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MOND has limelighted the fact that Newtonian dynamics and general relativity (GR) have not been
verified to any accuracy at very low accelerations—at or below the MOND acceleration a0: Without
invoking made-to-measure “dark matter,” Newtonian dynamics (and hence general relativity) fail in
accounting for galactic dynamics at such low accelerations. In particular, we do nont have evidence that all
the cherished, underlying principles of Newtonian dynamics or GR, such as locality or Lorentz invariance,
still apply in the MOND limit. I discuss the possibility that the principle of general covariance might not
apply in this limit. This would be in line with suggestions that general covariance, where it does hold, is
only an emergent, and hence approximate, property of relativistic dynamics. This idea also resonates well
with MOND, which hinges on accelerations, for example, because the existence of an effective absolute
inertial frame is natural in MOND. Relaxing general covariance affords more freedom in constructing
candidate MOND theories. For example, it may permit constructing pure-metric, local MOND theories,
which is thought impossible with general covariance. I exemplify this with a MOND-oriented, over-
simplified, noncovariant theory, where the gravitational Lagrangian is LM ∝ l−2

M F ðl2
MRÞ, where R ¼

gμνðΓγ
μνΓλ

λγ − Γγ
μλΓλ

νγÞ=2 is the (nonscalar) first-derivative part of the Ricci scalar R. Γγ
μν is the Levi-

Civita connection of a metric gμν, which couples minimally to matter, and lM ¼ c2=a0 is the MOND
length, which is of cosmological magnitude, being, e.g., of the order of the de Sitter radius of our Universe.
This LM gives a covariant theory in the high-acceleration limit by requiring that F ðzÞ → zþ ζ, for z ≫ 1,
which gives GR with a cosmological constant ζc−4a20. In the MOND limit, F 0ðz ≪ 1Þ ∝ z1=2. In the
nonrelativistic limit, the metric has a solution of the form gμν ≈ ημν − 2ϕδμν, as in GR, but the potential ϕ
solves a MOND, nonlinear Poisson analog. This form of gμν also produces gravitational lensing as in GR,
only with the MOND potential. I show that this theory is a fixed-gauge expression of bimetric MOND
(BIMOND), with the auxiliary metric constrained to be flat. The latter theory is thus a covariantized version
of the former à la Stückelberg. This theory is also a special case of so-called fðQÞ theories—aquadratic
generalizations of “symmetric, teleparallel GR,” which are, in turn, also equivalent to constrained
BIMOND-type theories.
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I. INTRODUCTION

MOND1 [1] is a paradigm of dynamics that arguably
supplants Newtonian dynamics and general relativity (GR)
in the realm of galaxies and the Universe at large, in a
manner that obviates dark matter and possibly dark energy.
References [2,3] are recent reviews of MOND.
MOND departs greatly from standard dynamics at low

accelerations, around and below some acceleration constant
a0 that MOND introduces. At high accelerations g ≫ a0, a
MOND theory should tend to standard dynamics. In the
opposite limit g ≪ a0, MOND dynamics become space-
time scale invariant [4].

MOND predicts a large number of “galactic MOND
laws,” most of which were listed already in the original
MOND trilogy [1,5,6], and they are discussed in detail in
Refs. [2,7]. Some of these laws supersede Kepler’s laws
of planetary motions and other Newtonian relations, such
as the virial theorem, in the low-acceleration regime. Some
of them have no parallels in standard dynamics, as they
pertain to the transition from high accelerations to the low
ones. These laws constitute strict relations and strong
correlations between the observed baryon distribution
and dynamical properties of galaxies, which have been
amply tested and vindicated.
The constant a0 appears in many of these predictions

and has been consistently determined to be a0 ≈
1.2 × 10−8 cm s−2. It has been noted since the advent of
MOND (e.g., Refs. [1,8,9]) that a0 is near in value to some
cosmologically significant accelerations:

1MOND originally stood for “modified Newtonian dynamics”
but has since attained a wider meaning, for example, as a result of
the advent of relativistic versions.
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ā0 ≡ 2πa0 ≈ aHð0Þ≡ cH0 ≈ aΛ ≡ c2=lΛ; ð1Þ

where aH ≡ cH is the acceleration associated with the
cosmological expansion rate H (the Hubble-Lemaitre
constant), aHð0Þ is its present-day value, and lΛ ¼
ðΛ=3Þ−1=2 is the radius associated with Λ—the observed
equivalent of a cosmological constant. Defining the MOND
length as

lM ≡ c2=a0; ð2Þ
galactic dynamics and cosmology tell us that lM ∼
lΛ ∼ lH, where lH ≡ c=H0 is the Hubble distance today.
This numerical “coincidence,” if fundamental, may have
far-reaching ramifications for MOND and for gravity, in
general (e.g., Ref. [10]).
Unless one invokes large quantities of “dark matter” in

galactic systems, the predictions of Newtonian dynamics
(and, hence, of general relativity) greatly disagree with the
observed dynamics of these systems. The success of
MOND phenomenology highlights the fact that these
clashes occur, consistently, at low accelerations—around
and below a0. In the least, this is telling us that Newtonian
dynamics and GR have not been tested and shown to hold
in this MOND region of low accelerations.
Known relativistic theories that incorporate MOND

phenomenology have generally involved extensions of
GR that depart from it at low accelerations. A question
that arises when attempting such modifications is, “which
of the basic principles that underlie GR—such as locality,
the weak equivalence principle, local Lorentz invariance,
and general covariance—are to be retained in such modi-
fied-dynamics theories?” These principles of standard
dynamics are supported by experiment and observation.
But they have not all been tested in the region of low
accelerations that is of relevance to MOND; so they may
be broken for g≲ a0 while well obeyed for g ≫ a0.
Relinquishing any of these principles may widen the scope
of possible MOND extensions, may open the way for such
extensions more easily, and may also help understand
MOND’s deeper origin.2

If this is hard to palate, we have only to remember the
long-cherished underlying principles of classical, Newtonian
dynamics that have had to be abandoned in the quantum and
relativistic regimes.
Because MOND revolves around accelerations, in a

MOND theory one has to identify system attributes with
the dimensions of acceleration, which are to be compared
with a0 as a criterion of whether we are in the high- or

low-acceleration regime. This is similar, conceptually, to
the need in the context of quantum mechanics to define
system parameters J with the dimensions of angular
momentum (the dimensions of Planck’s constant ℏ)—such
as an action parameter or an angular momentum. J=ℏ then
appears in various expressions deduced from the theory,
and for J=ℏ ≫ 1 we are in the classical limit. Similarly,
in the context of relativity, the theory compares with the
speed of light parameters with the dimensions of velocity—
such as relative velocities or (square root of) gravitational
potentials.
GR is a local, generally covariant theory, derivable from

an action, with a single metric as the gravitational degree
of freedom (d.o.f.) in four-dimensional space-time. Its field
equations are of second order, and special relativity is its
“no-gravity” limit. Lovelock’s theorem [11] tells us that
GR (with possibly a cosmological constant) is the only
such theory (see also the discussion of general theoretical
constraints on theories in Ref. [12]).
In addition, if we try to write a MOND-based theory with

all these properties, we encounter an obstacle: We cannot
write a covariant expression for an acceleration involving
first derivatives of the metric. For example, candidate
acceleration parameters that can be constructed from a
metric are the connections, but these are not tensors.3 If we
try to modify the matter action, for example, particle
actions, then again we cannot construct from the world
line an acceleration that is a diffeomorphism tensor. The
covariant acceleration on a geodesic vanishes, and a
quantity such as d2xμ=dτ2, which does not necessarily
vanish, is not a vector. A theory that makes use of such
nontensor quantities will not be generally covariant.
Most existing relativistic MOND theories circumvent the

above obstacle by relinquishing, in the low-acceleration
regime, one of the above-mentioned properties of GR. As
emphasized above, this approach need not conflict with
experimental or observational constraints.
For example, scalar-tensor theories [14], TeVeS [15],

MOND-Einstein-ether theories [16], bimetric MOND
(BIMOND) [17], and the bimetric massive gravity of
Ref. [18] involve gravitational d.o.f. in addition to the
metric. This enables one to define covariant (e.g., scalar)
accelerations from first derivatives of these extra d.o.f.
These extra degrees of freedom decouple, or are otherwise
irrelevant, in the high-acceleration limit.
The nonlocal theory of Refs. [19,20] circumvents the

obstacle by relinquishing locality, which is restored in the
high-acceleration limit.
The MOND theories of Refs. [21,22] (inspired by

Hořava-Lifshitz-type modifications) break local Lorentz2We know that the weak equivalence principle—the univer-
sality of free fall—still holds to some accuracy at the low
accelerations relevant for MOND. This is evidenced, for example,
by the fact that different objects, such as stars of many types, gas
clouds, and individual atoms, have consistent rotational speeds at
the same orbital radius around the centers of disk galaxies, even at
low accelerations.

3We can define tensor “accelerations” using higher derivatives
of the metric, for example, c2R1=2, with R the Riemann curvature,
which could underlie l−2

M fðl2
MRÞ theories. But these do not have

the correct nonrelativistic (NR) MOND limit (see Ref. [13]).
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invariance in the MOND regime in a way that allows one to
define accelerations from first derivatives.4

But it is also possible that nature defines an absolute
inertial frame—a fact that can be felt only at low accel-
erations. This would make it possible to define absolute
accelerations. As was discussed in Ref. [9], the quantum
vacuum defines such a frame: Observers in a laboratory that
accelerate with respect to the vacuum can measure this
acceleration using the Unruh effect and the way it varies
across the laboratory (see more on this in Sec. II B).
The MOND theories proposed to date—relativistic and

nonrelativistic—are very useful in various regards: Some
provide crucial proofs of concept, for example, that one can
construct relativistic MOND theories with correct gravita-
tional lensing. Some may point in interesting directions
where to look for the origin of MOND phenology. Some
provide tools with which to perform calculations within
MOND—such as galaxy formation and interactions—
ensuring from the outset that the basic MOND tenets are
satisfied, and the salient MOND predictions are inherited,
while at the same time the standard requirements such as
the weak equivalence principle and the usual conservation
laws are guaranteed (e.g., Refs. [23–26]).
It has to be said, however, that we do not yet have a fully

satisfactory, all-encompassing theory to underlie the
MOND paradigm. Not only are there still important aspects
of the mass anomalies that are not yet addressed by MOND
(such as cosmology and structure formation), but the
theories we now have seem to have the hallmarks of
approximate, effective descriptions, which emerge from
a more fundamental theory, which we still lack (see Sec. II).
Yet another way to circumvent the above barrier is to

forgo general covariance (also known as diffeomorphism
invariance) in the low-acceleration regime. My main
purpose here is to discuss different aspects of this option
and see if it might be conducive to a better understanding of
MOND’s origin.
Indeed, the possibility has been raised and discussed that

general covariance (as well as other gauge symmetries)
might not be fundamental (e.g., [27–31]), to wit, that
general covariance is not enjoyed by the yet-to-be-found
underlying theory for GR—which might not look anything
like GR, having perhaps a completely different arena,
d.o.f., etc. Instead, general covariance emerges only under
some limiting circumstances of the more fundamental
theory, where GR is a good description. Because it is in
the quantum-gravitational regime that GR’s shortcomings
are an accepted fact, these suggestions, naturally, have in
mind an underlying theory (without general covariance)
that would account for quantum gravity. Thus, general
covariance is thought to emerge in this context at low

energies (or for distances much larger than the Planck
length).
But the main idea underlying MOND is that GR is also

wanting in another regime of phenomena—that of low
accelerations. And so we may borrow the idea of emergent
general covariance and suggest that the fundamental theory
that may underlie MOND is not generally covariant and
that general covariance emerges as an attribute of the less
fundamental, approximate theory that we now call MOND.
But it does so only in the high-acceleration regime g ≫
cH0, or g ≫ c2=lΛ. This ties well with the idea that MOND
is emergent, as discussed further in Sec. II.
Note that general covariance is not a symmetry of GR

that would be lost in the deep-MOND limit—it does not
relate different physical configurations of a given system,
as symmetries of physical theories do; it is rather invariance
to reparametrization, reflecting redundancy in the way we
describe a physical system and relating different descrip-
tions of exactly the same physical state of the system.
In contradistinction, the high- and low-acceleration regimes
in MOND do differ in their symmetries, the latter enjoying
scale invariance, unlike the former.
There are strong experimental and observational limits

on a certain class of noncovariant departures from GR [31].
But these were all obtained in very-high-acceleration
systems, such as the inner Solar System, and do not
exclude departures in the deep-MOND limit (see Sec. III).
Extensions of GR with a preferred inertial frame have

a log history (e.g., Refs. [32,33]). But in the context of
MOND this possibility is, arguably, better motivated and
germane.
One should note the following general caveat: As a result

of relation (1), a system, say, of massM and size R, is both
relativistic (MG=R ∼ c2) and in the deep-MOND limit
(MG=R2 ≲ a0) only if R≳ lM, namely, if the system is of
cosmological dimensions. This may tell us that it does not
make sense to look for a relativistic MOND theory that is
not part and parcel of cosmology.
My main aim here is to point out these facts concerning

departures from general covariance in the deep-MOND
limit and that, as already stated, forgoing this principle
(a) is not in conflict with measurements and (b) may open a
promising route to the fundamentals of MOND.
In Sec. II, I enlarge on the naturalness of noncovariance

in MOND, and in Sec. III, I discuss a simple example of a
noncovariant, modified-gravity, relativistic MOND theory.

II. NONCOVARIANCE AND MOND

As discussed above, MOND points to a “hiding place”
for noncovariance in the domain of small accelerations,
where general covariance has not been tested to my
knowledge. But, beyond that, general covariance break-
down, while not required, may be natural in MOND. There
are several hints for this, which I now describe.

4These theories can equivalently be described by Lorentz-
invariant theories with an added d.o.f., the khronon field, from
which accelerations can be built.
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A. MOND as we know it is arguably emergent

The point has been repeatedly pressed that MOND as we
now know it must be an effective, approximate formulation
that emerges from a deeper theory, which might look
very different from any theory we now use, and may be
underlain by new principles, not enjoyed by existing
theories (e.g., [10,34]).
One strong indication for this is the “coincidence” (1): If

seemingly unrelated constants that appear in a theory are
(numerically) simply related, it is a hint that one of them
might be calculable from the others in a way that is
understood only in a more fundamental, underlying theory.
Such is the case for the constants appearing in thermody-
namics (of ideal gases): the gas constant, Avogadro’s
number, and Boltzmann’s constant, hinting that thermody-
namics emerges from statistical mechanics. Another exam-
ple is the approximate, constant-gravitational-acceleration
theory for near-Earth-surface phenomena, where the Galilei
acceleration g, the Earth radius R⊕, and the escape speed
from the surface, Ves, are related by g ¼ V2

es=2R⊕, a
relation that can be understood only within Newton’s
universal gravity theory.
In the case of MOND, it is not yet clear which of the

constants involved, c, a0, and lM, are the more funda-
mental and which are derived. For example, arguments
along those given in Ref. [9] (see Sec. II B below) suggest
that, as in the above example of the Galilei acceleration, the
approximately de Sitter geometry of the Universe charac-
terized by a radius ∼lM enters and ushers a0 into local
dynamics. Or take the picture described in Ref. [35],
whereby local MOND dynamics emerge in a brane-world
picture. There, a0 appears as the acceleration on masses
living on the brane universe, due to a force field acting in
the embedding space of the brane. But this same force is
responsible for balancing the brane itself at radius lM
against its own tension. This dual role of the external
acceleration is what gives rise to relation (1); so lM and a0
emerge together.
Another indication for MOND, as now formulated, being

emergent is that all action-based MOND theories pro-
pounded to date involve some “interpolation function”
between the high- and low-acceleration regimes that is put
in by hand—a function of one variable of the form A=a0,
where A is some characteristic system acceleration. This is
a hallmark of effective field theories.
We can take a lesson from quantum theory, where, indeed,

various such interpolating functions appear in quantum
expressions describing different phenomena. These are
functions of a variable of the form J=ℏ, where J is some
attribute with the dimensions of ℏ. Examples are the
blackbody function, which interpolates between the low-
frequency, Rayleigh-Jeans regime and the high-frequency,
quantum regime, or the expression for the specific heat of
solids, interpolating between the high-temperature, classical,
Dulong-Petit expression and the quantum, low-temperature

behavior. However, these expressions are not the underlying
theory itself. While all involve an interpolation between the
classical (ℏ → 0) and the quantum (ℏ → ∞) limits, they
differ from phenomenon to phenomenon, and, of course,
they do not appear as fundamental functions in the under-
lying quantum theory itself. It is likewise expected that there
is a fundamental origin theory for MOND in which such
interpolating functions are not introduced at the fundamental
level but that emerge in different contexts, under the circum-
stances to which we apply MOND today.
In recognition of this status of MOND, there are, indeed,

many attempts to derive MOND phenomenology from
some more fundamental starting points (e.g., Refs. [36–45],
and see Refs. [3,10] for more references). These attempts
have, however, not yet lead to a full-fledged underlying
theory for MOND.

B. MOND and the quantum vacuum as an absolute,
global inertial frame

It has been suggested [9], in connection with MOND,
that the quantum vacuum may define an absolute inertial
frame. This is based on the observation that an observer
can measure its absolute acceleration with respect to the
vacuum by using the Unruh effect.5 It has been proposed
that the interaction with the vacuum endows bodies with
inertia—an occurrence that is rife in other contexts of
physics (such as electrons in solids or, indeed, mass
renormalization in quantum field theories). It was also
suggested that, in a flat Minkowski background, standard
inertia emerges. But it is not so in the nearly de Sitter
background we live in (as evinced by the dominant
contribution to the energy density in the Universe from
a cosmological constant).
It was shown (heuristically) how in a de Sitter back-

ground we may get inertia that behaves according to the
basic MOND tenets, with, furthermore, aΛ playing the role
of MOND’s a0. This comes about because an accelerated
observer in a de Sitter background sees an Unruh effect
that depends both on the observer’s motion with respect to
the vacuum and on the global de Sitter radius.6

It was argued in Ref. [9] that the different dynamical
behaviors of bodies with accelerations with respect to the
vacuum comes about as follows: Observers with a ≫ aΛ
probe, using their Unruh wavelength λU ≡ c2=a, distances
that are ≪ lΛ and so behave as in a flat background, while
for observers with a≳ aΛ, the Unruh wavelength does feel
the de Sitter nature of the background.7

5It was also explained how a finite-size, rigid observer can
measure both the magnitude and the direction of its acceleration—
the latter is along the gradient of the Unruh temperature across the
observer.

6An inertial observer then sees itself in a bath of black body
with the Gibbons-Hawking temperature of the de Sitter.

7Several later works have built on similar ideas, e.g.,
Refs. [37,39,41,42].
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The heuristic arguments of Ref. [9] were based on what
we know about the Unruh effect for the ideal case of a
constant-acceleration observer in an exact de Sitter back-
ground. It was also argued there that, since the Unruh effect
is not local in time,8 the emergent laws of dynamics (e.g.,
inertia) are also generically time nonlocal. For unknown
reasons, in the high-acceleration regime a ≫ aΛ, the
emergent dynamics become local but perhaps not so in
the MOND regime. There is no evidence from galaxy
phenomenology that dynamics there is time local,9 and such
nonlocality would even tie in well with nonlocality in
MOND [19,20,46].
As discussed above, the quantum vacuum as an absolute

inertial frame breaks general covariance just as the cosmic
microwave background defines a preferred rest frame and
breaks Lorentz invariance. In the latter case, we know the
(electromagnetic) effects of the cosmic microwave back-
ground on bodies, and they do not go far in dynamically
breaking Lorentz invariance beyond some matter-of-
principle aspects. However, the unknown microscopic
effects of the vacuum—as reflected, e.g., in the puzzles
related to the cosmological constant—could be important
enough to affect the required dynamics in a way that
MOND phenomenology emerges (see, e.g., Ref. [47] and
references therein for a possible microscopic description
of the quantum vacuum).
The quantum vacuum is Lorentz invariance, so such a

picture does not introduce a preferred Lorentz frame. It is
also highly isotropic; so it is not expected to break
experimental limits on the anisotropy of inertia.
If all this is correct, we would need to understand why

the emergent dynamics, which are presumably nonlocal in
general, do become local to a very high accuracy in the
high-acceleration regime and also, more pertinent to our
discussion here, why the dynamics become generally
covariant to high accuracy in this high-acceleration regime.
Does this too result from this limit corresponding formally
to a Minkowski vacuum as opposed to a de Sitter one?
To boot, we will need to understand why in the opposite,
very-low-acceleration limit, the dynamics become scale
invariant, at least in the weak-field limit (in the relativistic
sense, e.g., when jgμν − ημνj ≪ 1).

C. The MOND external-field effect

More generally, MOND might require the measurability
of an absolute acceleration. One manifestation of this that is

quite amenable to observational tests is the so-called
external-field effect (EFE) of MOND. It has been noticed
from the advent of MOND (see, e.g., Refs. [1,14]) that
generically, in MOND, the internal dynamics of a small
subsystem falling freely in the gravitational field of a
mother system is affected by the presence of the external
field. Reference [7] discusses at length when and how such
an effect follows from the basic assumptions of MOND.
But the fact is that this effect is present in all MOND
theories proposed to date.
Some observations pointing to the EFE in action in

galactic systems are described, e.g., in Refs. [48–53].
One dramatic manifestation of the effect is that an external

acceleration ≫ a0 annihilates MOND effects within a
system, even if the internal accelerations are ≪ a0 [1]. In
other words, standard dynamics is restored within a system
subject to a high external acceleration field. This explains,
for example, why MOND effects can hardly be detected
with Earth-bound experiments, where the gravitational
acceleration is ∼1011a0 and kinematic acceleration due to
Earth rotation and revolution are ∼108a0.
An implication of the EFE in MOND is that the strong

equivalence principle does not hold. This in itself does not
imply a breakdown of general covariance, as clearly there
are covariant theories—in particular, covariant MOND
theories—that break the strong equivalence principle.
The presence of the EFE also does not necessarily imply

the existence of a global, inertial frame, like the one the
vacuumcould define, as discussed in Sec. II B, or like the one
discussed in the next section. For example, in BIMOND,
such a frame is defined locally by the auxiliary metric.
However, the opposite might be true, namely, that

noncovariance manifests itself in the EFE, making the
physics inside a system dependent on the system’s accel-
eration with respect to the inertial frame.

III. AN EXAMPLE OF MODIFIED GRAVITY

In GR, both the gravitational (Einstein-Hilbert) action
and the matter action are generally covariant. These imply,
correspondingly, the Bianchi identities for the Einstein
tensor and the divergencelessness of the matter energy-
momentum tensor, implying, in turn, conservation of
energy and momentum.
If general covariance emerges for the high-acceleration

regime but does not hold in the deep-MOND regime, we
can expect that this applies not only to the gravitational
action (as in “modified gravity”), but to the matter actions
as well. Ignoring this might lead to inconsistencies.
Nonetheless, since my aim here is not to explore

thoroughly theories and their implications, only to point
to noncovariance as a possible route to MOND, I demon-
strate my point with (arguably oversimplified) modifica-
tions of only the gravity sector.
As explained in Ref. [13], the straightforward extensions

of GR that replace the Einstein-Hilbert Lagrangian density

8What an observer measures at a given time depends on the
whole of its (past) motion.

9Much of the most reliable data come from disk-galaxy
rotation curves. There, the orbits are circular and the instanta-
neous represents well the long-term behavior. In other stationary
systems, such as virialized isolated galaxies, this is true on
average for the system. For nonstationary systems—such as small
satellites in orbit around mother galaxies—it may well be but
hard to pinpoint that their present “equilibrium” dynamics is
determined also by time-nonlocal “memory” effects.

NONCOVARIANCE AT LOW ACCELERATIONS AS A ROUTE TO … PHYS. REV. D 100, 084039 (2019)

084039-5



R by some (dimensionless) function of it, l−2fðl2RÞ (l is
some length)—so-called fðRÞ theories—cannot give
MOND phenomenology (except, perhaps, in a radically
modified form as suggested, e.g., in Refs. [54,55]). This is
because if—as in GR—we can write the metric in the NR
limit as gμν ¼ ημν − 2ϕδμν, then, to leading order in ϕ=c2,
we have R ∝ c−2Δϕ, where ϕ is the NR potential. But this
cannot lead to MOND phenomenology, where it is required

that the NR Lagrangian be of the form fðlMc−2j∇⃗ϕjÞ ¼
fðj∇⃗ϕj=a0Þ.
However, relinquishing general covariance in the MOND

regime does allow us to construct a simple fðRÞ-like action
with MOND phenomenology while still retaining the metric
as the only gravitational d.o.f.. These theories look super-
ficially like fðRÞ theories, but they are quite different (see
more on this below). In such theories, one defines the
gravitational Lagrangian density as a function of polynomial
expressions built from only the affine connections Γλ

μν with
all indices contracted, such as gμνΓλ

μαΓα
λν. In particular,

since MOND provides us with a ready length scale lM,
we can construct such dimensionless expressions from the
dimensionless lMΓλ

μν, with Lagrangian densities of the
form l−2

M F ðlMΓλ
μνÞ. Such expressions are not coordinate

scalars, hence the breakdown of general covariance.
Importantly, these Lagrangians contain only first derivatives
of themetric. Also, they are still invariant to linear coordinate
transformations, which do not affect Γλ

μν, and so they are,
in particular, Lorentz invariant. The second property would
be consistent, for example,with the idea that it is the quantum
vacuum that defines an inertial frame, the vacuum being
Lorentz invariant.
Start with the Einstein-Hilbert covariant action under-

lying GR (without a cosmological-constant term),

I ¼ −
c4

16πG

Z
g1=2Rd4xþ IMðgμν;ψ iÞ; ð3Þ

where IM is the matter action where the metric couples
standardly to matter d.o.f., ψ (the determinant of the metric
is −g.) The Ricci scalar

R ¼ gμνRα
μαν ¼ gμνðΓα

μα;ν − Γα
μν;αÞ − 2R; ð4Þ

where

R ¼ gμνRμν; Rμν ≡ 1

2
ðΓγ

μνΓλ
λγ − Γγ

μλΓλ
νγÞ: ð5Þ

As is well known (e.g., Ref. [56]),

g1=2R ¼ 2g1=2Rþ qμ;μ; ð6Þ

so R in Eq. (3) may be replaced with 2R without changing
the content of the theory, since this changes the Lagrangian

by a complete divergence. However, since R is not a
diffeomorphism scalar, the resulting action is not manifestly
covariant.
In the context of MOND, I here propound a generali-

zation of GR in which the gravitational Lagrangian R in the
Einstein-Hilbert action is replaced by

LM ¼ 2l−2
M F ðl2

MRÞ: ð7Þ
[The normalization of R is chosen so that the argument of

F becomes ð∇⃗ϕ=a0Þ2 in the NR limit, where ϕ is the
nonrelativistic MOND potential; see Sec. III E]. This gives
a theory that is no longer covariant, because the change in
R under diffeomorphisms appears in the argument of F
and cannot be ignored as a complete divergence.
If, for example, as discussed in Sec. II B, the quantum

vacuum defines a dynamically effective inertial frame, the
connections appearing in the Lagrangian (7) may be taken
as those defined there. Any local inertial Lorentz frame will
do, as L is a Lorentz scalar, and the vacuum is locally
Lorentz invariant.10

Henceforth, we take c ¼ 1, unless stated otherwise; so
lM ¼ a−10 . Thus, the MOND action is

I ¼ −
a20
8πG

Z
g1=2F ðR=a20Þd4xþ IMðgμν;ψ iÞ: ð8Þ

According to the basic tenets of MOND, general
relativity (possibly with a cosmological constant) should
be restored in the limit lM → ∞ (a0 → 0). We thus require

F ðzÞ → F ð∞Þ þ z for z → ∞; ð9Þ

where F ð∞Þ is a dimensionless constant. So, in this limit

I → −
1

16πG

Z
g1=2½2Rþ 2a20F ð∞Þ�d4xþ IMðgμν;ψ iÞ:

ð10Þ
This is the action of general relativity with a cosmological
constant Λ ¼ −a20F ð∞Þ. The resulting cosmological con-
stant is naturally of the order of a20 [if F ð∞Þ ¼ Oð1Þ], as
observed and described in relation (1).
In the opposite limit, defined by lM → 0 with G=lM

fixed, scale invariance of the nonrelativistic, deep-MOND
limit dictates (see Sec. III E)

F ðzÞ → F ð0Þ þ αz3=2 for z → 0: ð11Þ

For the standard normalization of a0, α ¼ 2=3. Generally,
for R≫l−2

M noncovariance remains.

10Strictly speaking, globally, for a de Sitter vacuum, we should
rather speak of the de Sitter isometry group, which contracts to
the Poincaré group locally.
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In light of the coincidence (1), the transition occurs at
the cosmologically significant value ofR ≈RΛ ¼ l−2

Λ . But

note that, since (for nonrelativistic systems) R ∼ ð∇⃗ϕÞ2,
this can occur in cosmologically small systems where

j∇⃗ϕj ∼ a0.
Reference [31] discusses experimental and observational

constraints on a certain class of departures from general
covariance. Their non-generally-covariant Lagrangian den-
sities are, like our R, index-contracted, quadratic expres-
sions in Γα

μν but which, unlike our R, cannot be written as
a diffeomorphism scalar up to a total derivative. Unlike
MOND, such theories do not involve a new dimensioned
constant, under which manifestations of noncovariance can
be hidden.11

A. Relation to BIMOND

In the above discussion, I arrived at the action (8) starting
from Schrödinger’s rendition of the Einstein-Hilbert
Lagrangian R and used the fact that MOND provides us
a natural scale length lM to construct the Lagrangian as a
function of R.
We can also arrive at this Lagrangian through another

interesting route, starting from the bimetric formulation of
relativistic MOND (BIMOND) [17].
BIMOND is a class of (covariant) theories where the

gravitational sector involves two metrics: one, gμν, to which
matter couples (minimally) and a “twin” metric ĝμν.
Different versions introduce different degrees of symmetry
between the two metrics (e.g., with respect to whether there
is a twin matter sector, raising and lowering indices, and
definition of the volume forms). Here, we need ĝμν as only
auxiliary, so I consider the version where only gμν is used
for all raising and lowering of indices and in the volume
element of the interaction term.
The BIMOND action is then taken as

I ¼ −
1

16πG

Z
½g1=2Rþ ĝ1=2R̂ − 2g1=2l−2

M M�d4x

þ IMðgμν;ψ iÞ; ð12Þ

where M is a dimensionless scalar function of quadratic
(dimensionless) scalars constructed from lMCα

βγ , with
the tensor (being the difference between two affine
connections)

Cα
βγ ≡ Γα

βγ − Γ̂α
βγ: ð13Þ

Here, Γα
βγ and Γ̂α

βγ are the Levi-Civita connections of the
two metrics, and R and R̂ are the Ricci scalars constructed
from them. IM is the matter action with ψ representing
matter d.o.f.
The quadratic scalars are of the form

Uβγμν
αλðgμν; ĝμνÞCα

βγCλ
μν; ð14Þ

where, in the more general version, the “contraction
factors” U are products of the metrics and their inverses.
If we use only gμν in U, as here, there are five independent
such quadratic scalars. However, in Ref. [17] and sub-
sequent works on BIMOND, it was suggested to concen-
trate on one such scalar as an argument for M because
of some special properties it has. This scalar argument is
−l2

Mϒ=2, where

ϒ ¼ gμνϒμν; ϒμν ¼ Cγ
μλCλ

νγ − Cγ
μνCλ

λγ: ð15Þ
To make contact with the action (8), we add to this
BIMOND version a Lagrange-multipliers constraint that
forces the auxiliary metric to be flat, by adding to the
Lagrangian density a term12

λα
βγδR̂α

βγδ: ð16Þ
Varying the action over ĝμν would give equations that
determine the Lagrange multipliers, which we do not care
about. Varying over the multipliers gives R̂α

βγδ ≡ 0, which
means that there are coordinate choices ξμ for which ĝμν is
constant; so, there Γ̂α

βγ ≡ 0. In such a frame (free up to
linear coordinate transformations),ϒ ¼ −2R of our theory,
and so this constrained BIMOND action, in the chosen
frame, coincides with our action (8), with the identifica-
tion F ðzÞ ¼ −MðzÞ þ z.
In any other frame, xμðξσÞ, we have for the auxiliary

connection

Γ̂α
μν ¼

∂xα
∂ξσ

∂2ξσ

∂xμ∂xν : ð17Þ

So in the fully covariant theory (i.e., without fixing the
gauge to ξμ) we have four gravitational d.o.f., xμðξσÞ, in
addition to gμν.
The constrained version of BIMOND can thus be viewed

as a covariantized extension of our theory, á la Stückelberg,
with xμðξσÞ the added Stückelberg fields.

B. Other routes—f ðQÞ theories
There are additional routes to the action (8) as gener-

alizations of GR. For example, Refs. [57,58] have recently
discussed a theory governed by a Lagrangian density of the

11In principle, there is a large family of such noncovariance
Lagrangians that one can write as there are many contracted
polynomial expressions, and one can take various functions of
them. Reference [31] gives some examples of Lagrangians
quadratic in Γλ

μν (so there is no need to use a length constant)
as benchmarks for testing general-covariance breakdown.

12In Rosen’s bimetric gravity [32], the auxiliary metric is also
forced to be flat in this way. Unlike ours, his Lagrangian is
quadratic in Cα

βγ but differs from the one that would give GR.

NONCOVARIANCE AT LOW ACCELERATIONS AS A ROUTE TO … PHYS. REV. D 100, 084039 (2019)

084039-7



form (7), though not with MOND in mind, so not for the
form of F and the value of lM relevant for MOND.
They start from the so-termed symmetric, teleparallel GR

(e.g., [59,60]). This formulation of GR employs as (inde-
pendent) gravitational d.o.f. a metric gμν and an affine
connection Γ̄α

μν that is not the metric-compatible, Levi-
Civita one for gμν (which we call Γα

μν).
13 Two requirements

imposed on the connection are (a) Γ̄α
μν ¼ Γ̄α

νμ is sym-
metric (can be imposed with Lagrange-multipliers term)
and (b) it gives an identically vanishing curvature; so,
absolute parallelism holds for this connection (hence the
epithet “teleparallel”). This is done, e.g., by adding a
Lagrange-multipliers term like (16) in the Lagrangian.
As an affine connection, Γ̄α

μν transforms under diffeo-
morphisms like Γα

μν so

Lα
μν ≡ Γα

μν − Γ̄α
μν ð18Þ

is a (symmetric) tensor, like the Cα
μν in BIMOND.14

To formulate an equivalent of GR, the Lagrangian
density is taken as the scalar quadratic in Lα

μν with the
same index combination as in R in Eq. (5) and in ϒ in
BIMOND, namely,

Q ¼ gμνQμν; Qμν ≡ 1

2
ðLγ

μνLλ
λγ − Lγ

μλLλ
νγÞ: ð19Þ

It turns out that, for Γ̄α
μν whose curvature vanishes, Q

differs from the Ricci scalar of gμν, RðgμνÞ, by a divergence.
Hence, taking Q as the Lagrangian density gives an action
that is equivalent to the Einstein-Hilbert one—yielding an
alternative formulation of GR.
This is also essentially the construction used previously

by Ref. [33] to write a Lagrangian for GR with only first
derivatives of the metric. It is a bimetric theory with the
auxiliary metric taken as flat; so Γ̄α

μν, which is constrained
to be flat, can be thought of as the Levi-Civita connection of
the flat metric of Ref. [33].
As in all the theories we discuss here, it is possible to

generalize also by considering other quadratic scalars, e.g.,
of the Cα

μν in BIMOND or of Lα
μν in symmetric, tele-

parallel theories. In fact, Rosen’s bimetric theory [32] is a
predecessor to the latter—again, if we think of Γ̄α

μν as the
Levi-Civita connection of Rosen’s flat, auxiliary metric.15

References [57,58] then suggested generalizations of this
theory, having in mind not MOND but intending to modify
GR at high energies, introducing some relevant length scale
l, and constructing Lagrangians that are more general
functions fðl2QÞ.
Similar to what happens in the constrained version of

BIMOND discussed above, for solutions of these theories,
because R̄α

βγδ½Γ̄λ
μν� ¼ 0, one can choose a coordinate

frame in which Γ̄λ
μν ≡ 0. In this frame Lλ

μν ¼ −Γλ
μν,

and so Q ¼ R, and with the choice l ¼ lM, and
f ¼ F , appropriate for MOND, we get our action (8).
Such fðQÞ theories are, likewise, equivalent to the

constrained BIMOND-type theory described above: With
the imposition of teleparallelism and symmetry, the affine
connection Γ̄λ

μν is, perforce, the Levi-Civita connection of
some flat metric (which can be taken to have aMinkowskian
signature) γμν. So Lα

μν ¼ ΓðgÞαμν − ΓðγÞαμν is just the Cα
μν

of BIMOND, with the flatness constraint on γμν.
Thus, the fðQÞ theory can also be considered a cova-

riantization of the theory governed by the action (8) á la
Stückelberg.
There are treatments of cosmological models within

fðQÞ (e.g., [61–63]) where it was found that there are some
advantages to adopting the specific form ofQ above. In the
context of MOND, I do not see much point in applying this
theory to cosmology, as in itself the theory still has some
gaps (e.g., as regards the matter action), and I bring it here
only as a heuristic example. Besides, MOND as we now
know it and as described, for example, by the theory
discussed here is arguably only an “effective field theory”
which is probably not a good approximation for treating
cosmology.

C. Field equation

To get the field equation for the metric, we need to vary
the action over gμν. Here I use a shortcut, taking advantage
of our theory being a constrained version of BIMOND,
as discussed in Sec. III A. I thus take the BIMOND field
equation derived in Ref. [17] for the version with only gμν
used for contraction and for the mixed-term volume
element. In this, substitute Γ̂λ

μν ¼ 0 to get

Gμν ≡ −2F 0Rμν þ ðF 0Sλ
μνÞ;λ þ a20Fgμν ¼ 8πGTμν; ð20Þ

where F ¼ F ðzÞ, with z ¼ R=a20, and where16

Sλ
μν ≡ Γλ

μν −
1

2
δλμΓν −

1

2
δλνΓμ þ

1

2
gμνðΓλ − Γ�λÞ; ð21Þ

13Namely, the covariant derivatives of gμν with respect to Γ̄α
μν

do not vanish, as they do with respect to Γα
μν.

14It can be expressed in terms of the nonvanishing covariant
derivatives of gμν, with respect to Γ̄α

μν.
15Rosen wanted a theory that differs from GR; so his

Lagrangian is not Q. But he still chose it according to certain
criteria, in particular, so that the nonrelativistic potential defining
g00 satisfies the Poisson equation with matter density as the
source, so that Newtonian gravity obtains for slowly moving
masses.

16Note that F 0 is not a scalar, and Sλ
μν is not a tensor. The

covariant derivative of F 0Sλ
μν is understood as the standard

expression in terms of the derivatives and the connection.
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Γν ≡ Γλ
λν; Γλ ≡ gαλΓα; Γ�λ ≡ gαβΓλ

αβ; ð22Þ

and Tμν is the matter energy-momentum tensor.
For F ðzÞ ¼ z ¼ R=a20, the action (10) reduces to that of

GR, for which Gμν ¼ −Gμν, with Gμν the Einstein tensor.
From this we deduce the identity

2Rμν − gμνR − Sλ
μν;λ ¼ Gμν: ð23Þ

So we can write the field equation as

F 0Gμν − F 0
;λSλ

μν − a20ðF − zF 0Þgμν ¼ −8πGTμν: ð24Þ

These equations hold in our supposed preferred inertial
frame (e.g., that of the quantum vacuum, if indeed it serves
as such a frame). The covariantized versions using con-
strained BIMOND or fðQÞ can be used if we want to
describe the system in other frames.

D. Weak-field limit

I next consider the weak-field and the nonrelativistic
limits, as they are more relevant to MOND phenomenology
regarding galactic dynamics and gravitational lensing.
In the total absence of gravity—no matter present and no

cosmological constant, which we neglect when discussing
cosmologically small systems—we expect (or require) that
the geometry is flat. The field equation (24) then tells us
that in our preferred frame Γα

βγ ≡ 0 is a solution, which we
take. The metric is thus a constant, since its derivatives are
linear in Γα

βγ . We can use the invariance we still have to
general linear coordinate transformation to choose coor-
dinates where gμν ¼ ημν.
The weak-field limit (WFL) applies for small departures

from Minkowski:

gμν ¼ ημν þ hμν; hμν ≪ 1; ð25Þ

where only the lowest order in hμν is kept.
The WFL ofR, R̄ðhμνÞ, is of the order of ðhμν;λÞ2. It can

be seen that in F and its volume prefactor we can replace
everywhere gμν by ημν and gμν;σ by hμν;σ. Then, Γα

βγ is linear
in hμν;α, and F becomes a function of variables of the form

ðhμν;α=a0Þ2. These variables are of zeroth order in our
approximation and so are all appearances of F in the
WFL.17 [hμν;α are first order; a0 is first order; hμν;α=a0 is
zeroth order; ðhμν;αÞ2 is neglected relative to hμν;α;β. So,

e.g.,Rμν and a20F are neglected relative to the other term in

the equation of motion. Only terms linear in Γ or a0
are kept.]
Also,

IM ≈
1

2

Z
hμνT μνd4x; ð26Þ

where T μν is the Minkowskian energy-momentum tensors.
The weak-field action is

I ≈ −
a20
8πG

Z
F ðR̄=a20Þd4xþ

1

2

Z
hμνT μνd4x; ð27Þ

where

R̄ ¼ 1

8
½hνρ;γðhνρ;γ − 2hνγ;ρÞ − h;γðh;γ − 2hργ;ρÞ� ð28Þ

is the weak-field form ofR. (Indices are raised and lowered
with ημν in the WFL.)
The field equation then reads

½F 0ðR̄=a20ÞS̄λ
μν�;λ ¼ 8πGT μν; ð29Þ

where S̄λ
μν is the WFL of the expression in Eq. (21), with

Γα
βγ ≈

1

2
ηασðhβσ;γ þ hγσ;β − hβγ;σÞ: ð30Þ

Thus,

Γν ¼ h;ν=2; Γμ ¼ ημνΓν;

Γ�μ ¼ hμα;α − ð1=2Þh;μ; h ¼ hαα: ð31Þ

S̄λ
μν;λ ¼ −ḠμνðhαβÞ is (minus) the WFL of the Einstein

tensor; it satisfies the Bianchi identity S̄λ
μν;λ;

ν ¼ 0.

E. Nonrelativistic limit

In the NR limit (weak field and slow motions of the
sources), the only nonvanishing component of Tμν is
T00 ¼ ρ. Also, the metric is time independent in this
approximation.
Write, then, the metrics, generally, as slightly perturbed

from Minkowski:

gμν ¼ ημν − 2ϕδμν þ hμν: ð32Þ

Defineϕ≡ ðη00 − g00Þ=2; so h00 ≡ 0. Also, write themixed
metric elements as h0i ¼ hi0 ¼ qi (Roman letters are used
for space indices).
We then write the field equations to first order in

the potentials ϕ and hμν (noting that there is no time
dependence):

17Despite the appearance of h2 in them, ðhμν;α=a0Þ2 are of
zeroth order. The WFL corresponds to hμν ≪ 1, but hμν;α=a0 are
not necessarily small. In fact, they are very large in the Newtonian
limit of MOND.
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½F 0ðR̄=a20ÞS̄i
μν�;i ¼ 8πGρδμ0δν0: ð33Þ

In our approximation,18

Γ0
00 ¼ 0; Γi

00 ¼ Γ0
0i ¼ Γ0

i0 ¼ −
1

2
g00;i ¼ ϕ;i;

Γi
0j ¼ ðqi;j − qj;iÞ=2; Γ0

ij ¼ −ðqi;j þ qj;iÞ=2;

Γi
jk ¼

1

2
ðgij;k þ gik;j − gjk;iÞ ¼

1

2
ðhij;k þ hik;j − hjk;iÞ

þ ϕ;iδjk − ϕ;jδik − ϕ;kδij; ð34Þ

S̄i
00 ¼ 2ϕ;i þ

1

2
ðhji;j − h̄;iÞ; S̄i

0j ¼
1

2
ðqi;j − qj;iÞ;

S̄i
jk ¼

1

2
ðhij;k þ hik;j − hjk;iÞ þ

1

4
½2ðh̄;i − hmi;mÞδjk

− h̄;kδij − h̄;jδik�: ð35Þ

Also

R̄ ¼ ð∇⃗ϕÞ2 þ 1

8
½hij;kðhij;k − 2hik;jÞ − h̄;kðh̄;k − 2hjk;jÞ�

−
1

8
ðqi;j − qj;iÞðqi;j − qj;iÞ; ð36Þ

where h̄ is the 3D trace h̄ ¼ hii. Thus, q enter the argument

of F 0 as ð∇⃗ × qÞ2.
The ð0jÞ components of Eq. (33) are

½F 0ðR̄=a20Þðqi;j − qj;iÞ�;i ¼ 0; ð37Þ

which can be written as

∇⃗ × ½F 0ðj∇⃗ × qj2Þ∇⃗ × q� ¼ 0: ð38Þ

(There is also dependence of F 0 on x through ϕ and hij.)
With the boundary condition that q vanishes fast enough at

∞, this implies19 ∇⃗ × q ¼ 0. Thus, q disappears from the

other equations, since it appears as ∇⃗ × q. Also, we can

write q ¼ ∇⃗uðxÞ for some function u. The field equations
for this general static space-time (where the metric does not
depend on the time coordinate) are invariant under a local
change of the zero of time: t ¼ t0 − vðx0Þ, x ¼ x0, which

changes q by ∇⃗vðxÞ and does not change other elements of
the metric. We can choose v such that q ¼ 0.
Look now at the six ðjkÞ equations

½F 0ðR̄=a20ÞS̄i
jk�;i ¼ 0: ð39Þ

As was the case in BIMOND, the choice of the specific
quadratic argument R results in S̄i

jk depending (linearly)
only on hij and not on ϕ, as shown in Eq. (35). This means
that hij ¼ 0 is a solution if we impose that hij → 0 fast
enough at infinity. This is not the case for general choices of
the quadratic argument ofF , since thenϕ too appears in S̄i

jk.
For the solution hjk ¼ 0, we have R̄ ¼ ð∇⃗ϕÞ2, and

S̄i
00 ¼ 2ϕ;i; so the (00) equation is

∇⃗ · ½F 0ðj∇⃗ϕj2=a20Þ∇⃗ϕ� ¼ 4πGρ: ð40Þ
This is the nonlinear Poisson MOND theory of Ref. [14]
(dubbed AQUAL—for aquadratic Lagrangian).
We thus conclude that a NR system of masses has a

gravitational field

gμν ¼ ημν − 2ϕδμν; ð41Þ
which has the same form as in GR and is characterized by
one NR potential ϕ, which, however, is not determined
from the Poisson equation as in GR but from the MOND
equation (40). This means, for example, that, when inter-
preted by GR, light and massive, slow test bodies see the
same potential.
This result exemplifies the usefulness of the particular

choice of argument of F we took in Eq. (5). With most
other choices, hij ¼ 0 is not a solution, because S̄i

jk

depend also on ϕ and do not vanish for hij ¼ 0. In such
a case, the NR metric is described by many potentials and
does not have the GR form. This has observationally
unwanted implications for lensing, for example.20

F. Discussion

Beyond phenomenology, there are several matter-of-
principle issues that need to be checked before we can
consider the above theory a serious candidate. I only list
these issues here, as they are beyond the present scope.
These issues pertain also to the constrained BIMOND
theories and to fðQÞ theories.
In Ref. [17], I showed that BIMOND enjoys a tractable

Cauchy problem, but so far I was not able to show the same
for the present theory. Also, as already alluded to, questions
related to modifying the matter actions remain open.
Another question is that of stability and the appearance
of ghosts. And, not least, gravitational-wave propagation is
now an important constraint in light of the observations of
the recent neutron-star merger.

18Remember that, because the metric derivatives, connections,
and curvature components are already first order, all the metrics
that are used to contract them can be taken as ημν.

19The scalar product of q with Eq. (38) gives ∇⃗·ðq·∇⃗×qF 0Þ −
ð∇⃗×qÞ2F 0¼0. So, integrating over space with the boundary
condition at ∞ gives

R ð∇⃗ × qÞ2F 0½ð∇⃗ × qÞ2� ¼ 0. But F 0 is
non-negative and vanishes only for R̄ ¼ 0 (in theMONDversion).
Hence, the non-negative integrand must vanish everywhere. This
ignores the unlikely possibility that there is some finite volume
where ∇⃗ × q ≠ 0, but R̄ ¼ 0.

20In this regard, the scalar R is not unique; see footnote 14 in
Ref. [17].
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