e

dgbadgaf SH ~NVaa _/9; [dgvadéaA] <N
96

(271') 24NU+ZZAE,<NA eSole

dg erE()'l ]f a/‘.‘]a'faf H / dg(lezfeﬁazjf In (‘fﬂ_f'ga‘i;;_ﬁ ,
Su(2)

the EPRL-FK 4-simplex amplitude. Equation (5.7) is a
generalization from the following analog using large-J
EPRL-FK amplitudes on the simplicial complex /C,:

yerrLrk (U) = HAA(-]A>/ [dgiadéanle® T, 75(17)

m!}-é

(5.8)

The generalization from wgpg; i to ¥ releases mildly the
d.o.f. of nonparallel £,;’s in A, but releases a large number
of microdegrees of freedom of small j’s at every A.
Spinfoam amplitude with the parallel restriction imposed
by V,a is constructed for the purpose of defining y which
has the semiclassical property discussed below and gives
interesting entanglement entropy (see Sec. VII). The
computation of the amplitude without the parallel restric-
tion is discussed in Sec. IX.

Given that y associates with a unique critical point
(g1im gaA)c[‘IA]’ when (gfa’gaA)c[‘]A] €g Corresponds to
a Regge spacetime geometry,  may be viewed as a
semiclassical state associated with the Regge spacetime

geometry. Indeed, if the boundaries ] and E inT are

oK J.E
consistent with the boundary data of (g, &,0).[/a], its
coefficient gives

W{Z} L0 e ()

Ve a2 LA +o(y)]

{r}
(5.9)

that coefficients in Eq. (5.7) as a function of boundary E is
peaked at the boundary data of (g, &) [Ja]- v is a
spinfoam analog of the Hartle-Hawking state.

In addition, y also explicitly depends on the size of the
neighborhood N, .. But as we are going to see in a moment,
the squared norm of y and entanglement entropy only mildly
depend on the size <N - through the subleading order.

B. Squared norm of |y)

The squared norm of |y) is computed as follows:

! . .
DO | ENCAZNGD / Agiedgriadeediyle ] [ MV aalbu Vol

(5.10)
pcz
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where j, gl &, denote variables from (y|. S and S are from |y) and (y/|, and thus depend on unprimed and primed
variables, respectively. j =y for f C X 2j; + 1 in the denominator comes from the normalization Eq. (5.6). We have

applied the integral expressions of inner products between coherent intertwiners:

{Lird A& ) = / z)dgaez-fEé?Hijl“<5;fg“"f“f). (5.11)

h, in the integrand of (w|y) can be removed by a gauge transformation Eq. (5.4).
We may define a total action by collecting all exponents in the integrand:

Stot_S[jf g@aagaf]—i_S[Jf?gva’ NZ aA +VaA(§af)]
a,A
F Y0 25 lgallar) + Y1 24 In(EslgplEy)- (5.12)
aCX feda SCX fEIp

We may choose a f in every A and define &,/ = &,a. The large N implements the parallel restriction and reduces S to Sy,
> rea2ir (g Eqp) to 274 In(EA1Eqa) up to O(1/N) after integrating out nonparallel &,,’s. The integral in (yy)
reduces to

2/ N 2ZAEIC(NA_1) 1
|, dtdoridtadadadss r/N) s [1 n o( )}
RNy XNz faA) N

Vdet Hy(E,5) det Hy(
St = So+ S0+ DD 2 s (€l galéar) + DY 275 In(EsalgplEsa). (5.13)
aCX ACa pCE AcCp

where Hy (£,,) is the Hessian matrix of ), V,a(&,s) evaluated at the minimum. Equation (5.13) can be computed by
stationary phase approximation. The critical equation of this integral is given by Eq. (4.5) from S, and in addition

gplEpa) = €2|pn), YACH,  PCE, (5.14)

from Re(2J, In(&palgp/&sa)) = 0. Equation (5.14) implies that |, ) and |&za) are related by a gauge transformation. A
critical point (g, &,a).[Ja] of Sy gives rise to a critical point of S}, by double copying, i.e., (5. Eqn) [Ja] =
(Gia» Ean) [/ a] modulo gauge equivalence. A gauge transformation [Egx) > €058 gg|E0 ), gfﬁ — gfﬁggl identifies [£45) =
|&5a) by Eq. (5.14). M, contains a single critical point (92 Ean)c[Ja), which implies that R, x N, contains a single
critical point made by double copying. Si, vanishes at the critical pomt so Eq. (5.13) is estimated by

(2_,,) 24N, 42 ", Na 1 1 [1 N 0<i>] (5.15)
N det (Hy|,) \/det (~Hiyl,) N/ I |

where N, is the total number of B, in K and 24N, 4+ 2 3", N is the total number of integration variables in y (U). Hi|,
is the Hessian matrix of S, evaluated at the critical point and is assumed to be nondegenerate.

We observe that the leading order in Eq. (5.15) depends on {j} only through their sum J,, so it is a constant in the sum
over {j} in (y|y). Therefore inserting the above estimate of the integral,

) = <%>Z4NI,+ZZAEKNA det(ll—lv|c) det(l_H{oJ ) H IWNEN HF’ N [1—1—0( )] (5.16)

¢) ai(k,) Acy

where i(K) is the interior of the simplicial complex KC; determined by K, and I'y, I, are given by

2At the critical point, we apply the gauge transformation |Ega) > g,,|e§/,A> to boundary &4,’s and set phase conventions such that
|§ﬁA> |§ﬁ a) (set gga = 0 by gauge transformation). They make In(&s, |gp|&5,) vanish and 1dent1fy the complex conjugate of Sj to be

So- So + So vanishes since S, is purely imaginary at the critical point.
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=3 HAA(jf) =5 H(zjf Fp)yml@)

{jreat . {jrea} [
Ap(j
I, [Ja] = ZH2+f1 Zsz + 1)2m(8)43, (5.17)
{erA} J {erA}

VI. ANALOG WITH MICROSTATE COUNTING

Interestingly, I's[J,] and Iy [J,] are two analogs of counting microstates corresponding to the macrostate (J5,Ny),
where the microstates are {j,} with degeneracies (2j; + 1)"*! and (2, + 1)*"(2)+3 at the level j;. Here we list
quantities in Ix[JA] or Iy [/,] as analogs with quantities in a statistical ensemble of identical systems:

N, < total number of identical systems in the ensemble,
Ja <> total energy of the ensemble,
J <> energy levels of the system,
(2j + 1)2m(B)+1 o (27 4 1)2(8)+3 & degeneracy at each energy leve,
[a[Ja] or T, [Ja] < total number of microstates in the ensemble. (6.1)

I's[Ja] and I'y[J,] are similar to the black hole entropy counting in LQG [11]

Here we focus on computing the boundary contribution I", [/, ]. We define n; to be the number of facets f carrying the
nonzero spin j,

=S Lol = Z/NA!H%J_.')W, 9a(j) = géw — (2 + 1)2m(8)43, (6.2)

{rea} fEA {n;} J#0 i Jj+1

where Z}il/z jn;=J, and Z}il/z n; = N, is imposed to Z’{n‘}. ['s[Ja] is computed by simply replacing g, (j) by

(2j + 1)?"(2)+1 Following the Darwin-Fowler method in statistical mechanics (see, e.g., [38]), we define the generating
functional

AN ”A—ZNng“ - [szﬁguj)}“, (6.3)

Ja=1/2 n;} j=1/2 i=1/2

where } % _, , relaxes the constraint %2, , jn; = J5 on 3y, 4. >y, ) satisfies only one constraint, > 2, n; = Ny.
Z;il /2 7% ga(j) has a nonzero radius of convergence, so it is an analytic function of z at a neighborhood at z = 0. T, [J,] is
given by a contour integral

1
Fala] = 2,”]{ 21A+1 {Z 2gai ]

=172
L dzexp (NAln[Z 22 ga( )} (2JA+1)ln(z)>. (6.4)

2xi J.—o =

The integration contour is a circle inside the domain where the generating function is analytic. The exponent in the integrand
is bounded along the contour. Given that both N, J, > 1, the above integral can be computed by the method of steepest
descent: If we denote the exponent by

Naf(z) =Ny 1n[z 2 gal )] —2J,1n(z), (6.5)

j=1/2

then the variational principle 9.1 (zy) = 0 gives
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TABLE 1. Solutions z, maximizing f(z,) at different n,(A) and Jo/N, [f"(zy) are all nonzero].

JA/NA:06 ‘]A/NA:O7 JA/NA:OS JA/NA:09 JA/NAZI
ny(A) =1 2o = 0.0257781 2o = 0.0505039 2o = 0.0742575 2o = 0.0971007 2o = 0.119083
n,(A) =2 20 = 0.0119832 20 = 0.0244767 20 = 0.0374077 2o = 0.0506988 20 = 0.0642717
n,(A) =3 7o = 0.00552678 70 = 0.0117148 7o = 0.0185671 zo = 0.0260657 7o = 0.0341736

. . 2j .
Zj:l/Z Jz' 9a(j) _Ja
2 i R —_ T .
Z;il/z 2o’ 9a () Na
There is always a solution on the positive real axis, zg > 0,

which maximizes the integrand on the circle [38]. We
denote them by

(6.6)

790 =e /2 and ets = Z Waalj).  (6.7)
=12

The integral can be approximated by

1 5 1
/ — aflzo) (= -
FA[JA} — <2”NAf//(ZO)> {1 - 0<NA>:|’

Naf(z0) = uaNa + Pada. (6.8)
where
" Z;iuz 2j(2j - I)Zéj_ng (/)
f (ZO) = - 2j .
Z,’:uz 7' 9a(J)
2 2
_ 472 /Na - JA/NA' (6.9)
20
|
Hs = Hs ® Hj,

Ha = L(SU(2))®H )/ gauge(Gy).

Here gauge(Gy) only includes gauge transformations
acting on nodes in G, (without bivalent nodes ng’s).
The gauge(G,) and gauge(Gj;) only include gauge trans-
formations acting on nodes in the interior of A and A.
T;..E(lq]) and y(U) are also gauge invariant at all ng’s and
thus belong to a proper Hilbert subspace in Hy. However,
this subspace does not admit a factorization into Hilbert
spaces associated with A and A. Therefore in our
discussion of quantum entanglement in |y), we view
lw) as a state in the larger Hilbert space Hy, although
some states in Hy are not gauge invariant at bivalent
nodes ng’s.

In all following numerical computations of z;, we always
check that f”(z,) # 0. Table I gives examples of solutions
Zo at different n,(A) and Jp/N,.

VIL. ENTANGLEMENT RENYI ENTROPY
A. Second Rényi entropy

We subdivide the boundary slice X into two subregions A
and A [Fig. (2)]. The subdivision is assumed to be
compatible to the complexes K and K, in the sense that
the boundary S between A and A are triangulated by
triangles A € ICy, each of which is made by a large number

of facets f € K. Thus the spin-network functions Tf.Z‘(f] )

in the definition of y(U) are defined on graph G, = OK*
which have (many) links intersecting S, while S does not
intersect the spin-network nodes.

We improve the spin-network graph G, by including all
intersecting points ng =/ N S between S and links. ng
breaks [ into 2 links /;, /. The improved graph is denoted
by G. By the cylindrical consistency, all T].E(f]) are also

spin networks on the improved graph G, since all U, along
links intersecting S can be decomposed into U; = U, U,,.

The boundary Hilbert space Hy is defined as follows: We
denote by L(G), L(G,), and L(Gjy) the set of links in G,
QA :gﬂA, and QA :gﬁA,

where Hy = L>(SU(2))®IL9)l /gauge(G,).

Hz = L*(SU(2))®IH9%)] / gauge(G;). (7.1)

We define a reduced density matrix p4 from |y) € Hy by
tracing out the d.o.f. in Hj:
(7.2)

pa=tzlp).  p=w)wl

The quantum entanglement in |y) can be quantified by the
nth Rényi entanglement entropy associated with A:

(7.3)

The von Neumann entanglement entropy is given by
S(A) = 1imn—>] Sn(A)
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Wly) =

(a)

FIG. 3.

(b

(a) The inner product (y|y) is taken in both H 4 and H; between two copies of |). (b) In tr(p?), the inner products in H; are

taken between copies I and II and between III and IV of |y ), while the inner products in H, are taken between copies I and IV and
between II and II1. If the inner products are understood as gluing manifolds and their path integrals, the manifold for tr(p3) has a branch
cut whose branch points make the boundary S between A and A.

The tr(py) = (w|y) has been computed above. The
following task is to compute tr(p; ). Let us first focus on
the second Rényi entropy at n = 2. The computation is
illustrated graphically in Fig. 3. The tr(p?) is made by inner
products among four copies of y. The inner products in H;

take place between copies I and II and between III and 1V,
while the inner products in 4 take place between copies I
and IV and between II and III. The inner products of tr(p3)
are computed in the same way as the above derivation
for (yy):

|

> I

GOy et
X He
< [T

acCA

III ]II
X H {J fﬁf

/ |:H dg11a dé: f :| S-S0 -ST)
a

m><4

(111

1 1
Vs EN4Vea (€004 Vs (€10) 4 Vaa (€0)]
]g;(ijHP 11 2j;+ 1

fcE\S

LAY [ A

(7.4)

}{J AEMNUDY. {s,;f}H{J‘” }{0)),

where jj(f), gg‘é)i, and .ffl“f) are variables in the ath copy of w (a = I, ..., 1V), and S\*) depends on the variables labeled by a.

We apply the convention in the above formula that ({j}, {&}[|{j'}. {&}) = 67 ({j}. {EH{j}. {&}). A factor 1/(2j; + 1)*
appearing for each f C & comes from the following inner products at f:

() (1) (1) (1)
J J J J
R”f;(n kD ( UA )ka(l)n(l) ( UA)R"/;(”) ) ( UI/A) Rk{u) ) ( U/_l )

/ dU,dU;dU', AU/
kD kD) g (I j(1V)

(111) (111) (IV) (1V)

J
X R I[l)k (1) (U‘{f-\)Rk(lll (1) (U/ ) IV (1v) (UA) k(IV) (IV)(UIA)

1 4 (1) (1) L(1V) (1) (1)
:< . st s i s iy E O
2jp+1 KO KD K(01) 1Y)

) 5k(11) ) 5k(1u)k(lv) 5k(lv) kD

X 6, u),un0, <m>5 amn,, w6, 1), (1v)

npD Oy mUm
1 3 vy vy ()
= T 1 Sl §r S e §r s 5n(1)n(u)5m(11)m(111)5n(111)n(1v)5m(l)m(1v), (75)
Jr+
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In <§(II)'g | (III)>

v (0% (04 v
in{el7les, ke - (el glel)
I Al

B 4 A B
<§ (11)> I I In ( (1) | (1V)>

-1 i' (1)> I A A IV

In (£} ez,

(el el )

: ]

In (€, salélrr)

FIG. 4. The situation that f C S is contained in a single B, in K, the figure draws four copies of faces in * dual to a f C S from four
copies of i in computing the second Rényi entropy. Uy, Uz, U',, Uz’ in Eq. (7.5) are holonomies along links labeled by A, A. Integrating
these holonomies glues four copies of dual faces.

where U, Uj is the holonomy along the link intersecting S and dual to f in Z (see Fig. 4). The above inner products identify

four spins of f from four different copies of y: j}l) = j}”) = j}m) = j}lv) = jy. The total action in Eq. (7.4) is given by

Sl = SW 4 SUD 4 s 4 §Uv) Z an( af + VaA(ngtf)> + VaA(él(xlf[l)) + VaA(f(W))]

£33 2/ e galel)) + D7D 2 (el |gnlel )

aCA fCa aCA fCa
III III v (1 1 11
+ 3320 e gple) + +3 Y20 g ghleg)- (7.6)
pcA fCa BCA fCa

The situation at f C S is illustrated in Fig. 4. The large N again imposes the parallel restriction to £, and reduces 5533 to

§@ = sO 4 s 4 s 4 gIV)

+ Z Z 2JAIV l aA |ga|£(1A + Z Z 2‘] Y 111 aA |ga|£aIAH >

aCA ACa aCA ACa
(111) (111) v 1 1 11
+3° AZ 208" (g5 |gslEsy ) + +> AZng) (el |gj1E) (7.7)
pcA Aca pcA ACa

A large-J, stationary phase analysis similar to (y|w) shows that the integration domain of Eq. (7.4) again only contains a

single critical point, which is four copies of (g7, &,a).[Ja] With their boundary data identified according to Fig. 3. St(ot)

vanishes at the critical point.
The asymptotic behavior of the integral depends on j; only through their sum J 5, so similar to the computation of (y|y),

2) o~ <2_ﬂ> 48N1’+4ZA5KNA 1 !
2
g det (Hyle)* | fyer (@)

<[] Talal* Hr [Ja]? Hr’ [ 4] Hr (4] {1+0<1>} (7.8)

A€i(Ky) ACi(A ACi(A AcCS
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where H’ 532 |, is the Hessian matrix of §’ 532 evaluated at the critical point and is assumed to be nondegenerate. A C S are

special because they are shared by all four copies of y in tr(p?). F(Az) for A C § is given by

' , NN , .
rdsl= 3" TlodUn od'0) = = @+ DO, (7.9)
{irea} fEA J

Similar to I, F(Az) can also be viewed as an analog of microstate counting, where gf) (j) corresponds to the degeneracy of

microstates at the level j. The label (2) indicates that it is for computing the second Rényi entropy,

1
@y 10 N f<2>(z(2>)< 1 )2[ < 1 >] @, = ,@ (2)
I/ | Jal =es 0 1+0 , N = Ny + J A, 7.10
NN 27INAf<2)”(Z(()2)) Na af N zg”) =pupy'Na+ P’ Ia ( )

where f?)(z) and z(()2> are given by

o (212 ()
2o, X ndlze 1798 (G)
Naf@ @) =Naln| S gl ()| =204 In(z), 20 o 78 2 = A (7.11)
‘ 0 (2)12/ (2)¢ . N
j=1/2 j=1/2 2017 ga ()
The second equation in Eq. (7.11) comes from the variation principle of f(?)(z). We denote
= e e = Y ). (7.12)

j=1/2

Table II gives examples of solutions z, at different n,(A) and J,/Ny.
Combining Eq. (7.8) with Eq. (7.10) for tr(p3) and Eq. (5.16) for (y|y) = tr(p,) gives the following second Rényi
entropy:

2 (2) gl
Sz(A) — _ln tr(ﬂA) o _ln HACSFA det( HIOI|C) |:1 + 0(1):|

w(ps)® [TacsTs det(—H'?|,) N
=Y Nal2f(eo) =Sy )] = D_[(2Ba = BV s + (s = s )Na) (7.13)
AcS AcCS
where lnLH{"‘I;) is subleading and negligible as J, ~ Ny > 1.
det(-H'),)

The z, z(()2> or ﬂA,uA,ﬁ(Az>,u(Az> clearly depend on J,, Nu. If we fix J, and let Ny vary,

IINaf(20)] — U+ N (JA n 3/4A> OPa — Opa > (=1)gali) Ja
— axnr — HA A\ X7 T a2 | axr — HA an B . — T 37
ON A Na  Ofa) ON, Pa Yo ga()) Na
2 2 2 gD N (2) .
NP (z0)] Ja 6;4<A) 8ﬁ<A) ) 8/42) et j(—])E](A)(]) __Ja
T ON. =py + Ny N + o N STONE o= S NG (7.14)
A A 0Py A Px Yie g5 () A
Therefore,
TABLE II.  Solutions z, maximizing f?)(z,) at different n,(A) and Jo /N [f?"(z,) are all nonzero].
JA/NA:O6 JA/NA:07 JA/NAIOS JA/NA:OQ
n,(A) =1 20 = 0.00552678 2o = 0.0117148 2o = 0.0185671 2o = 0.0260657
n,(A) =2 70 = 0.0011542 70 = 0.00260368 Zo = 0.00441412 zo = 0.00664713
n,(A) =3 zo = 0.000236694 zo = 0.000560573 Zo = 0.00100989 zo = 0.00163299
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O[2N s f(z9) — NAf<2) (Z(()z))]

2
=25 — g

(7.15)

S,(A) is extremized at the value of the ratio J, /N which

gives 2y = pf

gives

at every A. The extremal value of S,(A)

$2(A) = 3" (2B = B . (7.16)

AcS

If the complex K and the entangling surface S are chosen
such that n,(A) is a constant for all A C S (every A C S'is

shared by the same number of B,’s), fn and ﬂ? are
|

1 1

P[Naf(20)] _ aMAaﬂ_A _

constants independent of A; in this case, S,(A) satisfies the
area law

$H(A) ey Ja= ¢ =2ps - Y.

AcCS

c
o as 7.17
87[7/5%, as ( )

where ag = 87y£% Y acsJa is the total area of S. The
relation between ag and J, is given by the geometrical
interpretation of the critical point (g, &.4).[J/a] € G.
But in general the extremal S,(A) may satisfy a weighted
area law Eq. (7.16) with different weights 26, — ﬂ(Az) at
different A.

To see if 2up = p
second derivative:

2)

A maximizes S,(A), we compute the

;0:1/2 J2e P ga(j)

= o=, (=T
8N2A 8ﬂA5)NA NA%<]'2> —1 ijl/ze ﬂng(J)
o g0 .
PINafO )] _oud 0By 1 I [y = ZEan e 193 (j)
2 ~ a2 TNV ’ T e PPN PN
ON} op) Mo Naa ()@ -1 PSNT)
PNsf(zo) = Naf PG _ 1 ( L ) 718)
2 - 2 2 . .
N Na A\ =1 27 -1
The following list provides some values of J,/N, which give 2u, = ,u(AZ) at different n,(A):
9*[2N — NafO @Y
n(A) =1: Jy/Na = 0802182, 28, —p2 =241769, N, 2Naf (ZOgNz A7)l 03140,
A
922N — NafO Y
ny(A) =2: Jo/Ny = 0782484, 28, — ) =238741, N, [2Naf (ZO)@Nz INARIC 1) N 1.0869.
A
82 2N - N (2) (2)
n,(A) =3: Jy/Na = 0762613, 28, —p& =235677, N, [2Naf (ZOZ,)NZ af 2z 15 0103,
A
The negative second derivative implies that 2u, = //t(Az) gives the maximum of S,(A). Figure 5 plots
Ja| _Na 2.2 -~ Ja
Fa [’%(A),N—J N 2f(z0) = fP(z)], S5»(A) = ;hfz ”U(A),N—A (7.19)

at different n,(A), and suggests that when J, is fixed, 2ux

= y(Az) indeed gives the global maximum of S,(A).

The above result shows that fixing J 5, the second Rényi entropy S,(A), as a function of N is in general bounded by an

(weighted) area law,

$1(A) < (2s = D).

AcS

where the bound is saturated at J, /N, which gives 2u, = u
all ACS.

2
A

(7.20)

. The bound becomes an area law if n,(A) is a constant for
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Fr 25¢ >

2.0

2.0

1.5+ 15[

1.0+ 1.0+

2 4 6 8 10 NA : : : : 10 N_A
n,(A)=3 n,(A)=4

FIG. 5. Plots of F5[n,(A).J5/Na] in Eq. (7.27) at n,(A) = 1,....4 and Jo /N, € [0.51,10].

B. Higher Rényi entropy

The computation of higher Rényi entropy S, (A) with n > 2 is a simple generalization of the second Rényi entropy
computation. The tr(p’ ) includes 2n copies of |y) or (| in the computation illustrated by Figs. 3 and 4. Equation (7.8) is
modified to

t ( ") (277) 24”N1,+2”§ :AE)CNA 1 :

r(ph) =~ | — !
A N det (Hy|.) det (~H'].)
ot Ic

<[] T JAZ"HF’ [J4]" Hr’ [Ja]" Hr [/ 4] {1+0(1>} (7.21)

A€i(K,) ACi(A ACi(A ACS

Here F(A"> for A C S is computed similar to F(AZ),

. n . A (j)zn : nn
T, = Z Hg g (j) = m = (2j + 1)2n(A)+1)+1, (7.22)
{irea} fEA J

As a result,

5, (4) = Lol 1 i [TacsTV  det(—Hiy, )| ) [HOGH

I—n tr(py)" 1- [TacsTA" det(—H t(tn)
ﬂ<n> — fan ﬂ(n) — Han
~ E {AijA +A—N4, (7.23)
1—n 1—-n
AcCS
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VEPTS
2.0

1.5-

1.0+

2 4 6 8

2 4 6 8
n,(A)=3

10 NA

FIG. 6. Plots of F3[n,(A),Ja/Na] at n,(A) =1, ...,

where ﬂg”) , ,u(A") satisfies

o) n (n) n)12j (n o
= e = ST PG, (7.24)
j=1/2
and Z(()") € (0,1) solves
2j (n),.
S 98’ 6) _ g
o LR W Ny (7.25)
j= 1/2 [ZO ] gA (]) A
?}12.30
2.28f
2.26 °
2.24f .
2.22
2.20+ o
2.18) !
S NI e A
n,(8)=2

FIG. 7. Plots of F,[n

Ja

2 4 6 8 10 N_A

‘ ‘ ‘ ‘ Ja

2 4 6 8 10 Na
n,(A)=4

4 and JA/NA S [051, 10]

Similar to S,(A), if we fix J, and let N, vary, S,(A)
maximizes at /,t(A") = uan and thus is bounded by a

weighted area law,

A - p
Z A1 —nAn

AcCS

(7.26)

where J, relates to the area of A by the geometrical
interpretation of the critical point (g3, &,a).[Ja] in defin-
ing |y). Figure 7 plots

Fn

2.20-

215+

2.10-

0 1 2 3 4 5
n,(A)=3

J(A).Jy/Ny=1]atn,(A)=1,2and n=2,....7.
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n,(A), 72 Ial _Na ﬁ(An)_ﬂAnJA_i_ uy) = uan
n Mo NA JA 1-n NA 1—n ’
Z‘]A‘FH|: ny :| (727)
ACS Na

atn =3 and n,(A) = 1,...,4. Figures 6 and 7 plot F, at
Ja/Na=1,n,(A)=1,2,and n =2,...,7.

VIII. ANALOGOUS THERMODYNAMICAL
FIRST LAW

The Rényi entanglement entropy S, (A) derived in the
last section is a function of the “macrostate” J,, N and has
an interesting analog with entropy in thermodynamics. In
Sec. VI, we give an analog between J,, N, and the total
energy and total number of identical systems of a statistical
ensemble.

Theorem 8.1: The differential of S,(A) with respect to
Ja, N, gives the following analog of the thermodynamical
first law:

55n(A)

= [1a(n)dJs +oa(n)oN,].  (8.1)

AcS

@)
where 1, (n) :/”A /}A" andaA( ) —”Al 4% Whenall A €
n)

, ha become indepen-

S have the same nv( ), ﬂA ,ﬂA,,uA

dent of A. In this case 15 (n) = A(n) and o4(n) = o(n)
becomes independent of A, S, (A) reduces to
5S,(A) = A(n)dJs + o(n)dNg, (8.2)

where Js = > acsJa and Ng = > ,cs Ny are total area
and total number of facets in S.

Proof: Equation (8.1) can be checked by computing
0S,(A)/0J and OS,,(A)/ON 4:

os,(a) _ 1 (g0 ouy opy) W\ _ n (s, OusOPa
= J N — —J ,
BT <8JA S a0 0l st P ) = \ar T T ap a0 Ve T
8S,(A) 1 (opY ol ol ) n (0Bs . Ous OPa
= J N — —J N 8.3
aNA 1—n<8NA A+aﬂ(A")8NA A+Iu 1—-n aNA +8ﬂA8NA A+ﬂA ( )
The definitions ,“Xl) =In[}%,, e‘ﬁXX)jggq)(j)] and pp =32, e/ g, (j)] imply
() e ')e—ﬂ(:)j (")( ) S (=j)ePsigy())
Ouyp _ =12 J ga U __JA 8%_ j=1/2\7J 9a\J) — Ja (8.4)

n o g ) ’
8ﬁ<A) 2,’:1/26 Pa ]g(A)(.]) Na

Inserting in Eq. (8.3), we obtain

85() ﬂ — pan

8JA 1—n - iA(n)’
0,(A) _ s = pan _
= =) (8.5)
|

Equation (8.2) suggests the analog between A(n)~! and
the temperature, as well as between —o(n)/A(n) and the
chemical potential. In the most general situation, Eq. (8.1),
the temperature and chemical potential are not constants
over the surface S. So S are in a nonequilibrium state,
although every A is in equilibrium.

Interestingly Eq. (8.2) shares similarities with the ther-
modynamical first law of the LQG black hole proposed in
[11]. There the authors propose that the quantum isolated
horizon is a statistical ensemble of identical spin-network
punctures (quantum hairs) on the horizon, and the quasi-
local energy of the horizon observed by the near-horizon

Pa Z;iuze_ﬁAjQA(j) a NA'

[
Unruh observer is proportional to the total area agy of the
horizon. Then a thermodynamical first law is derived by
statistics on the quantum isolated horizon

apH
—_—, 8.6
8ryt? (8.6)

5SBH = léJBH +65NBH’ JBH =
where Spy is the black hole entropy, Ny is the total
number of punctures on the horizon, A relates to the Unruh
temperature of the observer, and o relates to the chemical
potential. We immediately see the similarity between
Eq. (8.2) and the above 6Sgy by relating the entangling
surface S to the black hole horizon, S,,(A) to Sgy, Js to
Jgn, and Ng to Npy.

IX. REMOVING THE PARALLEL RESTRICTION

Most of the above discussions rely on the parallel
restriction on &, in spinfoam amplitude. In this section,
we relax parallel restrictions to internal £,;’s and compute
the spinfoam amplitude
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_ ; i L1+ 2% We again assume all jr # 0, at a polyhedron a and
AlR) = ZHAA(Jf ) /[ Aoy dgial flv_[i<§0’f |92 Tuplepr )™ - among the facets f € A (A is internal), and we choose one
Ur w fo and set
(9.1)
|§af > = |§aA>’ (92)
Instead of imposing the potential V4 (&) to suppress the ’
nonparallel &,/’s, we are going to integrate out democrati-  for all @ containing f.
cally all nonparallel &,/’s in the following analysis. For any other f € A and f # f(, we write
|
gaf i /2 .. gaf —id.. ]2
|§af> = aaf|faA> + baf|J§aA>7 Ao = COs 7 el¢a// s baf = 181n 7 e dhos/ s (93)

since |§af) € C? where [&,4). [JE,a) is a basis, ¢,p € [0,27) and 6,, € [0,7), and we have the gauge equivalence
|Eap) ~ €'?|€,r). We insert the above relation into the following building block of the integrand in A(K):

s _ _ - _
<§af|gti'a_lgviﬂ|§/}f>2]f = (aafaﬁf<§aA|gLi'a ]git/}|§ﬁA> + bafbﬁf<J§aA|gfa lgfﬁ|J§ﬁA>
+ by (Eanlgin G5 TEsn) + bapag(Jeanlgia a551Epa)) "7 . (9.4)

Applying the multinomial expansion to (£,¢|gz ! gfﬁ|éjﬁf)2j7 gives

2,]:;:' _kfi(1/)+m%(v)5

[F(v)+np(v) kp(v)+np(v

A o F0) O

br

- Z I £ I o Yar
k;*f(1:)Jrlfi(1i)+m/iT(v)Jrnf(v):iji kf (U)'lf (U)!mf (U)!nf (U)'

<§aA|gvia_lgf/;|§ﬂA>kf(“) (JfaA|gfa_lgfﬁ|J§ﬂA>lf(v) <‘§aA|g;;ta_lgi:ﬁ|J§ﬂA>mf(v)<J€aA|gij;:a_lgi:ﬁ|§ﬂA>nf v, (9.5)
where k7 (v), I (v), my (v), ny (v) € Z, U {0}. Applying the product over + and all f # f, € A,
i+
H <§af|gi~ca_lg§;tﬂ|‘fﬂf>2]f
J#fo. %
2j7!

+ 17£ [P [P |
) 8 T ) ), £t K (0D ()i (0) g (0)!

kfi.<l/’)+]ji_ (L‘)erfi (1')+nj%(v):2jf

Zkf(U)Jer%(”)_EI%(U%LE”/#(”) Zkfi.(v)JrErzf(v) Zlf(L)Jerf(v)
<] ay bag % byy

f#fo
X <5aA|gfa_lgf/i|§ﬂA>K§(v)<JfaA|9fa_19fﬂ|ffﬁA>L§(v) <§aA|gvia_lg?;[/}|J§ﬁA>M§<y) <JfaA|ng]gf/;|~fﬁA>N§(”)’ (9.6)

where
Ki()=> ki(v),  Li(v)=) )., Mi(v)=>Y mi@®), Ni()=> nf(v), (9.7)
f#fo f#fo f#fo f#fo
satisfying
Kf(v) + Lf(v) + Mf(v) —}—Nf(v) = 2(]1E —jjfo) > 1. (9.8)

Therefore at least one of K% (v), L1 (v), M5 (v), N5 (v) has to be large.
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We integrate nonparallel £, (f # f() by integrating 6, and ¢,, with the standard unit-sphere measure. Explicitly,

1 [ z PO BLACIDY O NACIDYACROD RN ACIBIAC
. = + + + + + + + +
E o d¢af/ dgaf Sln(eaf)aaf baf Claf baf

= ei%[Zi +Zi f Zi +Zin%(v))]
X / 2”dcﬁ R AN NAGE DILACR ) DAL DI AGED DA GRS D)
47 0

/ 40, sin(0,) | cos Oy DKy @3 my )+ kg ()43 i () in Oy PRCES DA SRR AT
af af D) 2 .
(9.9)

Recall that >, k7 (v') + 30l (v) + Qoukr(v) + 301 (0) =43, j; =4jy is even; thus 3o, kr(v/) +
Sou () = (i ky(v) + 324 15 () is also even. Therefore the ¢ -integral constraints

S KEW) + Y nE () - {Z’?W) + ij;(v/>] = k() + Y mi(v) - {Zl}t(v) + Zn}t(v)} . (9.10)
Recall that Y- k7 (v) 4+ >_. ny(v) + 2. I5(v) + X4 my(v) = 2j; independent of v, and we obtain
S+ ) = Sk )+ S =k SR+ Yo = S0+ o) =

with k; + [y = 2j;. The integral (9.9) reduces to

1 z . Haf 2ky . 6,,f 2ly kf'lf'
1 . . L i AR 11
ZA d6, s sin(6,¢) [cos( 5 ﬂ [sm( 5 )] &+ 1, 1)1 (9.11)

Inserting the results into Eqs. (9.12) and (9.1), we write the integral as a sum of partial amplitudes,

i+
/[dgviadéaf] H <§af|g1%a_lg1j;:ﬁ|§/}f>2jf

ft
2] kelle! -
(g7 dE ] L L (g oalgi gl Epa) K5
i }{zf (v) / Allfll"? N (0) g (v) g (0)! (2], + 1)! PP
() () 170
X <J§aA|gva_lgi;tﬁ|J§ﬂA>Li(“) <§aA ‘gvj:a lg?;:ﬁ|‘]§ﬂA>Mi <J§QA|9 .gi:ﬁ|§ﬂA>N§(1)>v (9 12)
where
kf(v) :Kf(v)JrzijO. (9.13)
We introduce shorthand notations to write
= /

/[dgg:adgaf] H <§af|gg:a_lgi:ﬁ|éﬁf>zj/ = Z HWA/[dg?;:adéaA]BSKLMN’ (914)

fot {Kx()H Ly} A

M5 () {Ni )}

where the above sum is constrained by >, Ki(v') + Y, NE(v) =Y Ki(v) + > . Mi(v) =Ka, > Li(v) +
S MEW) =, Li(v) + >, Ni(v) =Ly, and K5 (v) + L5 (v) + Mi(v) + Nx(v) = 2J%,
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(U) In <€aA|gvj:

SkLmn = Z KX

A+

/

WA =

a_lg?;:/jlgﬂA> + LjA:(U) In <J€aA|gi:a_lgi:ﬂ|J§ﬂA>
+ M5 (v)In <§(1A|gi)t(;lg:b~tﬂ|J‘§/)’A> +Nx(v)In <J§aA|9pj~Ea_lgyiﬂ|§ﬁA>]’ (9.15)
2j! kelle!
e/ — - L ']. (9.16)
o) (0)!my (v)ng (0)! (2 + 1)!

EE@y

The sum in w, is constrained by > . ki( N+
Danf (V) =2 u kg (0) + 3 my(v) = kg 3o 5 (v)
Soamp(v) =3 (o) + 3 np(v) =1y, Ky (v)
> paro ks (0)s LR (0) =32 g I (0)s ME (0) =3 g, (0),
Nf(”) = Zf;éfo ”f(“)-

The new action Sg;y is the old action S in Eq. (4.1)
with &, (f € A) becoming either parallel £,r = &,p or
antiparallel &, = J&,a. Configurations with some &,;’s
being parallel and others being antiparallel have been
discussed in Theorem 4.2 for critical points of S. These
critical points also appear in the new action. In contrast to S,
here at least one of K7 (v), L1 (v), M%(v), N (v) has to be
large, so it allows us to apply the stationary phase
approximation to the integral with the new action
Sxrmn- The critical points in Theorem 4.2 becomes useful
here for computing integrals.

The integral [[dgi,dé,a]eS<mv  has the following
feature:

Lemma 9.1: [[dgi,d&,a]eSxemv prefers large K (v) or
Li(v) and zero M3 (v),Nx(v). [[dgidé,a]eScmn with
nonzero M3 (v), N%(v) is of O(1/N) comparing to the
integral with zero M7 (v), N%(v).

Proof: Suppose M+ (v) is large [the argument of large
Nz (v) is similar],

_l’_

( )1[1 <£(xA‘g1a guj”f{}A) (9'17)

<§aA|gﬂ:a_lgi:/j|J§ﬁA>M§(v =e M
participates the integral over £,, [we interchange the
integral of £,, and the finite sum in Eq. (9.12)]. By the
stationary phase analysis, this factor in the integrand leads

to that critical point the integral must satisfy,

ie., (Laalgia'Gislépa) =0,
(9.18)

ot
g;f:/}|‘]§ﬂA> =e (pmﬂgfaMaA)’

in order that the integrand is not suppressed exponen-
tially. But the integral contains a factor contributed by f:

i+
(Eanlgi! gfﬂ|§ﬂ A>2]f0 which vanishes at the above critical

points. Therefore the integral is of O(1/N) by stationary
phase analysis and in a neighborhood D containing a single
critical point x,.,

=
KON} €A k7 (v)

Ad"xa( NSt — <i’;)”ﬂﬁ

X NS [a(xc) 40 (%)] (9.19)

which is of O(1/N) if a(x,) = 0. The same argument with
critical equation, Eq. (9.18), also applies to large N jE( ).

We cannot have, e.g., both K% (v) [or LE(v)] and M (v)
[or NE(v)] large; otherwise the integral is suppressed
exponentially. Indeed Eq. (9.18) is contradicting the first
equation in Eq. (4.5), which is a critical equation from large
Ki(v). The integrand is always suppressed exponentially if
both Ki(v) [or Li(v)] and Mi(v) [or Ni(v)] are large.

Therefore either K (v) or Lx(v) has to be large, and
then the critical points must satisfy

glj/:ﬁ|‘§ﬂA> - ei(pwﬁgbj‘:algaA> or g;t/}"lg/fA> = e_i(pa”ﬂgi:al‘lgaAy
(9.20)

There is no contradiction between the two equations since J
commutes with g € SU(2). Either one of them gives

<§aA|9iz_lgfﬁ|J§/;A> (J€anlgoa gf/;|§/m> =0. (921
Then if Mi(v) or NE(v) is nonzero, the integral is of
O(1/N) by the same reason as the above. "

We set M (v) = Nx(v) =0 and define

Ske= > Ki(v)

v,A,+

+ 2 L)

v,A,+

11'1 5(1A|gva gzﬁ|§ﬁA>

ln JfaA|gza g@ﬂ|J§/}A> (922)

K% (v) and Li(v) satisfy >, Ki(v') = > L Ki(v) =Ky,
S, LE() =3, LE() =L, and K3 (0) +LE(0) = 2J%.

Since Re(Sk; ) < 0, the condition for preventing the inte-
grand from being exponentially suppressed, Re(Sg;) =0,
is equivalent to

i +
gfﬂ|§/)’A> =e (ﬂ(lvﬁgi1|§(1A>' (923)

The action Sy; has several scaling parameters K7i(v),
L5 (v) which may not all be large. But Eq. (9.23) is for
all cases.
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When we compute 6;Sk;,, we write 65,a = €40JEon + iNgaban and 6JE,p = —E

aA‘):aA - ir]aAjgaA where Eqn € C and

Naa € R. The coefficient in front of £,, is purely imaginary because &, is normalized. Since every &, is shared by two

terms with neighboring v’s,

N (Eprl(gEp) g ) (Teur|(gie) " 9551E87) - -
b,k = [K%/)ea ) el fk (0)e 2 RS - R0
o ; 4 <§/)"f|( v'ﬂ’) 1g§a|§af> 4 / <§af|(gfa) lgbiﬂ|§/)’f> 4 4
(T pl(g5 )7 g5 Eup) (Earl(90a) " Gl T Eps)
-3 sz, ) S L (e P L3 (0) = L3 (0)nes | = O
Z{ o ey (g, o) Gl T Uyl (gi) Ty A :
(9.24)
by Eqgs. (9.23) and the orthogonality between & JE.
For the derivative in g, we use 8¢i, = 67,695, (0,, € R). At the critical point and by Eq. (4.5),
. 5 i —1—’ + 5 J . t 1= + J
6gi S = 10:;{1 KaA(v) <K:|A:(U) <5af|(g1/i) g1a|§af> + Lf(v)< 5(1}‘|(g1i) Gg1a| éaf>>
o 2 ACa <‘§af|(gva) gvalgaf> <J§af|(gva) gba|‘]§af>
i = = -
= 2050 £ )0k Y ks WK () - LE0)ua. (925)
ACa
where K, (v) = £1 satisfying k,s(v) = —&,a(v") appears when 0. acts on g or gl 9+ § = 0 is equivalent to
ZKaA Li( )] Non = 0. (926)

ACa

However, there is a subtlety when |K3(v)
of <§aA|g§a_lg;t/}|§ﬁA>’

Sk = Z [Kx(v)

v,A £

We assume Ki(v) > LE(v), while other cases can be
worked out analogously. If all K3 (v), L% (v) are large at
v, A but both K3 (v) — L% (v) are small, then the first term
in Eq. (9.27) is subleading, and the contribution from this A
is negligible in Eq. (9.25). Equation (9.26) with one or
more A absent corresponds to a semiclassically degenerate
tetrahedron.

Equation (9.25) is valid when K} (v) — L} (v) or/and
K3 (v) = L3z(v) is/are large for all involved A’s. The
number of parallel &, =&, is much greater than the
number of antiparallel &,; = J&,. In this case, L} (v) <
J§ and K (v) = J [or/and L3 (v) < J3 and K3 (v) ~ J3],
we obtain the standard tetrahedron closure condition

ZJAKaA(U)ﬁaA =0

ACa

(9.28)

and recover the critical equations as Eq. (4.5). The solutions
of critical equations, Egs. (9.23) and (9.28), are the same as
the situation with the parallel restriction imposed and have
been discussed in Sec. IV. This result shows that critical
points (g3, E4a).[Ja], used extensively in Secs. IV, V, and
VII, indeed have nontrivial contributions in the stationary

— LE(v)| is small. Notice that (J&,4|g;!

- Li(v)] In <§aA|g1?a_lg:;B|§ﬁA> +2 Z LX(U)RG[IH <J§aA|gvia_lgviﬂ|J§ﬁA>]'

gfﬁ|J§ﬁA> is the complex conjugate

(9.27)
v, A+

|
approximation of the amplitude A(K) without the parallel
restriction.

Depending on the choice of J,, degenerate tetrahedra
may still appear even when K% (v) > L% (v), similar to the
simplical EPRL/FK amplitude. But the discussion below
Eq. (9.27) shows that degenerate tetrahedra become generic
in the present situation. The origin of these degenerate
tetrahedra is the antiparallel &,r = J&,, coming from
integrating nonparallel £,;’s. The study of critical points
with degenerate tetrahedra is beyond the scope of the
present paper, so it is postponed to future research.

Although the integrals with nonzero M3 (v), N%(v) are
of O(1/N) comparing to the integrals with Mi(v) =
NZ(v) = 0, we can still perform the same stationary phase
analysis to these integrals with small M5 (v), Nx(v) by
using Eq. (9.19), where critical equations, Egs. (9.23) and
(9.28), still apply. The dual situation with large M7 (v),
Ni(v) and small K% (v), L5 (v) can be analyzed in a similar
way, by simply interchanging the roles M3 (v), N3 (v) <
K% (v), L% (v), and &, <> J&, for some a. The integral
with all M3 (v), Ni(v), K% (v), L% (v) large is suppressed
exponentially as discussed in Lemma 9.1.
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X. DISCUSSION AND OUTLOOK

This paper explores the semiclassical behavior of LQG
in small spins and obtains promising results such as the
entanglement entropy with thermodynamical analog and
Regge geometries emerging from critical points in the
stationary phase analysis. There are more interesting
perspectives which should be investigated in the future.

In our work, we have seen the small-j semiclassicality
always relates to coarse graining; e.g., a semiclassical
Regge geometry with J, as a macrostate is a collection
of microstates {;,}, and the entanglement entropy coarse
grains the microstates and gives an analog thermodynam-
ical first law. Moreover, the EPRL-FK model with J, as
d.o.f. may be viewed as a coarse-grained effective theory
whose fundamental fine-grained theory is the generalized
spinfoam model with j, as d.o.f.. This result opens up a
possibility that spinfoam models such as EPRL-FK might
not be fundamental but rather coarse-grained effective
theories emergent from some fine-grained theories which
are more fundamental. In our work, we only consider to
coarse grain the face d.o.f. such as spins js, but do not
consider to coarse grain bulk d.o.f. such as intertwiners or
spinfoam vertices in the fine-grained theory. It would be
more interesting to coarse grain/fine grain these bulk d.o.f.
(there have been some attempts in the literature, e.g., [39—
46]). It might be possible that there exists a fine-grained
fundamental theory such that the EPRL-FK model emerges
from coarse graining both face and bulk d.o.f. This
anticipated fine-grained theory might closely relate to
the continuum limit of spinfoam formulation.

As is mentioned in Sec. VIII, the analog thermodynam-
ical first law from the entanglement entropy is similar to
the first law of the LQG black hole in [11]. This similarity
may orient us toward an explanation of black hole entropy
from the entanglement entropy in spinfoam formulation.
Understanding quantum black hole in spinfoam formu-
lation or other full LQG framework is a long-standing open
issue. Our work suggests a new routine toward formulating
a black hole in spinfoam. The idea is to consider spinfoam
amplitude on a 4-manifold as a subregion in a black hole
spacetime such as the Kruskal spacetime, and the spatial
boundary X to be the spatial slice at the moment 7" = 0 of
time reflection symmetry. We may set the critical point
(g5, Ean) . [Ja] to correspond to a discrete Kruskal geom-
etry (in this subregion). Z can be subdivided by the horizon
(bifurcate sphere) into A and A. So we can compute the
entanglement Rényi entropy S, (A) similar to this work.
This computation has to be carried out in the Lorentzian
spinfoam model, but the derivation and result should be
carried over. Then the thermodynamical first law from S,,(A)
should be directly related to the black hole thermodynamics.

It would be interesting to relate the entanglement entropy
from spinfoam to Jacobson’s proposal [47]: The semi-
classical Einstein equation can be derived from §S(A) =0

where S(A) is the entanglement entropy and satisfies the
area law. We hope to relate the entanglement entropy
derived here to recent works [9,35] which relate spinfoam
amplitude to the Einstein equation.

There are other interesting questions on the semiclassical
analysis of the fine-grained spinfoam model A(K), e.g.,
how to understand the critical points with degenerate
tetrahedra and their 4D geometrical interpretation. It would
also be interesting if a semiclassical state y could be
defined with the fine-grained spinfoam model without
imposing the parallel restriction and still could be applied
to computing entanglement entropy.
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APPENDIX: FACE AMPLITUDE

We follow the choice of face amplitude in [33]. The
spinfoam amplitude in holonomy representation gives

ZHdlm Jr HA Jfia

in terms of normalized intertwiners (i, i,,) = &; ;. U are
boundary SU(2) holonomies. All face amplitudes are
dim(js) = 2j; + 1 at internal and boundary f. The boun-
dary state (neglecting the contracted indices)

T::0) = [ R7Uy) [] i

boundary f boundary a

)T5:(0) (A1)

(A2)

is the boundary spin-network basis whose normalization is
given by

i 1
Ry, R, ———8; Bt Sy - A3
(R Rl) = a7 (A3)
In terms of coherent intertwiners,
(Ad)

w(0) = 3" [[dim(jy) /déHA O (D),
i

where TFE(f]) is given by replacing i, in T~~(q) with
coherent intertwiners. But every 1ntegra1 Jdé, =
dim(j;) [ d&, by the resolution of identity for coherent

084049-26



SEMICLASSICAL BEHAVIOR OF SPINFOAM AMPLITUDE ...

PHYS. REV. D 100, 084049 (2019)

states dim(j) [ dé&|j, €)(j.&| = 1 where d¢ is the normal-
ized measure on the unit sphere. A(K) in Eq. (4.1)

computes the coefficients in front of Tff(ﬁ)’ and so
gives

Ap(js) = Aa(js) = (2j; + 1)™@F1 for internal f,
As(jr) = Aa(js) = (2j; + 1)"(2)+2 " for boundary f.
(AS)
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