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We have shown previously that a merger of marginally outer trapped surfaces (MOTSs) occurs in a
binary black hole merger and that there is a continuous sequence of MOTSs which connects the initial two
black holes to the final one. In this paper, we confirm this scenario numerically and we detail further
improvements in the numerical methods for locating MOTSs. With these improvements, we confirm the
merger scenario and demonstrate the existence of self-intersecting MOTSs formed in the immediate
aftermath of the merger. These results will allow us to track physical quantities across the nonlinear merger
process and to potentially infer properties of the merger from gravitational wave observations.
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I. INTRODUCTION

Numerous binary black hole merger events have now
been observed by gravitational wave detectors [1–7]. The
general features of the gravitational wave signal from such
events are now well known. The first is the inspiral regime
where the signal is a chirp of increasing amplitude and
frequency, and the system is effectively modeled as two
point particles orbiting around each other and emitting
gravitational waves as the orbit decays. As the two black
holes approach each other and coalesce to form a final
common black hole, the inspiral description is no longer
valid, and nonperturbative aspects of general relativity
become important; this is the merger regime. Eventually,
as the final black hole reaches equilibrium, the gravitational
wave signal can be well modeled as a superposition of
damped sinusoids (and, in principle, much weaker power-
law tails). Corresponding to this behavior of the gravitational
wave signals, one visualizes the black holes themselves
separately in the three different regimes. The inspiral regime
consists of two disjoint black hole horizons slightly distorted
by each other’s gravitational field. The merger is visualized
as two horizons very close to each other andmerging to form
a single horizon which is initially very distorted. Finally, the
ringdown is modeled as a perturbed Kerr horizon settling
down to a final equilibrium Kerr black hole.
These features of the waveform must be correlated in

some way with properties of the gravitational field in the
strong field region. In particular, the three regimes must

correspond in some way to properties of the black hole
horizons. The details of the correlations between the
different portions of the gravitational wave signal and
the behavior of the horizons, and the precise demarcations
between the three regimes are yet to be fully quantified.
A full understanding of these correlations is obviously
necessary to have a complete picture of a binary black hole
merger (see e.g., [8–13]). It is also of interest to understand
further quantitative features of the merger, such as the
evolution of physical quantities across the merger. This
includes, among other things, the fluxes of energy and
angular momentum, and the evolution of higher order
multipoles during the merger. These might be correlated
with interesting features of the radiative multipoles found
in [14]. Numerical simulations are capable of solving the
Einstein equations with high accuracy for binary black hole
mergers (see e.g., [15–18]). Such simulations provide an
obvious avenue for exploring such questions.
To understand the correlations between the gravitational

wave signal and the black hole horizons, we need to first
decide precisely what geometrical quantities on the horizon
should be considered. In fact, we need to go a further step
backwards and decide what kind of horizons should be
considered. There are two different ways of visualizing
horizons using either event horizons or marginally trapped
surfaces. Both of these descriptions are in good agreement in
the inspiral and ringdown regimes, but differ substantially
during the merger where nonlinear and nonperturbative
effects of general relativity are especially important.
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Consider first the event horizon description. An event
horizon is the boundary of the region which is causally
disconnected from an asymptotically far away observer. It is
clear that locating an event horizon requires knowledge of the
global properties of the spacetime infinitely far into the
future. It is possible, though not trivial, to locate event
horizons in numerical binary black hole simulations [19–22],
and this yields the well-known “pair of pants” picture [23].
The cross sections of the pair of pants corresponds with the
expectations described above. At early times, the cross
section of the event horizon consists of two disjoint surfaces
corresponding to the two separate black holes, and a single
spherical surface at the end. There are several interesting
features of the event horizon in the merger, including
the existence of a toroidal phase early in the merger and
the nondifferentiability of the event horizon [24]; the
nondifferentiability is in fact a general feature of event
horizons [25,26].
The pair of pants picture is intuitively appealing and

moreover it seems to provide a complete picture of the
black hole merger in accordance with our physical expect-
ations. In reality however, this picture is not so useful, both
as a matter of principle and therefore also for any detailed
quantitative studies. The problems can be traced back to the
global and teleological nature of event horizons: to locate
them, one needs to know what happens in the spacetime far
in the future. In perturbative situations and when the end
state is known or assumed, it is indeed possible to obtain
expressions for the fluxes of energy and angular momen-
tum through the event horizon [27]. In general dynamical
situations however, this is not true. There are simple
examples, even in spherical symmetry, when the area of
the event horizon grows without any corresponding flux of
energy [28]. Due to these teleological properties, there is no
possible local expression of general validity for, say, the
fluxes of energy and angular momentum through event
horizons. It is thus not clear how to carry out the program of
understanding the merger and relating it to gravitational
wave observations outlined at the beginning of the previous
paragraph. As a side remark, the teleological property also
makes it difficult to locate event horizons in numerical
simulations in real time, but in any case, it is certainly
possible to locate them once the simulations are complete.
There is an alternate way of visualizing a binary black

hole merger which, for both conceptual and practical
reasons, is of much greater importance in numerical
simulations. The starting point is an unusual property of
certain surfaces in the black hole region, first pointed out by
Penrose [29]. This requires the notion of the expansionΘ of
a congruence of light rays; Θ is the logarithmic rate of
change of an infinitesimal cross section transverse to the
null geodesics. A round sphere in flat space has Θ > 0 for
the outgoing light rays and Θ < 0 for the ingoing ones. In
the black hole region, there exist spheres (the trapped
surfaces) for which both sets of light rays have negative

expansion. The outermost such sphere at any given time has
vanishing outgoing expansion; these are the marginally
trapped surfaces. In stationary situations such as for a
Schwarzschild or Kerr black hole, cross sections of the
event horizon are also marginally trapped surfaces, but this
correspondence is not true in nonstationary situations.
Thus, cross sections of the event horizon are marginally
trapped surfaces very early in the inspiral regime or at very
late times. At intermediate times, especially near the
merger, the two notions are very different. Furthermore,
unlike event horizons, marginal surfaces are not teleologi-
cal and can be located at any given time without reference
to any future properties of spacetime. It is possible to define
physical quantities such as mass, angular momentum,
multipole moments, and fluxes of energy and angular
momentum quasilocally, i.e., on the marginal surfaces.
For this reason, marginal surfaces are widely used in
numerical simulations when referring to the properties of
black holes. There is a large literature on these quasilocal
definitions and their applications to various problems in
classical and quantum black hole physics (see [28,30–32]
for reviews).
Despite this progress, there is still a missing ingredient,

namely a unified treatment of inspiral, merger and ring-
down. Thus far, all studies of binary black hole coalescence
using marginal surfaces have considered the pre- and post-
merger regimes separately. The reason for this is that, until
recently, it was not known how marginal surfaces behave
across the merger; near the merger the marginal surfaces are
extremely distorted and previous numerical methods were
not successful in tracking such highly distorted surfaces.
Using improved numerical methods [33], we have recently
shown the first evidence for the existence of a continuous
sequence of marginal surfaces which interpolates between
the two disjoint initial black holes and the single final
remnant black hole [34]. This is the analog of the pair of
pants picture for event horizons. In the present work, with
further improvements in numerical methods for locating
marginal surfaces, we shall provide further unambiguous
evidence for this scenario. We shall also show the existence
of marginal surfaces with self-intersections. In a companion
paper we shall study physical characteristics of the world
tube of marginal surfaces, which is the other important
ingredient for physical applications.
The scenario we obtain for the merger is summarized in

Fig. 1. The details showing how these results are obtained
will be explained in the next sections. The figure shows
four snapshots of the MOTSs at various times1 in a head-on
binary black hole merger starting with Brill-Lindquist
initial data. We initially have only the two individual
MOTSs without a common horizon. As the black holes

1We define the factor M ≔ MADM=1.3 to be able to state our
coordinate quantities in terms of the Arnowitt-Deser-Misner
(ADM) mass, which in our simulations was chosen to be 1.3.
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get closer, a common MOTS is formed which immediately
bifurcates into outer and inner portions visible in the second
snapshot. The outer portion loses its distortions as it
approaches its equilibrium state, while the inner MOTS
becomes increasingly distorted. At some point, just shortly
after the third snapshot, the two individual MOTSs touch
each other exactly at the timewhen theymergewith the inner
common MOTS. After this merger, the two individual
MOTSs go through each other. Surprisingly, it turns out
that the inner common MOTS continues to exist after the
merger and now has self-intersections as shown in the last
snapshot. The remainder of this paper will be devoted to
explaining howwearrive at this result.A detailed study of the
physical aspects of this scenariowill be presented elsewhere.

Section II summarizes the basic definitions and concepts
that we shall need for this paper. The improved numerical
algorithm for locating marginal surfaces is described in
Sec. III and Sec. IV shows various numerical tests to validate
the method. Section V discusses our modifications to the
numerical methods used to evolve Cauchy data using the
Einstein equations. These modifications allow us to reach
the required numerical accuracy and convergence, and to
carry out our simulations more efficiently. Section VI puts
together all these ingredients and presents our main results.
For a particular initial configuration (the head-on collision of
comparable mass nonspinning black holes), the merger of
marginally trapped surfaces is demonstrated with high
numerical accuracy. The merger involves the formation of

FIG. 1. MOTS structure of a simulation of Brill-Lindquist initial data shown at different simulation times. The self-intersection of
Sinner is present from the first instance it is found after S1 and S2 touch at T touch ≈ 5.5378M. The upper left panel shows the initial
condition and the upper right panel a time shortly after the two common MOTSs Souter and Sinner have formed together. The lower left
panel shows the last time we were able to locate Sinner before S1 and S2 touch and then start to intersect, while the lower right panel
shows a time well after T touch.
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a marginally trapped surface with self-intersections, show-
ing topology change in a binary black hole merger.

II. MARGINALLY OUTER TRAPPED SURFACES

Let la be a congruence of future directed null geodesics,
and let na be another such congruence satisfying
lana ¼ −1. Let qab be the Riemannian metric in the
2-dimensional space transverse to both la and na. The
divergence of la and na are respectively

ΘðlÞ ¼ qab∇alb; ΘðnÞ ¼ qab∇anb: ð1Þ

Let S be a closed spacelike 2-surface with null normal
fields la and na respectively. We assume that it is possible
to assign outgoing and ingoing directions on S, and by
convention, la and na are the outgoing and ingoing null
normals respectively. The classification of S based on
conditions on the expansions are the following:

(i) Trapped: ΘðnÞ < 0, ΘðlÞ < 0
(ii) Untrapped: ΘðnÞ < 0, ΘðlÞ > 0
(iii) Marginally trapped: ΘðnÞ < 0, ΘðlÞ ¼ 0
(iv) Marginally outer trapped: ΘðlÞ ¼ 0 (no condition on

ΘðnÞ)
All of these refer to future-directed la. Thus we should say
future trapped rather than just trapped, but we shall only
consider future-directed cases. The most important case for
us is the marginally outer trapped surface (MOTS) lying
within a spatial slice Σ.
As mentioned in the Introduction, there is a large

literature on the application of MOTSs to study black
holes in various contexts (see e.g., [28,30,32,35–38]). They
are regularly used in numerical relativity simulations to
compute physical quantities [8,39,40], and this formalism
leads naturally to various versions of quasilocal black hole
horizons.
While we shall not delve into the mathematical and

physical characteristics of MOTSs here, it shall be useful to
understand the stability operator for a MOTS and its
relevance for time evolution. For a given MOTS S consider
a smooth one-parameter family of closed spherical surfaces
Sλ which are variations of S in the normal direction [41]
within the spatial hypersurface Σ.
On each Sλ, just as for S, we can define the null normals

and calculate the expansion ΘðlÞðλÞ, which will of course
generally not vanish. The differentiation of ΘðlÞðλÞ leads to
an operator L on S:

δfrΘðlÞ≕Lf: ð2Þ

Here ra refers to the unit outward pointing spacelike normal
to S (within Σ) and f is a scalar function on S. Along the
1-parameter family Sλ, every point on S traces out a curve
with tangent vector fra. The variation of the expansion, i.e.,
the left-hand side of the above equation, is the derivative of

the expansion along these curves. This procedure defines an
elliptic operator L on aMOTS and the precise expression for
L can be worked out. Generically it is of the form

Lf ¼ −Δf þ γa∂af þ βf: ð3Þ

Here Δ is the Laplace-Beltrami operator on S compatible
with qab, γa is a vector field on S related to black hole spin,
and β is a scalar related to the intrinsic (two-dimensional)
Ricci scalar of S. Thus, L is not necessarily a self-adjoint
operator due to the presence of γa, and its eigenvalues are not
necessarily real. Nevertheless, its principal eigenvalue Λ0,
i.e., the eigenvaluewith the smallest real part is indeed real. In
this paper we shall restrict ourselves to nonspinning black
holes with vanishing γa so that all eigenvalues are real.
The primary utility of L is that it determines the behavior

of S under time evolution. It was shown that if the principal
eigenvalue is positive, then the MOTS evolves smoothly
in time [42–44]. This stability condition is equivalent
to saying that an outward deformation of S makes it
untrapped which is what we expect to happen for the
apparent horizon. While not emphasized in [42–44],
the condition for the existence of S under time evolution
is the invertibility of L. Thus, if 0 is not in the spectrum of
L, then S continues to evolve smoothly. In the case when
Λ0 < 0 (which will happen in our case), we must consider
the next eigenvalue Λ1 and check that it does not vanish.
See e.g., [45–47] as examples of studies which consider
this notion of stability in specific examples.

III. NUMERICAL METHODS FOR LOCATING
HIGHLY DISTORTED MOTSs

Consider a Cauchy surface Σ on which we wish to locate
a MOTS S. Let Σ be equipped with a Riemannian metric
hij with the associated Levi-Civita connection Da, and let
the extrinsic curvature of Σ be Kij. Let ra be the unit-
spacelike normal to S within Σ and let τa be the unit-
timelike normal to Σ. Then, a suitable choice of null
normals to S is

la ¼ 1ffiffiffi
2

p ðτa þ raÞ; na ¼ 1ffiffiffi
2

p ðτa − raÞ: ð4Þ

The condition ΘðlÞ ¼ 0 is rewritten as

Dara þ Kabrarb − K ¼ 0: ð5Þ

This is the equation that we must solve to find S. The
conventional approach [22,48] assumes that the surface is
defined by a level-set function

Fðr; θ;ϕÞ ¼ r − hðθ;ϕÞ; ð6Þ

where ðr; θ;ϕÞ are spherical coordinates on Σ. This
assumes that S is star shaped with respect to the origin
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in the chosen coordinate system. In other words, any ray
drawn from the origin must intersect the surface only once.
This assumption will not hold for the surfaces of interest for
us. A variant of this method was proposed in [33] and
shown to be capable of locating extremely distorted
surfaces. This new method is based on using a reference
surface σR, and representing S in terms of distances hðλ; μÞ
from σR, where λ, μ parametrize σR. As long as the
reference surface is chosen appropriately, the method
can be used to locate almost arbitrarily distorted surfaces.
For example, in a numerical evolution, one could choose σR
to be the MOTS located in the previous time step. The
problem of locating S then translates to solving a nonlinear
partial differential equation for the horizon function h. This
can be done e.g., via a pseudospectral method, which is
what we chose.
For our present application, we have implemented two

additional features compared to what was used in [33].
These features are meant to deal with two additional
complications that we must necessarily deal with: (i) sur-
faces which have a very narrow “neck” (almost like a figure
eight), and in some instances have features like cusps and
self-intersections. For this purpose, motivated by the
methods used in [49], we employ bispherical coordinates
[50]. (ii) Unlike in [33] where the MOTS finder was applied
to analytical initial data, we now have to deal with
numerically generated data on a finite mesh. This requires
the use of interpolation schemes some of which were
already used in [34]. We now describe in turn both of these
additional features. We shall still be restricted to axisym-
metry in this work, reducing the task of finding the horizon
function h to a one-dimensional problem. However, no in-
principle difficulties are foreseen for general nonaxisym-
metric cases.

A. Bispherical coordinates

For axisymmetric surfaces, choosing the symmetry axis
to be the z axis, we can restrict ourselves to the ðx; zÞ plane
and it is often convenient to characterize any point using
polar coordinates, i.e., using the distance from the origin
and the angle of the position vector with the z axis.
However these coordinates are not optimal for describing
surfaces with a very narrow neck connecting two spherical
portions, i.e., close to a figure eight in shape. We use
instead the bipolar coordinates ðs; tÞ which are based on
two foci located at x ¼ 0, z ¼ c� a:

x ¼ a sin s
cosh t − cos s

; z ¼ a sinh t
cosh t − cos s

þ c: ð7Þ

The ðs; tÞ coordinates make the highly distorted inner
common MOTS Sinner much easier to parametrize.
Examples demonstrating the effect of this coordinate

transformation for three different simulation times are
shown in Fig. 2. The three snapshots are at times

(i) T ¼ 3M which is a bit after the top right panel of
Fig. 1 and Sinner does not have extreme distortions;
(ii) T ¼ 5.5M, shortly before the bottom left panel in
Fig. 1 where Sinner has a very narrow neck, and finally
(iii) T ¼ 6.5M, a little bit before the bottom right panel of
Fig. 1, and Sinner has self-intersections.
The bispherical coordinates are employed only for Sinner;

none of the other horizons have the narrow neck and these
coordinates are unnecessary to locate them. To determine
the value of c in (7), we first find the two individual MOTSs
S1 and S2 and choose c to lie in the coordinate center

FIG. 2. Visualizations of Sinner in bipolar coordinates at differ-
ent simulation times T. The left column shows the MOTS and
lines of constant s and t in the ðx; zÞ plane while the right column
contains Sinner in the ðt; sÞ plane. Note that only positive values of
s are shown, though the full MOTS is of course symmetric about
s ¼ 0. The first row shows a slightly distorted MOTS in both
representations. At T ¼ 5.5M (second row), Sinner is highly
distorted in the ðx; zÞ plane and only slightly distorted in the
bispherical coordinates. The last row shows a case of a self-
intersecting Sinner. The dot marks the location of the “neck”
in all cases.
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between the lowest point of S1 and the uppermost point
of S2. As detailed below, we find the various MOTSs in a
series of time slices produced by the numerical simulation.
During this tracking of Sinner, we numerically approximate
the optimal value for a as a postprocessing step once the
MOTS is located. In practice, this is done by representing
Sinner in bispherical coordinates and expressing the coor-
dinate functions sðλÞ, tðλÞ as a truncated series of sines and
cosines, respectively, which have the correct symmetry for
the problem. We use a slightly lower number of basis
functions than necessary to obtain convergence and check
the residual expansion of the now imperfect representation.
Varying the parameter a, we repeat this process to find the
value resulting in the lowest residual. The value for a
determined this way is then used for finding the MOTS
in the next slice, assuming the optimal parameter varies
slowly with simulation time.
A further optimization is to reparametrize the reference

surface σR prior to finding the MOTS. A natural choice of
parametrization would be the proper length or proper length
in coordinate space, the latter obviously being better suited
for our numerical representation of the surface. If the curve
representing σR in coordinate space is λ ↦ γRðλÞ, this
would mean that kγ0RðλÞk2 ≡ const. However, we obtained
faster convergence by taking a nonconstant speed function
such that kγ0RðλÞk2 is roughly2 proportional to 1=kABkAB,
where kAB is the second fundamental form of σR embedded
in coordinate space.
Utilization of bispherical coordinates together with the

above reparametrization has led to convergent solutions
Sinner with about 1 order of magnitude fewer collocation
points compared to the previous method.

B. Interpolating numerical data

In each time step, our axisymmetric numerical simu-
lations produce data on a 2-dimensional grid of points lying
equidistant in the ðx; zÞ coordinate plane. However, for the
nonlinear search for a MOTS S, the expansion ΘðlÞ and its
derivatives have to be computed on a set of points xn ∈ R2

along trial surfaces Si, cf. [33], Sec. III. B. This requires
evaluating the components of the metric hij, its first and
second spatial derivatives, the extrinsic curvature Kij and
its first spatial derivatives at the points xn which generally
do not coincide with any of the grid points of the
simulation.
In [34] and also the present paper we used quintic

Hermite interpolation, which allows us to control the values
along with first and second derivatives of the interpolant at
the grid points. These derivatives are evaluated using 6th
order accurate finite differencing. Derivatives between the

grid points are then computed by analytically differentiat-
ing the interpolating polynomial. The advantage is that first
and second derivatives are continuous throughout, which is
not the case with Lagrange interpolation.
Interpolation of discrete data will be more accurate with

increased grid resolution. However, it will never be exact
and even floating point accuracy cannot be neglected,
especially near the punctures at computationally feasible
resolutions. These additional inaccuracies may limit the
numerical convergence as they move the plateau we see
below in Fig. 7 up—for example, when moving closer to
the punctures or reducing the grid resolution—or down. To
account for this effect while tracking a MOTS through
simulation time, we compute the expansion between the
collocation points each time the expansion drops below a
preset tolerance at the collocation points. After this, we
increase the spectral resolution and continue until the
tolerance is met at the now larger set of collocation points.
This is repeated until the expansion between the collocation
points no longer improves, signaling that we have reached
the plateau.
A second criterion for stopping to increase the spectral

resolution is derived from the absolute values of the
coefficients an of the spectral representation of the horizon
function h. In a pseudospectral method using a basis of
cosines, one expects these coefficients to fall off exponen-
tially for large n if the solution exists. We hence stop
increasing the resolution if subexponential falloff of the an
is found following a region of exponential convergence.
This prevents our code from overfitting S to features
introduced by the interpolation method, which happens
especially for lower resolution simulations.

IV. VALIDATING THE MOTS FINDER

With the addition of numerical simulations, the task for
our MOTS finder has become more general compared to
the purely time-symmetric cases considered in [33].
Therefore, and in light of the surprising result of a self-
intersecting MOTS, it is important to validate the method
and test it for correctness in an analytic case where the
result is known. We shall later present convergence results
for further validation.
For this purpose we construct a non-time-symmetric

slice with analytically known horizon shape. We choose a
slice of the Schwarzschild spacetime in Kerr-Schild coor-
dinates [51], i.e.,

hij ¼ δij þ
2m
r

xixj
r2

; ð8Þ

Kij ¼
2m
r4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m=r

p
�
r2δij −

�
2þm

r

�
xixj

�
; ð9Þ

where δij is the flat metric, xi are the standard Cartesian
coordinates for the flat metric, and we shall often use

2We smoothen the speed function along the MOTS by
exponentially damping the coefficients of a cosine series repre-
sentation. This reduces higher frequencies in the density of
collocation points along S.
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ðx; y; zÞ instead of xi when no confusion can arise. For
Schwarzschild, the radial coordinate is just r2 ¼ x2þ
y2 þ z2. These data have nontrivial extrinsic curvature
with the horizon being located at r ¼ 2m.
To make the horizon non-star-shaped and thus the task

more difficult (but still axisymmetric), we transform the
coordinates ðx; zÞ → ðx̄; z̄Þ via

x̄ ¼ x

�
1 −

β

coshððz − z0Þ=γÞ
�
; z̄ ¼ z: ð10Þ

These equations are used to sample hij and Kij on grids of
various resolutions from 1=h ¼ 30 to 1=h ¼ 1920. We
choose a reference shape that is close but not identical to
the horizon. The MOTS S and the reference shape σR are
shown in the first panel of Fig. 3. For this test we
compute the area A of S and compare it to the exact
area Aexact ¼ 16πm2, where m ¼ 1. We also compute
the maximum coordinate distance kS − Sexactk∞ of the
numerical solutions to the exact horizon. The second panel
demonstrates that our numerical solutions converge to the
expected solutions as the resolution of the numerical grid is
increased.

V. THE NUMERICAL EVOLUTIONS

A. Formulations, discretization, and implementation

We set up initial conditions for the spacetime geometry
as two puncture black holes using the method of Brill and
Lindquist [52]. To evolve the geometry, we use the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of the Einstein equations with a 1þ log slicing
and a Γ-driver shift condition [53,54]. We also impose
axisymmetry throughout the calculation.
For our setup (see below), we choose a domain with

x ∈ ½0; 10�, z ∈ ½−10; 10�, and T ∈ ½0; 7�. (Due to axisym-
metry, we only consider the hyperplane y ¼ 0.) For
simplicity, we use Dirichlet boundary conditions to set
all time derivatives to zero at the outer boundary. We check
that the errors introduced by the artificial boundary con-
ditions do not affect the geometry near the MOTSs.
We choose a Cartesian basis for the tangent space, i.e., we

represent vectors and tensors via their x, y, z components.
Although axisymmetry requires that certain components or
linear combinations of components must vanish, we do not
explicitly impose such conditions. Instead, we only impose
axisymmetry on spatial derivatives: We require that the Lie
derivatives of all quantities in the ϕ direction be zero, and we
use this to remove all y derivatives. (y derivatives are then
either 0, or are replaced by combinations of various x
derivatives.) We use l’Hôpital’s rule to regularize these
expressions on the axis. This closely follows the approach
described in [55], extended to handle second derivatives as
well. The set of expressions for handling first and second y
derivatives for all tensor ranks appearing in the BSSN
formulation is lengthy, and is available in a Mathematica
script as part of Kranc [56,57].
In our discretization, we also require a small region “on

the other side” of the axis (where x < 0), which we
calculate by rotating the region with x > 0 by π.
We also experimented with the Cartoon method [58] to

impose axisymmetry. Cartoon uses a spatial rotation in the
ϕ direction and then spatial interpolation to populate points
away from the y axis, so that y derivatives can be calculated
in the standard manner. We found that the Cartoon method
does not work well with higher order (higher than 4th)
finite differencing: The result of a Lagrange interpolation is
not continuous, which leads to large oscillations when
derivatives are taken near the axis where the Cartoon
rotation angle is large.
In our setup, the punctures are located on the z axis

and are initially at z� ¼ �0.65. The puncture masses are
mþ ¼ 0.5 and m− ¼ 0.8 (i.e., the “upper” black hole
is smaller). The punctures have no linear or angular
momentum.
Details of initial and gauge conditions are described in

[59]. Our exact parameter settings are available in the
parameter files in the repository [60].
We use 6th order finite differencing to discretize space.

We also add a 6th order Kreiss-Oliger artificial dissipation,

FIG. 3. Top: Horizon S and reference shape σR for the trans-
formed slice of Schwarzschild spacetime. The parameters for the
transformation via (10) are β ¼ 0.97, γ ¼ 0.7M and z0 ¼ 0.8M.
Bottom: Convergence of the area (dashed) and surface coordinate
shape (solid) with increased grid resolution. In each case, the
spectral resolution was chosen such that a further increase does not
result in a lower residual expansion (seeSec.VI A). This thus shows
the error introduced by the spatial discretization and interpolation.
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which reduces our spatial accuracy to 5th order. We use a
6th order accurate Runge-Kutta time integrator. Our discre-
tization is globally 5th order accurate, as we demonstrate
below in Sec. V B. We do not use mesh refinement nor
multiple grid patches as thesewould not be beneficial for our
calculations that span only a short time and a small region of
space, compared to systems of orbiting binary black holes.
Compared to 4th and 8th order discretizations, 6th order

is most efficient for us. 4th order calculations require
significantly higher resolutions, and 8th order calculations
are significantly slower since they use larger stencils and
require more integrator substeps. 8th order calculations also
require higher resolutions before their error falls below that
of 6th order calculations.
We perform our calculation via the Einstein Toolkit

[61,62]. We use TwoPunctures [63] to set up initial
conditions and an axisymmetric version of McLachlan
[64] to solve the Einstein equations, which uses Kranc
[56,57] to generate efficient C++ code.

B. Accuracy, convergence

To demonstrate the accuracy of our discretization, we
plot in Fig. 4 the Hamiltonian constraint

H ¼ KabKab − K − R ð11Þ

on grid points close to the inner common MOTS at two
different times for different grid resolutions. Here, R is the
Ricci scalar of the slice Σ. There is no significant difference
between the two times. Note that in coordinate space, Sinner
lies closer to the punctures in its upper than in its lower half,
compare also Fig. 1. In terms of the curve’s proper length
parameter λ̄ (scaled to λ̄ ∈ ½0; π�), this corresponds to λ̄≲
π=2 and λ̄≳ π=2, respectively, where our representation
only covers half of the plotted MOTS (say for positive x
values) due to axisymmetry.
The results have been scaled to account for 5th order

convergence. We indeed find 5th order convergence for
1=h ≥ 240 closer to the punctures and for 1=h ≥ 120
further away from the punctures. In that latter region,
the highest resolution results with 1=h ¼ 960 show slightly
larger errors than expected from 5th order accuracy.
This is caused by round-off errors starting to dominate

the finite difference derivatives, as is demonstrated in
Fig. 5. Here, the different curves represent the results
obtained using stencils of 3 to 9 points for the derivatives of
the metric components, corresponding to 2nd to 8th order
accuracy. We see the typical behavior of convergence up to
the resolution at which the round-off error becomes
dominant. This happens at lower resolutions for the higher
order methods as these reach the round-off limit earlier.
Note that the optimal resolution depends on the function
being approximated and in our case becomes larger the
closer we get to the puncture. This explains the different
behavior in the first and second half of the plots in Fig. 4.

FIG. 4. Convergence of the Hamiltonian constraint for increas-
ing resolutions 1=h ¼ 60, 120, 240, 480, 960 at one time step
before (upper panel) and after (lower panel) the individual
horizons touch. The constraint is computed at grid points close
to Sinner and plotted over the proper length (scaled to ½0; π�) of the
curve representing Sinner in the ðx; zÞ plane.

FIG. 5. Hamiltonian constraint computed at one point of a slice
of the Schwarzschild spacetime in Kerr-Schild coordinates as
defined in (8), (9) for grid resolutions 1=h ¼ 20 to 1=h ¼ 105.
Since this is an exact solution of the Einstein equations, we expect
H≡ 0, and this figure thus shows the discretization error. The
constraint is evaluated at a coordinate distance of r ≈ 0.24m from
the puncture.
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VI. THE EXISTENCE OF
SELF-INTERSECTING MOTSs

With the technical improvements at hand, we now turn to
the main result of this paper, namely the merger of the inner
MOTS with the two individual horizons, and the occur-
rence of self-intersecting MOTSs just after this merger (see
Fig. 1). We will study a single configuration with high
resolution. We focus primarily on numerical accuracy and
convergence to confirm the merger scenario and the
existence of self-intersecting MOTSs. There are obviously
numerous physical and geometrical properties of great
interest. First however, we need to prove this scenario
numerically beyond any reasonable doubt, which is what
we shall do here. A detailed discussion of the interesting
physical and geometrical properties of the world tube of
MOTSs will be postponed to a forthcoming paper.
Similarly, we shall not discuss here the various extensions
to non-time-symmetric and nonaxisymmetric data. As
mentioned previously, we start with Brill-Lindquist initial
data with the bare masses mþ ¼ 0.5 and m− ¼ 0.8.
The initial coordinate separation between the punctures
is 1.3M (i.e., 1 in units of the total ADM mass MADM ¼
mþ þm−). Simulations are performed at various grid
resolutions: 1=h ¼ 60, 120, 240, 480, 960. We have
already shown in the previous section that the numerical
solution of the Einstein equations for the given initial data
is sufficiently accurate and all constraint violations con-
verge at the expected rate when h is varied. Given this
numerical spacetime, we can use our horizon finder to
locate the various MOTSs. It remains to be shown now that
the surfaces thus found are indeed MOTSs.
Before proceeding further, it might be useful to clarify

the nature of the MOTS with self-intersections shown in the
bottom right panel of Fig. 1. Viewed as a submanifold of
the 3-dimensional Riemannian spatial slice Σ, this manifold
might appear to be nondifferentiable at the point of self-
intersection and one might be concerned that there is no
well-defined normal to the manifold at that point (and
hence no well-defined expansion either). This is however
incorrect, and formally the curve is simply understood as an
immersion instead of an embedding. In the present case,
because of axisymmetry, we can restrict ourselves to a two-
dimensional section (say the x-z plane as we have been
using so far). Then the horizon is simply a parametrized
curve, i.e., a mapping of the circle S1 into Σ, f∶S1 → Σ
(this is precisely how this curve is defined numerically).
Using the map f, we can push forward tangent vectors to Σ
and thus we have well-defined normals depending on which
direction one traverses the point of self-intersection (see
Fig. 6). The relevant topological property of the curve is the
winding number, i.e., the number of rotations that a tangent
vector undergoes when we go all the way around the curve;
each loop adds þ1 to the winding number. Curves with
different winding numbers cannot be smoothly deformed
into each other [65]. This is why in order to get the

FIG. 6. Tangent vectors at a regular crossing point of a curve.
As we traverse the curve following the arrows from the top-right,
we push forward tangent vectors in the usual way. Thus, the first
time the self-intersection is crossed, the tangent vector is V. The
second time, i.e., after traversing the loop in the clockwise
direction, the tangent vector is W. Normal vectors are also well
defined along the curve and uniquely specified once an outward
direction is specified at any point. In our specific example, we say
that at the north pole, the outward direction is the þz direction.

FIG. 7. Convergence of the residual expansion of Sinner at one
time before (upper panel) and after (lower panel) the individual
horizons touch. Note that the inner common MOTS has self-
intersections in the latter case. We plot the maximum absolute
residual expansion between the collocation points over the
pseudospectral resolution used to find the MOTS. This is
independent of the grid resolution res ¼ 1=h of the simulation.
Exponential convergence is clearly visible up to reaching the
plateau in the various cases. The plots also show that the plateau
moves downward with increased grid resolution and that at lower
resolution, we can identify a nonzero negative slope within the
plateau, indicating the overfitting effect mentioned in the text.
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self-intersections, it is necessary to go through the cusp at
the merger. In nonaxisymmetric situations, we have to
necessarily deal with mappings of S2 into the 3-manifold
Σ (which are in fact simpler [66]), but we shall not discuss
this here.

A. Convergence

Except for the modifications introduced earlier in
Sec. III, we employ the same basic Newton-Kantorovich
search as in [33] with each step being performed using a
pseudospectral method. If the nonlinear search converges,
we expect the exponential convergence of the individual
pseudospectral steps to carry over to the solution of the full
nonlinear problem. This is indeed the case, as can be seen in
Fig. 7. It shows the maximum residual expansion between
the collocation points for Sinner at two different times of the
simulation: one at T ¼ 5.35M, where the MOTS is already
highly distorted, and one at T ≈ 5.7333M. This second
case is after the individual MOTSs touch. At this stage,

Sinner lies in the inside of S1 ∪ S2 and intersects itself.
There is no qualitative difference in convergence and the
plateau is approximately at the same level for the same grid
resolution.
We also see in Fig. 7 that the negative slope continues

into the plateau region. This effect is more pronounced for
lower grid resolutions and not noticeable for 1=h ¼ 960. It
is caused by fitting the horizon to features introduced by the
interpolation. We avoid this unphysical effect in practice by
limiting the pseudospectral resolution as described at the
end of Sec. III B.
Instead of varying the pseudospectral resolution, we can

test convergence for different grid resolutions 1=h of the
simulation. The quantity we use here is the convergence of
the coordinate shapes of the curves representing the
MOTSs. Figure 8 shows that we indeed find convergence
of the shapes.
We show in Fig. 9, as a function of time, the residual

expansion of the various MOTSs for the highest resolution
that we have considered, namely 1=h ¼ 960. The residual
expansion is one of the key ingredients which gives us
confidence that the surfaces we find are indeed MOTSs.
Note first that for all the “easy” cases, namely for the two
individual MOTSs S1;2 and for the apparent horizon, the
residual expansion is no more than Oð10−11Þ. These
horizons do not have any portions with extreme curvatures
and there is no difficulty in locating them. In fact, the
residual expansion is largest for the smaller horizon, and is
Oð10−12Þ for the larger horizon and the apparent horizon.
The difficult case is of course the inner common horizon,
which required the various technical improvements detailed
earlier. The most difficult cases are those which have the
narrow neck and correspondingly highly curved portions.
There is a small duration of time near T touch where we are
not able to locate Sinner. At all the other times shown in the
plot, the residual expansion is nomore thanOð10−9Þ. In fact,
away from T touch, the residual expansion is as good as for the
other MOTSs. In particular, this is true after T ∼ 5.7M.

FIG. 8. Convergence of the coordinate shapes of the MOTSs for
increasing numerical resolutions 1=h ¼ 60, 120, 240, 480, 960.
Shown is the maximum coordinate distance of the horizons found
in lower resolution simulations to the respective horizon found
for 1=h ¼ 960.

FIG. 9. The residual expansion of the various MOTSs (S1;2 and Sinner;outer) for the highest resolution 1=h ¼ 960 as a function of time.
We plot the absolute maximum expansion sampled between the collocation points used by our pseudospectral method.
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At these times Sinner has developed self-intersections. Thus,
our confidence in the existence of self-intersectingMOTSs is
the same as our confidence in the existence of the other
MOTSs, which of course are already well established.

B. Area and stability

Some quantitative numbers for this evolution are
(i) The common horizon forms at Tcommon≈

1.37460222M.
(ii) The two individual horizons touch at T touch ≈

5.5378176M.
(iii) The area of the inner horizon reaches a minimum at

Tmin ≈ 5.50592M, i.e., just a little bit before T touch.
This behavior of Sinner was previously noted in [34].

These values were computed at the various resolutions up
to 1=h ¼ 960 and converge up to the shown number of
decimal places; compare also Fig. 10.
The areas of the various horizons are plotted as functions

of time in Fig. 11. The bottom-right panel presents a useful
picture of the merger process. It shows the areas of the
apparent horizon, the inner common horizon and the sum of
the areas of the individual horizons. It shows the formation
and bifurcation of the apparent horizon and it also shows
the merger, i.e., the crossing of the curves for the inner
horizon and the individual horizons.
The principal eigenvalue of the stability operator for the

various horizons is shown in Fig. 12. We see that Λ0 is
always positive for S1;2 and for the apparent horizon, and
that it is not strongly varying. Sinner is more interesting.

FIG. 10. Convergence of the various characteristic times with
increased grid resolution. Shown is the difference between the
value found at the finest resolution 1=h ¼ 960 and the respective
lower resolution result. Tcommon is the time when the common
horizon forms, S1 and S2 touch at T touch, and the inner common
horizon has a local minimal area at Tmin.

FIG. 11. Areas of the various horizons as functions of time. The top-left panel shows the area of the apparent horizon which, as
expected, asymptotes to a final constant value as the black hole reaches equilibrium. The top-right and bottom-left plots show the areas
of the smaller and larger black holes respectively, both showing large increases at late times. The area of the inner common horizon is
shown in the bottom-right panel. This panel also shows the apparent horizon, and the sum of the individual horizon areas.
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When it is initially born, it coincides with the apparent
horizon and has Λ0 ¼ 0. At all subsequent times, Sinner has
Λ0 < 0; to understand its stability we need to consider the
next eigenvalue Λ1. But already from Fig. 12, we see
interesting behavior of Λ0 for Sinner, namely a cusp at
T touch. Figure 13 shows Λ1 for the inner horizon, and it is
seen to be positive thus demonstrating stability. Again, we
see a cusplike behavior near T touch.

VII. CONCLUSIONS

In this paper we examined in detail the scenario for the
merger of MOTSs outlined previously in [34]. We have
done this by evolving a particular Brill-Lindquist setup and
finding all MOTSs at various times. We have tracked the
inner common horizon with high accuracy. In particular, we
present strong numerical evidence that the inner horizon
merges with the two individual horizons precisely at the
time when they touch. Moreover, we find that the inner
horizon develops self-intersections just after the merger.
This provides then a connected sequence of MOTSs taking
us from the two disjoint initial horizons to the final apparent
horizon. We have also studied some basic properties of the
MOTSs including their area and stability. There are
numerous other interesting physical and geometric proper-
ties of the world tube of MOTSs which shall be studied in
detail in forthcoming work.
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FIG. 12. First stability parameters Λ0 (i.e., the principal
eigenvalue of the stability operator) for the various horizons.
Λ0 is positive for all horizons except Sinner, for which we instead
plot −Λ0. A cusp is clearly seen for the inner horizon. All the
other horizons show unremarkable behavior in this respect; they
remain stable as far as they can be reliably tracked.

FIG. 13. The stability parameter for the inner horizon
(upper panel) and zoom in around T touch (lower panel). We
lose numerical precision very close to the merger time as
the pseudospectral resolution becomes very large thereby in-
creasing the condition number of the matrix of the discretized
problem.
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