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How good of a description of the dark compact objects in our Universe is the vacuum Kerr geometry?
Precision measurements of accreting matter in the deep infrared and gravitational-wave measurements of
coalescing objects are finally providing answers to this question. We study the possibility of resonant
excitation of the modes of a central object—taken to be very compact but horizonless—during an extreme-
mass-ratio inspiral. We show that, for very compact objects, resonances are indeed excited. However, we
find that the impact of such excitation on the phase of the gravitational-wave signal is negligible since

resonances are crossed very quickly during inspiral.
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I. INTRODUCTION

A remarkable feature of classical general relativity is that
vacuum spacetime can be curled to the extreme point of
producing horizons, the boundaries of causally discon-
nected regions of spacetime that cloak singularities from
faraway observers. Such an extraordinary property requires
strong observational evidence for black holes (BHs), a
quest that should be placed alongside tests of the equiv-
alence principle. In fact, dark compact horizonless objects
are predicted to arise, at a phenomenological level, either
when quantum effects are included or when beyond-the-
standard model of particle physics is considered [1,2].

Thus far, tests of the BH nature of compact objects which
are based on gravitational-wave (GW) observations rely on
(i) small corrections to the GW phase as two compact
bodies inspiral, driven by different multipolar structures,
tidal deformation, and heating [3-9]; and (ii) echoes of the
merger stage, induced by the presence of structure close to
the gravitational radius of the final object [10-19]. For a
review, see Ref. [1].

Here, we study instead the possibility that the proper
modes of oscillation of compact objects are excited and
play a role in the inspiraling process. Previous studies
focused on a special class of solutions—boson stars—
which have a well-defined underlying theory and are of
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interest from a particle-physics point of view. Resonant
excitation of modes was found to be possible [20].
However, such self-gravitating solutions are never as
compact as to be able to mimic the ringdown stage of
BHs [1]. Therefore, here we turn to an (artificial) model
describing the physics of objects whose surface sits deep
down in the gravitational potential.' The compact object is
assumed to be spherically symmetric. The exterior is
vacuum and therefore described by the Schwarzschild
geometry, down to the (hard) surface at

ro=2M(1 +¢). (1)

We consider both a toy model where a particle coupled to a
scalar field orbits the compact object and a more realistic
extreme-mass-ratio inspiral driven by GW emission.

II. SETUP AND RESULTS

A pointlike mass m, coupled to a scalar field with
strength y orbits the central mass M on a circular geodesic
of radius r, > M, emitting scalar and gravitational waves.
We consider linearized scalar (s = 0) and gravitational
(s = 2) field perturbations and expand them in Fourier
modes of frequency @. The angular dependence of these
fields is separated using spin-s spherical harmonics, labeled
with an angular number # and an azimuthal number m. We
used matched asymptotic expansions to solve the relevant

lUltracompact objects—so-called gravastars—were investi-
gated in Ref. [21]; it was shown that resonances can be excited
during inspiral, but a proper detectability analysis was not
performed.
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radial wave equations describing the linearized scalar and
gravitational field perturbations excited by the particle. The
technical details are relegated to the appendixes. We are
mostly interested in the possibility of excitation of the
internal degrees of freedom of the massive object that could
take place when the orbital frequency of the particle
approaches a characteristic frequency of the system, and
on the possibility that such excitations show up in the
detected GW signal. Such excitations of characteristic
modes do not take place when the central object is a black
hole since the modes of BHs are localized at the light ring,
where timelike motion is general unstable [1,22]; conse-
quently, mode excitation by inspiraling bodies can be
useful a priori in testing the nature of dark compact
objects. We will assume, for simplicity, Dirichlet boundary
conditions on the relevant master variables at the surface of
the compact object. Gravitational fluctuations will most
likely not interact significantly with any putative surface but
would cross unimpeded toward the center of the star, where
they would be reflected. Thus, these artificial conditions are
expected to mimic the physics we want to study.

A. Resonant frequencies

Assuming reflective boundary conditions on the central
object surface, the solution of the relevant wave equations
appears as a linear combination of ingoing and outgoing
waves at spatial infinity. Given the dissipative character of
the system (i.e., energy escaping out to infinity), the mode
frequencies w are in general complex, and we shall denote
their real and imaginary parts as wp and wj; i.e., the
characteristic modes are @ = wp + i®w;. When the solution
is imposed to be a purely outgoing wave at spatial infinity,
corresponding to a maximum of energy flux emitted by
the system (i.e., a resonance), we get a condition on the
frequencies. This condition defines the quasinormal modes
 of the system.

Define w =2M®. In the small e regime, we find
resonant or quasinormal frequencies at (n = 1,2, ...),

w3 (26 2026 + 1) (rp + w(£ + 1)) (log €)1

_nm . (2nx)* 20(¢ +1)°
P50 joge ' dllogeP (26 + 1)°0(2¢ +2)2
ne (2nr)* P06 4+ 1) - 1)*T(¢ + 3)?
" 8lloge7 (24 + 1)T(26 + 27

=2 " loge
where we recall that £ refers to the spherical harmonic
mode. These results agree with previous analytical and
numerical studies [1,23].

Now, to excite such quasinormal modes, the angular
orbital frequency Q of the particle needs to be tuned,
wgr = mL. Thus, resonances occur when the radius of the
circular orbit is r, = M'/3/|wg/m|*/3 [see Eq. (A7)] with
rowg ~ nr/loge. For the orbit to be stable, the radius
should be r > 6M, which implies that we focus on

€ < =6Vonn/m (2)

B. Fluxes on and off resonance

In the absence of resonance with the central object, a
particle on a circular orbit of radius r, gives rise to an
energy flux whose dominant component is
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These fluxes correspond to the dominant dipolar and
quadrupolar modes of the field for s = 0, 2, respectively,
and agree with known expressions in the literature (most
notably Einstein’s quadrupole formula). The structure of
the central object is irrelevant in this regime (and thus a
central BH would give rise to identical fluxes) [24].
However, when the orbital frequency approaches a
resonance frequency, the flux has a sharp peak equal to

Eio® M2214¢/3+2

. m(2) m4f/3
Es—2

(nz)O7BL(f + 1)12 ’

10¢/3 270 (26 + 2)°T(2¢ + 1)*(€ + 1)*2ypm + (£ = 1) + y(£ + 3))

(5)

=2 372 a7 (10€€)

where y(x) = ﬁ dl;ix) is the digamma function, and ypy; is
the Euler-Mascheroni constant. These resonances have a
radial width in orbital frequency of 6Q ~ w;; see Eq. (A51).
Notice that, for most parameters of interest and for the
dominant modes, E at resonance is indeed larger than off

resonance.

22B0 (= +1/2)(¢ 4+ 3)°T(¢ — 1)’T(¢ + 1)? '

(6)

C. Impact of resonances on extreme-mass-ratio
inspirals
The pace at which the inspiral proceeds is determined—
within a quasiadiabatic approach—by energy conservation.
An increased flux at resonance implies that the inspiral
toward an exotic horizonless object proceeds faster, when
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compared to BH binaries. In turn, this effect might lead
to an observable dephasing in gravitational waveforms.
On the other hand, these are very narrow resonances, and
thus the accumulated energy release may be small enough
that the effect is negligible.

To estimate the impact on the GW phase, one can
compute the number of cycles accumulated during the
resonant stage. If we denote by f; the orbital frequency of
the particle at which a resonance starts, and by f; the
orbital frequency at which the corresponding resonance
finishes, then f; — f; ~ w;/2x is the resonance width and

fr ]_”
N / Faf )

i

gives the desired number of cycles. Note that for gravita-
tional waves, f is also half the frequency of the quadrupolar
waves being emitted. The variation of the frequency can be
computed from the orbital parameters in a quasiadiabatic
fashion,

y 3f dEorb -l
~—2L E.
! 2r ( dr > (8)
Here,
1-2M
Eorb =m /r (9)

O /1=3M]r

is the gravitational binding energy of the small point
particle.

The number of cycles should be compared to those in a
BH vacuum spacetime, Ny, obtained by using the flux (4)
in the previous expressions (we ignore fluxes through the
horizon since these are subdominant [24]). We find, for

— m = 2 and for the dominant fundamental » = 1 mode,

10—6 10 43/3
Npes ~2.4 x 10711 —— ( > , (10)

g \|loge|
N 10 \10
ﬁ~9.5x10-11< ) , (11)
BH log ]

where ¢ = my/M is the mass ratio. Thus, the small object
passes through resonances without any noticeable effect on
the GW output. Higher modes are necessarily suppressed
even further since Eq. (2) forces € to decrease exponentially
with n.

It is, in principle, possible that the number of cycles
spent in resonance is small, yet the signal is observable.
However, the time 6t that it takes to cross the resonance

can be estimated using &t~ w;/Qup, with Q. =
dQ/dr dr/dE . E. We find

ot~2.5x1078

M 1076 10 \40/3
105 M < 0 > s. (12)
o 9 \|loge]

This corresponds to a high-frequency “glitch,” inaccessible
by current or planned GW detectors.

D. Discussion

In conclusion, the inspiral of a small pointlike particle
around an ultracompact object can excite the characteristic
modes of the central object, which carry important infor-
mation on the nature of the latter. However, our results
indicate that such excitation does not have a significant
impact of the phase of the GW, and it leads to only a very
high-frequency glitch. Thus, despite initial expectancies,
resonant excitation of modes during inspiral turns out not to
be a promising mechanism to help constraining the nature
of dark ultracompact objects. Our results are based on a
simpleminded model for the supermassive object; it would
certainly be desirable to extend the analysis to other self-
gravitating objects whose surface lies extremely close to the
Schwarzschild radius.
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APPENDIX A: SCALAR CASE
1. The setup

We start with a very simple toy problem, that of a massless
scalar field ®@ around a compact horizonless object of mass M
in a spacetime background of metric g, . The scalar field will
be excited by introducing a pointlike particle of mass
coupled to it and orbiting around the central object. The full
dynamics is described by the action

S[g.®] = / d4x\/—_g<%—g””aﬂ®8bd>*—2y(DT>. (A1)

Here, R|[g] denotes the Ricci scalar of the metric, y > O is a
coupling constant, and 7 is the trace of the stress tensor of the
particle.
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We consider the point particle to be a small perturbation.
Thus, the background spacetime is fixed and taken to be
described by Schwarzschild exterior geometry, with coor-
dinates {t,r,6,¢}. All that remains is to solve the scalar
field equation of motion coupled to the pointlike particle:

9u(v=99"0,®) = yT. (A2)

\/— H

For this matter, we expand the fields in Fourier modes of
frequency @ and in spherical harmonics Y,,, as

—l(ut

Yfm (9’ ¢)’

me(a)’ r) (A3)

%/ E

do .
T = ,,Z,,:‘/ \/T_ne_l{"tTfm(w)Yfm(G, $). (Ad)

where £ >0, —Z < m < ¢. For static backgrounds, one
finds the equation

d’z 44
7§m+(w2—f( WDy ))me=f§um,

(AS)

with f=1—2M/r, and with r* denoting the tortoise
coordinate. The object has a surface at r =ry, or in
tortoise coordinates r, = 7Y, where we shall impose
reflective conditions.

2. The source

If 7 denotes the proper time of the point particle along the
world line z#(z) = (T(7),R(7),9(7), (7)), the corre-
sponding stress-energy tensor is given by

dzt dz¥

” +o0 @)
TH(x) = my W (x — z(r))d—Edr

_dtd7"dz’ 6(r — R(1))
my WAL IO RO 510y (1)), (a6)

where the deﬁnition of the Dirac delta is taken as
[[] [ (x)y/=gd*x = 1. We shall consider a stable
circular geodesic taking place in the equatorial plane.
The particle will have an orbit of radius r=r, > 6M
and an orbital frequency given by Kepler’s law,

M

0= (A7)
"p

Then

0_8(r—r,)8(0 — 1/2)5(p — Q1),

v __Tm
gy W(x)_\/:gUt

(A8)

where U'(r) = (1 =3M/r)~'/2.
We can now solve the multipolar moments 7, (@).
Equating Eq. (A4) with Eq. (A8), multiplying both sides by
ey J1,v» and integrating on the sphere and in time, we get2

- _\/2_7;%(”/2)50— r,)8(mQ—w).

o (49)

Tfm ((1))

3. The formal solution

Define two independent solutions of the homogeneous
ordinary differential equation (ODE) (AS) as
Zl ~ e_iw(r*_r(*))

; 0
iw(r,—r,
_e (* )’

r. > (Al0)

NAine_iwr* +Aouteiwr*v r, = +oo, (All)

Z, ~ e, 1, —> +o0. (A12)
The former one is considered to have reflective boundary
conditions on the central object surface 7Y, while the latter
describes purely outgoing waves at spatial infinity. The two
of them are found to be linearly independent by computing
their Wronskian, which gives 2iwA;,. The Green’s function
reads
0(r' = r)Z,(r')Zy(r) + 6(r = ') Z5(r)Z, (')
2ia)Ain '

G(r,r) =

Then it is easy to show that, at large distances, the
inhomogeneous solution is

Zop = €922 5(mQ — o)

wor, V2moY 7, (2/2) Y2, ()
r,U' 2iwA;,

5(mQ — ).

(A13)

4. Energy flux

The energy flux emitted to infinity by the scalar field is
determined by

. dE,_
E_o=—"=2= lim

_ d0dgp\/=gT,.. (Al4)
dt r—o [g2

*We take the normalization of the spherical harmonics as
J2 dQY 1, Y3 = 8118,,,- We use the convention 8(x —xq) =
Ly gitteo) gy,

v/4
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where T, is the relevant component of the scalar stress-
energy tensor,

1
T =V, 00,0 ~2 g, V0V 0" (AlS)

Taking into account the expansion in spherical harmonics
(A3) and the asymptotic behavior Z,,, ~Z% e §(mQ—w)
at large radial distances, we find

dE_, 1
— = — dodw' ww'Y 4, Y g1y
i =35 3 2 | dwdolont Yo

x ello=e)r=0z 7! §(m'Q — @ )6(mQ — w).
(A16)

The normalization condition for the spherical harmonics
reduces this to

. 1
Eo= Z—Z(mQ)ZIZZnIZ- (A17)
4 ‘m

5. Matched asymptotic expansions

We now want to have an analytical understanding of the
solutions of the homogeneous equation at small frequen-
cies. The homogeneous equation can be written in two
equivalent forms,

N

2

iy + |

where the primes stand for radial derivatives.

W — (6 + 1)} (Z/r) =0, (A19)

a. The near-region solution

We follow the procedure in Refs. [23,25]. Consider first
a “near region” where r — ry < 1/ (we assume ry ~ 2M

I'(c)l(c—a-Db)

F(a,b,c,z) = T(c—a)(c—b)

[(e)T(a+b-c)

to good approximation). Then the second equation above
can be written as

€€ R0 -

where the primes are now derivatives with respect to x = f,
and we introduce the dimensionless frequency @w = wry.
Notice that at the object surface r = ry, xg = 1 — ry/ro,
where ry = 2M. For ry = ry(1 + €), then x ~ €.

Defining now Z/r = x'”(1 — x)****! F, and neglecting
O(w?) and O(e) terms in the coefficient of F, one finds the
standard hypergeometric equation,

x(1=x)0?F + (¢ = (a+ b+ 1)x)0,F —abF ~0, (A21)

with

a=¢+e+ 1+ 2w, b=¢+e+1, c=14+2w.
(A22)

Given that ¢ is not an integer, at around x =0, two
linearly independent solutions are ,F;(a,b,c,x) and
x!=¢,Fi(a=c+1,b—c+1,2—c,x). The general solu-
tion in the near region is then

Z=Ax""(1-x)"Fla—c+1,b—c+1,2—c,x)
+ Bx™ (1 — x)"F(a, b, c, x). (A23)

For BHs, one imposes boundary conditions corresponding
to purely ingoing waves at the horizon, and that implies
B = 0. For “exotic compact objects” (ECOs) with Dirichlet
BCs at the surface x ~0, Z = Ax;'™ + Bxi”, and thus
B = —Axy*".

To understand the far-region behavior of the above
solution, we use the transformation properties of hyper-
geometric functions,

F(a,b,a+b-c+1,1-2)

Therefore, the large r behavior is

+ (1 —z)cmab T (a)T(b) F(c—a,c—b,c—a—-b+1,1-2). (A24)
ral(=1=2¢-2¢) [ AI(1 - 2iw) BI'(1 + 2iw)
T (= —e) [F(—f —e—2im) T(—f—e+ 2@}
rHT(1 4 2¢ 4 2¢) [ BI'(1 4 2iw) Al(1 - 2iw) ] (A25)
AT+ e+ 1) D€ +e+1+2iw) T +e+1-2iw)|
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b. The far-region solution

In the far region (i.e., when r > r,), the wave equation
reduces to

027 + (a)2 -+ 1)/r2)Z =0, (A26)
with solutions
Z = r'(al g p(@r) 4+ BI_p_i pp(wr)), (A27)
which for small » reduces to
£4+1/2,6+1 9E+1/2 =
1) r r (A28)

Y Onnr e 132 PP 1 1)

c. Matching

From the behavior of the Bessel functions at r — oo, the
solution (A27) is asymptotic to

Now we want to express « and f in terms of the boundary
parameters A, B. In order to do this, we proceed to match
the small » behavior of the far-region solution to the large r
behavior of the near-region solution.

First, we use the result

[(=2¢ -1 - 2¢)
I'(-¢—-¢)

B (=) (£ 4+ 1)
= arae+zy 0

(A30)

On the other hand, we can also expand the Gamma function
to find

['(¢—e—2iw)
[(-¢-e-2iw)

_(e2im) (1) {0 )2
B - g(k + (e+2iw)?).

(A31)
Then, in the limit in which w <« 1, we get

20TI2(A+ B)T(£ +3/2)T(2¢ 4 1)

; ¢ a ) (A32)
7 ~ oilor+3t) [2 p—ia(=1)" + (i > —i), @2 g€+ 1)?
W 2
and by now demanding the behavior (A11), we get PR i(A=B)w'B2A0(=¢ +1/2)T(¢ + 1) (A33)
' ' - V24 (26 4 1)
e—tfﬂ/Z(ﬁ+ iaelfﬂ)
A, = . (A29)
\V2rw Finally, we can write
|
A @2 (A= B)[(=¢ + 1/2)[(¢ + 1)°27" + "¢\ /a(A + B)[(26)T'(2¢ + 2)? (A34)
in~1 :

6. The black hole flux formulas

As mentioned before, for BHs, B = 0. If we focus on the
small-frequency regime w < 1, the second term in
Eq. (A27) is suppressed against the first, and [26]

(wrp)f+l/2
Z(rp) may/Tpdey1pp(@ry) ~ I AT+ 372

From Egs. (A17) and (A13), we find

m(z)yz‘Yfm(E’O)lz |Zl(r )
4rp|Aw|? .

2 (A35)

E,_y~ g
‘m

where we use w = mf.

(2i) @/l (¢ + 1)’T(2¢ + 2)

We can explicitly write Y, (7/2,0) using

Yom(7/2,0) = /(£ +m)/(£ —m)!
y (=) (1 + (=1)7+m)/1+2¢
224 /a((& 4 m)/2)N(€ = m)/2)!
(A36)

For definiteness, focus on the m = £ modes, for which
Yoo (n/2,0) = (=1)7/(27¢")\/(2¢ +1)!/(4x). Using now
the expressions for A;, and a, in the limit in which w <« 1,
N m2y? wz%z,,%f
SO 4n T2I+2)°

(A37)

Using Kepler’s law (A7), o = £Q, this can also be
expressed as
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m%},Z I/ﬁZerZMerl

E_o=~ . A38
0T dn T(26 4 2) (A38)
In particular, for £ = m = 1, one finds that
2. 2172
. y mgM
E_o~ . A39
0T 2402 (A39)

This result agrees very well with full numerical solutions of
the inhomogeneous wave equation (at a radius r, = 50M,
the simple analytical formula yields the correct result with
8% accuracy).

7. The QNMs of ECOs

For ECOs, we have B = —Ax;*”. The energy flux
is determined by Eq. (A17) with Eq. (A13). We expect
resonances then at the poles of Eq. (A34). These are the
quasinormal mode (QNM) frequencies of these objects
[1,23].

We compute the QNM frequencies as the roots of
A (w) = 0. By setting Eq. (A34) equal to zero, we can
write

e Foo(£)m+

ei2w logxoR o) = 1’ — ,
( ) 1+FS:0(L£)TD'2/+2

R(w)

with

T(1/2 = &) + 1)

Fiol?) = 26T (20)0(2¢ +2)2 /(1)

(A40)

We proceed to solve the equation iteratively by solving
e?7in YR () = 1 for w, ., with the initial input
wy = 0. In the first iteration, one obtains

TABLE 1. The value of QNM frequencies mgnm X ry for a
scalar field and for an ultracompact object with e = 107°.

4 Approximate formula Numerical calculation
0 0.237 — 7.486 x 1073} 0.220 — 8.646 x 1073}
1 0.237 — 1.075 x 107 0.260 — 4.113 x 107}
2 0.237 —2.471 x 107 0.284 —2.590 x 1078}

nr

(A41)

71 Tog x|

for all n € Z. The second iteration gives (since x, < 1, the
logarithm is negative)

nr 1

= -1 1
72 " Tlogxo| 2 logx| °

1= F,(0) (10,;,;0) 20+2
L+ Foo(f) (i )”“] |

log xg

As argued in the main text, x, << e 6Vonr/m  go
|log xo| > nz, and we can approximate

nm Fyo(€)(nm)¥+?
w, X
* ™ Jlog x| [ log xo >+

(A42)

F,_o(?) can be further simplified, and then the next-to-
leading order result for the QNM:s is

nw . (2nm)¥ T2 (£))° 1
W —i .
0 logxo| T 4(1+22)72((2)1)* [logxo

(A43)

The presence of a nonvanishing imaginary part with the
correct sign accounts for the exponential decay of the mode
in time (stability). This analytical prediction works rea-
sonably well, as checked with the numerical implementa-
tion (see Table I).

8. The ECO flux formulas

For B = —Ax;*@, Eq. (A34) gives

H+icos? (wlog xg)T(1/2 = £)°T(¢ + 1)'° + 42 zsin® (w log x()[(2£)°T(2¢ + 2)*

w
Al % AP

where we neglected the imaginary part of w to write
|1 +x377|? = 2 + 2 cos(2w log x() = 4cos*(wlogx,) and
| =1+ x37|? =2—2cos(2wlog xy) = 4sin?(wlogx).

On the other hand, notice from Eq. (A32) that the leading
order behavior of a is ~(1 — x5%@), but around QNM
frequencies this is highly suppressed.3 Hence we need to go
back to the exact expression for a,

Tt is proportional to Imw log x(, and according to Eq. (A43),
it is tiny.

A7 20 (¢ + 1)5T(2¢ + 2)2 ’

(A44)

|
20PN (£ 4 3/2)0(26 + 1)

wf+1/2m(f+ 1)2
BI(1 +2iw)  AT(1 —2iw)

[ +1+2w) [(f+1-2iw)]|

and work out the subsequent leading order behavior. This
will dominate Z;(r,), in contrast to the BH case. Doing
this, and neglecting the f contribution again,
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|Z (r )‘2 ~ |a|2 w2f+1r%’f+2 (T 22 16|A|20052(WI0gx0)w2F(2f + 1)2(7EM + W(f + 1))2 (A45)
I\Tp)l ™~ 22f+1r(f+3/2)2 - ry F(f—i— 1)4 ’

where we introduced the function y(x) = I'"(x)/T"(x) and the Euler-Mascheroni constant ygy;. Using Eq. (A35), near these

QNM frequencies, the leading order flux reads

y*m3w* tieos? (wlog xg) (yem + w(€ + 1))°T(2¢ + 1)°I°(2¢ + 2)3

. rp\ 2
Ei o~ |— - . A46
=0 (rH> r4(w* T cos? (wlog xo )T (=€ + 1/2)°T(£ + 1)'° + 4222 (2£)?T(2¢ + 2)*sin?(w log x,)) (46)
At the QNM frequencies, the flux is maximum and yields
. 224f/31'*2 231(2 1)4 1))2(1 102/3
b Pl TR 2P TQE 4 1) o (€ £ 1) (loge) (a4

=0 pp20142/3+2

(n7)7BT(£ + 1)1 ’

where we used the orbital parameters to excite the resonance at Eq. (A41).

9. Resonance widths

Given the Kepler relation (A7), the energy flux (A46) is a
function of the radial distance only. To find the width of the
ECO resonances, we look for a value r of the radial distance
that fulfills E(r) = %E (rqnm), where roay denotes the
value that gives the resonant frequencies wqny written in
Eq. (A41), i.e., wéNM/m2 = 4M3/r(32NM.

We assume that the frequency band will be small, so that
we can expand the function w(r)/m = +\/4M3/r® in
Taylor series at ronw as

- 3r—rQNM 15 r—rQNM 2
w(")—‘wQNM[ 2 o +3 — + ...

(A48)
|

The scalar flux (A46) can be written now as

E.Yio(r)

20/3+4

A gy @ (r)cos?(w(r)log xo)

" by (r)cos (w(r) log xy) + ¢ sin’(w(r) logxy)

with b, =T(-+1/2)T(#+1)°>0 and ¢, =
427 (2¢)°T(2¢ + 2)* > 0 (ag, will not be needed).
The flux peaks at rony and gives Es:O(rQNM) =
‘%w&l\%y. By expanding the energy flux up to second

4
order, we get

_Eolr) {1 4500
Es:o(’”QNM)

Demanding now E_o(r) =1 E,_o(roxm). one gets a

quadratic equation for (r — ronm)/Fonm = Vs

L [F350 4502 e m’ P wgint”
4 4b,

1
} +(5¢) +5=0.

which leads to two solutions, r, and r_, corresponding to
the outer and inner radii of the width, respectively. The
solution, in the approximation in which wqny < 1 [recall
Eq. (A43)], takes the simple form

*That the coefficient in front of r — ronm 18 not identically zero
is just a residue due to the approximations. In an exact approach,
this term would not appear. It does not play any role in what
follows.

- rQNM+ <r_rQNM>2<
r'onm r'oNM

s o) (e

4 4bf rQNM

2642
w 2b
yorn DM [ (A49)
nrw 9¢,
From Eq. (A40), it can be readily checked that

\/'Z:Z = F,_o(£)(=1)""'. Thus, we finally arrive at

- \/glmwQNM
- 9 RerNM
(2nz)*HI0(¢ 4 1)8

8
- \/92| log x| +2(2¢ + 1)’T(2¢ + 1)*’
(A50)

ro—r_

r'oNM
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where we used the form (A42). The width in frequency
around the value wqyy can be inferred from Eqgs. (A48)
and (AS50). It reads

|7y = ronm|
2|lmonm — @(r4)| & 3monm O
r'QNM

APPENDIX B: GRAVITATIONAL CASE
1. The setup

We consider gravitational radiation within the frame-
work of metric perturbations around the Schwarzschild
geometry. These perturbations are excited by the inspiral of
a small mass around the Schwarzschild BH. We will study
these perturbations using the Newman-Penrose formalism
combined with the Regge-Wheeler analysis, following
Ref. [27].

The fundamental perturbation field is the Weyl scalar W4,
which is well adapted to analyze outgoing GWs. We
expand it as

Y, = Z /oo dwR .z, (r)e™ @ Y., (0,¢), (B1)

where _,Y,, denote the spherical harmonics of spin
weight s = =2 [28]. The sums are restricted to £ > 2
and —Z < m < . With this ansatz for the Weyl scalar, the
linearized Newman-Penrose equations lead to

P 2= L U0 Ren() = T (B2)
with
U(r)=f"(wr)? —4io(r-3M)|- (¢-1)(¢+2), (B3)

and source term 7', given in detail in Eq. (2.6) of [27].

We employ the Green’s function method to obtain a
solution of the previous equation. To build the Green’s
function, we need two linearly independent solutions of the
homogeneous equation. We take R”, and R, . The latter
one will describe purely outgoing waves escaping to
infinity. The former one shall denote purely ingoing waves

in the BH case (corresponding to a perfect absorber), and
|

T

2 pin
lwrpBwfm

me = |:<Obfm + Zi—lbfm |:1 +

. iwr 1
- (l—lbfm =2 bz,’m (1 +T}"p))) pRa)fm( ) 2 bem P wfm( ):| ’
14

with coefficients

purely reflected waves in the ECO case (corresponding to a
perfect mirror). For the considered ODE, the Wronskian of
these two solutions must be a constant, and so it can be
evaluated at any value of . According the their definitions,
these solutions should have the following asymptotic
behaviors,

1 .
Rl (r = 400) ~ Bl 4+ Bt e (B4)
wfm(r - +00) ~ r3elwr (BS)
and the Wronskian yields
RH, R _ RH Re
}Ln; wtfm (ufn;f( )wfm wlm _2la)B:3fm (B6)

Here, the primes denote differentiation with respect to r.
Thus, both solutions are linearly independent as long as
B", 0 and @ # 0. The Green’s function is

wlm

e )

2iwB"

wfm

u(r) +0(r—7) Roo(r)RH(r’)}
G(r,r) = .

Following the standard theory, we can write the inhomo-
geneous solution as

o) / T /
Ropm(r) :/M d,/w

r2f(r)
r3eiwr* wfm(r) wfm( )
2la)Bwme/ F(r) '

where in the last step we considered the limit r — oo.

(B7)

2. Energy flux
To calculate the energy flux, it is helpful to introduce
an auxiliary quantity Z,, by R,..(r— o) =
Mo Zgmd(@ — mQ) e, Then the flux formula reads

2 |me|2
=My
v ¥ 10)

The auxiliary function can be calculated from the stress-
energy tensor of a point particle orbiting around a
Schwarzschild BH, and the result is [27]

(B8)

wr, . M ior), I
— i by, |1 —— R
2f(rp):| L 2bpy |: r + 2 :|) mfm( P)

p

(B9)
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71+ )7 12
b = LLZDACE DT en(3:0). @10
2,/1-3M 2
M -1)(¢+2) n
by = YolZ.0), (Bl
—1Y¢m \/ I"p—3M —14¢m D) ( )
by =My (70 (B12)
20m =\, =32 )

From the identity (Y,_,(3,0) = Y, (5.0)(=1)"", it is
easy to see that Z,_,, = (—1)?Zy,,. Consequently, the final
expression for the energy flux is

(B13)

with @ = mQ.

3. Reducing the problem to solving
the Regge-Wheeler equation

Chandrasekhar [29] showed that if X, (r) is a solution
to the Regge-Wheeler equation

d2
{d 2+w2_v(r)}xmfm(r) =0 (B14)
ry
with effective potential
ZC+1) oM
vy =g e

+ 3 [% (1 - 37M) + Ziw] [8(2* + iw] Xoem(r)
(B16)

is a solution to the homogeneous equation (B2). So rather
than working with the ODE derived from the Newman-
Penrose formalism, it is more convenient to solve the Regge-
Wheeler equation first and then apply the Chandrasekhar
transformation to obtain the Weyl component R, (r) that
governs the energy flux (B13).

The relevant solution X, (r) for our problem has the
following asymptotic conditions, inherited from Eq. (B4):

X", (r—2M)~Ae~" + Bei-,  (B17)
ngm(r - +m) Ag)l ﬂ’l _lwr* +A2)111,’Em lwr*’ (Blg)

where [27,29]

o [2iMe— (=D +1)(E+2)]
Ba)fm = 4(02 Awfm’ (B19)
Bg)l;m = _4w2A2)uf}m (BZO)

As in the scalar case, for BHs, we shall fix B = 0, while for
ECOs, we have B = —Axy>.

4. Some simplifications

Although Eq. (B9) seems complicated at first, it can be
further simplified. Recall that we consider the problem of
having the particle far away from the BH so that r, > M.
Using the Kepler law Maw/m = MQ = (M/r,)*/?, this
automatically implies that w = 2M® < 1. Inspection of
Egs. (B10)—(B12) shows that

obem ~ O(@°). (B21)
_1bem ~ O(WI/S)’ (B22)
—2bfm ~ O(WZ/%) (B23)

This means that Z,,, in Eq. (B9) is dominated by the
contribution involving (b, unless (Y, (5,0) vanishes,
which, according to Eq. (A36), happens when # + m is an
odd number. When this happens, Z,,, is dominated by the
term involving _,b,,, but this is suppressed in our
approximation. For a given ¢, therefore, the energy
flux (B13) will be dominated by modes for which
¢ + mis even. The leading order expression for Z,,, is then

T

~

lI'l
twrpBwfm

me bmeme(rP)' (B24)

All that remains now is to calculate A;, (@) and ngm( r).
From Eqgs. (B19) and (B16), we get B;,(w) and R?, .
respectively. Then finally, we will use Eq. (B24) to
calculate Eq. (B13). For the purpose of calculating
Ain(w) and X, (r), we shall follow the strategy done
in the scalar case closely.

5. Matched asymptotic expansions

The homogeneous Regge-Wheeler equation can be
written in two equivalent forms,

5o oo

()G

(B25)

f(f+1)+s2rf'>§:o, (B26)
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where the primes stand for radial derivatives and s = 2. The
scalar case is recovered by taking s = 0.

a. Near-region solution

We analyze first the regime in which o < .
Comparing Eq. (B26) with Eq. (A19), it is clear that we
can recycle the results done for the scalar case, as long as
we keep track of the new factor s2. Equation (A20) now

reads

() (0)+ [x<11i2x>4‘f§f—t>l2) 5]

where here the primes are derivatives with respect to
x=f and w = wry. Making the substitution X/r =
X7 (1 — x)7*¢tF, we find, after neglecting the O(w?)
and O(e) terms,

x(1=x)2F + (¢ = (a+ b+ 1)x)0,F — (ab — s*)F = 0,
|

with a, b, ¢ being the parameters from Eq. (A22). Now we
want to reabsorb the s term into these parameters. Define
a and b' by ab — s> = a'b’ and a + b = d’ + b’. Solving
this system leads to

a=¢+e+3+iw+ 0(w?),
b'=¢+e—-1+iw+ O(w?).

The general solution in the near region is then

Xpem =Ax" (1 =x)*F(d' —c+1,b' —c+1,2—¢,x)
+ Bx'™(1 —x)"*F(d', b, c,x). (B27)

To study the far-region behavior of the above solution, use
again the transformation properties of hypergeometric
functions (A24). Then we find the large r behavior (x ~ 1)

"
Xopem~ |—| T'(-1=-2¢-2
wtm {r} ( €>(F(—f—e—l—2+iw)l—'(—f—€—2+iw)+

+ [L] "1 20 4 20) (r

'y

BI(1 + 2iw) AT(1 - 2iw)
IN—-¢—-e+2—-iw)l(-f—€-2—iw)
BI'(1 + 2iw) . AT (1 = 2iw)
+e+3+iml(f+e-1+iw) T(f+e+3—-iml(+e-1—-iw))’
(B28)

b. The far-region solution

In the far region (i.e., when r> ry), the wave
equation (B25) reduces to

XX+ (0= (¢ +1)/r?)X =0, (B29)
with solutions

Xpem = 'l g1 p0(@r) 4+ B -1 pp(wr)),  (B30)

and for small r reduces to

o’ +1/2 2f+1/2
Xa) m "™ 7+l + —
1372y PP —e 1 1/2]
(B31)
¢. Matching

From the behavior of the Bessel functions at r — oo, the
solution (B30) is asymptotic to

(orizr |2 B—ia(=1)
Xy ~ el [ 2 BZ10CDT Gy (g
W 2

and by demanding now the behavior (B18), we get

Ain e_if”/z(ﬁ+ iaeifzz)

wfm — \/271'—60

(B33)

Now we want to express a and f in terms of the boundary
parameters A, B. As in the scalar case, we proceed to match
the small r behavior of the far-region solution to the large r
behavior of the near-region solution.

First, we use the approximation [correct up to O(w, €)]

r(=2¢-2¢-1)
F2-7¢—-¢c+im)

_ (=D -1)
a2 +2) (B34)

In addition, we can use
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(1 +2im)  T(1+2iw)(iw - €)(=1)*
T(~f—c+im) T(—+im(f—e+mitl)
x kﬁl[kz — (iw - ¢)?] (B35)
to show that, up to O(w?,€),
PU+2m)  _ \imT(r+3).  (B36)

IN-2-7¢-¢+iw)
|

(A+B)I(1420)4FT(£ 4 3/2)T'(2¢ +2)(-1)" +

Using the above results, we find, in the limit w < 1,

202 (1 420)1(¢ +3/2)
T a2 (¢ +3)0(¢ - 1)
@ PPN+ 1/2)0(6 +3)0(4 = 1)i
- 20F302 [fraT (26 + 2)

a (A + B),

(A-B).

Putting these expressions into Eq. (B33), we find

A, =i

wfm

6. The black hole flux formulas

For BHs, B = 0. Equation (B37) together with Eq. (B19)
gives, in the approximation w < 1,

" (1 +26)%4°72T(¢ + 3/2)?
‘Bmfm|2 ~ |A|2 4__2(/+1) 4 (B38)
T w re-1)
From Eq. (B16), the Weyl scalar function can be
calculated as

RA(r,) mr,0(¢€+1)X(r,) +2r; (% + iw>X|,p, (B39)
where we notice that w = (M/r,)** < M/r,. To calcu-
late the derivative we use Eq. (B27), and then we take the
large distance limit with Eq. (B27). The large distance limit
of X, ., is taken from Eq. (B28). Doing the calculation in
detail, and staying always in the approximation in which
@ < 1 (or equivalently r, > ry), we end up with

)\, T +20)
K= (2) ey ®0
d (1, A (£ + DI(1+2¢)
= () LT are-n B

Then it is straightforward to write from Eq. (B39)

rp\ ! r(1 +2¢)
RY ~(L) A :
wenlr) <rH> T ¥ (e - 1)

From Egs. (B24) and (B10) and using Eq. (A36) for odd
m + ¢, we get, after several simplifications,

(B42)

m¥ ML AT (¢ 4+ 3)0( = 1)
2

Zoml? = ,
[Zen| rot T2+ 2)0(¢+ 1)

(B43)

270200 Jaw (6 + 3)0(£ — 1)0(24 +2)

(A=B)(=¢ +1/2)a* “*II(£ +3)°T(£ = 1)* (B37)

|
and the energy flux (B13) is finally

i ) i z"”: mX 2 O0(f 4 3)0(2 - 1)
_ym .
=20 Ly £ B TQRE+2)0(C+1)

Note that for the leading order contribution, £ = m = 2,
we get

. 32miM? 32 (my)\?
E -0 =" (0] (MQ)'"3,
=TS s 5 <M> (MQ)

which agrees with the well-known Einstein quadrupole
formula.

(B44)

7. The QNMs of ECOs

Following the same reasoning as in the scalar case, we
derive the QNM frequencies as the roots of A}, = 0. By
setting Eq. (B37) equal to zero, we can write

_ 1— Fszz(f)wb“rz
- 1+ Fszz(f)w2f+2 ’

et R () = 1, R(w)

now with

e f_F(l/2—f)l“(f+3)2l“(f—1)2(—1)”1
=2(f) = 470432020+ )26 +2)

(B45)

We solve the equation iteratively by solving
e?7in110e% R (g7,) = 1 for w;,, with the initial condition
w, = 0. The solution is given in Eq. (A42), but with the
new F,_,. After some simplifications, the result for the
quasinormal modes of gravitational perturbations is

nr . 2nr)* P +1)T(£-1)T(¢+3)?
X —1 .
T logxy,  8|logxe (24 + 1)L (22 +1)°T (26 4-2)
(B46)
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Again, the nonvanishing imaginary part has the correct sign and takes into account the exponential decay of the mode in
time (stability).

8. The ECO flux formulas
For ECOs, we have B = —Ax;2™. Equation (B37) yields

|Ain (@) ?
[(1+2£)24%F20(¢ +3/2)*T(2¢ 4 2)%sin? (wlogxg) + T'(=£ 4+ 1/2)>@* V(£ + 3)*T(£ — 1)*cos? (wlog x,)

~|AJ?
4l 4z IO (¢ + 3) (¢ — 1)1 (24 4 2)?

3

where we neglected the imaginary part of @w?*+2.

In order to get the energy flux, we need to calculate now (B16). First, the solution (B27) reads

2iw

Xpem(x) = A(1 — x)/x7 [F(f +3—iw, /- 1-iw, 1 -2iw, x) —le.w
X

F(f—|—3+iw,f—1+iw,1+2iw,x)},
0

(B47)

and from Eq. (B28), we find the asymptotic behavior to be dominated by

[ 1 —x5%@ i2rem +w(-14+2) +w(B3+ )1+ x%")w
Xlrp) =4 LH] 1l +27) (F(—l + f)or(s ot I(¢-DrG+2) ; ) +

where the ellipsis denotes higher order terms in r /7, and w. Because w ~ HOL, the first term in the parentheses is clearly
g X

subdominant, and we shall neglect it. In the BH case, this would have been the dominant contribution, but because of the
different boundary conditions now chosen, it is the subsequent leading term that dominates now.
On the other hand, we calculate the derivative from Eq. (B47),

d 2M £ ol
—X|, == —X< —I—E)—ZimA(l—x)fxz. F+3+iw ¢ —1+iw, 1+ 2iw,x)
ar 7 ry, I-x x x5'®

(3 —im)(f—1—i 2im
FA(1 = ) yim (32T i) F(f +4—iw(—im2-2imx)—5_cc. ||, (B48)
1 —2iw x5'®

and analyze the large distance behavior using Eq. (A24). Taking care of the issues commented upon above, the leading order
contribution is

d 2M [, 14t 22iyem +w (=1 + ) +yw(3+7))w
Lx|, =2Al2 (1 +20)(14+6) + ... B49
ar'n TR LJ L - I3 +7) (I+20)(1+)+ (B49)

Consequently, from Eq. (B39), we get

R, ~(£(£+1)+1)2ryA [”’]
'

L(Z-1IG3+7) (1 +22). (BS0)

Finally, from Egs. (B24), (B10), (B19), and (A36), we get the energy flux after several simplifications:

Pl 2 AT (20 +2) T 26+ 1) T (= 1)(€+1)* 2ypm +y (€ — 1) +y (£ +3)?/T(£ +1)*/T(£ +3)
T(1426)24%120 (£ +3/2)°T(2¢ 4-2)*sin? (wlog xo ) +T(=£ + 1/2)>w*“TI(£ 4 3)*T(£ — 1)*cos?(wlogxy)
(B51)

|me|2%

Near the QNM frequencies, this is
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2 4)3

. m
0
ES*Z

S Wi(m[)mf/s (loge)

10¢/3 27026 +2)°T(2¢ + 1)*(£ + D)*2yem + w (£ = 1) + w(£ + 3)]?
22B0(=¢ +1/2) (¢ + 3)°T(¢ — 1)’T(£ + 1)? ‘

(B52)

9. The resonance width

We follow the same method as in the scalar case. Assuming the frequency band to be narrow around the resonance
modes, we can expand as in Eq. (A48). On the other hand, the gravitational flux (B51) can be written as

[

2//3+4(r)

Es:2(r)

" by (r)cos? (w(r) log xg) + ¢ sin?(w(r) log xp)

now with by =T(—=£ + 1/2)2T(¢ = 1)*T(£ + 3)* > 0 and ¢, = 4 F20(2¢ + 2)°T(2¢ + 1)*T(£ + 3/2)* > 0 (ay,, will

—10/3¢

not be needed). The flux peaks at rony and reads E‘Yzz(rQNM) = %j"wQNM . By expanding the energy flux up to second

order, we get

Es=2(r)

E;_>(ronm) FQNM rQNM

Demanding now E,_,(r) :%EFZ(rQNM), one gets a
quadratic equation for (r — ronm)/fonm = Vs
L [9n272 =350 45002 9con*mPagln’
4 4b,

y }H(Sf):—%,

which again leads to two solutions, r, and r_, correspond-
ing to the outer and inner radii of the width. The solution, in
the approximation in which wony < 1 [recall Eq. (B46)],
takes the simple form

4
b TN (25
* kr \/9c,

(B54)

Ny r—ronm N (r - rQNM>2 <9112ﬂ2 —35¢ +50¢7 B 9cfn27r2’w54‘4f>} L

B53
4 4b, (B33)

Using Eq. (B45), it can be checked that /b,/c, =
Fy_»(£)(=1)"*!. Thus, we finally arrive at

- \/glm’wQNM
~ 9RC‘IHQNM
8 2na)¥ I0(¢ +1)°T(¢ — 1)°T(¢ + 3)?

9 4flogx[¥ 22+ 1)L(26+ 1)
(B55)

ry—r_

r'oNm

where we used the form of Eq. (A42). The width in
frequency follows the same approach as in Eq. (AS51),
yielding the same relation.
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