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We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a Weyssen-
hof-like torsion field in the Einstein-Cartan theory. The new set of structure equations clearly show how the
presence of torsion affects the geometry of the space-time. We obtain new exact solutions for compact
objects with non-null intrinsic spin surrounded by vacuum, explore their properties, and discuss how these
solutions should be smoothly matched to an exterior space-time. We study how the intrinsic spin of matter
changes the Buchdahl limit for the maximum compactness of stars. Moreover, under rather generic
conditions, we prove that in the context of a Weyssenhof-like torsion, no static, spherically symmetric
compact objects supported only by the intrinsic spin can exist. We also provide some algorithms to generate

new solutions.
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I. INTRODUCTION

Compact objects, in particular neutron stars, represent one
of richest environments to probe fundamental physics due
their extreme gravitational fields, densities, and the state of
the matter that composes them, especially at the core. The
recent detection of gravitational waves due to the coalescing
of two orbiting neutron stars [1] opened a new window to
study their tidal deformations, allowing the study of the
properties of the matter fields that compose this kind of
object. Nonetheless, the usage of neutron stars as a physics
laboratory is only possible if we have a deep knowledge of
their properties. In particular, it is important to understand
how the intrinsic spin' of the fermionic matter particles
affects the behavior of such bodies.

In an astrophysical context, the effects of spin were first
considered when Chandrasekhar [2] established that the
maximum mass of an ideal white dwarf could hold due to the
electron degeneracy pressure, before it underwent continu-
ous gravitational collapse (see also Ref. [3] for the rotating
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We should remark that here, and in the following, the word
“spin” will be used exclusively to represent the quantum spin of
the particles that source the gravitational field equations. In no
case will the word spin be associated to any form of rotation of the
compact objects we will analyze.
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case). In the subsequent years, similar limits relying on the
Pauli exclusion principle were proposed for other types of
compact objects, namely neutron stars, showing that the spin
of matter particles markedly influences astrophysical
objects (cf. e.g., Ref. [4]). Nevertheless, the way in which
the presence of intrinsic spin affects the properties of
astrophysical bodies remains largely unknown.

In an affine theory of gravity, the gravitational field is
represented by the geometry of the space-time which is, in
turn, determined by the energy and momentum of the
matter fields. Mathematically, all classical matter properties
are described by an energy-momentum tensor that acts as a
source in the field equations. Since spin can be considered
as an intrinsic angular momentum of the matter particles,
one would expect that this property could also be encoded
in an energy-momentum tensor. However, in the theory of
general relativity (GR) it appears immediately clear that
there is no obvious way to introduce the spin in a way that
is consistent with the conservation laws for the total angular
momentum. A way around this problem is to endow the
space-time with additional geometrical structure, providing
extra degrees of freedom to model spin and its relation with
the gravitational field. This is the fundamental idea behind
the so-called Einstein-Cartan-Sciama-Kible (ECSK) theory
of gravity. In this theory the connection is not imposed to be
symmetric so that the antisymmetric part of the connection
defines an extra tensor field: torsion. In this way, it is
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possible to impose a local Poincaré gauge symmetry on the
tangent space of each point of the manifold such that the
matter intrinsic spin can be related with the torsion tensor
field. Indeed, theories of gravity with a nonsymmetric
connection (generically called Einstein-Cartan theories)
were proposed even before the discovery of spin.
Sciama and Kibble [5,6] introduced the idea of connecting
the torsion tensor with the matter intrinsic spin, paving the
way to a geometrized treatment of spin.

Early works on the ECSK theory focused on the effects of
spin on the evolution of gravitational collapse and the
possibility of avoidance of singularities [7-11]. Only by
the end of the decade, were solutions for spherically
symmetric space-times found [12,13]. The solutions in
Ref. [12] were obtained by directly solving the field
equations for the ECSK theory. Such an approach, though,
leads to great difficulties in searching for exact solutions. In
this article we will adopt a different method and consider the
formalism provided by the 14 1+ 2 space-time decom-
position [14-17]. Covariant space-time decomposition
approaches were initially devised as a powerful tool to
explore the properties of cosmological models and their
perturbations (see, e.g., [14,18-20]) and only recently have
they been employed to deal with space-times of astrophysical
interest. In Refs. [21,22], this approach was used to
construct—in the context of GR—a covariant version of
the Tolman-Oppenheimer-Volkoff equations. The new equa-
tions allowed us to pinpoint the mathematical nature of the
problem of determining interior solutions for compact
objects and, for instance, the treatment of stars with aniso-
tropic pressure. Moreover, in the covariant language it was
possible to define algorithms to generate a number of new
exact solutions, and to easily obtain general theorems (like
the ones [23,24] in GR) which link apparently unrelated
solutions.

In this article, we aim to study static compact objects in
the context of the ECSK theory, in particular, to study how
the presence of spin affects the possible solutions.
Moreover, we will also examine how the boundary con-
ditions imposed by the smooth junction of two space-times,
with possible non-null torsion, constraint the solutions.

The article is organized as follows: in Sec. II we define the
1 4+ 1+ 2 formalism and consider the decomposition of
some tensorial quantities; in Sec. III we describe the setup
that we propose to study and provide the structure equations;
in Sec. IV we derive the Tolman-Oppenheimer-Volkoff
(TOV) equations for static, locally rotationally symmetric
space-times of class I and II in the presence of a non-null
torsion field; in Sec. V we generalize the conditions for the
smooth junction of two space-times with general torsion
tensor fields and apply the results to the particular consid-
ered setup; in Sec. VI exact solutions are derived and
studied; in Sec. VII we provide a set of algorithms to
generate new exact solutions from previously known ones;
and in Sec. VIII we summarize the results and conclude.

In this article we shall assume the metric signature
(—+++) and work in the geometrized units system where
G=c=1.

II. THE 1+1+2 DECOMPOSITION

Consider a Lorentzian manifold of dimension 4 and a
congruence of timelike curves with tangent vector u.
Without loss of generality we can foliate the manifold in
3-hypersurfaces, V, orthogonal at each point to the curves
of the congruence, such that all quantities are defined by
their behavior along the direction of # and in V. This
procedure is usually called “1 4 3 space-time decomposi-
tion.” Such a decomposition of the space-time manifold
relies on the existence of a projector to the hypersurface V
which can be naturally defined as

ha/} = Yop + UgUp, (1)
where g,; represents the space-time metric and u,u® = —1.
The projector h,; has the following properties:
hosh’t = hl,
h§ = 3. (2)

ha/} - h/)’a’

haﬂu”‘ = 0,
The 1+ 1 4 2 decomposition [14—17] builds from the
1 4+ 3 decomposition by defining a congruence of spatial
curves with tangent vector field e such that any quantity
defined in the submanifold V is defined by its behavior

along e and in the 2-surfaces W. We shall refer to W as “the
sheet.” As before, we can then define a projector onto W by

Na/)‘ = ha/,' — €4€p, (3)
where e e = 1, and such that

Naﬁ = Nﬁa’
Naﬂl/la = Naﬂe“ = 0,

NosNP" = N,
Ne =2. (4)

It is useful to introduce the following tensors:

Eapy = 8aﬂy6u57 Eop = 8a,[)’yey’ (5)

derived from the covariant Levi-Civita tensor €,,,, with the
following properties:
Eapy = Elapy]> Eap = Elap)»

8(l/iyuy =0, gaf)’ua = grxf)’ea =0,
Eapy €T = hahly — Hght, 4" €5, = N op,

e’ = 21, Eapy = Cabpy — €pEay + €/Eap-

(6)

Using the results in the Appendix, the covariant deriv-
atives of tangent vectors u and e can be written as
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1 1
5auﬁ = N(XNJ/;VO.M}, = Naﬁ <§9 - EZ) + Zaﬁ + 8aﬂQ,

1
Dauﬂ = hgh};vgu}, = 50,14/3 + (gg + Z) €a€p + 22(a€ﬂ>
- ea,lﬁﬁeﬂ + eaé'ﬁigl,

Vauﬂ = Dal/tﬂ - MO,(AEﬂ + Aﬂ)? (7)

and

1
Oqlp = ENaﬂ(.b + Cop + Eqpés
Dgyeg = ,e5 + eqap,

1

Vees = Dyey — ug0p5 — Augug + <§9 + Z) e,

+ (Zy — €462 up. (8)

We shall also need to find the various contributions along

u, e and on W of the energy-momentum tensor 7 4. At this

point we shall not assume 7,4 to have any symmetry.
Hence,

T op = Hutqig + phog + qraltp + UegGop + Top + My
= pugp + Qiaup + uaOrp + Qre,iiy
—+ Qzuaeﬁ + p,eaeﬁ + Hlaeﬁ + eal_lz/,

+ pLNaﬁ + Haﬂ + ga/jM’ (9)
with
9dia = _hguyTayv H= uauyTo’y’
1
Gra = —UheT 4y, pP= §haﬂ7aﬁ’

Q1 = —Nou'T,,, pr=p+Ill=eeT,,
1 1
Oay = —u"NyT, pPL=DP— EH - EN{WTW,

oy’

I, = Nge'T 5, 0, =—e"wT,,

I, = e"NoT . Oy =—ue"T,,,

oy = iy T 1= %Taﬁ(zeaeﬂ — N,

Map = g Ty M = %gﬂvTﬂy,

Moy =T (ap). (10)

where the angular and curly parentheses notation is defined
in Eq. (AS5). Moreover, the following relations are useful:

G120 = Q120 + Q1260
1
ﬂa[} = Haﬁ —|— H<€a€ﬁ - EN(,/}>

+ I pep) + I aep). (11)

In this paper we will assume that the space-time is
endowed with a linear, metric compatible connection
Cyp". Such a connection is characterized by the metric
connection—the Christoffel symbols—and the torsion
tensor field

—
Sep’ = C[aﬂ]'

Using Eq. (1) we can write the torsion tensor field as
Sapr = €ap Sy + WialyUip) + Sapty + uaXpuey.  (12)

with

1
Sup = g auh§ s Wap = 20 HhGS

a*pPuve:

Sap = —Hahigu®S,e,  Xo = 2uFRGU°S,y0. (13)

Notice that the tensors defined in Eq. (13) are orthogonal to
the tangent vector u.
Now, from the definition of the Riemann tensor, Ro,ﬂ},‘S :

Raﬁy‘sw(; = Vavﬂwy - Vﬁvawy + 2Saﬁ5V5Wy, (14)

where w, is an arbitrary 1-form; in the case of a Lorentzian
manifold with non-null torsion, the Riemann curvature
tensor does not possess the same symmetries as the torsion-
free case. This is discussed very thoroughly, for instance, in
Ref. [25] to which we redirect the reader for further details.
In theories with torsion, the Riemann tensor has the
following properties:

Rapys = —Rpays:
Raprs = —Rapsy»
Rigpy® = =2V 1aSp)" + 481" S} (15)

and the modified second Bianchi identity
ViaRp)s” = Qapys’ (16)
where
Qaprsp = 2Siapl"Riyjosp- (17)
The previous properties of the Riemann tensor are

completely general; in particular, they are valid for
space-times of any dimension. Let us now consider the
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particular case of a space-time of dimension 4 with torsion.
In this case, R,s,; can be written as the following sum:

1
Raprs = Capys + Raty9op = Ryl 9sia = 3 R9aty9ojp. (18)

where C,,5 represents the Weyl tensor, R,z = R,,5" the
Ricci tensor, and R the Ricci scalar. In the presence of
torsion, the Weyl tensor is still defined as the trace-free part
of the curvature tensor, but it does not retain all the other
usual symmetries:

Caﬂy5 = _C[iayév

Caﬂy5 = _Caﬂ5yv

Clapis = Riapls + Riapgy)s- (19)
It will be useful for our purposes to give the relation
between the derivative of the Weyl tensor and the Riemann

tensor. The generalization of the formula given in Ref. [26]
(see also Ref. [19]) is

1
opa 7 0
v(lcy ba — Z e ﬁQ,uM(;/)eo—ﬂy

+ % g QJ’]#UW 4+ VRS _ % PR, (20)
where Q,p,5, is given by Eq. (17).
In what follows, we will need to find the 1 +1+2

decomposition of the Weyl tensor. We start by decompos-
ing C,p,s into its components along u and V' as

Capro = ~Eapupa B = 2uaEgpyuty + 2upEofy g

= 2eqp,H" [y u5) — 28#751:1”[11”/’]’ (21)
where
Eyp = Couptt'u”, (22)
1 v o
Ha/)’ = 5 8(1” C;w/i(‘)'u ) (23)
] 1 nv 1
Ha/i = Egac Cﬁ&;u/u ’ (24)

are the “electric” part and “magnetic” parts of the Weyl
tensor, respectively. Equation (21) generalizes the results in
Ref. [27] to the case of non-null torsion. Note, however,
that differently from the torsionless case, there are two
separate tensor quantities associated to the magnetic part of
the Weyl tensor: H,; and H .

From the results in Eq. (19), we see that in the presence
of torsion the tensors E,4, H 5, and H «p have the following
properties:

Hu5 = hahgH,,,  Has = Hyp),
Ha[)’ - h’gh;fiﬂy, Ha/} — H(aﬂ)’
E(l/f = hgh;Eﬂya E{la =0. (25)

Therefore, E, 3, may not be a symmetric tensor and H 5 and
Haﬂ do not have to be trace-free. On the other hand, due to
the properties of the Levi-Civita tensor, even in the
presence of torsion, the magnetic parts of the Weyl tensor
are symmetric under the exchange of indexes. These
properties allow us to decompose the tensors Eg, H g,
and H,; as

1 -
Eaﬁ:E<eaeﬁ—2Naﬁ> +5aeﬁ+ea5ﬁ+5aﬁ+€aﬂ[ﬁ (26)

1
Ha/} :ENaﬂH—i—eaeﬂH—’_Hae/}+eaHﬂ+H(1ﬂ7 (27)

_ 1 _ - - - i
Haﬂ = zNaﬂH + €a€ﬁH + Haeﬂ + eaHﬂ + Hot/% (28)

with

£=E,ete" = —N"E,,,  E,=Nhe'E,,

E :% ME ., Ey = €"NYE,,.
H=N"H,, Eap = Eapy>
H = ete’H,,, H, = Nae'H,,,
H=nN"H,, H, = Nae'H,,,
H= e”e”l:lm,, Hop = Hapy,
Hep = Higpy. (29)

where the curly parentheses notation is defined in Eq. (AS).

III. DECOMPOSITION OF THE
FIELD EQUATIONS

We are now in position to apply that framework to study
solutions of the Einstein-Cartan theory, characterized by
the following field equations:

1
Ra/} - EgaﬁR = 871'7&/3, (30)
Sabr 4 2g7["S/"]/ = —87 AT, (31)

where 7 ,; represents the canonical energy-momentum
tensor and A®’* the intrinsic hypermomentum, found by
varying, independently, the Einstein-Hilbert action with
respect to the metric and to the connection. We assume a
null cosmological constant.
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From the second Bianchi identity (16) and the field
equations (30) and (31) we find the conservation laws for
the canonical energy-momentum tensor:

1
VﬁT(/j =28, T + 3 (SR = 8" Rygp).  (32)

Using Eq. (31) we can introduce the intrinsic hyper-
momentum tensor in the above conservation laws and
recover the result in Ref. [28] (see also Refs. [29,30] for
similar results derived in a more general context).

We will assume that the source for the above field
equations is an uncharged Weyssenhoff fluid [31]. The
Weyssenhoff fluid provides a semiclassical description of a
perfect fluid composed of fermions, such that the fluid is
characterized by its energy density, pressure, and spin
density. Its canonical energy-momentum tensor is given by

Taﬂ = /’“’tau/)’ + pha/)’ - ('Aeﬂ + Aﬂ)S/,mu/)” (33)

where p and p represent the energy density and pressure of
the fluid, respectively.

Following Refs. [32,33], the hypermomentum tensor for
the Weyssenhoff spin fluid can be written, in our con-
ventions, as

1
AP = — — APy, 34
g, A%u (34)

where u represents the proper 4-velocity of an element of
volume of the fluid and the antisymmetric spin density
tensor, A, verifies A%u; = 0. From Eq. (31) we find

S = APy, (35)

hence, comparing Eq. (35) with Eq. (12) we see that the
Weyssenhoff fluid model implies that the tensors S%, W%,
and X“, Eq. (13), are null and S% = A% In this way, the
decomposition of the torsion tensor will coincide with the
decomposition of S%. Taking into account that Sap = Siap)
we find

Sap = €apT + 2514€), (36)

with

L g
T==¢
2

s Sq = NGer'S,,. (37)

A. The symmetries of the problem

We are interested in solutions of the Einstein-Cartan
theory that are static and locally rotationally symmetric
(LRS). Following Ref. [34], a space-time is said to be
locally rotationally symmetric in neighborhood B(g) of a
point g, if there exists a nondiscrete subgroup G of the

Lorentz group in the tangent space of each ¢’ € B(q) which
leaves u, the curvature tensor and their derivatives (up to
third order) invariant. Assuming G to be one dimensional,
we can set at each point the vector field e to have the same
direction as an axis of symmetry. Then, LRS implies that all
covariantly defined spacelike vectors must have the same
direction of e—otherwise they would not be invariant
under G. Thus, the vector quantities {a/,»,a,;,Zﬁ,Qﬂ,Aﬂ}
are null in such space-times. Also the shear tensors of the
congruences of curves associated with u and e projected
onto the sheet, X4 and {5, must be null since there cannot
be any preferred direction at the sheet.?

From the definition of LRS space-times, the Riemann
curvature tensor must also be invariant under G; therefore,
the vector components of the Weyl tensor {E1,. £24, (H2) .}
must be null. Since the Riemann tensor also depends on the
torsion tensor, the latter must also be invariant under the
action of G. Therefore, from Egs. (35) and (36), the tensor
field s*, Eq. (37), must be null. In light of this result and
taking into account Eq. (35), we also conclude that for a LRS
space-time the intrinsic hypermomentum tensor is simply
given by

A(xﬂ = €aﬁ5, (38)

where 6 = 3¢ A 5, with the constraint 7 = 6.

Now, a LRS space-time is said to be of class I (LRSI) if the
congruence of the curves associated with vector field e—
defined to have the same direction as the axis of symmetry—
is hypersurface ox‘thogonal.3 If the congruence of curves
associated with the vector field u is also hypersurface
orthogonal, the space-time is said to be a LRS of class II

’It should be remarked here that the presence of a generic
torsion tensor field affects the definition of the kinematical
quantities [35-38]. See Appendix A4 for further details. As
such, in the presence of a general torsion, LRS implies that the
geometric shear vector fields X,,; and .3 must be null and not
the quantities X5 = (a5 and {5 = 6(q4€p. However, as dis-
cussed in Appendix A 4, for a Weyssenhoff fluid those are equal
hence, from here on out we shall refer to X5 and {4 as the shear
tensors, onto the sheet, of the congruences associated with u
and e, being implicit that we assume the Weyssenhoff model.

3Following Ref. [34], a space-time is said to be a LRSII when it
has locally rotational symmetry and the vector fields u and e are
hypersurface orthogonal. It just so happens, in space-times with
null-torsion, a hypersurface orthogonal congruence has null
vorticity. As such, in literature, LRSII space-times are charac-
terized and usually referred to as space-times with locally
rotational symmetry and vorticity-free u and e vector fields.
As was shown in Ref. [39], this is not the case for space-times
with non-null torsion where a hypersurface orthogonal congru-
ence does not have null vorticity. In this article, we will follow the
naming convention of Ref. [34]. This has at least one advantage:
when comparing results with the null torsion case, we simply
have to compare with the same named class; for instance, static
spherically symmetric space-times, with or without torsion,
always fall in the category of static LRSII space-times.
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(LRSII). From the results in Ref. [39], for a torsion tensor
given by Eq. (35) we have that e will be hypersurface
orthogonal if and only if

E=0, (39)
and that u will be hypersurface orthogonal if and only if

Q=r1, 5q =0, (40)
where we opted to highlight that s, will also be null from
the imposition that the congruence of u is hypersurface
orthogonal.

Before proceeding we should point out the fact that s,=0
has an interesting effect on the nature of the Weyssenhoff
fluid. Comparing Eq. (33) with Eq. (9) we conclude that for
a Weyssenhoff fluid the only non-null covariantly defined
quantities in Eq. (10) are y, p, and g, = —(Ae# + A*)S ,,.
Now, since in a LRS space-time both A, and s, are null, it
implies that g,, = —(Ae* + A*)S,, = 0, that is, the con-
tributions of spin in the Weyssenhoff fluid model for a LRS
space-time, will not appear in the canonical energy-
momentum tensor. From this result, one might (wrongly)
conclude that torsion has no role in the dynamics of the
setup. In reality, torsion will still markedly influence the
behavior of the matter fields. Indeed, for instance, when
comparing to space-times with null torsion, where LRSII
space-times are necessarily irrotational (cf. e.g., Ref. [34]),
the presence of a non-null torsion of the form of Eq. (35)
will induce a non-null vorticity of the congruence of curves
associated with u, Eq. (40). Thus, although in the consid-
ered setup spin does not appear in the canonical energy-
momentum tensor, it will still markedly change the
geometry of the space-time.

An additional assumption we will consider is that the
space-time is static. Now, a space-time is said to be
stationary if it admits the existence of a timelike Killing
vector field W. If the congruence of timelike curves
associated with W are also hypersurface orthogonal, the
space-time is said to be static. Given that the choice of the
vector field u is arbitrary, we can write, at each point,
¥ = Cu, where C = C(x%) is a generic non-null smooth
function of the coordinates. The Killing equation Lyg,; =0
in the presence of torsion can be written as

Va¥p) 4+ 285(ap) ¥ = 0. (41)

for any metric compatible connection. Assuming Eq. (35),
contracting Eq. (41) with hl‘fh,/f and h*’ we have

{60.2,2,, 25} =0, (42)

and u?0,C(x*) =0. All is left now is to impose the
condition that ¥ is hypersurface orthogonal. However, if

u is hypersurface orthogonal, so is any ¥ = Cu. Hence, for
the space-time to be static, Eq. (40) must hold.

Lastly, computing the quantities, NZNJv/R,4,50°,
€, Ryp,5v° and e""v/R,5,5¢°, we also find that in the
considered setup

{[E’ gaﬁ’ Ha/ﬁ ﬂaﬁ} =0. (43)

Therefore, gathering the previous results, we find that
stationary LRSI or LRSII space-times permeated by an
uncharged Weyssenhoff fluid are characterized by the follow-
ing set of quantities: {u, p, ¢, Q, A, 7, &, H, H, H, H}.

B. Structure equations

We are now in position to find the structure equations for
stationary, locally rotationally symmetric space-time filled
by a Weyssenhoff fluid in the case where the congruence of
spacelike curves associated with e are hypersurface
orthogonal; that is, in the case when & = 0. The nontrivial,
independent propagation equations are

1 -
pHAprp) =- ()

A+ AA+¢) +29% =4x(u+3p). (45

~ 1 16
bz +E=-="n, (46)
2 3
~ 3 - 8,

# —%¢(H—2H) +E(3Q-27) = —87Q(u+ p)
P eut3p). (48)

2Q+Q¢p =H, (49)

and the constraint equations

5+A¢+292=83—ﬂ(/d+3p), (50)
2AQ-17) - Qp+H =0, (51)
Q(p—24)+H=0, (52)
H+H+2H=0. (53)

Let us discuss the cases when the congruence associated
with u is either hypersurface orthogonal or not, separately.
Consider the cases when Q # 7. In such cases we find from
Eqgs. (44)—(53) the following relation between Q and 7,
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(p-—A)(z-Q)+1-Q =0, (54)

leading us to conclude that the difference between z
and Q can be uniquely described by the behavior of
the variables ¢ and A. Notice that if at an initial instant
Q and 7 are different then, unless the term ¢ — A diverges,
there will be no point in which they are equal. Conversely,
if Q = 7 at a point these two quantities will be equal at
any point.

The relations Q = 7 or Eq. (54), for stationary LRSII or
LRSI space-times, respectively, have the advantage of not
depending directly on the magnetic components of the
Weyl tensor and they can replace one of Eqgs. (44)—(53).
As we shall see, it is useful to remove Eq. (48).

Finally, to close the system, we will need an equation of
state that relates the pressure of the fluid with its energy
density: p = p(u); and an equation that relates the energy
density of the fluid with the intrinsic hypermomen-

tum: 6 = 5(p(u). u).

IV. GENERALIZED TOV EQUATION FOR
STATIONARY LRSI AND LRSII SPACE-TIMES

With the full set of structure equations we are finally in
position to make the derivation of the generalized TOV
equations. Let us start by introducing the scalar function

8 1
K:?ﬂu—5+1¢2—3§22+2§21, (55)

with the following property:
K = —¢K, (56)

found from the structure equations. Equation (55) general-
izes the expressions in Refs. [16,40].4 Moreover, since the
Gauss equation is unchanged by the presence of torsion, it
is possible to prove that, in the cases when the vector fields
u and e are hypersurface orthogonal, the quantity K
represents the Gaussian curvature of the 2-sheet orthogonal
to both u and e.

Now, following the treatment in Refs. [21,22], without
loss of generality, let us reparametrize the integral curves of
e using, in general, a nonaffine parameter p, such that for an
arbitrary scalar function F

F = ¢F,. (57)
In particular we have

- K. (58)

*Notice that in Ref. [40] there is a small typographic error.

Introducing the following set of variables:

x—%, m—%, M:&%,

vzg, Bz_% 77:871'%,

[E:%, DF%, A:g,

T-Z D=

w—%, /C:% (59)
we can rewrite Eqs. (44)—(53) as
2Y, +2Y(X+ Y + 1) = M + 3P — 4W2, (60)

K,+K2X+1) =0, (61)

P,+PRX+Y)+YM=2TW(X+Y)+2TW ,, (62)

2W, + W2X + 1) = By, (63)
with the constraints

M + 3P —3Y - 3E — 6W? = 0, (64)

2M 42X+ 2P = 2Y —4W? + 1 = 0, (65)

4Y +4WQRT - W) —4P —-4K +1=0, (66)

D, + WY -1) -2YT =0, (67)

B, + W(1-2Y)=0, (68)

B, + B, + 2D, =0, (69)

T=4, (70)

and, depending on whether we are considering stationary
LRSI or LRSII space-times, we have the extra equation

W,-T,=(1-Y+X)(T-W), if LRSI
W=T if LRSIL

The system is closed provided and equation of state such that
P = P(M) and a relation such that A = A(P(M), M).

Now, using Egs. (65) and (66) to eliminate X and Y in
Egs. (62) and (71) we find
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7
P,=-P*+P [Z - 3K +W(8A — 7W)}

P =PM),
A = A(P(M), M), (72)
and

{wp—Aﬁ =1(A—W)x (1-2M—2P+4W?), if LRSI
W=A, if LRSII
(73)

which represents the covariant TOV equations. The system
is completed by the extra relations:

K—%+P+W(W—2A):v, (74)
IC—Z—M+W(3W—2A):X, (75)

M+ W(6A — OW) — 3(/c —%> _3E, (76)

2W, + W(ZIC —2M — 4AW + 6W? —%) =B, (77)

3
W<2IC+2P—4AW+2W2—2> =B, (78)

Bl + B2 + 2[D2 - 0, (79)
W(6AW — 2W? —4A2 + 1)

+2(A—W)<IC+P—%> —=D,. (80)

A. The static case

The full set of Egs. (72)—(80) completely describe the
geometry of a stationary LRSI or LRSII space-time filled
by an Weyssenhoff fluid. Let us now consider the particular
cases when the space-time is static; that is, u is such
that W =T =A.

Introducing the following quantities:

E—E+24A2, (81)

A _ A2
M=M-A~, 3

P:’])_AZ’

Eq. (72) is given by

A .
(-1 .
ver-tim -
X=K-2-M, (85)
€= M-3(k-) (56)

which match exactly the expressions found in the theory of
general relativity (cf. Ref. [21]) for an effective energy
density and pressure and the corrected electric part of the
Weyl tensor: M, P, and £. Note that the extra constraints
for the magnetic components of the Weyl tensor

24, +2A(IC—M —}1) =B,  (87)

Bﬁ—A[l—ZP—Z(IC—%)] =0, (88)
Bl + Bz + 2|D2 — O, (89)
|D1 - A, (90)

imply that the geometry of the space-time is fundamentally
different from the corresponding one in general relativity.
Nonetheless, the fact that Eqgs. (82)—-(86) have the same
form for the corrected quantities in Eq. (81) leads us to the
notable result:

Proposition 1: Atthe level of the metric, all static, locally
rotationally symmetrics of class II solutions of the theory of
general relativity for a perfect fluid with energy momentum
(T9R),5 = uutquy + phyy are also solutions of Einstein-
Cartan theory sourced by a Weyssenhoff fluid with energy-
momentum tensor (7€) 5 = (u + %)uauﬁ +(p+ %)haﬁ.

It is important to stress that, because of the nature of the
corrections in Eq. (81), solutions which are unacceptable in
general relativity due, for example, to negative energy
densities or pressure, might still correspond to physically
acceptable ones in the Einstein-Cartan case.

In the rest of the article we will consider the case of static
spherically symmetric space-times; hence, we will study
the solutions of Egs. (81)—(90).

V. JUNCTION CONDITIONS

In the analysis of compact objects in a geometric theory
of gravity it is often necessary to model the space-time as
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two distinct manifolds glued together at a common boun-
dary. Such an operation is usually performed using Israel
junction conditions [41]. The Israel procedure was initially
developed for space-times in the absence of torsion. More
recently, a number of works have been published in which
the junction conditions are generalized to space-times with
torsion in different contexts [42,43]. Here we will sum-
marize the results and extend them in light of the structure
equations we have just obtained.

Consider two Lorentzian manifolds with boundary, V-~
and V', matched at an hypersurface A/, forming a new
manifold V. Let n represent the unit normal to A/, pointing
from V™ to VT, and e, be the tangent vectors to N'. Here N
can be either timelike or spacelike. Now, following
Ref. [43], for the total space-time to be a valid solution
of the field equations and to guarantee that at A" there is no
surface layer, the following conditions must be met:

(i) the induced metric at AV, as seen from each space-

time V™ and V', hi, = gfﬂe‘;ei, must be the same,

[hap) s = 0; (1)

(ii) the extrinsic curvature tensor of A/ as seen from V-
and V¥, Q¥ = 2, Vny, is such that

[Qupl= = 0; (92)
(iii) the torsion tensor verifies
ho‘/’[Sﬂ/,”]i + eh"ﬁ[n"n”SﬁW]jE =0. (93)

For simplicity we labeled a field Y defined on the
submanifold V* or V= as T, = T(V*') or T_=T(V"),
respectively, and used the notation [Y], to represent the
difference of a field as measured from each submanifold at
the matching surface, i.e., [Y]. =T(V")|y - T(V7)|y-

Clearly, conditions (91)—(93) reduce to the Israel con-
ditions [41] in the limit of null torsion. In that case, the
junction conditions not only guarantee that at the matching
surface there is no thin shell but also are necessary and
sufficient to guarantee that the singular part of the Riemann
tensor is null. However, this is not the case for torsional
space-times. In the presence of torsion, assuming only
compatibility with the metric, the Riemann tensor of the
total space-time is given by5

Ry’ = H(A)R;ﬁ/ +O0(=A)R”

+ 6(/1) (Aa/}yl) + Ba/;’y”)? (94)

Here we mix the distribution associated to a tensor and the
tensor itself which is, strictly speaking, an abuse of language. Our
conclusions, however, are not influence by this issue. See, e.g.,
Ref. [44] and references therein for more details.

where 6(4) represents the Heaviside distribution, (1) the
Dirac distribution, 4 is the parameter of the integral curves
of n, adjusted such that the matching surface is located at
A=0, R(fﬂ/’ represent the Riemann tensors of the V~ and

V* submanifolds and
Agp = €(ngTay] = na[T,],). (95)

Ba/}yp = €<nﬂ [Kayp]i — Ny [Kﬁrp]i)’ (96)

are the singular parts of the—total—Riemann tensor, with
I'G, being the Christoffel symbols, K 5" =S5 + 87 03— S47 ,
the contorsion tensor and € = n,n*. We see that, in general,
conditions (91)—(93) do not guarantee that both the tensors
in Egs. (95) and (96) are null. A smooth junction of two
space-times has to imply that the discontinuities of all
curvature tensors across the matching surface have to be at
most finite, otherwise, the space-time will be singular at \V.
In the torsion-free case, no condition on the tensor (96) is
required as it is identically zero and therefore does not
appear in the Einstein equations. In the Eistein-Cartan case,
however, even imposing Eqgs. (91)—(93), the remaining
singular part of the Riemann tensor will appear in the
structure equations, leading to a singularity in A/. Different
from the standard violation of Israel’s condition, such
singularity cannot be attributed to the presence of a thin
shell since Egs. (91)-(93) prevent the existence of a surface
layer at V. For this reason, in the following we will require
a completely smooth matching of the Riemann tensor on
the boundary. It is a known result (see, e.g., [44,45] for a
clear derivation) that the tensor A, ”, Eq. (95), is null if and
only if [K,,]. = 0, where K, = egegvanﬁ represents the
extrinsic curvature computed from the metric connection.
On the other hand, a necessary and sufficient condition for
B,p,” to be null is given by

[Ka,ﬁp]i = ena[n”Kﬂ/jp]i. (97)

Thus, we the arrive to the following proposition:

Proposition 2: Let V- and V' be two Lorentzian
manifolds with boundary, endowed with a metric compat-
ible, affine connection. V- and V* can be smoothly
matched at a common, non-null, hypersurface N~ when
the following three conditions are verified:

(i) the induced metric at N is such that

[hap]+ = 0; (98)

(ii) the jump of the extrinsic curvature of N is null,
that is

[Qab}i =0 (99)
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(iii) the jump of the contorsion tensor at N verifies

[Ka/ip}i = ena[nﬂKﬂ/ip]i’ (100)

where the vector field n represents the unit normal

to \V.
Notice that writing Q,, = K, — eZe/b}KaﬂVny and using
Eq. (100), Eq. (99) is the same as imposing [K ], = 0.

A. 1+1+2 junction of static LRSII space-times
with torsion

Let us now express conditions (98)—(100) covariantly in
the specific case of two static LRSII space-times endowed
with a torsion tensor field of the form S,4" = ¢,,u’7, where
7 is a generic function of the space-time coordinates.

In what follows we will be interested in the case when the
interior and exterior space-times are to be matched at a
timelike hypersurface, orthogonal to the vector field e.
Then, condition (98) reads

[Naﬁ - uauﬂ]j: =0, (101)
where N4 verifies Eq. (98). Using Eq. (8), in the
considered setup, Eq. (99) is simply

B PN,y — Auauﬂ] —0, (102)
+

which, contracting with the induced metric at " and using
Eq. (101), gives
[+ AL=0. (103)

From Egs. (101)-(103), we find that at the matching
surface the following constraints have to be met:

[#]. =0, (104)

(Al =0. (105)
implying, for ¢ # 0,

V], =o0. (106)

Given that e is continuous across N, we can integrate

Eq. (58), finding K = kge™”. Using Egs. (59) and (104) we
have

K], =0. (107)

Using the previous results in Eq. (84) we arrive at

[8zp — 8%, = 0. (108)

Finally, for the specific type of torsion that we consider
in this article, condition (100) imposes

(109)

then, from Eq. (108),

[ple =0. (110)

We have then found that for a smooth matching between
two static LRSII space-times endowed with a torsion tensor
field of the form S,;" = e,5u”7, both the pressure of the
fluid and the spin density, as seen from each space-time,
must match at V.

VI. EXACT SOLUTIONS FOR STATIC
LRSII SPACE-TIMES

Given the set of structure equations (81)-(90) that
describe the behavior of a static, LRSII space-time filled
by a Weyssenhoff fluid, let us now find and study some
exact solutions.

As was stated before, the system of structure equations is
not closed until an equation of state and an expression for
the spin density are provided. Let us then consider some
particular relations for the pressure, energy, and spin
densities of the fluid in order to gain some insight into
the behavior of compact objects in a fully relativistic theory
with non-null spin.

For the remaining of the article we will consider only the
particular case of spherically symmetric space-times.
Moreover, in what follows we will refer to static, spheri-
cally symmetric compact objects as “stars.” Although this is
an abuse of language, it is also a trend in the literature since
such systems are expected to be a good model for slowly
varying astrophysical bodies.

A. Effective constant energy-density
and the Buchdahl limit

We start by considering the case of a system where the
effective energy density is assumed to be constant, that is,
8 — 5% = fiy, (111)

where ji, € R. Notice that, contrary to the case of null
torsion, the above assumption does not have to imply that
the energy density, u, is constant.

Using Eqgs. (56) and (57) we have

(112)

where r( is an integration constant. Equation (112) then
yields
M(p) = figrie’K(p). (113)

Equation (113) allows us to solve Eq. (83), finding
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3
Klp) = 5 114
2 12 — 4figr3er + 3Kpe™ (114)
where /C;, is yet another integration constant. Setting
Ky =0 to avoid a conical singularity at p — —oco [46],
the structure equations yield

p(p)_é(p>2:_ﬁO(P0+3\/3—ﬁ0r(2)€p> (115)
87 247(Py + /3 — figrge’)’
figroe®
Alp) = - . (116
D= et iomme) O
_ 2 - 2
W)= et immre, )
5:—%52, (118)

where we have chosen the direction of e so that ¢ is
positive, and the value of the integration constant Py, is to be
determined by the boundary conditions.

Let us now assume that relations (111)—(118) describe
the interior of a compact object matched at a boundary AV to
an exterior space-time modeled by the Schwarzschild
vacuum solution. From Egs. (109) and (110) we find that
the quantity in Eq. (115) must be zero at the boundary.
Setting, without loss of generality, the matching hypersur-
face to be at p = 0, we find

Py = =34/3 = fiprs.

The matching conditions, Egs. (104) and (107), imply that
interior and exterior observers agree on the value of the
circumferential radius of AV, say ry, and the Schwarzschild
parameter, M, is given by

(119)

~ 3
M= Hoo

: (120)

Moreover, from condition (109) we find that the spin
density must go to zero at the matching surface, that is,
5(p=0)=0.

Given the previous results, we are now in position to
study some effects arising from the presence of spin in
compact objects. In the remainder of this subsection, for
clarity, we shall write the results in terms of the circum-
ferential radius r. Using the fact that, in the considered
setup, the quantity K, Eq. (55), represents the Gaussian
curvature of the 2-sheet, we have that the parameter p and r

are related by
p:21n<L), (121)
o

where we have set the value of the arbitrary scaling factor to
be r 0-

Now, defining the central pressure p, := p(p - —),
from Egs. (115) and (119), we have

uc(l - 1—2‘,—1(‘)4) 53(1 2.1 —Zr—’g)
Pe=— + R
1-3,/1-2 47z(1—3,/ —3—1;4)
where p. = u(p - —o0) and 6. = §(p - —0). If we com-
pared directly the above expression to a similar system in
GR, we would see that the second term on the right-hand side
of Eq. (122) represents an explicit contribution due to the
presence of spin. However, there is a subtlety: Eq. (120)
indicates that the presence of spin also modifies the match-
ing radius 7, and the value of the Schwarzschild parameter
M, making it difficult to draw conclusions only on (122).
A clearer idea of the differences between our case and
GR can be obtained by computing the maximum mass that
can be held by a star with constant radius. Considering
Eq. (111) and if neither the densities u,. and o, diverge,
the central pressure in Eq. (122) will go to infinity when
ro = 3M or, using Eq. (120), when

(122)

4 &\
M ok e < 871) . (123)
This result makes it clear that, when compared to a system
with the same energy density ¢ in GR, the presence of spin
increases the maximum allowed mass.

In analogy with the calculation of the Buchdahl limit in
GR we can generalize this discussion to nonconstant fi.
Consider the quantity ji := 8zu — 6% and assume it to be
non-negative and dji/dr < 0, for r € [0, ry]. Following the
same reasoning of Ref. [47] (see also [46]) we can find an
upper limit for the amount of mass a star with constant
radius can hold:

m(FO) Si, (124)
ro 9
with
1 ro
m(ry) = 5/ a(r)ridr. (125)
0

At first sight, the expression in Eq. (124) matches the one
found by Buchdahl [47] for GR. However, there is a
correction due to the presence of spin in the function m(r),
Eq. (125), leading us to conclude that for the same value of
the circumferential radius, r(, a star can hold more matter in
the presence of spin than in the null-spin case. It is also
worth mentioning that the quantity m(ry) agrees with
the value of the Schwarzschild parameter of the exterior
space-time; therefore, the gravitational mass of such objects
is determined not only by the energy density, y, but also by
the spin density, 6, which was expected because of

084037-11



PAULO LUZ and SANTE CARLONI

PHYS. REV. D 100, 084037 (2019)

the specific way in which spin gravitates in our specific
Einstein-Cartan setup.

As afinal comment, although a priori there is nothing that
forces 62 to be smaller than 87y, it is expected that in stars—
even neutron stars—o> < u (see Refs. [10,48]), hence,
ji >0, as was assumed in the derivation of Eq. (124). On
the other hand, the requirement that dji/dr < 0 might not be
as physically reasonable as in the case of GR since, as we
will see below, the presence of spin allows for a richer
possible behavior for the matter variables.

B. Spin held stars

In the previous subsection we have considered a classical
model for a relativistic star which is similar to the simplest
model for these types of objects in general relativity.
However, the presence of spin allows solutions which
are not contemplated in Einstein’s theory. The prototype
of such objects is a star which is supported only by the
gravitation of the spin of the Weyssenhoff fluid. In the
remainder of the subsection, we will analyze this case and
prove the following result:

Proposition 3: There are no static, spherically sym-
metric solutions of the Einstein-Cartan theory sourced by a
Weyssenhoff fluid with null isotropic pressure that have all
the following properties:

(1) 86(r) is non-null for r € [0, o[ and 6(ry) = 0, for

some rg > 0;

(2) 6*(r) is a monotonically decreasing function for
all r € [0, ryl;

(3) the spin and energy density functions: 6(r) and p(r),
are at least of class C! and the function A(r) is
differentiable for all r € [0, ry;

(4) the function M(r):=3 [ [Bau(r) — 8% (r)]x?dx is
such that 2M(r) < r, for all r € |0, ry).

To prove Proposition 3 we will consider first the
behavior of the quantities of interest in a neighborhood
of the center, r = 0, and then on the boundary of the star. In
doing so, in order to make the reasoning more intuitive, we
shall consider here that the integral curves of the vector
field e are parametrized by the circumferential radius r.

Defining the quantities

fi(r) = 8mu(r) — &8(r),
p(r) =8ap(r) = &(r), (126)
we find from the structure equations
(B, = — A+ p), (127)
%¢(r)A,r+A2+A¢:%(ﬁ+3p), (128)
i)zA¢—K+%¢2, (129)

with
1
K(r) =, (130)
pr) =21 - 210, (131
and
M(r) = % /) " a(x)x2dx, (132)

where, without loss of generality, we chose the direction of
e so that ¢(r) is non-negative. Moreover, from Egs. (129)
and (131) we find the useful relation

Ap = QA;IY) + P

(133)

We will consider now the case of a static, spherically
symmetric compact object held entirely by spin, that is, the
case when p(r) = 0 and p(r) = —8°(r), smoothly matched
to an exterior space-time modeled by a vacuum solution of
the Einstein-Cartan field equations. Moreover, we will
assume that for » > 0, 2M(r) < r, otherwise the scalar
¢(r) would take complex values.

1. Behavior at the center

Assuming that the functions u(r), 8*(r) € C! we can
write in a small enough neighborhood of r» = 0:

#(0) + p,,(0)r.
3(r) = 8°(0) + (&%) ,(0)r.

where the comma represents partial—or total—derivative
with respect to the variable in front. From Eq. (134), we
find that in a small enough neighborhood of r = 0, the
mass function (132) is described by

=

—~
~

~—
I

(134)

om(r) =2 St (139)

In particular, we find that M (r) goes to zero at least as fast
3
as r.

Now, Eqs. (127) and (133) yield

2(1- 20N _ (M5

r r dr r

(136)

In a region where r € [0, €[, with € < 1, the ths of this
equation takes values in R, therefore,

(8%),(0) =o. (137)
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Repeating the same reasoning in Eq. (133) we find that

A(0) =0. (138)

Let us now assume that there exists an r, > 0 where for
re|0,r,[, A(r) > 0. From Eq. (127) we will find that in
this region ji+ p <0 which implies that i+ 3p < 0.
Then, from Eq. (128) we find that A, (r) <0, for all
r € 10, r,[. This, however, violates the initial hypothesis
since, A(0) =0 and we assume that A(r) >0, for
r€0,r,[, that is, A (r) would have to be positive for
some r € [0, r,|.

Another possibility is that for a region r € [0, r,],
A(r) =0 and for r € |r,, r.] with r. > r,, A(r) > 0. If
this were the case, since for r € |r,, ., A(r) > 0, there
would exist a value r;, € |r,,r.] such that A,(r,) > 0.
Using this in Eq. (128), at r = r;, we find

A+3p>0=>a+p>0, (139)
but from Eq. (127) and imposing that (5*), <0 we find
that i + pl,_,, <0, contradicting (139).

Another possibility is that A(r) = 0, for all r € [0, ry].
From Egs. (127) and (128) this simply represents a vacuum
solution as such it does not represent a solution for a
compact object.

Gathering these results, we conclude that there exists an
rq > 0 such that in the region [0, r4[, A(r) < 0 and it must
take negative values in some subregion.

2. Behavior at the boundary

Let us now define the boundary of the compact object as
the hypersurface at which the spin density goes to zero, that
is, 6*(ry) =0. In such a hypersurface we have three
possible behaviors for the function A:

(1) A(rg) <0;

@) A(rg) > 0;

3) A(rg) =0.

Let us consider each case separately.
(1) The case A(ry) <0
From Eq. (133) we have that at r = r

(140)

Therefore, from Eq. (132) there exists a region |ry, r [
where

(141)

then i + p < 0, in that region. From Eq. (127), to guar-
antee that the spin density is a monotonically decreasing
function of r, we find that A(r) >0, for r € |r;, r,[. So,
either A(r) =0A A,(r) =0 for all r € ]r;,r,], that is,

the function .A(r) takes the value zero and stays zero for all
r € |ry,ryls or A(r) > 0 for some r € |ry, r,|. The former
case is not possible: from Eq. (128), i(r) +3p(r) =0,
hence, fi(r) > 0, for all r € |ry, r,[, which contradicts the
inequality (141). As for the latter—the case when
A(r) > 0, for some r € |r;, r,[—in the previous subsec-
tion it was shown that for some subregion of [0, r,],
A(r) <0, therefore the region |rs, r,[ cannot be a sub-
region of [0, r,[. With this said, since A(r) is a differ-
entiable function, there exists a region with, say,
r=r, <ry where A(r,) >0 A A,(r,) > 0. Then, from
Eq. (128)

fi+3pl,—, >0=ji+pl_, >0. (142)
However, substituting this result in Eq. (127) we find
(6%) ,(r,) > 0, which contradicts the assumption that the
spin density is a monotonically decreasing function.

(2) The case A(rg) >0

For the case when A(ry) > 0, we can simply repeat the
proof in the previous subsubsection and conclude in the
same way that the assumptions are violated in a region. We
just remark that the point with radial coordinate r = r,, in
the proof, can always be chosen such that r, < r, since, for
whatever the value of A(ry) > 0, there is a point where
0 < A(r < ry) < A(ry).

(3) The case A(ry) =0

In this the case when A(rg) =0 we have, from
Eq. (133), that

M(ry) =0. (143)
From this we have three possibilities:
(@) g(r) =0, for r €0, r,];
() a(r) <0, for r€10,r,];
(c) f(r) >0, for r €]0,r,];
for some r, > 0.

Let us consider each case individually.

(a) In the case when ji(r) = 0, for r € [0, r,] we have
from Eq. (133) that A(r) < 0. However, using this result in
(127), we see that it implies that the spin density is an
increasing function of r, violating the hypothesis.

(b) In the case when the corrected energy density is such
that fi(r) < 0, for r € |0, r,], from (132) we have that the
mass function is negative, in this region. From Eq. (133) we
than conclude that A(r) <0, r €0, r,]. However, going
back to Eq. (127), we find that the spin density is an
increasing function of r, violating the hypothesis.

(c) Finally, consider the case when fi(r) >0, for
r €10, r,]. From (132), this implies that the mass function
is positive in this region. Since Eq. (143) must be verified,
there must be a region where fi(r) < 0. We can then repeat
the arguments of the case A(ry) < 0, which lead to the
conclusion that the hypothesis would be violated in some
region inside the star.

084037-13



PAULO LUZ and SANTE CARLONI

PHYS. REV. D 100, 084037 (2019)

Gathering the previous results we have proven the result
in Proposition 3.

We end this section by remarking that if instead of
imposing p = —6> we only imposed that p < &%, that is,
the thermodynamical pressure is always smaller than
correction due to the spin density, then all the previous
results are valid if p , > 0. Notice, however, that in this
scenario, this condition simply measures the gradient of the
quantity 8zp — &°.

C. Reconstructing exact solutions

As in the case of the theory of general relativity, when
torsion is present it is possible to generate exact solutions
via reconstruction algorithms [21,22]. The idea is to assign
a given metric tensor and deduce the corresponding
behavior of the energy density, pressure, and spin density.

Analyzing Egs. (60) and (61) and using Egs. (64) and
(66) shows that different from the case of anisotropic
compact objects in general relativity [22], the structure
equations cannot be solved for the spin density. This
implies that the reconstruction algorithm can only be used
if an additional relation is provided, either relating the spin
density to the other matter variables or an equation of state
for matter.

In the following we will show some applications of these
algorithms which return some interesting solutions from a
physical point of view.

1. Connecting the spin density to the energy density:
“Buchdhal stars”

A natural additional relation is to have the spin density be
proportional to the energy density of the Weissenhoff fluid.
In this case, however, the junction conditions that we have
seen in Sec. V A pose the problem to have both the energy
density and the pressure to be zero at the boundary. A class
of solutions which are devised to have exactly this property
was given by Buchdhal [49]. We will now reconstruct this
solution in the case of Egs. (82)—(86).

Consider a spherically symmetric space-time character-
ized by the line element

ds* = —A(w)dt* + B(w)dw?

+ C(w)(d6? + sin20dg?), (144)
where
_ (a—1)sin(Rw) _a(l+a-n)
i) = DIy -,
_ (I+a+n) " w1 +a+n)?
B(w) = a(l+a-n) Cw) = 4a? - (145)

and w is connected to p by the relation

2

ep
Notice that the circumferential radius, r, vanishes when
w = 0.

From Egs. (60), (61), (83), and (84), assuming W = A
and A? = yM, we find

2K, +4K* - K
= T 14
M=k (147
1 2K,+4K*-K
=V-K+-—--EL— 14
P K+ T (148)
0=(2Y+1)K ,—4K*-K[4Y ,+4(Y-1)Y—1]. (149)

The form of Y and /C that satisfies the constraint (149) can
be found directly from their definition in a general
coordinate system (see Refs. [21,22])

y— 1CA, (14 a)wn,,
N 2AC,, 2(p—a-1)(1 +a+n+wny,)
BC 1
- B a(l+a+n) (150)

(Cy)? (I4+a—-n(+a+n+wn,)

Using Egs. (147), (148) and (150), the energy density and
the pressure are then given by

_ aR’n(3n—2-2a)
F 8- +atn?
_aR™2y(2n—a—1) -]

P= 8z(y—1)(1+a+n)? ~ (151)

As said, this family of solutions has, by construction, the
property that the pressure, energy, and spin densities all
vanish at a particular hypersurface. In Figs. 1-3 we present
the behavior of these quantities for a few combinations of
the parameters, showing that the values of the parameters a
and y have a direct impact in the profile of the densities,
whereas, the parameter R defines the value when the matter
variables go to zero. Moreover, from the plots it is clear that
the presence of spin markedly changes the type of behavior
the matter may have. In particular, for certain values of the
parameters a and y the functions g, p, or § might not be
monotonically decreasing functions of the coordinate w.

2. Connecting the spin density to the pressure

Another option that reduces the number of conditions
related to the junction is to associate the spin density to the
pressure. This choice, which at first might appear unnatural,
corresponds to the case in which the spin depends on the
equation of state. We can imagine that particles with spin
will create different structures not unlike the ones that
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(b) Thermodynamic quantities in Egs. (151) and the spin
density.

FIG. 1. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Egs. (144) and
(145) for a = 1.6, y = 0.03/(8x), and R = 0.24.

characterize the crystalline phases of water ice (see, e.g.,
Ref. [50]). Our ansatz refers to this kind of effect.

The reconstruction equations in this case, setting
A? = yP, read

4K +2K, =K y[K, +K(4K=2Y = 1)]

4(1-y)K 2(1-y)K - (152)
1 —4K +4Y
0=02Y+ 1)K ,-4K*-K[4Y ,+4(Y-1)Y —1].  (154)

Let us now consider a metric in which the (0, 0)
coefficient, A, is given by
A = Ao(a+ brie’)?, (155)

where a, b and r, are arbitrary constants. From the
definition of Y one obtains
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(b) Thermodynamic quantities in Egs. (151) and the spin
density.

FIG. 2. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Egs. (144) and
(145) for a = 1.9, y = 0.03/(8x), and R = 0.24.

1A brie’
Y=-t=——"0_ 156
2 A a—+ br%e/’ (156)
and from Eq. (154) it follows that
3ph 2 ,p\2/3
(a+3brge’) (157)

B Koe” + 4(a + 3br%ep)2/3 ’

where K, is an integration constant. In terms of the area
radius r, this result corresponds to the line element

ds> = —A(r)df® + B(r)dr* + r*(d6® + sin’0dg?), (158)
with
A(r) = Ag(a + br?)?,
cr? -1
B = (14— .
(r) ( (a+3b7‘2)2/3>

The energy density and the pressure are given by

(159)
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(b) Thermodynamic quantities in Egs. (151) and the spin
density.

FIG. 3. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Egs. (144) and
(145) for a =1.9, y = 0.5/(8x), and R = 0.24.

b*r?[5¢(1 —4y)r? — 12y(a + 3br?)?/3]
T Baly—)(a+ br?)(a+ 3br7)
4ably(a + 3br*)*3 +2¢(2y — 1)r?]
~ 8a(y—1)(a+br?)(a+3br2)3
. a*c(3 —4y)
8x(y — 1)(a + br?)(a + 3br?)>/3°
4b(a + 3br?*)*3 + ac + Sber?

P 8a( =)+ o) (a + 36777 (160)

We give in Fig. 4 the behavior of this solution for
specific values of the parameters, showing the existence of
a hypersurface where both p and 6% vanish, so that we can
smoothly match such solution with a vacuum exterior
space-time.

Another example, based on the same assumptions, can
be given considering

A =Ay(a+ Ve —be), (161)

0.0 0.5 1.0 1.5 2.0 25 3.0
(b) The thermodynamic quantities in Egs. (160).

FIG. 4. Plots of the behavior of the metric components
(a) and matter variables (b) associated with the solution in
Egs. (158)—(160) in the case a=5,b = 1,¢ = -1,y = 0.3/(8x),
and Ay = 0.7.

which corresponds to

Y= - ber (162)
2v/c —bel(a+ e —bel)

Eq. (154) then gives

o cy(ave—be’ —2be’ +c) (163)
" (c—be?)[dy(ay/c—be’ —2be” +¢) —bde”]’

with

W_(\/a2+86—|—a+4\/c—be”>\/,.;ﬁ (164)

Va*+8c—a—4vc - be?

Using the area radius r, we find the following solution for
the metric (158):
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A = Agla+y(r)]%
4clay(r) +2y(r)? = c]
y(r)*[4ay(r) + 8y(r)* + dy(r)(y(r)* — ) — 4c]’
(165)

B =

where

br?

y(r): C_r_(z)’

() = (\/02 +8c+a +4y(r))\/;,ﬁ
Vva* +8c—a—4y(r)

with the following expressions for the energy density and
pressure of the fluid:

. (166)

_ bdy[6y’ + Tay* + 2y (a* = 3¢) — 4acy*ly
~ teme(y = Drgla +y)le = y(a +2y)]
bdyc*(2y + a)y
167c(y = D)rg(a + y)[c = y(a +2y)P
bd[6y* + 3ay* — 5cy* + 2%y
~ 32zc(y — )r3fe - y(a +2y)P
b[2y(2a+3y) — 3(a +y)]
8rerg(y —1)(a +y)
B bdy(ay —2c + 3y )y
P Bamely=Dn(a + y)(ay - c + 27)
b(a + 3y)
8rerg(y —1)(a+y)

(167)

In Fig. 5 we show the behavior of this solution for specific
values of the parameters. Notice that this solution also
admits the existence of a common hypersurface where both
p and 0 vanish.

Before finishing this section we remark that, as shown by
Figs. 1-5, in all considered cases it is possible to find values
of the parameters for which all the thermodynamical
quantities and spin density are positive, hence, all the
classical energy conditions are valid.

VII. GENERATING THEOREMS

As discussed in Ref. [21], the form of the structure
equations (82)—(90) is especially useful to find algorithms
for generating new solutions from previous known ones.

Consider a solution for the structure equations (82)—(90)
characterized by the functions

{P()v MO’ AO’ KO’ 501 X(ﬁ YO? (Bl)()? (BZ)O’ ([Dl)O’ (D2)O}
(168)

Given the quantities
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(a) The coefficients of the metric in Eq. (158) and (165).
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(b) The thermodynamic quantities in Egs. (167).

FIG. 5. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Egs. (158),
(165), and (160) in the case Ay =1, a= -3, b=1, ¢ =3,
d=0.03,rg=1,and y = 0.9/(8%).

M = ./\/l() +M1,
A2 == A()2 +A12,

7):7)0+7)1,

IC:ICO+/C1, (169)
where {P;, M, A, K} are sufficiently smooth arbitrary
functions, let us search conditions on the deforming func-
tions so that the set { P, M, A, K, E, X, Y, B, B,, D, D, } is
a solution of the structure equations.

Substituting Eq. (169) in Eq. (83) we find

K1 4 2K + 2Ko (A2 — M)

1
- K, (2/\/10 — 4Ky — 2A0% + 202 =2 M, + E) =0.

(170)

This equation has the form of a Riccati differential equation
to which, in general, there are no known closed form
solutions. We can, nonetheless, consider particular cases so
that the previous equation reduces to a Bernoulli differ-
ential equation, where general closed form solutions exist.
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A. Case 1

Let us first consider that

M, = A% (171)

In this case, Eq. (170) can be readily integrated for K, such
that

Expl/? Adx]

K,=0vK = ,
! VEi(p) K, +2%Exp[[3{') Adx|dy

(172)

where C, is an integration constant and

1

Using Eq. (171) in Eq. (82) we find

7
9,P1 + P, <31<;0 +3K, = Mo + 2Py — Ag® - Z)

1
+P12+Z]::07 (174)
with
F =4My(A2 4+ K1) = 8(Py + P1)A2 + 12PK,

+AAZA 2 —49,A.2 +4A + A2

—12A,%K — 16A,°K, — 12A,%K,. (175)

For Eq. (174) to reduce to a Bernoulli-like differential
equation we will require F(p) = 0, that is,

af,A12 — A =K (Mg + 3Py —44A?)
7
— Alz (Z+ MO - BICO — 3’C1 - ZPO - 27)1 + A02> = Oa
(176)

which, by setting K; = 0 or M + 3P, — 44> = 0, can
be formally solved, such that

Exp| ! ®dx]

Af(p) = OvVAZ(p) = , : . (177)
A, — [7 Exp|[; ®dx]dy
where A, is an integration constant and
, 7
¢:M0—3K0—3K1—2P0—2P1+A0 +Z (178)
Consequently, from Eq. (174), we find
Expl[ [? T'dx]
Pi(p) = 0vVPi(p) = (179)

P. + J7 Exp| [ Tdx]dy’

140]

with

7
F:M0—27D0+A02—3K;0—3K1+1, (180)

and P, is an integration constant.

Before we conclude this section, we should stress that
Egs. (172), (177), and (179) present two possible solutions
for the considered functions and all combinations of those
solutions verify the structure equations with M, = A3,
leading, a priori, to distinct solutions.

B. Case 2
Another possibility to solve Eq. (170) is the case when

(Ko + K1) (247 = 2M,) = G(p)Ky + Q(p)K\2, (181)
where G(p) and Q(p) are sufficiently smooth, arbitrary
functions. Setting

2A% —2M, =K,Q(p),

G(p) = KoQ(p). (182)

and substituting Egs. (181) and (182) in Eq. (170) we find

1
0,1 + Ky |24¢% = 2M + 4K + Ko Q(p) — 3

+2+ 0K =0, (183)
which, providing an expression for Q(p) can be solved for
K, or vice-versa.

Now, to solve the remaining equations for the functions
0, Py, and A, we will consider that the original solution is
such that My = Py = Ay = 0, that is, the original space-
time is described by a vacuum solution of the field
equations. From Eq. (82) we then find

7
0,Pi+P*+P [37C0 + 3K, - Z] +J(p) =0, (184)
where
1 1
j(ﬂ>:—8pA12+A14+§Q(P)}C1 {P1 —Ko—K, +Z}
, 1 7

As before, to reduce Eq. (184) to a Bernoulli differential
equation we will impose J(p) = 0. Unfortunately, this
equation itself is also not possible to solve in general since
it has the form of a Riccati differential equation. Let us then
further impose the last term in the first line of the previous
equation to be zero. Solving for IC;, we have
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1
IC]IPI—]C0+—,

J (186)

where we have ignored the solutions where Q = OV, =0
since they lead to a particular case of subsection VII A.

Considering the constraint that originally we have a
vacuum solution, substituting Eq. (186) in Eq. (183) we
find,

8(20,P, + 47,2
0= SEOPIHAPIAP) )
@P, + (@P, 4K, + 1)

Gathering the previous results we find the following
expressions for the remaining perturbations

=
TP, e
A= OvA— Exp[— [/ ®dx]
A, — [7 Exp[- [} ®dx]|dy
20,P) +4P> + P,
= A? P , 188
M= A+ 4P +1 (188)
where P, and A, are integrating constants and
1 7

Notice that we did not consider the case when P; =0
since it would lead to the case when Q(p) = 0, which,
as mentioned before, represents a particular case of
Sec. VII A. Let us also remark that, for solutions generated
using the above equations, the functional form of the
pressure, P = Py, is independent of the original solution
and completely determined up to a constant. Moreover,
notice that the pressure—in such solutions—is only null
when p — —c0.

C. Case 3
Let us now consider the deformations in Eq. (169) with
the extra constraint
Y =Y, (190)
that is, we will impose that the function Y is unchanged
between the original and the perturbed space-time. This is
a generalization of the deformations considered in
Refs. [21,23], for non-null-spin density. Substituting
Egs. (169) and (190) in Eq. (84) we find that
P =A1-K,. (191)
Using Egs. (169), (190), and (191) in Egs. (83) and (82) we
find the following relations for M, and K;:

Ki(2Yy + 3)
= =0 T A2 192
M, 2V, + 1 + A7, (192)
. Exp[— |7 ®dx] i (193)
1= ; — Ko»
K.-J» ZVjHEXp[— 3, @dx]dy
where
Ko(6 4 4Yy) 1

="V IA2_) - = 194
2V, + 1 +285=2Mo =3 (194)

and /C, is an integration constant. Equations (191)—(194)
generalize the results in Ref. [21] in the presence of a non-
null-spin density.6

Contrary to the previous cases, Eqgs. (191)—(194) do not
completely determine the system since the function A7 is
unconstrained. Notice that IC = K; is determined uniquely
by the unperturbed solution and A? will only affect M and
‘P;. Therefore, provided an unperturbed solution, the metric
of the perturbed space-time is completely determined by
Egs. (190) and (193). As already pointed out, A? will not
only affect the energy density and the pressure of the fluid
but also the Weyl tensor components. Thus, although the
metric of the space-time is independent of A2, the geometry
is profoundly influenced by the presence of spin.

VIII. CONCLUSIONS

In this paper we have used the 14 1 + 2 formalism to
derive the structure equations for LRSI and LRSII, sta-
tionary space-times with a Weyssenhof-like torsion field in
the context the ECSK theory of gravity. The structure of the
covariant equations show in detail how the spin interacts
with the space-time via the torsion tensor. In particular, the
presence of a torsion tensor field separates the magnetic
part of the Weyl tensor in two distinct tensors, which
behave differently. Even in the case of static LRSII space-
times, the magnetic parts of the Weyl tensor do not vanish
and some of its components depend on both the value and
spatial derivative of the spin density. This suggests, in
particular, that the effects of spin on the matter fluid, even
in the regimes expected to be found in neutron stars, may
not be negligible, as it was previously thought (see, e.g.,
[13]), even in the case in which the contribution to the spin
is very small.

The 1+ 1+ 2 equations were then used to derive the
covariant Tolman-Oppenheimer-Volkoff equations for
ECSK gravity for LRSI and LRSII space-times. In the
case of LRSII space-times, the equations are structurally
very similar to the ones of GR. Indeed, this similarity
allows us to recast them into the same form of the GR TOV

SNotice that there is an error in the expression for M, in
Ref. [21]. The correct expression is found by setting A2 =A?=0
in Eq. (192).
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equations via a redefinition of the matter variables and the
electric part of the Weyl tensor. As a consequence we found
that at the level of the metric it is possible to map static,
locally rotationally symmetric solutions of class II from the
Einstein-Cartan theory to the ones of the theory of general
relativity. Moreover, due to this mapping and the rescale in
the matter variables, some GR solutions which are physi-
cally irrelevant become, in the context of ECSK gravity,
interesting.

When we examine in detail the physical properties of
physically relevant solutions, the differences between the
Einstein-Cartan theory and GR become once more evident.
This is particularly true looking at junction conditions. We
found that the requirement that all of the components of the
Riemann tensor have finite discontinuities across the
separation surface A leads to additional constraints with
respect to the tornsionless case. This is especially evident
when looking at the structure equations for stationary LRSI
and LRSII space-times sourced by a Weyssenhoff fluid. In
these equations the magnetic parts of the Weyl tensor
depend explicitly on the derivatives of the torsion tensor
and the classical Israel junction conditions of GR do not
guarantee these terms to be finite across A. As conse-
quence of the generalized junction conditions, in the
considered setup, observers at the interior and exterior
space-times must measure the same value for the spin
density at V, turning the task of finding physically relevant
solutions even more daunting.

Using the full set of structure equations and boundary
conditions provided by the junction formalism, we were
able to study various properties of possible solutions. We
started by analyzing how the presence of spin changes the
Buchdahl limit for the maximum compactness of a star. We
concluded that the spin-geometry coupling allows stars
with a given circumferential radius to hold more matter
than the corresponding GR ones. Next we considered the
case of static, spherically symmetric compact objects
entirely held by the matter spin, smoothly matched to a
vacuum exterior. This scenario was expected to represent a
good model for cold neutron stars, where the thermody-
namical pressure is negligible when compared to the spin
density. We found, surprisingly, that such objects cannot be
simultaneously static, spherically symmetric and smoothly
matched to a vacuum exterior. This is a strong result and it
is necessary to discuss in detail the hypothesis that led to
such conclusion. More specifically our conclusion may not
be valid if:

(i) the spin density is not a monotonically decreasing

function of the radial coordinate inside the star;

(i1) we consider a nonvacuum exterior space-time;

(iii) we replace the uncharged Weyssenhoff fluid model;

(iv) we allow the presence of a thin shell.

The first possibility might lead to a total energy density and
a pressure density which is not monotonically decreasing.
While this is not a strong enough reason to discard this

case, we expect these oscillation to make the solution
unstable under small perturbations. The second case
suggests that if ECSK theory had a nontrivial vacuum
(vortical) solution, one could smoothly match the interior to
it, bypassing the requirement of the spin density to vanish at
a hypersurface. At present there is no evidence that such a
solution might/should exist. Indeed the theory is expected
to reduce to GR in vacuum. For what concerns hypothesis
(iii), the Weyssenhoff fluid can be advocated to be a good
model for the matter fluids that might constitute cold
neutron stars. However, in this work we made the sim-
plifying assumption that the fluid is electrically neutral. If,
instead, a charged Weyssenhoff fluid model is considered,
we expect that other effects will appear—such as aniso-
tropic pressure—which may drastically change the behav-
ior of the fluid. As for the last possibility, although a
smooth junction with a vacuum exterior might represent a
more reasonable scenario, it might be argued that neutron
stars may have a well-defined surface; therefore, it is not
completely unreasonable to consider the presence of a thin
shell of matter at the matching surface.

On top of the zero pressure solution considered above,
we have also considered solutions in which pressure is
nonzero. Using reconstruction algorithms, we have been
able to obtain various classes of solutions for the interior of
static, spherically symmetric compact objects that can be
smoothly matched to a Schwarzschild exterior. One family
of those solutions, which we dubbed Buchdahl stars,
represent a very interesting scenario: they admit the
existence of a common hypersurface where the pressure,
spin density, and energy density all vanish. This model,
studied for the first time by Buchdahl for gaseous stars in
GR [49], represents the scenario where the fluid that
composes a star will smoothly dissipate away from a
denser core and transition to vacuum. These solutions also
provided a key example for the effects that spin may have
on the behavior of the fluid. Figures 1-3 clearly exemplify
that even if the spin density is much smaller than the other
matter variables, it allows for a much richer behavior for
the fluid.

The natural question that emerges is about the stability of
these solutions. Because of the nontrivial role of the
magnetic part of the Weyl tensor, no standard ‘“zeroth
order” (and Newtonian based) criterion is necessarily valid
in our case. In cases in which the spin density is decreasing,
one very heuristic criterium of stability of our solutions is to
guarantee (as we have done) that both energy density and
pressure of the fluid are decreasing functions of the radial
coordinate when the spin is small at least in a nonempty set
of values of the parameters. However, a complete study of
the stability of the solutions we have found requires a more
careful study, which will be the topic of a series of
future works.

Finally, as in the case of GR, in ECSK theory it is also
possible to derive generating theorems. In this work we
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have presented several algorithms to generate new exact
solutions from previously known ones. We should stress
here that the results we obtained followed from the simple
idea of finding conditions so that the Riccati differential
equations would reduce to Bernoulli equations. Although
this scheme allowed us to find various generating algo-
rithms, we make no claim that we have exhausted all
possibilities for finding new ones. On this note, the
integrability conditions for Riccati-type equations in
Refs. [51-53] were also considered. However, these did
not lead to useful results in the considered context.
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APPENDIX: COVARIANTLY DEFINED
QUANTITIES FOR THE DERIVATIVES
OF THE TANGENT VECTORS

Using the definitions of the projector operators on the
hypersurfaces V and W, let us show how the covariant
derivatives of the tangent vector fields » and e can be
uniquely decomposed in their components along u, e,
and W.

1. Decomposition on the sheet W

Let us first consider the projected covariant derivatives of
the tensors u# and e on the sheet. These can be uniquely
decomposed as

1 ~
5a”ﬂ = Na"Nﬂ}’Vauy = ENaﬂg + Zaﬂ + 8aﬂQ7 (Al)
where
- " 1 oy
9:60(” , 2(1} :5{auﬁ}’ Q:ES 501/[7, (AZ)
and
1
Opep = ENa/id) + Cop + €058, (A3)
with
1 or
d) = 5(16 > é:(lﬂ = 5{aeﬂ}v 5 = 58 50'67’ (A4)

where the curly brackets represent the projected symmetric
part without the trace of a tensor in W, that is, for a tensor

Waﬁ ’

N(l U
Yiapy = |:NM((1N/3)U _TﬂNM :|l///w' (AS)

Using the 2-form volume ¢,; a completely antisymmetric
tensor defined on the sheet, Wiap)> CAN be written as

1
Viap) = Eap <§ 6761//”) . (A6)

This property was used in Eq. (5).

2. Decomposition on V

The decomposition of the projected covariant derivatives
of u® onto V is given by

I
Doty = hghgVoit; = 3 haph + 045 + @ap. (A7)

with
0 = h*’ D 4uy, (A8)
Oop = Dialip), (A9)
Wap = h1ohy" Dy, (A10)

where we used the angular brackets to represent the
projected symmetric part without trace of a tensor on V,
that is, for a tensor, v,

PP All
Vip) = | Waltp)” =71 W (A11)

The scalar and tensor quantities in Eqgs. (A8)—(A10) can
themselves be further decomposed in their contributions
exclusively on W and along e, such that

0=0+0, (A12)
where 0 is defined in Eq. (A2) and
0 = —uyz(e*Dyef) = —uze?, (A13)

1
Gaﬂ = Zaﬂ +2Z(a€ﬂ) +Z(€a€ﬂ —ENaﬂ>, (A14)
with
Za = Nﬁeﬂayﬂ, X= e”eﬂaaﬂ = —N{lﬁﬁaﬁ,

(A15)

Zaﬂ = O{ap}>
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and
Wop = EqpQ — Ey’es + e 64,0, (A16)
where Q is given in Eq. (A2) and
ot = le’“”lDﬂuw (A17)
2

which can be itself decomposed as

o' = Qet + QF,  with M:MM:%MWWWM
(A18)
therefore, equivalently,
Wop = Eqpy (Qe? + Q). (A19)

The quantities 6, %, 0, and 0 are not independent, in fact:

1

b=30+1. (A20)
.2
b=30-x: (A21)

as such, when setting up the 1 + 1 4 2 formalism only two
are chosen. The convention followed here uses the variables
0 and X.

For the projected covariant derivative of the vector field e
on V we have

Daeﬂ = haohﬂ}’vgey = 5a€ﬂ —+ eaaﬂ, (AZZ)
where 6,e5 is given by Eq. (A3) and
a, = e"Dﬂea — éa‘ <A23)

3. Decomposition on the full manifold

Finally, we can decompose the total covariant derivatives
of u* and e%, such that
Vauﬁ = —MG(AEﬂ + Aﬂ) + Dauﬂ, <A24)

with

A = —u,u'V, e’ = —u,é, Ay =Ny, (A25)
and
1
Veep = Dyey — ug0p5 — Augug + 36’ + 2| e,y
+ [za - gaGQ"] Ug, (A26)
where
a, = hoé, (A27)

4. The actual physical kinematical variables

As discussed in Refs. [35-38], the presence of a generic
torsion field will affect the definition of the kinematical
quantities that characterize a congruence of curves, such
that, 0, Cups and Dyps Egs. (A8)—(A10), in general, do not
represent the actual geometric—physical—expansion,
shear, and vorticity of the timelike congruence to which
u is tangent. These, however, are related with the actual
kinematical quantities by
0,=0+Wg,

Cgap = Oap+Wiap)s  @gap = Oop+ Wi,

(A28)

where we have used the index g to represent the physical—
geometric—kinematical quantities and the definition of
angular brackets is given in Eq. (A11). In the same way the
presence of the torsion field will modify the kinematical
quantities ¢, {4, and &, Eq. (A4). In particular we have the
following relations:

¢y =+ 25,/ N*“,
ég =&+ Syﬂ,,eyeﬂ”.

Coap = Cap + 286" N }(laINI\/ﬁ)’
(A29)

In the particular setup that we propose to study—
Weyssenhoff-like torsion—the extra terms in the rhs of
Eqgs. (A28) and (A29) that depend explicitly of the torsion
tensor will be null; therefore, in our case, the indicated
quantities will correspond to the actual geometric kinemati-
cal quantities.
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