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Dirac stars are self-gravitating configurations of spin-1=2 fermions in which the fermions are described
by the Dirac equation. After a detailed review of the derivation of the equations and their static solutions,
we present an in-depth dynamical stability analysis of the ground state similar to previous studies for boson
stars. We confirm that there exist both stable and unstable branches of static solutions and show that weakly
perturbed Dirac stars from the unstable branch migrate to the stable branch. We also show that strongly
perturbed Dirac stars from the stable branch migrate to the stable branch if their mass is below a critical
value. If their mass is above the critical value they can migrate to the stable branch or collapse and form a
black hole. For strongly perturbed Dirac stars from the unstable branch we show that the addition of even a
small amount of mass leads to collapse, while if we decrease their mass they migrate to the stable branch.
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I. INTRODUCTION

The Einstein-Dirac system is composed of the Dirac
equation coupled to general relativity. Spherically sym-
metric static solutions in this system were first found by
Finster et al. [1]. Their solutions describe self-gravitating
configurations of spin-1=2 fermions which are called
Dirac stars.
The study of self-gravitating systems of matter analo-

gous to Dirac stars is extensive. The most heavily studied
are boson stars, which are static solutions in the Einstein-
Klein-Gordon system with a complex scalar field [2,3].
Related to boson stars are oscillatons [4] in that they too are
solutions in the Einstein-Klein-Gordon system but with a
real instead of complex scalar field. Oscillatons, however,
are not static and the spacetime is time dependent and
oscillating. Self-gravitating static solutions also exist with
spin-1 fields: In the Einstein-Yang-Mills system, where the
matter sector is made up of SUð2Þ fields, the solutions are
called Bartnik-McKinnon solutions [5] and in the Einstein-
Proca system, where the matter sector is made up of
complex vector fields, the solutions are called Proca stars
[6]. Upon combining different types of matter, there are
even more possibilities, which include charged boson stars
[7], gravitating magnetic monopoles [8–10], etc.
Once solutions of this sort are found, an immediate

question is, are they stable? In the case of boson stars,
stability was studied in [11,12], where both stable and
unstable branches for the solutions were identified. This
stability analysis was at the level of first order perturbations
about the static solutions and therefore could not accom-
modate large perturbations or the evolution of growing
instabilities. A dynamical stability analysis that could
accommodate these shortfalls was undertaken by Seidel

and co-workers [13,14], where, among other things, they
confirmed the stability of the stable solutions and showed
that the unstable solutions migrate to stable solutions. Their
framework for a dynamical stability analysis was later used
in a study of oscillatons [15,16], where similar results were
found. A similar framework was used for Proca stars in
[17], which also found similar results.
In the original work on Dirac stars, Finster et al. made a

semianalytical stability analysis and determined that there
exist both stable and unstable branches of solutions [1].
Their stability analysis was at the level of first order
perturbations about the static solutions. In this work we
make a dynamical study of the stability of Dirac stars using
the framework of Seidel and Suen [13]. Our results are
similar to results found for boson stars [13,14], oscillatons
[15,16], and Proca stars [17]. Specifically, after identifying
stable (S) and unstable (U) branches for Dirac stars, we
dynamically evolve both weakly and strongly perturbed
S- and U-branch solutions. We corroborate that weakly
perturbed S-branch solutions are stable and show that
weakly perturbed U-branch solutions migrate to the
S-branch. If the mass of a strongly perturbed S-branch
solution stays beneath the critical mass, which is the mass
of the largest mass Dirac star, the system migrates to the
S-branch. If the mass is raised above the critical mass then
the system can either migrate to the S-branch or collapse
and form a black hole. Strongly perturbed U-branch
solutions migrate to the S-branch if the perturbation
decreases their mass and collapses to form a black hole
if their mass is raised as little as a few percent. We focus
exclusively on Dirac stars in the ground state and our work
is entirely classical. There exist also excited states for Dirac
stars [1]. A dynamical stability analysis for excited states
will be presented elsewhere.
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Our interest in Dirac stars is as a solitonic self-gravitating
classical solution to general relativity and with its relation-
ship to comparative systems such as boson stars and
Proca stars [18] (as a classical system, we are not making
comparisons with, say, baryons in compact objects [19]).
Compared to boson stars, the study of Dirac stars is
somewhat limited, though it is currently experiencing a
resurgence of interest. Dirac star solutions have been found
in which the fermions are electrically charged [20,21] and
gauged under SUð2Þ [22]. Dynamical solutions of the
Einstein-Dirac system [23,24] were initiated by Ventrella
and Choptuik [23] in a study of type II critical collapse.
More recently a comparison of the space of static solutions
for boson, Dirac, and Proca stars was given in [18,25],
Dirac star solutions in which the fermions have interactions
were found in [26–28], and for the first time spinning Dirac
stars were solved for in [29].
In the next section we give a detailed review of the

spherically symmetric Einstein-Dirac system. This includes
coupling spinors to curved space, the derivation of the
Dirac spinor ansatz and energy-momentum tensor, and the
scaling of fields to form dimensionless quantities. In
Sec. III we review spherically symmetric static solutions
of the Einstein-Dirac system, i.e., Dirac stars, and in
Sec. IV we present our dynamical stability analysis. We
conclude in Sec. V.

II. EINSTEIN-DIRAC

In this section we derive the equations for the Einstein-
Dirac system. The equations will be time dependent and
describe self-gravitating spin-1=2 fermions in spherical
symmetry. In the first subsection we review coupling
spinors to curved space using the vierbein formalism.
Subsequent subsections derive the form of the fermion
wave function we shall use, which is often called the Dirac
spinor ansatz, and the energy-momentum tensor. The final
subsection discusses scaling and dimensionless variables
used in our numerical studies.

A. Spinors in curved space

Coupling spinors to gravity is most commonly done in
the vierbein formalism [30–32], where the vierbein, eaμ, is
defined by

gμν ¼ eaμeaν; ηab ¼ eaμebμ: ð1Þ

We use lowercase greek letters for “curved space indices”
and lowercase latin letters from the beginning of the
alphabet for “flat space indices.” gμν is the curved space
metric of general relativity and ηab is the flat space
(Minkowski) metric. Curved space indices are raised and
lowered with the curved space metric and flat space indices
are raised and lowered with the flat space metric. We adopt

the mostly plus metric signature ð−;þ;þ;þÞ and use units
such that c ¼ ℏ ¼ 1, but retain the gravitational constantG.
The action for our system is

S ¼
Z

d4xe

�
R

16πG
þ L

�
; ð2Þ

where R is the Ricci scalar, e ¼ ffiffiffiffiffiffi−gp
is the determinant of

the vierbein, and g is the determinant of the metric. This
action minimally couples the matter sector Lagrangian, L,
to gravity. Our matter sector is composed of massive
fermions with Lagrangian

L ¼
X
x

�
1

2
ψ̄xγ

μ∇μψx −
1

2
ð∇μψ̄xÞγμψx − μψ̄xψx

�
; ð3Þ

where ψx is a four-component Dirac spinor and ψ̄x is its
adjoint. We have allowed for the possibility of more than
one fermion, labeled by x, with common mass μ. We will
see below that spherical symmetry requires at least two
fermions.
γμ are curved space γ-matrices and are related to flat

space γ-matrices, γa, through the vierbein:

γμ ¼ eaμγa; γa ¼ eaμγμ: ð4Þ

γ-matrices are defined as usual by their anticommutation
relations:

fγμ; γνg ¼ 2gμν; fγa; γbg ¼ 2ηab: ð5Þ

The specific representations we choose for the γa-matrices,
vierbein, metric, and adjoint spinor are given in the next
subsection.
The covariant derivatives in Eq. (3) are defined by

∇μψx ¼ ∂μψx þ
1

4
ωμ

abγabψx;

∇μψ̄x ¼ ∂μψ̄x −
1

4
ψ̄xωμ

abγab; ð6Þ

where γab ≡ γ½aγb� ¼ ½γa; γb�=2 and ωμ
ab is the spin

connection:

wμab ¼
1

2
eaαð∂μebα − ∂αebμÞ þ

1

2
ebβð∂βeaμ − ∂μeaβÞ

−
1

2
ecμeaαebβð∂αecβ − ∂βecαÞ: ð7Þ

The spin connection plays a role similar to the Christoffel
connection, but for spinors and objects with flat space
indices. It can be written in terms of the Christoffel
connection,

ωμab ¼ eaνebλΓν
μλ − ebλ∂μeaλ; ð8Þ
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which may be a more efficient way of computing it if the
Christoffel connection is known.
The Dirac equation is obtained as the equations of

motion of the Lagrangian in Eq. (3):

ðγμ∇μ − μÞψx ¼ 0; ð∇μψ̄xÞγμ þ μψ̄x ¼ 0: ð9Þ
Since the Lagrangian possess a global Uð1Þ symmetry for
each fermion, ψx → eiβxψx, where βx is a constant, there
exists a conserved current for each fermion,

jμx ¼ −iψ̄xγ
μψx; ð10Þ

with associated conserved charge

Qx ¼
Z
Σ
d3x

ffiffiffi
γ

p ð−nμjμxÞ; ð11Þ

where nμ is a timelike unit vector normal to the spatial slice
Σ and γ is the determinant of the spatial metric on Σ. The
conserved charge gives the particle number for each type of
fermion.
The Einstein field equations,

Gμν ¼ 8πGTμν; ð12Þ

where Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor, are obtained by variation of the action
(2) with respect to the vierbein or equivalently variation
with respect to the metric. This variation gives for the
energy-momentum tensor

Tμν ¼
X
x

Tx
μν; ð13Þ

where

Tx
μν ¼ −

1

4
½ψ̄xγμ∇νψx þ ψ̄xγν∇μψx

− ð∇μψ̄xÞγνψx − ð∇νψ̄xÞγμψx�: ð14Þ

For a pedagogical derivation of the Dirac energy-
momentum tensor see, for example, [32,33].

B. Representations

The equations in the previous subsection were written
down without choosing a specific form, or representation,
for quantities such as the vierbein and γ-matrices. Making a
choice of representation helps in deriving the system of
equations that we will solve numerically. In the following,
when specifying explicit components, we use a ¼ 0, 1, 2, 3
and μ ¼ t; r; θ;ϕ.
We adopt the conventions used byVentrella andChoptuik

[23] for the metric, the flat and curved space γ-matrices, the
vierbein, and the adjoint spinor. Specifically, we take the
metric to have the spherically symmetric form

ds2 ¼ −α2ðt; rÞdt2 þ a2ðt; rÞdr2 þ r2dθ2 þ r2sin2θdϕ2;

ð15Þ

where αðt; rÞ and aðt; rÞ are metric functions that we solve
for using the Einstein field equations. This is not the most
general spherically symmetric form for the metric [34,35],
but it is a particularly simple form and convenient for our
purposes.
For flat space γa-matrices we use the Dirac representation

γ0 ¼ i

�
1 0

0 −1

�
; γj ¼ i

�
0 σj

−σj 0

�
; ð16Þ

where j ¼ 1, 2, 3 and where the σj are the standard Pauli
matrices

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ð17Þ

We take the curved space γμ-matrices to be given by

γt ¼ γ0

α
; γr ¼ γ3

a
; γθ ¼ γ2

r
; γϕ ¼ γ1

r sinθ
; ð18Þ

which fixes the vierbein through γμ ¼ eaμγa. The particular
choice in Eq. (18) of associating the angular components θ
and ϕ with the off-diagonal Pauli matrices σ1 and σ2 is not
strictly necessary (we could have, for example, taken the
vierbein to be diagonal), but it simplifies separating out the
angular dependence in the Dirac equation, which we do in
the next subsection.
Lastly, we take the adjoint spinor to be defined by

ψ̄ ¼ ψ†β; β ¼ −iγ0; ð19Þ
where β is called the Hermitizing matrix. We note that the
overall sign of the Lagrangian in Eq. (3) and the conserved
current in Eq. (10) assumed this definition.

C. Equations of motion and the ansatz

In this subsection we find a form for the Dirac spinor that
is consistent with the Dirac equation in Eq. (9) and the
spherically symmetric metric in Eq. (15). The standard
approach is to follow Unruh [36] and Chandrasekhar
[37,38] and look for separable solutions:

ψ ¼

0
BBB@

ψ1ðt; r; θ;ϕÞ
ψ2ðt; r; θ;ϕÞ
ψ3ðt; r; θ;ϕÞ
ψ4ðt; r; θ;ϕÞ

1
CCCA ¼

0
BBB@

R1ðt; rÞΘ1ðθ;ϕÞ
R2ðt; rÞΘ2ðθ;ϕÞ
R3ðt; rÞΘ3ðθ;ϕÞ
R4ðt; rÞΘ4ðθ;ϕÞ

1
CCCA: ð20Þ

Note that the R’s and Θ’s are in general complex. Plugging
this into the Dirac equation in Eq. (9) and using the metric
in Eq. (15), we end up with the following four equations:
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ir
α

�
_R1

R1

þ _a
2a

�
R1

R4

Θ1

Θ3

þ ir
a

�
R0
3

R3

þ α0

2α
þ 1

r

�
R3

R4

− μr
R1

R4

Θ1

Θ3

¼ −
�∂θΘ4

Θ4

þ cot θ
2

�
Θ4

Θ3

−
i

sin θ

∂ϕΘ4

Θ4

Θ4

Θ3

;

ir
α

�
_R2

R2

þ _a
2a

�
R2

R3

Θ2

Θ4

−
ir
a

�
R0
4

R4

þ α0

2α
þ 1

r

�
R4

R3

− μr
R2

R3

Θ2

Θ4

¼
�∂θΘ3

Θ3

þ cot θ
2

�
Θ3

Θ4

−
i

sin θ

∂ϕΘ3

Θ3

Θ3

Θ4

;

ir
α

�
_R3

R3

þ _a
2a

�
R3

R2

Θ3

Θ1

þ ir
a

�
R0
1

R1

þ α0

2α
þ 1

r

�
R1

R2

þ μr
R3

R2

Θ3

Θ1

¼ −
�∂θΘ2

Θ2

þ cot θ
2

�
Θ2

Θ1

−
i

sin θ

∂ϕΘ2

Θ2

Θ2

Θ1

;

ir
α

�
_R4

R4

þ _a
2a

�
R4

R1

Θ4

Θ2

−
ir
a

�
R0
2

R2

þ α0

2α
þ 1

r

�
R2

R1

þ μr
R4

R1

Θ4

Θ2

¼
�∂θΘ1

Θ1

þ cot θ
2

�
Θ1

Θ2

−
i

sin θ

∂ϕΘ1

Θ1

Θ1

Θ2

; ð21Þ

where a dot denotes a t-derivative and a prime denotes an
r-derivative. To complete the separation of variables we
assume

R2 ¼ iR1; R4 ¼ iR3; Θ3 ¼Θ1; Θ4 ¼−Θ2; ð22Þ

which reduces the above four equations to two independent
equations.
We focus on the resulting angular equations first. They

can be written as

ðð−1=2Þþ Θ2 ¼ −nΘ1; ððþ1=2Þ
− Θ1 ¼ nΘ2; ð23Þ

where n is the separation constant and

ððsÞ� ¼∓ i
sin θ

∂ϕ − ∂θ � s cot θ: ð24Þ

ððsÞþ is the raising operator and ððsÞ− is the lowering operator
for spin-weighted spherical harmonics, sYlm, of spin
weight s:

ððsÞ� ðsYlmÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl ∓ sÞðl� sþ 1Þ

p
ðs�1YlmÞ: ð25Þ

We thus find that Θ1 ¼ þ1=2Ylm
and Θ2 ¼ −1=2Ylm

are
spin-weighted spherical harmonics. We will find below that
having only one spin-1=2 fermion violates spherical sym-
metry and that to preserve spherical symmetry we need
two (or more) fermions. We consider only two fermions
and use Θ1 ¼ 1=2Yð1=2Þð1=2Þ and Θ2 ¼ −1=2Yð1=2Þð1=2Þ for one

fermion and Θ1 ¼ 1=2Yð1=2Þð−1=2Þ and Θ2 ¼ −1=2Yð1=2Þð−1=2Þ
for the other fermion [1,23], where the spin-weighted
spherical harmonics are given by

�1=2Yð1=2Þð1=2Þ ¼
1

2
ffiffiffi
π

p eiϕ=2y�ðθÞ;

�1=2Yð1=2Þð−1=2Þ ¼ � 1

2
ffiffiffi
π

p e−iϕ=2y∓ðθÞ; ð26Þ

with

y�ðθÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ cos θ

2

r
¼ sinðθ=2Þ

cosðθ=2Þ : ð27Þ

Our choice of spin-weighted spherical harmonics fixes the
separation constant to

n ¼ −1: ð28Þ

Recall that the four equations in Eq. (21) were reduced to
two independent equations by assuming Eq. (22). Having
fixed the separation constant in Eq. (28) we can now write
down the radial equations of motion. Before doing so it is
convenient to define the complex functions Fðt; rÞ and
Gðt; rÞ as

R1ðt; rÞ≡ Fðt; rÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt; rÞp ; R2ðt; rÞ≡ Gðt; rÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt; rÞp : ð29Þ

Extracting out the factors of 1=r
ffiffiffi
a

p
removes an inconven-

ient time derivative that would otherwise be in the radial
equations of motion, which are now given by

_F ¼ −
αG
r

�
1þ r

a

�
G0

G
−

a0

2a
þ α0

2α

�
þ iμr

F
G

�
;

_G ¼ αF
r

�
1 −

r
a

�
F0

F
−

a0

2a
þ α0

2α

�
þ iμr

G
F

�
: ð30Þ

We end this subsection by giving the final form of our
Dirac spinors:

ψ� ¼ e�iϕ=2

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πaðt; rÞp

0
BBB@

Fðt; rÞy�ðθÞ
�iFðt; rÞy∓ðθÞ
Gðt; rÞy�ðθÞ

∓ iGðt; rÞy∓ðθÞ

1
CCCA; ð31Þ

where the index x, which labeled the particular fermion, has
been replaced with �. The equation above is often referred
to as the Dirac spinor ansatz for spherical symmetry.
Though it does not look the same as forms found in the
literature [1,18,23], we show in Appendix A that it is
equivalent.
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D. Energy-momentum tensor

The equation for the energy-momentum tensor of an
individual fermion, Tx

μν, is given in Eq. (14). For a time-
dependent energy-momentum tensor to be spherically
symmetric its only nonvanishing components can be the
diagonal components and Ttr ¼ Trt. The components of
the energy-momentum tensor for the Dirac spinor ψ� in
Eq. (31) has nonvanishing T�

tϕ and T�
rϕ and thus breaks

spherical symmetry. The total energy-momentum tensor,

Tμν ¼ Tþ
μν þ T−

μν; ð32Þ

however, is spherically symmetric. In this way we can
understand why two (or more) fermions are necessary to
preserve spherical symmetry. The nonvanishing compo-
nents of the spherically symmetric energy-momentum
tensor are

Ttt ¼
−α

2πr2a
ImðF� _F þ G� _GÞ;

Ttr ¼
−1
4πr2

Im

�
α

a
ðF�F0 þ G�G0Þ − ð _FG� þ F� _GÞ

�
;

Trr ¼
1

2πr2
ImðF0G� þ F�G0Þ;

Tθθ ¼
1

2πra
ImðF�GÞ;

Tϕϕ ¼ Tθθsin2θ: ð33Þ

E. Equations

We can now list the complete set of equations. In doing
this we decompose the complex fermion functions F and G
into their real and imaginary parts:

Fðt; rÞ ¼ F1ðt; rÞ þ iF2ðt; rÞ;
Gðt; rÞ ¼ G1ðt; rÞ þ iG2ðt; rÞ: ð34Þ

The evolution equations for the matter sector come from the
radial equations of motion in Eq. (30), which can be written

_F1 ¼ −
α

r
ðG1 − μrF2Þ −

ffiffiffi
α

a

r
∂r

� ffiffiffi
α

a

r
G1

�
;

_F2 ¼ −
α

r
ðG2 þ μrF1Þ −

ffiffiffi
α

a

r
∂r

� ffiffiffi
α

a

r
G2

�
;

_G1 ¼
α

r
ðF1 − μrG2Þ −

ffiffiffi
α

a

r
∂r

� ffiffiffi
α

a

r
F1

�
;

_G2 ¼
α

r
ðF2 þ μrG1Þ −

ffiffiffi
α

a

r
∂r

� ffiffiffi
α

a

r
F2

�
: ð35Þ

The metric functions aðt; rÞ and αðt; rÞ obey the constraint
equations [34,35]

α0

α
¼ 4πGra2Srr þ

a2 − 1

2r
;

a0

a
¼ 4πGra2ρ −

a2 − 1

2r
; ð36Þ

which follow from the Einstein field equations, where the
energy density, ρðt; rÞ, and the stress, Srrðt; rÞ, follow from
the energy-momentum tensor and are given by

ρ¼ 1

2πr2a2

�
aμðF2

1þF2
2−G2

1−G2
2Þþ

2a
r
ðF1G2−F2G1Þ

þF1G0
2−F2G0

1þG1F0
2−G2F0

1

�
;

Srr¼
1

2πr2a2
ðF1G0

2−F2G0
1þG1F0

2−G2F0
1Þ: ð37Þ

In the following sections we will solve these equations
numerically for both static and dynamic solutions. Our
dynamic solutions will be used to study the stability of the
static solutions.
The metric in Eq. (15) is of the Schwarzschild form,

motivating us to write a−2ðt; rÞ ¼ 1–2Gmðt; rÞ=r. Writing
the bottom equation in Eq. (36) in terms of mðt; rÞ gives

m0 ¼ 4πr2ρ: ð38Þ

This tells us that we can interpret

mðt; rÞ ¼ r
2G

�
1 −

1

a2ðt; rÞ
�

ð39Þ

as the total mass inside a radius r and that the large r limit
gives the total integrated energy, i.e., the Arnowitt-Deser-
Misner (ADM) mass:

M ¼ lim
r→∞

mðt; rÞ: ð40Þ

We shall make frequent use of these mass equations.
The equation for the conserved charge, Q�, in Eq. (11)

depends on the normal vector nμ and the spatial metric γ.
For our metric (15), these are nμ ¼ ð−α; 0; 0; 0Þ and γ ¼
a2r4 sin2 θ [34,35]. Subbing in the Dirac spinor in Eq. (31)
we find the same answer for ψþ and ψ−, and thus drop the
� on Q:

Q ¼
Z

ðjFj2 þ jGj2Þdr

¼
Z

ðF2
1 þ F2

2 þG2
1 þG2

2Þdr; ð41Þ

where we recall that Q is equal to the particle number for
each type of fermion.
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F. Scaling

In numerical work it is important to use dimensionless
quantities:

r̄≡ μr; t̄≡ μt;

F̄1;2 ≡
ffiffiffiffiffiffiffi
Gμ

p
F1;2; Ḡ1;2 ≡

ffiffiffiffiffiffiffi
Gμ

p
G1;2;

ρ̄≡ ð4πG=μ2Þρ; S̄rr ≡ ð4πG=μ2ÞSrr; ð42Þ

where bars indicate the dimensionless versions and the
factors of 4π are included for convenience. With this
scaling, the fermion mass, μ, is absorbed into the coor-
dinates and fields and does not have to be specified. The
total mass inside a radius r, mðt; rÞ scales as

m̄≡ ðμ=m2
PlÞm; ð43Þ

where mPl ¼ 1=
ffiffiffiffi
G

p
is the Planck mass. The ADM mass,

M, which is given by mðt; rÞ in the limit r → ∞, scales
identically:

M̄ ¼ ðμ=m2
PlÞM: ð44Þ

An alternative scaling [1,18], which we will occasionally
present, is obtained as follows. The equation for the
conserved charge, Q, is given in Eq. (41). Using the
scaling in Eq. (42) this becomes

Q̄ ¼
Z

ðjF̄j2 þ jḠj2Þdr̄; ð45Þ

where

Q̄≡ ðμ=mPlÞ2Q: ð46Þ

From Eqs. (46) and (44) we have

μ

mPl
¼ ðQ̄=QÞ1=2; M

mPl
¼ ðQ=Q̄Þ1=2M̄: ð47Þ

The (unscaled) physical charge Q represents the number of
each type of fermion. Classically Q can be any positive
number. In [18] it was argued that quantization enforces
Q ¼ 1. Although our treatment is entirely classical we will
at times review results for Q ¼ 1. When doing so, we will
use tildes to indicate dimensionless quantities. Upon setting
Q ¼ 1 Eq. (47) becomes

μ̃≡ μ

mPl

����
Q¼1

¼ Q̄1=2;

M̃≡ M
mPl

����
Q¼1

¼ M̄

Q̄1=2 : ð48Þ

III. STATIC SOLUTIONS

In this section we review static solutions. Static solutions
were first found in [1] and have been studied by various
authors [18,20–22,25–28]. By static we mean only that the
spacetime is time independent (the matter fields may retain
a time dependence). For the spacetime to be time inde-
pendent, the components of the energy-momentum tensor
in Eq. (33) must be time independent and Ttr must vanish.
This can be accomplished with matter fields of the form

Fðt; rÞ ¼ fðrÞe−iωt; Gðt; rÞ ¼ igðrÞe−iωt; ð49Þ

where fðrÞ and gðrÞ are real functions and ω is a real
constant. We assume ω is positive since, as shown below,
this leads to a positive energy density. The matter sector of
static solutions is then composed of the two real functions
fðrÞ and gðrÞ and the solutions can be labeled by ω.
When constructing static solutions it is convenient to

trade the metric functions aðrÞ and αðrÞ, which are now
time independent, for the mass function mðrÞ in Eq. (39)
and

σðrÞ≡ aðrÞαðrÞ: ð50Þ

Constraint equations for α, a, and m are given in Eqs. (36)
and (38) and evolution equations for F and G are given in
Eq. (30). Moving to the time-independent functions mðrÞ,
σðrÞ, fðrÞ, and gðrÞ, we have

m0 ¼ 4πr2ρ;

σ0

σ
¼ 4πGr

N
ðρþ SrrÞ;

f0 ¼ f

�
Z
2
þ 1

r
ffiffiffiffi
N

p
�
− g

�
μffiffiffiffi
N

p þ ω

Nσ

�
;

g0 ¼ g

�
Z
2
−

1

r
ffiffiffiffi
N

p
�
− f

�
μffiffiffiffi
N

p −
ω

Nσ

�
; ð51Þ

where

N ¼ 1 −
2Gm
r

;

ρ ¼ ω

2πr2σ
ðf2 þ g2Þ;

Srr ¼
N

2πr2
ðfg0 − f0gÞ;

Z ¼ 4πGr
N

ðρ − SrrÞ −
2Gm
r2N

: ð52Þ

Note that Srr depends on fg0 − f0g, which is easily written
in terms of undifferentiated fields using the formulas for f0
and g0 in Eq. (51):
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fg0 − f0g ¼ ωðf2 þ g2Þ
Nσ

−
2fg

r
ffiffiffiffi
N

p −
μðf2 − g2Þffiffiffiffi

N
p : ð53Þ

As promised, the energy density, ρ in Eq. (52), is positive
for positive ω.
Once appropriate boundary conditions are identified, the

equations above can be solved numerically using standard
integration techniques. Being a numerical solution, we
move to the dimensionless variables defined in Eq. (42)
along with the additional dimensionless quantity

ω̄≡ ω=μ: ð54Þ

Inner boundary conditions near r̄ ¼ 0 are found by expand-
ing the fields in a power series, plugging the power series
into Eq. (51), and then equating coefficients of like powers.
We find the solutions

m̄¼Oðr̄3Þ; σ ¼ σ0 þ
1

3
f̄21ð4ω̄− σ0Þr̄2 þOðr̄4Þ;

f̄ ¼ f̄1r̄þOðr̄3Þ; ḡ2 ¼
f̄1ðω̄− σ0Þ

3σ0
r̄2 þOðr̄4Þ; ð55Þ

which are parametrized in terms of the two unknown
constants σ0 and f̄1. Outer boundary conditions for
r̄ → ∞ can be determined in two ways. First, we require
r̄2ρ̄ → 0 as r → ∞ so that the total integrated energy is
finite, which requires f̄, ḡ → 0. Second, we assume the
spacetime is asymptotically Schwarzschild and thus σ → 1.
To integrate the system of equations in Eq. (51) outward

from some small r̄min, three constants must be specified: σ0,
f̄1, and ω̄. A look at the various equations shows, however,
that this can be reduced to two constants by defining

σ̂ðrÞ≡ σðrÞ=σ0; ω̂≡ ω̄=σ0; ð56Þ

and then replacing all σ and ω̄ in favor of σ̂ and ω̂. The inner
and outer boundary conditions for σ̂ are, respectively,

σ̂ ¼ 1þ 1

3
f̄21ð4ω̂ − 1Þr̄2 þOðr̄4Þ; σ̂ → 1=σ0: ð57Þ

Previously we knew the outer boundary condition of σ and
parametrized its inner boundary condition in terms of the
unknown constant σ0. By moving to σ̂ we have switched
this, so that the unknown constant σ0 now parametrizes the
outer boundary condition. The value in doing this is that
now only two constants, f̄1 and ω̂, must be specified at the
inner boundary.
We can now solve for static solutions using the shooting

method. We begin by choosing values for f̄1 and ω̂. With
these we know the values of the fields at some small r̄min
through Eqs. (55) and (57). We can then integrate the
solution outward from r̄min using the system of equations in
Eq. (51) (but with σ and ω̄ replaced with σ̂ and ω̂) and
determine the value of the fields at some large r̄. In general,
the integrated solution at large r̄ will not equal the outer
boundary conditions f̄; ḡ → 0. We thus vary the constants
f̄1 and ω̂ until it does. Once the outer boundary conditions
are satisfied, we have found a static solution. Given a static
solution, the asymptotic value of m̄ is the ADM mass
M̄ ¼ Mðμ=m2

PlÞ and the asymptotic value of 1=σ̂ is σ0, from
which ω̄ ¼ σ0ω̂.
We mentioned in the Introduction that we only consider

the ground state in this work. Excited states are static
solutions with nodes, which are points where f̄; ḡ ¼ 0 other
than at r̄ → ∞. A static solution with n nodes is said to be
in the nth excited state.
Figure 1 displays the space of static solutions in a

number of different ways. All of the curves in Fig. 1 are
equivalent, in that every curve has a one-to-one correspon-
dence with every other curve. The points that make up the
curves represent static solutions. Some, though not all, of

(a) (b) (c)

FIG. 1. The space of static Dirac stars is displayed in various ways. Each curve has a one-to-one correspondence with every other curve
and, in this sense, all curves are equivalent. Every point on a curve represents a static solution. M̄ is the ADM mass, M̄ − 2Q̄ is the
binding energy, and ω̄ is the oscillation frequency. M̃, M̃ − 2μ̃, and μ̃ are the ADM mass, binding energy, and fermion mass when we
restrict to the single particle condition Q ¼ 1. r̄ðamaxÞ is the location where the metric function a has its maximum value. The S-branch
is colored (solid) green and the U-branch is colored both (dashed) orange and (dotted) red. The Dirac star with the largest mass is called
the critical solution and is labeled C in the top curve in (a) (and occurs on all curves where green turns to orange). The value of all plotted
quantities for the critical solution is given in Table I.
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the curves have been presented elsewhere. The top curves
in Figs. 1(a) and 1(b) reproduce figures in [18]. The top
curve in Fig. 1(a) is a straightforward presentation of the
space of static solutions, showing the ADM mass, M̄, as a
function of the frequency ω̄. We see that static solutions
only exist in the range 0.733 < ω̄ < 1. Since ω̄ ¼ ω=μ,
solutions only exist for ω < μ. There is reason to believe
that the spiral structure continues indefinitely, well past
what we have plotted [1]. The top curve in Fig. 1(b) is
similar in that it plots the ADM mass, M̃, but fixes Q ¼ 1.
We see that with Q ¼ 1, static solutions exist only for
0 < μ̃ < 0.607, where μ̃ ¼ μ=mPl.
The bottom curves in Figs. 1(a) and 1(b) display the

binding energy [the bottom curve in Fig. 1(b) reproduces a
figure in [1] ]: M is the total energy in the system and 2Qμ
is the total rest energy, since Q gives the fermion number
for each type of fermion. Their difference gives the total
kinetic and gravitational energy or binding energy. Scaling
gives M̄ − 2Q̄ and setting Q ¼ 1 gives M̃ − 2μ̃. A neces-
sary but insufficient condition for stability of a static
solution is that the binding energy is negative. The
transition from negative to positive binding energy occurs
at ω̄ ¼ 0.743 and μ̃ ¼ 0.555.
The two curves in Fig. 1(c) display the ADM mass (M̄

and M̃) as a function of r̄ðamaxÞ, where r̄ðamaxÞ is the value
of r̄ where the metric function aðrÞ has its maximum. We
will make heavy use of the bottom curve in Fig. 1(c) when
studying stability in the next section. The curves in Fig. 1(c)
are analogous to curves used in stability studies of boson
stars [13,14] and oscillatons [15,16].
Finster et al. studied the stability of these static solutions

semianalytically [1], finding them stable over the portion of
the curves in Fig. 1 that we have colored (solid) green and
unstable otherwise. Though they did not mention it in [1],
the transition point from stable to unstable occurs where the
ADM mass (M̄ or M̃) takes its maximum value, which is
where green turns to (dashed) orange in all curves in Fig. 1.
This connects well with boson stars [11–14], oscillatons
[15,16], and Proca stars [6,17], for they too transition from
stable to unstable at the solution with the largest mass.
The stability analysis in [1] was semianalytical and based

on first order perturbations of the static solutions. For this
reason it could not treat large perturbations or the evolution
of growing instabilities. In the next section we dynamically
evolve Dirac stars with both small and large perturbations.
We corroborate that the green portions of the curves in
Fig. 1, which, as mentioned, extend to the largest mass
solution, are stable. We refer to the green portion as the S-
branch. The remainder of the curves represent intrinsically
unstable static solutions and we refer to this portion of the
curves as theU-branch. We have colored theU-branch both
(dashed) orange and (dotted) red for the following reason.
In the next section we will show that solutions on the
orange portion of the U-branch, although unstable, when
dynamically evolved migrate to the S-branch. It may very

well be that solutions on the red portion of the U-branch
also migrate to the S-branch when dynamically evolved,
but, as we will see in the next section, it is challenging to
determine whether the solution migrates to the S-branch or
dissipates to infinity. The red portion of the U-branch, then,
is that portion of the U-branch that we do not study
dynamically.
We refer to the largest mass solution as the critical solu-

tion and the largest mass as the critical mass. We marked
the critical solution only on the top curve in Fig. 1(a) (the
critical solution lies at the transition between the green and
orange portions on all curves) and give the values of all
plotted quantities for the critical solution in Table I. For
completeness, also in Table I is the value of all plotted
quantities for when the binding energy equals zero.
We end this section by displaying individual solutions in

Fig. 2. The top row of Fig. 2 displays solutions for the
(solid green) S-branch and (dashed orange portion of the)
U-branch and includes the critical solution. The middle row
displays U-branch solutions from the bottom (dotted red)
branch in the top curve of Fig. 1(a). The bottom row
displays additional U-branch solutions from the middle
(dotted red) branch in the top curve of Fig. 1(a). The left
column gives the matter functions f̄ and ḡ, both of which
are positive. The center column shows various metric
functions: a2 ¼ grr, σ, and m. The right column gives
the radial energy density r̄2ρ̄ ¼ 4πr2ρ=m2

Pl.
A couple comments are in order. In Fig. 2(c) we can see

the radial energy density flattening out and its peak moving
to larger r̄ as ω̄ → 1. This same flattening can be seen for f̄,
ḡ, and a2 as well as the ADM mass (i.e., the large r̄ limit of
m̄) decreasing in Figs. 2(a) and 2(b). Solutions in the limit
ω̄ → 1 are referred to as “dilute.”
We can also see in Fig. 2 that as we move from the

S-branch to the U-branch the peak of a2 grows and the
lapse, α, which is equal to σ at the origin, drops toward
zero. Both of these are indicators for these Dirac stars being
on the verge of collapsing to form a black hole. We shall see
that this is the case in the next section.

IV. DYNAMIC SOLUTIONS

In the previous section we gave a brief discussion of
stability for static solutions. In this section we make a
detailed numerical investigation of stability by dynamically

TABLE I. The row for C gives the value of all plotted quantities
in Fig. 1 for the critical solution. The row for BE gives the value
of all plotted quantities in Fig. 1 for when the binding energy
vanishes, where the binding energy is plotted in the bottom
curves of Figs. 1(a) and 1(b).

ω̄ μ̃ M̄ M̃ M̄ − 2Q̄ M̃ − 2μ̃ r̄ðamaxÞ
C 0.830 0.607 0.709 1.168 −0.0279 −0.0459 3.579
BE 0.743 0.555 0.617 1.111 0 0 1.842
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evolving perturbed static solutions. We begin with a brief
summary of our findings. As mentioned in the Introduction,
our investigation uses the framework of Seidel and Suen
[13] and our results are similar to that found in studies of
boson stars [13,14], oscillatons [15,16], and Proca stars
[17]. We identify stable (S) and unstable (U) branches of
static solutions. When an S-branch Dirac star is given a
small perturbation and then evolved, it oscillates about the
original solution. When it is evolved after being given a
large perturbation that does not increase its ADM mass
above the critical mass, the system migrates to the S-
branch. If, on the other hand, the perturbation increases the
ADM mass above the critical mass, there are two possibil-
ities: the system can either migrate to the S-branch or
collapse and form a black hole.
When a U-branch Dirac star is given a small perturba-

tion, it migrates to the S-branch. For large perturbations, if
the perturbation increases its mass, even by as little as a few
percent, it collapses to form a black hole, while if it
decreases its mass, it again migrates to the S-branch.
In the next subsection we describe the code we use to

dynamically evolve the Einstein-Dirac system. In Sec. IV B
we give results for small and large perturbations of
S-branch Dirac stars and in Sec. IV C we do the same
for U-branch Dirac stars.

A. Numerics

The matter fields to solve for are F1ðt; rÞ, F2ðt; rÞ,
G1ðt; rÞ, and G2ðt; rÞ, which obey the (time-dependent)
evolution equations in Eq. (35). The metric functions to
solve for are aðt; rÞ and αðt; rÞ, which obey the (time-
dependent) constraint equations in Eq. (36). Since we are
solving these equations numerically, we move to the
dimensionless variables defined in Eq. (42).
Dynamical solutions require both inner and outer boun-

dary conditions. For inner boundary conditions we use
aðt; 0Þ ¼ 1, which is the flat space value a has when inside
a spherically symmetric matter distribution. A look at the
constraint equation for α in Eq. (36) shows that α can be
multiplied by any constant and still be a solution. We set
αðt; 0Þ ¼ 1, but after it has been solved for on a time slice
we scale it so that αðt; rÞ ¼ 1=aðt; rÞ at the outer boundary,
since we are assuming the spacetime is asymptotically
Schwarzschild. We take the parity of a and α to be even
near the origin. To determine the inner boundary conditions
for the matter fields, we again plug in power series
expansions (but this time with time-dependent coefficients)
into the system of Eqs. (35) and (36). We find that near
the origin F1;2 ¼ OðrÞ and is odd and G1;2 ¼ Oðr2Þ and
is even.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Various static solutions are plotted. The left column (a, d, g) plots the fermion functions f̄ and ḡ, the middle column (b, e, h)
plots the metric functions a2, σ, and m̄, and the right column (c, f, i) plots the radial energy density r̄2ρ ¼ 4πr2ρ=m2

Pl. The top row (a, b,
c) displays (solid green) S-branch and (dashed orange) U-branch solutions. From bottom to top in a2, the solutions displayed are
ω̄ ¼ 0.93, 0.9, 0.87, 0.83, 0.8, 0.75, where ω̄ ¼ 0.83 is the critical solution and is colored black. The middle row (d, e, f) displays U-
branch solutions from the bottom (dotted red) branch in the top curve of Fig. 1(a). From bottom to top in a2, the solutions displayed are
ω̄ ¼ 0.75, 0.8, and 0.85. The bottom row (g, h, i) displays U-branch solutions from the middle (dotted red) branch in the top curve of
Fig. 1(a). From bottom to top for a2, the solutions displayed are ω̄ ¼ 0.858, 0.844, and 0.83. (For consistency, all curves in the middle
and bottom rows should be dotted. We refrained from doing so to improve clarity of the curves.)
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The outer boundary of our computational domain does
not extend to r ¼ ∞ and thus we need to allow fields to exit
the computational domain smoothly. We adopt the standard
practice of assuming spacetime is flat at the outer boundary
and thus ignore possible backscattering from the curvature
of spacetime there. We begin by taking the large r limit
of the matter equations in Eq. (35) and approximating
a ¼ α ¼ 1. Taking a time derivative of the resulting set of
equations and then combining them we find

∂2
t̄ F̄1 ¼ ∂2

r̄ F̄1; ∂2
t̄ F̄2 ¼ ∂2

r̄ F̄2;

∂2
t̄ Ḡ1 ¼ ∂2

r̄ Ḡ1; ∂2
t̄ Ḡ2 ¼ ∂2

r̄ Ḡ2; ð58Þ

which are one-dimensional (nonspherical) wave equations.
Assuming only outgoing waves exist at the outer boundary,
our outer boundary conditions are [23]

_̄F1 ¼ −F̄0
1;

_̄F2 ¼ −F̄0
2;

_̄G1 ¼ −Ḡ0
1;

_̄G1 ¼ −Ḡ0
2; ð59Þ

where dots and primes now denote t̄- and r̄-derivatives.
We composed second order accurate code to dynami-

cally solve the massive Einstein-Dirac system. We solve the
constraint equations in Eq. (36) using second order Runge-
Kutta and the evolution equations in Eq. (35) using the
method of lines and third order Runge-Kutta. To improve
stability we use centered sixth order finite differencing for
all spatial derivatives and include fourth order Kreiss-
Oliger dissipation in the evolution equations [34]. Unless
otherwise noted, all results presented are made with grid
spacingΔr̄ ¼ 0.01, an outer boundary at r̄max ¼ 100.005, a
time step of Δt̄=Δr̄ ¼ 0.5, and evolutions run up until
t̄ ¼ 104.
Determining stability dynamically requires particularly

long run-times. With an outer boundary at about r̄max ¼
100 there will inevitability be reflections. We have
tested our results by extending the outer boundary and
found reflections to have a nonzero but small and mostly

negligible effect on results. In Appendix B we discuss
various tests of our code.

B. Perturbations of S-branch solutions

Figure 1 displays the space of static solutions. We
colored (solid) green the portion of the curves in Fig. 1
which represent stable solutions and we refer to the green
portion as the S-branch. Figure 2 displays a few S-branch
solutions. In this subsection we use perturbed S-branch
solutions as initial data and then dynamically evolve them
forward in time. We begin with weak perturbations before
moving to strong perturbations. As is well known, the
discretization error inherent in numerical solutions acts as a
weak perturbation [13–17].
In Fig. 3(a) we display a time evolution of a2max, the

maximum value of the metric function a2 ¼ grr, for the
weakly perturbed S-branch solution with ω̄ ¼ 0.86.
Figure 3(a) clearly shows oscillations, but it also demon-
strates stability in that it is absent of decay or any major
change in the configuration of the solution. The oscillations
in Fig. 3(a) are called quasinormal modes and we use ω̄qn to
label the quasinormal frequency of these oscillations.
Figure 3(a) is typical in that evolutions of other weakly
perturbed S-branch solutions give similar results.
A different way to understand stability is shown in

Fig. 3(b). The curve is the same as in Fig. 1(c) and displays
the space of static solutions. The small black dots on the
(solid green) S-branch are time evolutions of weakly
perturbed S-branch solutions. That the black dots stay in
place and do not move away from the curve indicates that
they are stable. (This may not be clear now, but will be
made more clear when we consider large perturbations in a
moment.) Like Fig. 3(a), the black dots show that S-branch
solutions are stable with respect to small perturbations.
Our final method of displaying results is shown in

Fig. 3(c). We computed the quasinormal frequencies,
ω̄qn, of weakly perturbed S-branch solutions by Fourier
transforming the data in Fig. 3(a) and analogous data from

(a) (b) (c)

FIG. 3. Results for weakly perturbed S-branch Dirac stars. (a) The quasinormal oscillations of the maximum value of the metric
function a2 ¼ grr for a Dirac star with ω̄ ¼ 0.86. The curve in (b) is the same curve on the bottom of Fig. 1(c). The black dots are time
evolutions of various S-branch solutions. That they do not move indicates stability. (c) The dots give quasinormal frequencies, ω̄qn, as a
function of the ADM mass, M̄, for evolutions of various S-branch solutions. That the dots stay put is another indication of stability.
S-branch solutions exist for 0.830 < ω̄ < 1 and ω̄ increases from right to left along the curve.
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the evolution of other S-branch solutions [the Fourier
transform of Fig. 3(a) is given in Appendix B]. The
ADM mass, M̄, and the quasinormal frequencies are
roughly constant over the evolution and so each S-branch
solution has a single point in Fig. 3(c). We see that the
curve reaches a maximum before turning and heading to
zero, just as it does with boson stars and oscillatons, which
is an indication that the system is heading toward instability
[13]. We will find below that this plot is particularly useful
in understanding both strongly perturbed S-branch solu-
tions and U-branch solutions, just as it is for boson stars
and oscillatons. The conclusion we draw from the results in
Fig. 3 is that S-branch solutions are stable with respect to
weak perturbations, corroborating what was found semi-
analytically in [1].
We turn now to strongly perturbed S-branch Dirac stars.

There is great variety in the perturbations we could use,
which includes their shape, their location, and which of the
four fermion fields (F1, F2, G1, and G2) they perturb. For
simplicity we show results only for Gaussian perturbations
applied to F1:

δF̄1ð0; r̄Þ ¼ Cðr̄=r̄0Þe−ðr̄−r̄0Þ2 ; ð60Þ

where C and r̄0 are constants. This is similar to what was
used in [13,15], and like those works we will describe the
perturbation in terms of its effect on the ADM mass of the
system.We have experimented with other perturbations and
found they give similar results.
Our results are very similar to what is found for boson

stars and oscillatons. If the perturbation does not raise the
ADM mass above the critical mass, M̄C (i.e., the largest
allowed mass for static solutions), then the system migrates
to the S-branch. On the other hand, if the perturbation does
raise the mass above the critical mass, then there are two
options: The system migrates to the S-branch or it collapses
and forms a black hole. For dilute Dirac stars, the ADM
mass can be raised significantly higher than the critical
mass without ending in collapse, since dilute stars are
particularly efficient at ejecting mass via gravitational
cooling [39]. For example, for the ω̄ ¼ 0.98 static solution,
we were able to raise the ADMmass to 50% above M̄C and
still have the system migrate back to the S-branch. On the
other hand, for static solutions with ADM masses close to
the critical mass, raising the ADM by as little as 1% above
M̄C quickly leads to collapse.
Some examples of these possibilities are shown in Fig. 4.

Figure 4(a) displays the evolution of four strongly per-
turbed S-branch solutions, labeled A, B, C, and D. The
crosses mark where the evolution begins. Each point on a
black curve represents a different moment in time and so
the curves display how the solution is dynamically chang-
ing. This may be compared to Fig. 3(b) (which hopefully
now is more clear), where the black curves do not move
because the starting configurations are stable.

Solution A corresponds to a dilute Dirac star (ω̄ ¼ 0.98)
with a perturbation that raises its mass to 40.0% above M̄C
(which corresponds to raising its ADM mass by 94%).
Solution A illustrates how dilute static solutions can have
their mass raised significantly higher than the critical mass
and still migrate to the S-branch and not collapse. Curve C
is the ω̄ ¼ 0.97 solution with its mass increased 50% and
curve D is the ω̄ ¼ 0.9 solution with its massed decreased
20.0%. All three of these strongly perturbed solutions can
be seen to migrate to the S-branch.
Curve B is different in that it collapses to a black hole.

This is the ω̄ ¼ 0.93 solution with its mass increased to
10.0% aboveMC (which corresponds to increasing its mass
35.7%). The B curve moves to the left edge, where r̄ðamaxÞ
stays still at the horizon radius after the black hole forms.
To determine if a black hole forms we use the standard
method of looking for a sharp spike in the metric function a
and the collapse of the lapse, α, in which α drops to zero at
the origin. Curve B illustrates how static solutions with
masses near the critical mass, and hence that are far from

(a)

(b)

FIG. 4. Results for strongly perturbed S-branch Dirac stars.
(a) The crosses mark the beginning of the time evolution.
Solutions A, C, and D migrate to the S-branch while solution
B collapses and forms a black hole. This may be compared with
Fig. 3(b). (b) The quasinormal frequencies are found to be fairly
constant during the evolution and give an indication as to the
S-branch solution the system is migrating to. The black lines each
have five dots, marking their ADM masses at times t̄ ¼ 0, 2000,
4000, 6000, and 8000. The details of the initial static solutions
and the perturbations are found in the main text.
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being dilute, do not require their mass to be raised much
above the critical mass for them to collapse.
Like boson stars and oscillatons, we find that the

quasinormal oscillation frequency stays roughly constant
even as the evolving solution loses mass. In Fig. 4(b),
which again shows evolutions A,C, andD, the specific dots
on the black lines differ in time by Δt̄ ¼ 2000. We see that
the dots are very close together on the left edges, indicating
that the amount of mass being lost is decreasing consid-
erably, as is expected since they are nearing the (green)
stable solution they are migrating to. Figure 4(b) is further
evidence that the strongly perturbed solutions do in fact
migrate back to the S-branch.

C. Perturbations of U-branch solutions

The U-branch is the (dashed) orange and (dotted) red
portions of the curves in Fig. 1. It is defined as the set of
static solutions that are intrinsically unstable. Figure 2
displays a number of U-branch solutions. Figure 5 displays
results for weakly perturbed U-branch solutions that are
analogous to Fig. 3 for the S-branch. Figure 5(a) displays a
time evolution of a2max for a U-branch solution with
ω̄ ¼ 0.76. The oscillations clearly change amplitude at
early times before settling into seemingly stable oscilla-
tions. Figure 5(b) shows the time evolution of three weakly
perturbed U-branch solutions. The three black curves each
begin on the (dashed orange) U-branch. Each point on the
black curves represents a different moment in time during
the evolution. This plot indicates that the U-branch sol-
utions, when weakly perturbed, migrate to the S-branch. In
Fig. 5(c) we show quasinormal frequencies versus ADM
masses for various evolutions. The (solid) green curve is
from the S-branch. The (dashed) orange lines display the
weakly perturbedU-branch solutions of this subsection. As
before, the quasinormal frequencies of weakly perturbed
U-branch solutions are roughly constant over the entire
evolution. As the solutions evolve, they shed mass. The
specific dots on the orange lines in Fig. 5(c) differ in time

by Δt̄ ¼ 2000. We see that the dots are very close together
on the left edges, indicating that the amount of mass being
lost is decreasing considerably, as is expected since they are
nearing the (green) stable solution they are migrating to.
Figure 5 shows results only from the (dashed) orange

portion of the U-branch. The reason is that outside this
portion, it becomes numerically challenging to determine
whether a weakly perturbed U-branch solution migrates to
the S-branch or dissipates to infinity. What we mean by this
can be seen in Fig. 6, where we display results for static
solutions that are farther along the U-branch (we extended
the outer boundary of our computational grid to make this
figure). We can see that the peak of the metric function a
travels an increasingly farther distance before turning
around and migrating toward the S-branch. Moreover,
the migration is toward increasingly more dilute regions
of the S-branch. Dirac stars farther along the U-branch are
then too challenging for us to determine whether they
migrate to the S-branch or dissipate to infinity. As men-
tioned previously, the portion of the U-branch that we have
colored (dotted) red is the portion that we have not studied
dynamically.

(a) (b) (c)

FIG. 5. Results for weakly perturbed U-branch Dirac stars. (a) The quasinormal oscillations of the maximum value of the metric
function a2 ¼ grr for a Dirac star with ω̄ ¼ 0.76. The curve in (b) is the same curve on the bottom of Fig. 1(c). The black lines are time
evolutions of various U-branch solutions. We see that they migrate to the S-branch. (c) The quasinormal frequencies as a function of
their ADM mass for various U-branch solutions. The quasinormal frequencies are found to be fairly constant during the evolution and
give an indication as to the S-branch solution the system is migrating to. The (dashed) orange lines each have five dots, marking their
ADM masses at times t̄ ¼ 0, 2000, 4000, 6000, and 8000.

FIG. 6. Evolving weakly perturbed U-branch solutions be-
comes increasingly difficult as we move further along the
U-branch. The (dotted) red portion of the U-branch is that
portion that we do not dynamically study and thus we cannot
say whether such U-branch Dirac stars migrate to the S-branch or
dissipate to infinity.
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We turn now to strongly perturbed U-branch solutions.
We again show results for the perturbation in Eq. (60) and
describe the perturbation in terms of its effect on the ADM
mass of the system. Similar to boson stars and oscillatons, if
the perturbation decreases the ADM mass, the system
migrates to the S-branch, while if the perturbation increases
the mass even as little as a few percent, independent of
whether the mass is above or below the critical mass, the
system collapses and forms a black hole. Some examples of
these possibilities are shown in Fig. 7. Figure 7(a) displays
the evolution of three strongly perturbed U-branch solu-
tions, labeled A, B, and C. Solution B corresponds to a
U-branch Dirac star with ω̄ ¼ 0.78 and a perturbation that
decreases its mass by 3.0% and solution C corresponds to
ω̄ ¼ 0.76 with a perturbation that decreases its mass by
5.0%. Both strongly perturbed solutions can be seen to
migrate to the S-branch. Curve A is different in that it
collapses to form a black hole. This is the ω̄ ¼ 0.74
solution with a perturbation that increases its mass by
3.0%. As before, we have found that the migrating
solutions have quasinormal frequencies that stay roughly
constant during the evolution. We show these in Fig. 7(b) as
further evidence that strongly perturbedU-branch solutions
that do not collapse will migrate to the S-branch.

V. CONCLUSION

Dirac stars are self-gravitating systems of spin-1=2
fermions as described by the Dirac equation. Static

solutions were found by Finster et al. in [1], who made
a semianalytical stability analysis, identifying stable (S)
and unstable (U) branches for their solutions. We made a
dynamical study of stability of spherically symmetric
Dirac stars using the framework of Seidel and Suen
[13]. This framework has been used to study the stability
of boson stars [13,14] and oscillatons [15,16], with a
similar framework used for Proca stars [17].
We corroborated that weakly perturbed S-branch Dirac

stars are stable and found that strongly perturbed S-branch
Dirac stars will migrate to the S-branch if their mass is not
increased above the critical mass, which is the largest mass
found among the static solutions. If, on the other hand, a
strongly perturbed S-branch Dirac star does have its mass
increased beyond the critical mass, then it can either migrate
to the S-branch or collapse and form a black hole. For
U-branch Dirac stars, we found that weakly perturbed
solutions and strongly perturbed solutions that have their
mass decreasedmigrate to the S-branch, while increasing the
mass even by as a little as a few percent leads to collapse.
We end by commenting on limitations of our work. Our

study is entirely classical, just as with [23,27,28]. It remains
to be determined how important quantum effects are toDirac
stars [18,25]. We only considered Dirac stars in the ground
state. Intriguingly, the excited states are known to have a
stable branch [1]. A dynamical stability analysis of the
excited states similar to what has been done for boson stars
[14] may have interesting results. Such a study will be
presented elsewhere. We ignored self-interactions, which
were shown in [27,28] to have important astrophysical
consequences. This toomay benefit from a stability analysis
similar to what was done for boson stars [14]. Finally, we
studied spherically symmetric solutions. Solutions for
spinning Dirac stars were recently found [29]. A stability
analysis for such solutions, which has recently been
initiated for spinning boson and Proca stars [40], would
be interesting.
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APPENDIX A: RELATION OF SPINOR
ANSATZ TO LITERATURE

The spherically symmetric Dirac spinor ansatz we
presented in Eq. (31) does not have the same form as
found elsewhere in the literature [1,18,23] but, as we show
here, it is equivalent. The first group to find static solutions
in the Einstein-Dirac system was Finster, Smoller, and Yau
(FSY) [1]. FSY described their static fermions in terms of
the two real functions αFSYðrÞ and βFSYðrÞ. Our static
fermion functions fðrÞ and gðrÞ are related to theirs
through

(a)

(b)

FIG. 7. Results for strongly perturbed U-branch Dirac stars.
The crosses in (a) mark the beginning of the time evolution.
Solutions B and C migrate to the S-branch while solution A
collapses and forms a black hole. (b) The quasinormal frequen-
cies are found to be fairly constant during the evolution and give
an indication as to the S-branch solution the system is migrating
to. Further details are the same as found in Fig. 4.
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αFSY ¼
�

α

4πa

�
1=2

f; βFSY ¼
�

α

4πa

�
1=2

g: ðA1Þ

With this relation (and the simple relation between our and
their metric functions) our static equations are identical to
theirs.
A different Dirac spinor ansatz for static solutions was

used by Herdeiro, Pombo, and Radu (HPR) [18]. HPR
described their static fermions in terms of the functions
fHPRðrÞ and gHPRðrÞ. Using

fHPR ¼ g
4r

ffiffiffiffiffiffi
πa

p ; gHPR ¼ f
4r

ffiffiffiffiffiffi
πa

p ; ðA2Þ

our static equations are identical to theirs.
Ventrella and Choptuik (VC) [23] were the first authors

to dynamically solve the Einstein-Dirac system, but only
for massless fermions. VC describe their dynamic fermions
in terms of the functions FVC

1 ðt; rÞ, FVC
2 ðt; rÞ, GVC

1 ðt; rÞ,
andGVC

2 ðt; rÞ. Setting μ ¼ 0, so that our equations describe
massless fermions, our dynamic fermion functions F1ðt; rÞ,
F2ðt; rÞ, G1ðt; rÞ, and G2ðt; rÞ are related to theirs through

FVC
1 ¼ F1 þ G1ffiffiffi

2
p ; FVC

2 ¼ F2 þG2ffiffiffi
2

p ;

GVC
1 ¼ G2 − F2ffiffiffi

2
p ; GVC

2 ¼ F1 −G1ffiffiffi
2

p : ðA3Þ

With this relation our dynamic equations are identical to
theirs.

APPENDIX B: CODE TESTS

In this appendix we present various tests of our code. The
bottom equation in Eq. (36) is a constraint equation for the
metric function aðt; rÞ. The Einstein field equations also
offer an evolution equation for aðt; rÞ [34,35],

_a ¼ −4πGrαaSr; ðB1Þ

where the momentum density Srðt; rÞ follows from the
energy-momentum tensor and is given by

Sr ¼
1

2πr2a
ðF1F0

2 − F0
1F2 þ G1G0

2 − G0
1G2Þ: ðB2Þ

Since our dynamical solutions do not make use of the above
equation, it is available for code testing. We define the
constraint

caðt; rÞ≡ acodeðt; rÞ − aevoðt; rÞ; ðB3Þ

where acode is the value of a found by our code and aevo is
the value of a found using the evolution equation (B1). In
Fig. 8(a) we have plotted the rms of ca across the
computational grid for the evolution of the ω̄ ¼ 0.86
S-branch solution for three different grid spacings:
Δr̄ ¼ 0.01, 0.01 ×

ffiffiffi
2

p
, and 0.02 [for Δr̄ ¼ 0.01 this is

the same evolution as shown in Fig. 3(a)]. That the results
in Fig. 8(a) are small indicates that the constraint ca ¼ 0 is
obeyed and that the results drop by a factor of 2 when the
grid spacing drops by a factor of

ffiffiffi
2

p
indicates second order

convergence.
Figure 8(b) is an example of the Fourier transform that

we use to determine the quasinormal frequency ω̄qn.
Specifically, it shows the Fourier transform of the same
evolution with the same three grid spacings shown in
Fig. 8(a). The vertical scale is arbitrary and the curves have
been normalized so that the heights of their spikes are
equal. Figure 8(b) indicates that grid spacing does not affect
our determination of quasinormal frequencies. We have
also confirmed that the location of the outer boundary, and
thus possible reflections at the outer boundary, does not
affect our determination of quasinormal frequencies.

(a) (b)

(c)

FIG. 8. Results for various tests we performed on our code. In all three plots the grid spacing used to compute the results is Δr̄ ¼ 0.01
(black), 0.01 ×

ffiffiffi
2

p
(blue), and 0.02 (purple). (a) The constraint in Eq. (B3) as a function of time. That the results drop by a factor of 2

when the grid spacing drops by a factor of
ffiffiffi
2

p
indicates second order convergence. (b) The grid spacing does no have an effect on the

Fourier transform and our determination of the quasinormal frequency. (c) The percent mass dissipation, where M̄ is the total integrated
mass and M̄0 is the initial mass. The dissipation is negligibly small and numerical in nature.
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Finally, Fig. 8(c) displays the percent change of the total
integrated mass, or ADM mass, M̄, again for the evolution
and grid spacings shown in Fig. 8(a). Figure 8(c) indicates
that our code has a small amount of mass dissipation, but
that the amount of dissipation is negligible and further that

the dissipation is numerical in origin and not representative
of a physical instability of the static solution.
We have found results similar to Fig. 8 for the evolutions

of other static solutions, including unstable and strongly
perturbed static solutions.
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