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We describe the computation of post-Minkowskian Hamiltonians in general relativity from scattering
amplitudes. Using a relativistic Lippmann-Schwinger equation, we relate perturbative amplitudes of
massive scalars coupled to gravity to the post-Minkowskian Hamiltonians of classical general relativity to
any order in Newton’s constant. We illustrate this by deriving a Hamiltonian for binary black holes without
spin up to second order in the post-Minkowskian expansion and explicitly demonstrate the equivalence
with the recently proposed method based on an effective field theory matching.
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I. INTRODUCTION

The detection of gravitational waves by the LIGO/Virgo
Collaboration has opened up the exciting possibility of
testing Einstein’s theory of general relativity at a new and
unprecedented level, including the regime of strong gravity
as probed by black holes just prior to merging. A combina-
tion of numerical relativity and analytical methods is needed
in order to push theory to the level where it can provide
best-fit templates from which physical parameters can be
extracted. This has spurred interest in new and innovative
ideas that can facilitate computations of the required two-
body interaction Hamiltonians to high accuracy.
Conventionally, the calculations of effective interaction

Hamiltonians have been carried out in the systematic post-
Newtonian expansion of general relativity. The problem
can, however, be attacked from an entirely different angle,
that of relativistic scattering amplitudes as computed by
standard quantum field theory methods in a quantum field
theory of gravity coupled to matter [1]. Modern methods
of amplitude computations greatly facilitate this program
[2–9]. Incoming and outgoing particles in the scattering
process are taken to past and future infinity where the metric
by definition is flat Minkowskian, and the full metric is

treated perturbatively around thatMinkowskian background.
The classical piece of the scattering amplitude solves the
scattering problem of two black holes to the given order in
Newton’s constant GN . When expanding to the appropriate
post-Newtonian order and defining the interaction potential
with the inclusion of the required lower-order Born sub-
tractions as explained in detail in the next section, the
amplitude also contains all the information of the bound-
state problem of two massive objects to the given order in
the expansion in Newton’s constant. For the bound-state
regime, one has, on account of the virial theorem, a double
expansion in both Newton’s constant and momentum.
However, a more daring angle of attack is to treat the
bound-state problem as not expanded in momentum while
still expanding to fixed order in Newton’s constant. Such an
approach has recently been proposed by Cheung et al. [8],
and it has already been pushed one order higher in the
expansion in Newton’s constant [9] (and compared to the
post-Newtonian expansions in Ref. [10]). Here, the method
of effective field theory is used to extract the interaction
Hamiltonian; the underlying Einstein-Hilbert action coupled
to matter produces the classical part of the scattering
amplitude, while an effective theory of two massive objects
defines the interaction Hamiltonian. The correct matching
between the two theories is performed by insisting that the
two theories produce the same scattering amplitude to the
given order in Newton’s constant.
The post-Newtonian expansion (see, e.g., Refs. [11–13]

for recent comprehensive reviews) of general relativity dates
back to the founding days of the theory. Its perturbation
theory is ideal for the low-velocity situations of planetary
orbits, satellites, and large-distance effects of general rela-
tivity that occur at velocities far below the speed of light.
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In contrast to this, the computation of observables in general
relativity based on relativistic scattering amplitudes is valid
for all velocities, and in particular, this is the proper
framework for high-energy scattering in which kinetic
energies can exceed potential energies by arbitrarily large
amounts. This leads naturally to what has become known in
the theory of general relativity as the post-Minkowskian
expansion [14–20].
Extracting the interaction energy from the relativistic

scattering amplitude for consistency with the virial theorem
in the bound-state problem, one would perform a double
expansion where velocity v and GN are both kept to the
appropriate order. To any given order in GN , this would
imply a truncation of a Taylor-expanded amplitude in
powers of momenta. There is no general argument
for whether keeping higher powers of only one of the
expansion parameters in the regime in which they are
of comparable magnitude will increase the accuracy.
Considering its potential impact, it is nevertheless of much
interest to explore the consequences of keeping higher-
order terms of momenta even in the bound-state regime
where they would not ordinarily have been included
[8–10]. We will here show how that post-Minkowskian
Hamiltonian also follows directly from the full relativistic
amplitude without having to perform the amplitude match-
ing to the effective field theory, thereby explicitly showing
equivalence between the two approaches [7,8].

II. PERTURBATIVE GRAVITY AS
A FIELD THEORY

We start by introducing the Einstein-Hilbert action
minimally coupled to massive scalar fields ϕa

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
þ 1

2

X
a

ðgμν∂μϕa∂νϕa −m2
aϕ

2
aÞ
�
;

ð1Þ

where R defines the Ricci scalar and g≡ detðgμνÞ.
Perturbatively, we expand the metric around a Minkowski
background: gμνðxÞ ¼ ημν þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGN

p
hμνðxÞ. At large dis-

tances, we can treat the scattering of two massive objectsma
and mb as that of two pointlike particles with the same
masses. This has all beenwell elucidated in the literature (see,
e.g., Refs. [21,22]), although most focus until now seems to
have been on considering the quantum mechanical effects.
The way classical terms appear from the quantum mechani-
cal loop expansion is subtle [1,23]; see Ref. [24] for a very
nice and clear discussion of this issue. Instead of expanding
the action (1) in terms of ordinary Feynman rules, it pays to
use modern amplitude methods to extract the needed
nonanalytic pieces in momentum transfer q⃗ through the
appropriate cuts at loop level [2–4].
The scattering ma þmb → ma þmb mediated by grav-

itons at an arbitrary loop order is described by

ð2Þ

We choose the center-of-mass (c.m.) frame and parametrize
the momenta as

pμ
1 ¼ ðEa; p⃗Þ; pμ

2 ¼ ðEa; p⃗0Þ;
pμ
3 ¼ ðEb;−p⃗Þ; pμ

4 ¼ ðEb;−p⃗0Þ; ð3Þ

and jp⃗j ¼ jp⃗0j. We also define

qμ¼pμ
1−pμ

2¼pμ
4−pμ

3≡ð0;−q⃗Þ; q⃗≡ p⃗0− p⃗; ð4Þ

and the total energy Ep ¼ Ea þ Eb.

III. LIPPMANN-SCHWINGER EQUATION

It is a classical problem in perturbative scattering theory to
relate the scattering amplitude M to an interaction potential
V. This is typically phrased in terms of nonrelativistic
quantum mechanics, but it is readily generalized to the
relativistic case. Crucial in this respect is the fact that we
shall consider particle solutions to the relativistic equations
only. There will thus be, in the language of old-fashioned
(time-ordered) perturbation theory, no back-tracking dia-
grams corresponding to multiparticle intermediate states.
This is trivially so since we neither wish to treat the
macroscopic classical objects such as heavy neutron stars
as indistinguishable particles with their corresponding anti-
particles nor wish to probe the scattering process in any
potential annihilation channel. The classical objects that
scatter will always be restricted to classical distance scales.
We now briefly outline a systematic procedure for

connecting the scattering amplitude in perturbative gravity
with post-Minkowskian potentials in classical general
relativity. We start by introducing a bit of notation. First,
we assume the existence of a relativistic one-particle
Hamiltonian of only particle states describing what in
bound-state problems is known as the Salpeter equation,

Ĥ ¼ Ĥ0 þ V̂; Ĥ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2 þm2

a

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2 þm2

b

q
; ð5Þ

where V̂ is a so far unspecified potential describing our
post-Minkowskian system. We also define, on a proper
subset of the complex plane, the following C-valued
operators:
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Ĝ0ðzÞ≡ ðz − Ĥ0Þ−1; ĜðzÞ≡ ðz − ĤÞ−1 ð6Þ

T̂ðzÞ≡ V̂ þ V̂ ĜðzÞV̂: ð7Þ

Here, Ĝ0 and Ĝ are the Green’s operator for the free and
interacting case, while T̂ is the off-shell scattering matrix of
which the on-shell matrix elements provide the nontrivial
S-matrix elements. We can relate the two Green’s operators
by means of the following operator identity:

A−1 ¼ B−1 þ B−1ðB − AÞA−1 ⇒ Ĝ ¼ Ĝ0 þ Ĝ0V̂ Ĝ : ð8Þ

Multiplying both sides of (7) by Ĝ0, combined with (8), one
has

Ĝ0T̂ ¼ Ĝ0V̂ þ Ĝ0V̂ Ĝ V̂ ¼ Ĝ V̂; ð9Þ
T̂ðzÞ ¼ V̂ þ V̂Ĝ0ðzÞT̂ðzÞ; ð10Þ

which is the basis for a perturbative knowledge of T̂ and is
usually known as the Lippmann-Schwinger equation.
We now take the inner product on scattering states

jpi; jp0i,

hpjT̂ðzÞjp0i ¼ hpjV̂jp0i þ
Z

d3k
ð2πÞ3

hpjV̂jkihkjT̂ðzÞjp0i
z − Ek

;

ð11Þ
and use the crucial relation

lim
ϵ→0

hpjT̂ðEp þ iϵÞjp0i ¼ Mðp; p0Þ; ð12Þ

which provides the link to the conventionally defined
scattering amplitude M in quantum field theory restricted
to the particle sector. Substituting (12) into (11), we have a
recursive relation between the amplitude and the post-
Minkowskian potential

Mðp; p0Þ ¼ hpjVjp0i þ
Z

d3k
ð2πÞ3

hpjVjkiMðk; p0Þ
Ep − Ek þ iϵ

;

ð13Þ

Solving this equation iteratively, we can invert it in order to
arrive at a relativistic equation for the potential V,

hpjVjp0i ¼ Mðp; p0Þ −
Z

d3k
ð2πÞ3

Mðp; kÞMðk; p0Þ
Ep − Ek þ iϵ

þ � � � ;

ð14Þ

or, in position space,

Vðp; rÞ ¼
Z

d3q
ð2πÞ3 e

iq·rVðp; qÞ; ð15Þ

with

Vðp; qÞ≡ hpjVjp0i: ð16Þ

At this stage, there has not been any restriction to a
nonrelativistic limit. The antiparticle sector has been elim-
inated by hand, as dictated by the physical scattering process.
We can thus regard (15) as defining a post-Minkowskian
potential.

IV. POST-MINKOWSKIAN HAMILTONIANS

A. Post-Minkowskian potential to first order

We are now ready to use the above definition of the
relativistic interaction potential to describe the post-
Minkowskian Hamiltonian to the trivial lowest order for
two massive scalars of masses ma and mb interacting with
gravity. With the nonrelativistic normalization of external
states,

ð17Þ

with

Aðp1; p2; p3; p4Þ ¼ ðp1 · p3Þðp2 · p4Þ þ ðp1 · p4Þðp2 · p3Þ − ðp1 · p2Þðp3 · p4Þ þ ðp1 · p2Þm2
b þ ðp3 · p4Þm2

a − 2m2
am2

b:

ð18Þ
In the c.m. frame, this reduces to
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Mtree ¼ −
4πGN

EaEb

½2ðp1 · p3Þ2 −m2
am2

b − jq⃗j2ðp1 · p3Þ�
jq⃗j2

;ð19Þ

with p1 · p3 ¼ EaðpÞEbðpÞ þ jp⃗j2.
To facilitate a comparison with Ref. [8], we can write the

Fourier transform as

V1PMðp; rÞ ¼
1

E2
pξ

GNc1ðp2Þ
r

þ � � � ð20Þ

with

c1ðp2Þ≡m2
am2

b − 2ðp1 · p3Þ2; ξ≡ EaEb

E2
p

: ð21Þ

The terms omitted in Eq. (20) are either ultralocal or
vanishing in the classical limit. This, of course, agrees with
the leading-order potential of Ref. [8], while not very easily
derived in more traditional approaches.

B. Post-Minkowskian potential to second order

To consider a post-Minkowksian potential at second
order inG2

N , we will need to consider a contribution coming
from the iterated tree-level amplitude, as dictated by (14)

V2PMðp; qÞ ¼ M1-loopðp; p0Þ þMIteratedðp; p0Þ; ð22Þ

MIteratedðp; p0Þ≡ −
Z

ddk
ð2πÞd

Mtreeðp; kÞMtreeðk; p0Þ
Ep − Ek þ iϵ

:

ð23Þ

Infrared divergences are regularized by temporarily switch-
ing to dþ 1 space-time dimensions. The classical terms of
the one-loop amplitude have been given elsewhere [6–8,
25–28]. They can be decomposed in terms of scalar
integrals with coefficients that are independent of the
exchanged 3-momentum q⃗,

M1-loop ¼ i16π2G2
N

EaEb
ðc□I□ þ c⋈I⋈ þ c⊳I⊳

þ c⊲I⊲ þ � � �Þ; ð24Þ

where the symbol of each coefficient refers to the topology
of the contributions involved, while the centered dots
denotes quantum mechanical contributions that we neglect.
In detail, the scalar box and crossed-box integrals are

given by

I□ ¼
Z

ddþ1l
ð2πÞdþ1

1

ððlþ p1Þ2 −m2
a þ iεÞððl − p3Þ2 −m2

b þ iεÞðl2 þ iεÞððlþ qÞ2 þ iεÞ ; ð25Þ

I⋈ ¼
Z

ddþ1l
ð2πÞdþ1

1

ððlþ p1Þ2 −m2
a þ iεÞððlþ p4Þ2 −m2

b þ iεÞðl2 þ iεÞððlþ qÞ2 þ iεÞ : ð26Þ

At leading order in the momentum transfer q⃗, the coefficients of these integrals are finite at d ¼ 3 and given by [3,22]

c□ ¼ c⋈ ¼ 4ðm2
am2

b − 2ðp1 · p3Þ2Þ2: ð27Þ

The scalar triangle integrals are given by

I⊳ ¼
Z

ddþ1l
ð2πÞdþ1

1

ððlþ qÞ2 þ iεÞðl2 þ iεÞððlþ p1Þ2 −m2
a þ iεÞ ; ð28Þ

I⊲ ¼
Z

ddþ1l
ð2πÞdþ1

1

ððl − qÞ2 þ iεÞðl2 þ iεÞððl − p3Þ2 −m2
b þ iεÞ ; ð29Þ

with coefficients, at the leading order in jq⃗j and around d ¼ 3, given by

c⊳ ¼ 3m2
aðm2

am2
b − 5ðp1 · p3Þ2Þ; c⊲ ¼ 3m2

bðm2
am2

b − 5ðp1 · p3Þ2Þ: ð30Þ
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These scalar integrals are conveniently evaluated by per-
forming proper contour integrals in l0 as explained in Ref.
[7]. Doing so, we see that the box, crossed-box, and triangle
contributions are given by [22,29]

I□ ¼ −
i

16π2jq⃗j2
�
−

1

mamb
þmaðma −mbÞ

3m2
am2

b

þ iπ
jpjEp

�

×

�
2

3 − d
− log jq⃗j2

�
þ � � � ; ð31Þ

I⋈ ¼ −
i

16π2jq⃗j2
�

1

mamb
−
maðma −mbÞ

3m2
am2

b

�

×

�
2

3 − d
− log jq⃗j2

�
þ � � � ; ð32Þ

I⊳ ¼ −
i

32ma

1

jq⃗j þ � � � ; ð33Þ

I⊲ ¼ −
i

32mb

1

jq⃗j þ � � � ; ð34Þ

at leading order in the jq⃗j2 expansion and around d ¼ 3.
We thus arrive at the one-loop amplitude to leading order
in jq⃗j2,

M1-loop ¼ π2G2
N

E2
pξ

�
1

2jq⃗j
�
c⊳
ma

þ c⊲
mb

�

þ i
Ep

c□
jp⃗j

ð 2
3−d − log jq⃗j2Þ

πjq⃗j2
�
: ð35Þ

The imaginary part of this which arises from the box and
crossed-box integrals is the infrared-divergent Weinberg
phase [30]. By restoring the ℏ counting, one sees that it
scales as ℏ−1, a behavior dubbed superclassical in
Ref. [24]. We will show below that it cancels in the
properly defined potential, a fact already noted in the
post-Newtonian expansion [25].
We next evaluate the iterated tree-level contribution

given by

MIterated ¼ −
16π2G2

N

Eaðp2ÞEbðp2Þ
Z

ddk
ð2πÞd

Aðp⃗; k⃗Þ
jp⃗ − k⃗j2

×
Aðk⃗; p⃗0Þ
jp⃗0 − k⃗j2

Gðp2; k2Þ
Eaðk2ÞEbðk2Þ

; ð36Þ

where we have introduced the Green’s function

Gðp2; k2Þ ¼ 1

Ep − Ek þ iϵ
: ð37Þ

The function A is the numerator of the tree-level amplitude
(18) with the k legs satisfying 3-momentum (but not

energy) conservation. We notice that Aðp⃗; k⃗Þ and Aðk⃗; p⃗0Þ
can be written as

Aðp⃗; k⃗Þ ¼ Ãðp2; k2Þ þ Bðp⃗; k⃗Þ; ð38Þ

Aðk⃗; p⃗0Þ ¼ Ãðp2; k2Þ þ Bðp⃗0; k⃗Þ; ð39Þ

where Ã is q⃗ independent and a function of jp⃗j ¼ p and
jk⃗j ¼ k. The classical contribution from the iterated Born
amplitude is hence

MIterated ¼ −
16π2G2

N

Eaðp2ÞEbðp2Þ
Z

ddk
ð2πÞd

Gðp2; k2ÞQðp2; k2Þ
jp⃗ − k⃗j2jp⃗0 − k⃗j2

;

ð40Þ

where

Qðp2; k2Þ ¼ Ã2ðp2; k2Þ
Eaðk2ÞEbðk2Þ

: ð41Þ

We now expand Q around p2,

Qðp2; k2Þ ¼ Qk¼p þ ðk2 − p2Þ∂k2Qk2¼p2 þ � � � ; ð42Þ

Qk2¼p2 ¼
Ã2
k2¼p2

Eaðp2ÞEbðp2Þ ¼
c21
E2
pξ

; ð43Þ

∂k2Qk2¼p2 ¼−
1

E2
pξ

2

�
2c1p1 ·p3þ

c21
2E2

pξ
ð1−2ξÞ

�
: ð44Þ

The Green’s function G likewise admits a Laurent expan-
sion in k2,

Gðp2; k2Þ ¼ 2Epξ

p2 − k2
þ 3ξ − 1

2Epξ
þ � � � : ð45Þ

Combining terms, the Born subtraction can hence be
expressed as

MIterated ¼ 32π2G2
N

E3
pξ

c21

Z
ddk
ð2πÞd

1

jp⃗ − k⃗j2jp⃗0 − k⃗j2ðk2 − p2Þ

−
16π2G2

N

E3
pξ

2

�
c21ð1 − ξÞ
2E2

pξ
þ 4c1p1 · p3

�

×
Z

ddk
ð2πÞd

1

jp⃗ − k⃗j2jp⃗0 − k⃗j2
þ � � � : ð46Þ

Evaluating the remaining three-dimensional integrals, we
find
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MIterated ¼ iπG2
N

E3
pξ

4c21
jp⃗j

ðlog jq⃗j2 − 2
3−dÞ

jq⃗j2

þ 2π2G2
N

E3
pξ

2jq⃗j
�
c21ðξ − 1Þ
2E2

pξ
− 4c1p1 · p3

�
: ð47Þ

The second-order post-Minkowskian potential in momen-
tum space is thus given by

V2PMðp; qÞ ¼ M1-loop þMIterated; ð48Þ

leading to

V2PMðp; qÞ ¼
π2G2

N

E2
pξjq⃗j

�
1

2

�
c⊳
ma

þ c⊲
mb

�

þ 2

Epξ

�
c21ðξ − 1Þ
2E2

pξ
− 4c1p1 · p3

��
ð49Þ

or, in coordinate space,

V2PMðp; rÞ ¼
G2

N

r2
1

E2
pξ

�
1

4

�
c⊳
ma

þ c⊲
mb

�

þ
�
c21ðξ − 1Þ
2E3

pξ
2

−
4c1p1 · p3

Epξ

��
: ð50Þ

This agrees with what has been previously obtained in
Ref. [8] (taking into account that c1 here is E2ξ times c1 in
Ref. [8]). As expected on physical grounds, the imaginary
part which is composed of superclassical and infrared-
divergent pieces has canceled, leaving a finite and well-
defined post-Minkowskian potential at d ¼ 3. That such
cancellation had to occur was expected on physical grounds
since the imaginary part clearly cannot affect classical
motion. Interestingly, the evaluation of the same potential
in N ¼ 8 supergravity has shown no contributions coming
from triangle topologies [31].

C. Post-Minkowskian scattering angle

In Ref. [7], a one-loop formula for the gravitational
eikonal limit [32,33] generalized to the scattering of two
objects of different masses ma and mb was used to deduce
the classical scattering angle to second post-Minkowskian
order directly from the scattering amplitude. An alternative
method based on the Hamiltonian [34] has recently been
revived in connection with the third post-Minkowskian
scattering amplitude calculation [9,10], and we here briefly
summarize the method at second order in GN . Since the
motion lies on a plane, we can introduce the following
coordinates on the phase space ðr;ϕ; pr; pϕÞ so as to
express the momentum in the c.m. frame as

p2 ¼ p2
r þ

L2

r2
ð51Þ

with L being the conserved angular momentum of our
binary system, with constant energy E,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
þ V1PMðp; rÞ þ V2PMðp; rÞ ¼ E:

ð52Þ

This equation can be solved perturbatively in GN for
p2 ¼ p2ðE;L; rÞ:

p2 ¼ p2
0 þ

GNf1
r

þG2
Nf2
r2

þ � � � : ð53Þ

Using s ¼ ðp1 þ p3Þ2,

p2
0 ¼

ðp1 · p3Þ2 −m2
1m

2
2

s
; f1 ¼ −

2c1ffiffiffi
s

p ;

f2 ¼ −
1

2
ffiffiffi
s

p
�
c⊳
ma

þ c⊲
mb

�
: ð54Þ

It is straightforward to derive the expression for the change
in the angular variable ϕ during scattering (see, for
instance, Refs. [16,34]),

Δϕ ¼ π þ χðE;LÞ; ð55Þ

where the scattering angle is given by

χðE;LÞ ¼ −2
Z þ∞

rmin

dr
∂pr

∂L − π: ð56Þ

Here, rmin is the positive root for the condition of the
turning point at pr ¼ 0 with

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −

L2

r2
þGNf1

r
þG2

Nf2
r2

r
: ð57Þ

Introducing r0 ≡ L=p0, we note that pr can be rewritten as

pr ¼
p0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r

GNf1
p2
0

þG2
Nf2
p2
0

− r20

s

¼ p0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − r−

p
; ð58Þ

r� ¼ −
GNf1
2p2

0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

Nf
2
1

4p4
0

−
G2

Nf2
p2
0

þ r20

s
: ð59Þ

Since rmin ¼ rþ, the scattering angle becomes

χðE;LÞ ¼ 2

Z þ∞

rþ

dr
r

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðr − r−Þp − π: ð60Þ

The integral so expressed can be performed analytically
without the need of regularization. We get
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χðE; LÞ ¼ 4r0ffiffiffiffiffiffiffiffiffiffiffiffiffi
−rþr−

p arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

rþ − r−

r
− π: ð61Þ

Taylor expanding the scattering angle to second post-
Minkowskian order, we arrive at the final result

χðE;LÞ ¼ GNf1
p0L

þ G2
Nf2π
2L2

þ � � � : ð62Þ

In terms of M̂2 ≡ s −m2
a −m2

b and the impact parameter
b, where L ¼ pb, we have

χðE; bÞ ¼ 4GNs
b

"
M̂4 − 2m2

am2
b

M̂4 − 4m2
am2

b

þ 3π

16

GNðma þmbÞ
b

5M̂4 − 4m2
am2

b

M̂4 − 4m2
am2

b

#
; ð63Þ

which agrees with the result of Ref. [14] at second post-
Minkowskian order. In particular, since f1 and f2 do not
depend on box topologies (54), also the scattering angle
(62) receives no contributions from these, a known fact
from the eikonal approach in four dimensions. The details
of the calculation based on the Hamiltonian is, on the
surface, quite different from the eikonal approach. It would
be interesting to establish the precise link between the two,
first identifying the precise exponentiation formula for the
eikonal limit beyond second post-Minkowskian order.

V. CONCLUSION

Using the conventional approach to determining the
interaction potential in perturbative gravity, we have dem-
onstrated that it can be extended to the relativistic setting by
means of a one-particle Hamiltonian and associated Salpeter
equation. We have used the Lippmann-Schwinger equation
to straightforwardly derive the needed Born subtractions at
arbitrary loop order. The resulting Fourier-transformed post-
Minkowskian Hamiltonian

H2PMðp; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
þ V1PMðp; rÞ

þ V2PMðp; rÞ ð64Þ

agrees with the one derived in Ref. [8] based on an
effective field theory expansion in operators that can
contribute to the given order, supplemented with the
matching condition that the scattering amplitude as
computed in the effective theory agrees with the one
computed from the full one-loop expression of the
Einstein-Hilbert action (plus scalars).
The resulting post-Minkowskian Salpeter equation is

not an effective low-energy theory (momentum is not
limited) but rather a small jq⃗j=m approximation in which
small momentum is exchanged and only particle states are
summed over. It is encouraging that preliminary results
indicate that the corresponding two-loop Hamiltonian [9]
may improve the computation of two-body dynamics as
compared to the conventional post-Newtonian expansion
for bound states [10]. The post-Minkowskian Hamiltonian
also appears to provide a shortcut towards computing the
scattering angle without first demonstrating exponentia-
tion (and potential correction terms) as in the eikonal
approach. It would be interesting to demonstrate the
equivalence between those two scattering angle compu-
tations in all generality.
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