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We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a Weyssen-
hof-like torsion field in the Einstein-Cartan theory. The new set of structure equations clearly show how the
presence of torsion affects the geometry of the space-time. We obtain new exact solutions for compact
objects with non-null intrinsic spin surrounded by vacuum, explore their properties, and discuss how these
solutions should be smoothly matched to an exterior space-time. We study how the intrinsic spin of matter
changes the Buchdahl limit for the maximum compactness of stars. Moreover, under rather generic
conditions, we prove that in the context of a Weyssenhof-like torsion, no static, spherically symmetric
compact objects supported only by the intrinsic spin can exist. We also provide some algorithms to generate
new solutions.
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I. INTRODUCTION

Compact objects, in particular neutron stars, represent one
of richest environments to probe fundamental physics due
their extreme gravitational fields, densities, and the state of
the matter that composes them, especially at the core. The
recent detection of gravitational waves due to the coalescing
of two orbiting neutron stars [1] opened a new window to
study their tidal deformations, allowing the study of the
properties of the matter fields that compose this kind of
object. Nonetheless, the usage of neutron stars as a physics
laboratory is only possible if we have a deep knowledge of
their properties. In particular, it is important to understand
how the intrinsic spin1 of the fermionic matter particles
affects the behavior of such bodies.
In an astrophysical context, the effects of spin were first

considered when Chandrasekhar [2] established that the
maximummass of an idealwhite dwarf could hold due to the
electron degeneracy pressure, before it underwent continu-
ous gravitational collapse (see also Ref. [3] for the rotating

case). In the subsequent years, similar limits relying on the
Pauli exclusion principle were proposed for other types of
compact objects, namely neutron stars, showing that the spin
of matter particles markedly influences astrophysical
objects (cf. e.g., Ref. [4]). Nevertheless, the way in which
the presence of intrinsic spin affects the properties of
astrophysical bodies remains largely unknown.
In an affine theory of gravity, the gravitational field is

represented by the geometry of the space-time which is, in
turn, determined by the energy and momentum of the
matter fields. Mathematically, all classical matter properties
are described by an energy-momentum tensor that acts as a
source in the field equations. Since spin can be considered
as an intrinsic angular momentum of the matter particles,
one would expect that this property could also be encoded
in an energy-momentum tensor. However, in the theory of
general relativity (GR) it appears immediately clear that
there is no obvious way to introduce the spin in a way that
is consistent with the conservation laws for the total angular
momentum. A way around this problem is to endow the
space-time with additional geometrical structure, providing
extra degrees of freedom to model spin and its relation with
the gravitational field. This is the fundamental idea behind
the so-called Einstein-Cartan-Sciama-Kible (ECSK) theory
of gravity. In this theory the connection is not imposed to be
symmetric so that the antisymmetric part of the connection
defines an extra tensor field: torsion. In this way, it is
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1We should remark that here, and in the following, the word

“spin” will be used exclusively to represent the quantum spin of
the particles that source the gravitational field equations. In no
case will the word spin be associated to any form of rotation of the
compact objects we will analyze.
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possible to impose a local Poincaré gauge symmetry on the
tangent space of each point of the manifold such that the
matter intrinsic spin can be related with the torsion tensor
field. Indeed, theories of gravity with a nonsymmetric
connection (generically called Einstein-Cartan theories)
were proposed even before the discovery of spin.
Sciama and Kibble [5,6] introduced the idea of connecting
the torsion tensor with the matter intrinsic spin, paving the
way to a geometrized treatment of spin.
Early works on the ECSK theory focused on the effects of

spin on the evolution of gravitational collapse and the
possibility of avoidance of singularities [7–11]. Only by
the end of the decade, were solutions for spherically
symmetric space-times found [12,13]. The solutions in
Ref. [12] were obtained by directly solving the field
equations for the ECSK theory. Such an approach, though,
leads to great difficulties in searching for exact solutions. In
this article we will adopt a different method and consider the
formalism provided by the 1þ 1þ 2 space-time decom-
position [14–17]. Covariant space-time decomposition
approaches were initially devised as a powerful tool to
explore the properties of cosmological models and their
perturbations (see, e.g., [14,18–20]) and only recently have
they been employed to dealwith space-times of astrophysical
interest. In Refs. [21,22], this approach was used to
construct—in the context of GR—a covariant version of
the Tolman-Oppenheimer-Volkoff equations. The new equa-
tions allowed us to pinpoint the mathematical nature of the
problem of determining interior solutions for compact
objects and, for instance, the treatment of stars with aniso-
tropic pressure. Moreover, in the covariant language it was
possible to define algorithms to generate a number of new
exact solutions, and to easily obtain general theorems (like
the ones [23,24] in GR) which link apparently unrelated
solutions.
In this article, we aim to study static compact objects in

the context of the ECSK theory, in particular, to study how
the presence of spin affects the possible solutions.
Moreover, we will also examine how the boundary con-
ditions imposed by the smooth junction of two space-times,
with possible non-null torsion, constraint the solutions.
The article is organized as follows: in Sec. II we define the

1þ 1þ 2 formalism and consider the decomposition of
some tensorial quantities; in Sec. III we describe the setup
that we propose to study and provide the structure equations;
in Sec. IV we derive the Tolman-Oppenheimer-Volkoff
(TOV) equations for static, locally rotationally symmetric
space-times of class I and II in the presence of a non-null
torsion field; in Sec. V we generalize the conditions for the
smooth junction of two space-times with general torsion
tensor fields and apply the results to the particular consid-
ered setup; in Sec. VI exact solutions are derived and
studied; in Sec. VII we provide a set of algorithms to
generate new exact solutions from previously known ones;
and in Sec. VIII we summarize the results and conclude.

In this article we shall assume the metric signature
ð−þþþÞ and work in the geometrized units system where
G ¼ c ¼ 1.

II. THE 1+ 1+ 2 DECOMPOSITION

Consider a Lorentzian manifold of dimension 4 and a
congruence of timelike curves with tangent vector u.
Without loss of generality we can foliate the manifold in
3-hypersurfaces, V, orthogonal at each point to the curves
of the congruence, such that all quantities are defined by
their behavior along the direction of u and in V. This
procedure is usually called “1þ 3 space-time decomposi-
tion.” Such a decomposition of the space-time manifold
relies on the existence of a projector to the hypersurface V
which can be naturally defined as

hαβ ¼ gαβ þ uαuβ; ð1Þ
where gαβ represents the space-time metric and uαuα ¼ −1.
The projector hαβ has the following properties:

hαβ ¼ hβα; hαβhβγ ¼ hγα;

hαβuα ¼ 0; hαα ¼ 3: ð2Þ

The 1þ 1þ 2 decomposition [14–17] builds from the
1þ 3 decomposition by defining a congruence of spatial
curves with tangent vector field e such that any quantity
defined in the submanifold V is defined by its behavior
along e and in the 2-surfacesW. We shall refer toW as “the
sheet.” As before, we can then define a projector ontoW by

Nαβ ¼ hαβ − eαeβ; ð3Þ

where eαeα ¼ 1, and such that

Nαβ ¼ Nβα; NαβNβγ ¼ Nγ
α;

Nαβuα ¼ Nαβeα ¼ 0; Nα
α ¼ 2: ð4Þ

It is useful to introduce the following tensors:

εαβγ ¼ εαβγσuσ; εαβ ¼ εαβγeγ; ð5Þ

derived from the covariant Levi-Civita tensor εαβγσ, with the
following properties:

εαβγ ¼ ε½αβγ�; εαβ ¼ ε½αβ�;

εαβγuγ ¼ 0; εαβuα ¼ εαβeα ¼ 0;

εαβγε
μνγ ¼ hμαhνβ−hμβh

ν
α; εα

γεβγ ¼Nαβ;

εμναε
μνβ ¼ 2hβα; εαβγ ¼ eαεβγ −eβεαγþeγεαβ:

ð6Þ
Using the results in the Appendix, the covariant deriv-

atives of tangent vectors u and e can be written as

PAULO LUZ and SANTE CARLONI PHYS. REV. D 100, 084037 (2019)

084037-2



δαuβ ¼ Nσ
αN

γ
β∇σuγ ¼ Nαβ

�
1

3
θ −

1

2
Σ
�
þ Σαβ þ εαβΩ;

Dαuβ ¼ hσαh
γ
β∇σuγ ¼ δαuβ þ

�
1

3
θ þ Σ

�
eαeβ þ 2ΣðαeβÞ

− εαλΩλeβ þ eαεβλΩλ;

∇αuβ ¼ Dαuβ − uαðAeβ þAβÞ; ð7Þ

and

δαeβ ¼
1

2
Nαβϕþ ζαβ þ εαβξ;

Dαeβ ¼ δαeβ þ eαaβ;

∇αeβ ¼ Dαeβ − uααβ −Auαuβ þ
�
1

3
θ þ Σ

�
eαuβ

þ ðΣα − εασΩσÞuβ: ð8Þ

We shall also need to find the various contributions along
u, e and onW of the energy-momentum tensor T αβ. At this
point we shall not assume T αβ to have any symmetry.
Hence,

T αβ ¼ μuαuβ þ phαβ þ q1αuβ þ uαq2β þ παβ þmαβ

¼ μuαuβ þQ1αuβ þ uαQ2β þQ1eαuβ

þQ2uαeβ þ preαeβ þ Π1αeβ þ eαΠ2β

þ p⊥Nαβ þ Παβ þ εαβM; ð9Þ

with

q1α ¼ −hσαuγT σγ; μ ¼ uσuγT σγ;

q2α ¼ −uσhγαT σγ; p ¼ 1

3
hαβT αβ;

Q1α ¼ −Nσ
αuγT σγ; pr ¼ pþ Π ¼ eσeγT σγ;

Q2α ¼ −uσNγ
αT σγ; p⊥ ¼ p −

1

2
Π ¼ 1

2
NσγT σγ;

Π1α ¼ Nσ
αeγT σγ; Q1 ¼ −eσuγT σγ;

Π2α ¼ eσNγ
αT σγ; Q2 ¼ −uσeγT σγ;

παβ ¼ hσhαhβi
γT σγ; Π ¼ 1

3
T αβð2eαeβ − NαβÞ;

mαβ ¼ hσ½αhβ�
γT σγ; M ¼ 1

2
εμνT μν;

Παβ ¼ T fαβg; ð10Þ

where the angular and curly parentheses notation is defined
in Eq. (A5). Moreover, the following relations are useful:

q1;2α ¼ Q1;2α þQ1;2eα;

παβ ¼ Παβ þ Π
�
eαeβ −

1

2
Nαβ

�
þ Π1ðαeβÞ þ Π2ðαeβÞ: ð11Þ

In this paper we will assume that the space-time is
endowed with a linear, metric compatible connection
Cαβ

γ . Such a connection is characterized by the metric
connection—the Christoffel symbols—and the torsion
tensor field

Sαβγ ¼ Cγ
½αβ�:

Using Eq. (1) we can write the torsion tensor field as

Sαβγ ¼ εαβ
μS̄μγ þW½αjγujβ� þ Sαβuγ þ u½αXβ�uγ; ð12Þ

with

S̄αβ ¼
1

2
εαμνhσβS

μν
σ; Wαβ ¼ 2uμhναhσβSμνσ;

Sαβ ¼ −hμαhνβuσSμνσ; Xα ¼ 2uμhναuσSμνσ: ð13Þ

Notice that the tensors defined in Eq. (13) are orthogonal to
the tangent vector u.
Now, from the definition of the Riemann tensor, Rαβγ

δ:

Rαβγ
δwδ ¼ ∇α∇βwγ −∇β∇αwγ þ 2Sαβδ∇δwγ; ð14Þ

where wγ is an arbitrary 1-form; in the case of a Lorentzian
manifold with non-null torsion, the Riemann curvature
tensor does not possess the same symmetries as the torsion-
free case. This is discussed very thoroughly, for instance, in
Ref. [25] to which we redirect the reader for further details.
In theories with torsion, the Riemann tensor has the
following properties:

Rαβγδ ¼ −Rβαγδ;

Rαβγδ ¼ −Rαβδγ;

R½αβγ�δ ¼ −2∇½αSβγ�δ þ 4S½αβjρSjγ�ρδ; ð15Þ

and the modified second Bianchi identity

∇½αRβγ�δρ ¼ Qαβγδ
ρ; ð16Þ

where

Qαβγδρ ¼ 2S½αβjσRjγ�σδρ: ð17Þ

The previous properties of the Riemann tensor are
completely general; in particular, they are valid for
space-times of any dimension. Let us now consider the
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particular case of a space-time of dimension 4 with torsion.
In this case, Rαβγδ can be written as the following sum:

Rαβγδ ¼ Cαβγδ þ Rα½γgδ�β − Rβ½γgδ�α −
1

3
Rgα½γgδ�β; ð18Þ

where Cαβγδ represents the Weyl tensor, Rαβ ¼ Rαμβ
μ the

Ricci tensor, and R the Ricci scalar. In the presence of
torsion, the Weyl tensor is still defined as the trace-free part
of the curvature tensor, but it does not retain all the other
usual symmetries:

Cαβγδ ¼ −Cβαγδ;

Cαβγδ ¼ −Cαβδγ;

C½αβγ�δ ¼ R½αβγ�δ þ R½αβgγ�δ: ð19Þ

It will be useful for our purposes to give the relation
between the derivative of the Weyl tensor and the Riemann
tensor. The generalization of the formula given in Ref. [26]
(see also Ref. [19]) is

∇αCγδβα ¼ 1

4
εμνλβQμνλσρε

σργδ

þ 3

2
gβ½δQγ�μν

μν þ∇½δRγ�β −
1

6
gβ½γ∇δ�R; ð20Þ

where Qαβγδρ is given by Eq. (17).
In what follows, we will need to find the 1þ 1þ 2

decomposition of the Weyl tensor. We start by decompos-
ing Cαβγδ into its components along u and V as

Cαβγδ ¼ −εαβμεγδνEνμ − 2uαEβ½γuδ� þ 2uβEα½γuδ�
− 2εαβμHμ½γuδ� − 2εμγδH̄μ½αuβ�; ð21Þ

where

Eαβ ¼ Cαμβνuμuν; ð22Þ

Hαβ ¼
1

2
εα

μνCμνβδuδ; ð23Þ

H̄αβ ¼
1

2
εα

μνCβδμνuδ; ð24Þ

are the “electric” part and “magnetic” parts of the Weyl
tensor, respectively. Equation (21) generalizes the results in
Ref. [27] to the case of non-null torsion. Note, however,
that differently from the torsionless case, there are two
separate tensor quantities associated to the magnetic part of
the Weyl tensor: Hαβ and H̄αβ.
From the results in Eq. (19), we see that in the presence

of torsion the tensors Eαβ, Hαβ, and H̄αβ have the following
properties:

Hαβ ¼ hμαhνβHμν; Hαβ ¼ HðαβÞ;

H̄αβ ¼ hμαhνβH̄μν; H̄αβ ¼ H̄ðαβÞ;

Eαβ ¼ hμαhνβEμν; Eα
α ¼ 0: ð25Þ

Therefore, Eαβ, may not be a symmetric tensor andHαβ and
H̄αβ do not have to be trace-free. On the other hand, due to
the properties of the Levi-Civita tensor, even in the
presence of torsion, the magnetic parts of the Weyl tensor
are symmetric under the exchange of indexes. These
properties allow us to decompose the tensors Eαβ, Hαβ,
and H̄αβ as

Eαβ¼E
�
eαeβ−

1

2
Nαβ

�
þEαeβþeαĒβþEαβþεαβE; ð26Þ

Hαβ ¼
1

2
NαβHþ eαeβHþHαeβ þ eαHβ þHαβ; ð27Þ

H̄αβ ¼
1

2
NαβH̄þ eαeβH̄þ H̄αeβ þ eαH̄β þ H̄αβ; ð28Þ

with

E ¼ Eμνeμeν ¼ −NμνEμν; Eα ¼ Nμ
αeνEμν;

E ¼ 1

2
εμνEμν; Ēα ¼ eμNν

αEμν;

H ¼ NμνHμν; Eαβ ¼ Efαβg;

H ¼ eμeνHμν; Hα ¼ Nμ
αeνHμν;

H̄ ¼ NμνH̄μν; H̄α ¼ Nμ
αeνH̄μν;

H̄ ¼ eμeνH̄μν; Hαβ ¼ Hfαβg;

H̄αβ ¼ H̄fαβg; ð29Þ

where the curly parentheses notation is defined in Eq. (A5).

III. DECOMPOSITION OF THE
FIELD EQUATIONS

We are now in position to apply that framework to study
solutions of the Einstein-Cartan theory, characterized by
the following field equations:

Rαβ −
1

2
gαβR ¼ 8πT αβ; ð30Þ

Sαβγ þ 2gγ½αSβ�μμ ¼ −8πΔαβγ; ð31Þ

where T αβ represents the canonical energy-momentum
tensor and Δαβμ the intrinsic hypermomentum, found by
varying, independently, the Einstein-Hilbert action with
respect to the metric and to the connection. We assume a
null cosmological constant.
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From the second Bianchi identity (16) and the field
equations (30) and (31) we find the conservation laws for
the canonical energy-momentum tensor:

∇βT α
β ¼ 2SαμνT νμ þ 1

8π
ðSαμμR − SμνσRασμνÞ: ð32Þ

Using Eq. (31) we can introduce the intrinsic hyper-
momentum tensor in the above conservation laws and
recover the result in Ref. [28] (see also Refs. [29,30] for
similar results derived in a more general context).
We will assume that the source for the above field

equations is an uncharged Weyssenhoff fluid [31]. The
Weyssenhoff fluid provides a semiclassical description of a
perfect fluid composed of fermions, such that the fluid is
characterized by its energy density, pressure, and spin
density. Its canonical energy-momentum tensor is given by

T αβ ¼ μuαuβ þ phαβ − ðAeμ þAμÞSμαuβ; ð33Þ

where μ and p represent the energy density and pressure of
the fluid, respectively.
Following Refs. [32,33], the hypermomentum tensor for

the Weyssenhoff spin fluid can be written, in our con-
ventions, as

Δαβγ ¼ −
1

8π
Δαβuγ; ð34Þ

where u represents the proper 4-velocity of an element of
volume of the fluid and the antisymmetric spin density
tensor, Δαβ, verifies Δαβuβ ¼ 0. From Eq. (31) we find

Sαβγ ¼ Δαβuγ; ð35Þ

hence, comparing Eq. (35) with Eq. (12) we see that the
Weyssenhoff fluid model implies that the tensors S̄αβ,Wαβ,
and Xα, Eq. (13), are null and Sαβ ¼ Δαβ. In this way, the
decomposition of the torsion tensor will coincide with the
decomposition of Sαβ. Taking into account that Sαβ ≡ S½αβ�
we find

Sαβ ¼ εαβτ þ 2s½αeβ�; ð36Þ

with

τ ¼ 1

2
εμνSμν; sα ¼ Nσ

αeγSσγ: ð37Þ

A. The symmetries of the problem

We are interested in solutions of the Einstein-Cartan
theory that are static and locally rotationally symmetric
(LRS). Following Ref. [34], a space-time is said to be
locally rotationally symmetric in neighborhood BðqÞ of a
point q, if there exists a nondiscrete subgroup G of the

Lorentz group in the tangent space of each q0 ∈ BðqÞwhich
leaves u, the curvature tensor and their derivatives (up to
third order) invariant. Assuming G to be one dimensional,
we can set at each point the vector field e to have the same
direction as an axis of symmetry. Then, LRS implies that all
covariantly defined spacelike vectors must have the same
direction of e—otherwise they would not be invariant
under G. Thus, the vector quantities faβ; αβ;Σβ;Ωβ; Aβg
are null in such space-times. Also the shear tensors of the
congruences of curves associated with u and e projected
onto the sheet, Σαβ and ζαβ, must be null since there cannot
be any preferred direction at the sheet.2

From the definition of LRS space-times, the Riemann
curvature tensor must also be invariant under G; therefore,
the vector components of theWeyl tensor fE1α; E2α; ðH;2Þαg
must be null. Since the Riemann tensor also depends on the
torsion tensor, the latter must also be invariant under the
action of G. Therefore, from Eqs. (35) and (36), the tensor
field sα, Eq. (37), must be null. In light of this result and
taking into account Eq. (35), we also conclude that for a LRS
space-time the intrinsic hypermomentum tensor is simply
given by

Δαβ ¼ εαβδ; ð38Þ

where δ ¼ 1
2
εαβΔαβ, with the constraint τ ¼ δ.

Now, a LRS space-time is said to be of class I (LRSI) if the
congruence of the curves associated with vector field e—
defined to have the same direction as the axis of symmetry—
is hypersurface orthogonal.3 If the congruence of curves
associated with the vector field u is also hypersurface
orthogonal, the space-time is said to be a LRS of class II

2It should be remarked here that the presence of a generic
torsion tensor field affects the definition of the kinematical
quantities [35–38]. See Appendix A 4 for further details. As
such, in the presence of a general torsion, LRS implies that the
geometric shear vector fields Σgαβ and ζgαβ must be null and not
the quantities Σαβ ¼ σfαβg and ζαβ ≡ δfαeβg. However, as dis-
cussed in Appendix A 4, for a Weyssenhoff fluid those are equal
hence, from here on out we shall refer to Σαβ and ζαβ as the shear
tensors, onto the sheet, of the congruences associated with u
and e, being implicit that we assume the Weyssenhoff model.

3Following Ref. [34], a space-time is said to be a LRSII when it
has locally rotational symmetry and the vector fields u and e are
hypersurface orthogonal. It just so happens, in space-times with
null-torsion, a hypersurface orthogonal congruence has null
vorticity. As such, in literature, LRSII space-times are charac-
terized and usually referred to as space-times with locally
rotational symmetry and vorticity-free u and e vector fields.
As was shown in Ref. [39], this is not the case for space-times
with non-null torsion where a hypersurface orthogonal congru-
ence does not have null vorticity. In this article, we will follow the
naming convention of Ref. [34]. This has at least one advantage:
when comparing results with the null torsion case, we simply
have to compare with the same named class; for instance, static
spherically symmetric space-times, with or without torsion,
always fall in the category of static LRSII space-times.
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(LRSII). From the results in Ref. [39], for a torsion tensor
given by Eq. (35) we have that e will be hypersurface
orthogonal if and only if

ξ ¼ 0; ð39Þ

and that u will be hypersurface orthogonal if and only if

Ω ¼ τ; sα ¼ 0; ð40Þ

where we opted to highlight that sα will also be null from
the imposition that the congruence of u is hypersurface
orthogonal.
Before proceeding we should point out the fact that sα¼0

has an interesting effect on the nature of the Weyssenhoff
fluid. Comparing Eq. (33) with Eq. (9) we conclude that for
a Weyssenhoff fluid the only non-null covariantly defined
quantities in Eq. (10) are μ, p, and q1α ¼ −ðAeμ þAμÞSμα.
Now, since in a LRS space-time both Aα and sα are null, it
implies that q1α ¼ −ðAeμ þAμÞSμα ¼ 0, that is, the con-
tributions of spin in the Weyssenhoff fluid model for a LRS
space-time, will not appear in the canonical energy-
momentum tensor. From this result, one might (wrongly)
conclude that torsion has no role in the dynamics of the
setup. In reality, torsion will still markedly influence the
behavior of the matter fields. Indeed, for instance, when
comparing to space-times with null torsion, where LRSII
space-times are necessarily irrotational (cf. e.g., Ref. [34]),
the presence of a non-null torsion of the form of Eq. (35)
will induce a non-null vorticity of the congruence of curves
associated with u, Eq. (40). Thus, although in the consid-
ered setup spin does not appear in the canonical energy-
momentum tensor, it will still markedly change the
geometry of the space-time.
An additional assumption we will consider is that the

space-time is static. Now, a space-time is said to be
stationary if it admits the existence of a timelike Killing
vector field Ψ. If the congruence of timelike curves
associated with Ψ are also hypersurface orthogonal, the
space-time is said to be static. Given that the choice of the
vector field u is arbitrary, we can write, at each point,
Ψ ¼ Cu, where C ¼ CðxαÞ is a generic non-null smooth
function of the coordinates. The Killing equationLΨgαβ¼0

in the presence of torsion can be written as

∇ðαΨβÞ þ 2SσðαβÞΨσ ¼ 0; ð41Þ

for any metric compatible connection. Assuming Eq. (35),
contracting Eq. (41) with hαμh

β
ν and hαβ we have

fθ;Σ;Σα;Σαβg ¼ 0; ð42Þ

and ua∂aCðxαÞ ¼ 0. All is left now is to impose the
condition that Ψ is hypersurface orthogonal. However, if

u is hypersurface orthogonal, so is any Ψ ¼ Cu. Hence, for
the space-time to be static, Eq. (40) must hold.
Lastly, computing the quantities, Nα

μN
γ
νvβRαβγδvδ,

εμ
αβRαβγδvδ and εμγvβRαβγδeδ, we also find that in the

considered setup

fE; Eαβ;Hαβ; H̄αβg ¼ 0: ð43Þ

Therefore, gathering the previous results, we find that
stationary LRSI or LRSII space-times permeated by an
unchargedWeyssenhoff fluid are characterized by the follow-
ing set of quantities: fμ; p;ϕ;Ω;A; τ; E;H; H̄;H; H̄g.

B. Structure equations

We are now in position to find the structure equations for
stationary, locally rotationally symmetric space-time filled
by a Weyssenhoff fluid in the case where the congruence of
spacelike curves associated with e are hypersurface
orthogonal; that is, in the case when ξ ¼ 0. The nontrivial,
independent propagation equations are

p̂þAðμþ pÞ ¼ −
1

4π
τH̄; ð44Þ

ÂþAðAþ ϕÞ þ 2Ω2 ¼ 4πðμþ 3pÞ; ð45Þ

ϕ̂þ 1

2
ϕ2 þ E ¼ −

16π

3
μ; ð46Þ

Ê þ 3

2
Eϕþ ΩHþ 2ðτ −ΩÞH̄ ¼ 8π

3
μ̂; ð47Þ

Ĥ−
1

2
ϕðH−2HÞþEð3Ω−2τÞ¼−8πΩðμþpÞ

þ8π

3
τðμþ3pÞ; ð48Þ

2Ω̂þΩϕ ¼ H; ð49Þ

and the constraint equations

E þAϕþ 2Ω2 ¼ 8π

3
ðμþ 3pÞ; ð50Þ

2AðΩ − τÞ − ΩϕþH ¼ 0; ð51Þ

Ωðϕ − 2AÞ þ H̄ ¼ 0; ð52Þ

Hþ H̄þ 2H̄ ¼ 0: ð53Þ

Let us discuss the cases when the congruence associated
with u is either hypersurface orthogonal or not, separately.
Consider the cases when Ω ≠ τ. In such cases we find from
Eqs. (44)–(53) the following relation between Ω and τ,
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ðϕ −AÞðτ −ΩÞ þ τ̂ − Ω̂ ¼ 0; ð54Þ

leading us to conclude that the difference between τ
and Ω can be uniquely described by the behavior of
the variables ϕ and A. Notice that if at an initial instant
Ω and τ are different then, unless the term ϕ − A diverges,
there will be no point in which they are equal. Conversely,
if Ω ¼ τ at a point these two quantities will be equal at
any point.
The relations Ω ¼ τ or Eq. (54), for stationary LRSII or

LRSI space-times, respectively, have the advantage of not
depending directly on the magnetic components of the
Weyl tensor and they can replace one of Eqs. (44)–(53).
As we shall see, it is useful to remove Eq. (48).
Finally, to close the system, we will need an equation of

state that relates the pressure of the fluid with its energy
density: p ¼ pðμÞ; and an equation that relates the energy
density of the fluid with the intrinsic hypermomen-
tum: δ ¼ δðpðμÞ; μÞ.

IV. GENERALIZED TOV EQUATION FOR
STATIONARY LRSI AND LRSII SPACE-TIMES

With the full set of structure equations we are finally in
position to make the derivation of the generalized TOV
equations. Let us start by introducing the scalar function

K ¼ 8π

3
μ − E þ 1

4
ϕ2 − 3Ω2 þ 2Ωτ; ð55Þ

with the following property:

K̂ ¼ −ϕK; ð56Þ

found from the structure equations. Equation (55) general-
izes the expressions in Refs. [16,40].4 Moreover, since the
Gauss equation is unchanged by the presence of torsion, it
is possible to prove that, in the cases when the vector fields
u and e are hypersurface orthogonal, the quantity K
represents the Gaussian curvature of the 2-sheet orthogonal
to both u and e.
Now, following the treatment in Refs. [21,22], without

loss of generality, let us reparametrize the integral curves of
e using, in general, a nonaffine parameter ρ, such that for an
arbitrary scalar function F

F̂ ¼ ϕF;ρ: ð57Þ

In particular we have

K;ρ ¼ −K: ð58Þ

Introducing the following set of variables:

X ¼ ϕ;ρ

ϕ
; B1 ¼

H
ϕ2

; M ¼ 8π
μ

ϕ2
;

Y ¼ A
ϕ
; B2 ¼

H̄
ϕ2

; P ¼ 8π
p
ϕ2

;

E ¼ E
ϕ2

; D1 ¼
H
ϕ2

; Δ ¼ δ

ϕ
;

T ¼ τ

ϕ
; D2 ¼

H̄
ϕ2

;

W ¼ Ω
ϕ
; K ¼ K

ϕ2
; ð59Þ

we can rewrite Eqs. (44)–(53) as

2Y ;ρ þ 2Y ðXþ Y þ 1Þ ¼ Mþ 3P − 4W2; ð60Þ

K;ρ þKð2Xþ 1Þ ¼ 0; ð61Þ

P;ρþPð2XþY ÞþYM¼ 2TWðXþY Þþ2TW;ρ; ð62Þ

2W;ρ þWð2Xþ 1Þ ¼ B1; ð63Þ

with the constraints

Mþ 3P − 3Y − 3E − 6W2 ¼ 0; ð64Þ

2Mþ 2Xþ 2P − 2Y − 4W2 þ 1 ¼ 0; ð65Þ

4Y þ 4Wð2T −WÞ − 4P − 4Kþ 1 ¼ 0; ð66Þ

D1 þWð2Y − 1Þ − 2YT ¼ 0; ð67Þ

B2 þWð1 − 2Y Þ ¼ 0; ð68Þ

B1 þ B2 þ 2D2 ¼ 0; ð69Þ

T ¼ Δ; ð70Þ

and, depending on whether we are considering stationary
LRSI or LRSII space-times, we have the extra equation

�
W;ρ − T ;ρ ¼ ð1 − Y þXÞðT −WÞ; if LRSI

W ¼ T if LRSII:
ð71Þ

The system is closed provided and equation of state such that
P ¼ PðMÞ and a relation such that Δ ¼ ΔðPðMÞ;MÞ.
Now, using Eqs. (65) and (66) to eliminate X and Y in

Eqs. (62) and (71) we find4Notice that in Ref. [40] there is a small typographic error.
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P;ρ ¼ −P2 þ P
�
7

4
− 3KþWð8Δ − 7WÞ

�
þ 2Δ½ð2K − 1ÞW − 4W2ðΔ −WÞ þW;ρ�

þM
�
1

4
−Kþ P −W2

�
;

K;ρ ¼ −2K
�
3W2 − 2ΔW þK −M −

1

4

�
;

P ¼ PðMÞ;
Δ ¼ ΔðPðMÞ;MÞ; ð72Þ

and

�
W;ρ−Δ;ρ¼ 1

2
ðΔ−WÞ×ð1−2M−2Pþ4W2Þ; if LRSI

W¼Δ; if LRSII

ð73Þ

which represents the covariant TOVequations. The system
is completed by the extra relations:

K −
1

4
þ P þWðW − 2ΔÞ ¼ Y ; ð74Þ

K −
3

4
−MþWð3W − 2ΔÞ ¼ X; ð75Þ

MþWð6Δ − 9WÞ − 3

�
K −

1

4

�
¼ 3E; ð76Þ

2W;ρ þW

�
2K − 2M − 4ΔW þ 6W2 −

1

2

�
¼ B1; ð77Þ

W

�
2Kþ 2P − 4ΔW þ 2W2 −

3

2

�
¼ B2; ð78Þ

B1 þ B2 þ 2D2 ¼ 0; ð79Þ

Wð6ΔW − 2W2 − 4Δ2 þ 1Þ

þ 2ðΔ −WÞ
�
Kþ P −

1

4

�
¼ D1: ð80Þ

A. The static case

The full set of Eqs. (72)–(80) completely describe the
geometry of a stationary LRSI or LRSII space-time filled
by an Weyssenhoff fluid. Let us now consider the particular
cases when the space-time is static; that is, u is such
that W ¼ T ¼Δ.
Introducing the following quantities:

M¼M−Δ2; P ¼ P −Δ2; E ¼ Eþ 2

3
Δ2; ð81Þ

Eq. (72) is given by

P;ρ¼−P2þP
�
Mþ1−3

�
K−

1

4

��
−M

�
K−

1

4

�
; ð82Þ

K;ρ ¼ −2K
�
K −

1

4
−M

�
: ð83Þ

Y ¼ K −
1

4
þ P; ð84Þ

X ¼ K −
3

4
−M; ð85Þ

3E ¼ M − 3

�
K −

1

4

�
; ð86Þ

which match exactly the expressions found in the theory of
general relativity (cf. Ref. [21]) for an effective energy
density and pressure and the corrected electric part of the
Weyl tensor: M, P, and E. Note that the extra constraints
for the magnetic components of the Weyl tensor

2Δ;ρ þ 2Δ
�
K −M −

1

4

�
¼ B1; ð87Þ

B2 þ Δ
�
1 − 2P − 2

�
K −

1

4

��
¼ 0; ð88Þ

B1 þ B2 þ 2D2 ¼ 0; ð89Þ

D1 ¼ Δ; ð90Þ

imply that the geometry of the space-time is fundamentally
different from the corresponding one in general relativity.
Nonetheless, the fact that Eqs. (82)–(86) have the same
form for the corrected quantities in Eq. (81) leads us to the
notable result:
Proposition 1: At the level of themetric, all static, locally

rotationally symmetrics of class II solutions of the theory of
general relativity for a perfect fluid with energy momentum
ðT GRÞαβ ¼ μuαuβ þ phαβ are also solutions of Einstein-
Cartan theory sourced by a Weyssenhoff fluid with energy-
momentum tensor ðT ECÞαβ ¼ ðμþ δ2

8πÞuαuβ þ ðpþ δ2

8πÞhαβ.
It is important to stress that, because of the nature of the

corrections in Eq. (81), solutions which are unacceptable in
general relativity due, for example, to negative energy
densities or pressure, might still correspond to physically
acceptable ones in the Einstein-Cartan case.
In the rest of the article we will consider the case of static

spherically symmetric space-times; hence, we will study
the solutions of Eqs. (81)–(90).

V. JUNCTION CONDITIONS

In the analysis of compact objects in a geometric theory
of gravity it is often necessary to model the space-time as
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two distinct manifolds glued together at a common boun-
dary. Such an operation is usually performed using Israel
junction conditions [41]. The Israel procedure was initially
developed for space-times in the absence of torsion. More
recently, a number of works have been published in which
the junction conditions are generalized to space-times with
torsion in different contexts [42,43]. Here we will sum-
marize the results and extend them in light of the structure
equations we have just obtained.
Consider two Lorentzian manifolds with boundary, V−

and Vþ, matched at an hypersurface N , forming a new
manifold V. Let n represent the unit normal to N , pointing
from V− to Vþ, and ea be the tangent vectors toN . HereN
can be either timelike or spacelike. Now, following
Ref. [43], for the total space-time to be a valid solution
of the field equations and to guarantee that atN there is no
surface layer, the following conditions must be met:

(i) the induced metric at N , as seen from each space-
time V− and Vþ, h�ab ≔ g�αβe

α
ae

β
b, must be the same,

½hab�� ¼ 0; ð91Þ

(ii) the extrinsic curvature tensor of N as seen from V−

and Vþ, Q�
ab ≔ eαae

β
b∇�

α nβ, is such that

½Qab�� ¼ 0; ð92Þ

(iii) the torsion tensor verifies

hαβ½Sμβμ�� þ ϵhαβ½nμnνSβμν�� ¼ 0: ð93Þ

For simplicity we labeled a field ϒ defined on the
submanifold Vþ or V− as ϒþ ≡ϒðVþÞ or ϒ− ≡ϒðV−Þ,
respectively, and used the notation ½ϒ�� to represent the
difference of a field as measured from each submanifold at
the matching surface, i.e., ½ϒ�� ≡ϒðVþÞjN −ϒðV−ÞjN .
Clearly, conditions (91)–(93) reduce to the Israel con-

ditions [41] in the limit of null torsion. In that case, the
junction conditions not only guarantee that at the matching
surface there is no thin shell but also are necessary and
sufficient to guarantee that the singular part of the Riemann
tensor is null. However, this is not the case for torsional
space-times. In the presence of torsion, assuming only
compatibility with the metric, the Riemann tensor of the
total space-time is given by5

Rαβγ
ρ ¼ θðλÞRþ

αβγ
ρ þ θð−λÞR−

αβγ
ρ

þ δðλÞðAαβγ
ρ þ Bαβγ

ρÞ; ð94Þ

where θðλÞ represents the Heaviside distribution, δðλÞ the
Dirac distribution, λ is the parameter of the integral curves
of n, adjusted such that the matching surface is located at
λ ¼ 0, R�

αβγ
ρ represent the Riemann tensors of the V− and

Vþ submanifolds and

Aαβγ
ρ ¼ ϵðnβ½Γρ

αγ�� − nα½Γρ
βγ��Þ; ð95Þ

Bαβγ
ρ ¼ ϵðnβ½Kαγ

ρ�� − nα½Kβγ
ρ��Þ; ð96Þ

are the singular parts of the—total—Riemann tensor, with
Γρ
αγ being the Christoffel symbols, Kαβ

γ≡SαβγþSγαβ−Sβγα
the contorsion tensor and ϵ ¼ nμnμ. We see that, in general,
conditions (91)–(93) do not guarantee that both the tensors
in Eqs. (95) and (96) are null. A smooth junction of two
space-times has to imply that the discontinuities of all
curvature tensors across the matching surface have to be at
most finite, otherwise, the space-time will be singular atN .
In the torsion-free case, no condition on the tensor (96) is
required as it is identically zero and therefore does not
appear in the Einstein equations. In the Eistein-Cartan case,
however, even imposing Eqs. (91)–(93), the remaining
singular part of the Riemann tensor will appear in the
structure equations, leading to a singularity in N . Different
from the standard violation of Israel’s condition, such
singularity cannot be attributed to the presence of a thin
shell since Eqs. (91)–(93) prevent the existence of a surface
layer atN . For this reason, in the following we will require
a completely smooth matching of the Riemann tensor on
the boundary. It is a known result (see, e.g., [44,45] for a
clear derivation) that the tensor Aαβγ

ρ, Eq. (95), is null if and

only if ½Kab�� ¼ 0, where Kab ≔ eαae
β
b∇̃αnβ represents the

extrinsic curvature computed from the metric connection.
On the other hand, a necessary and sufficient condition for
Bαβγ

ρ to be null is given by

½Kαβ
ρ�� ¼ ϵnα½nμKμβ

ρ��: ð97Þ

Thus, we the arrive to the following proposition:
Proposition 2: Let V− and Vþ be two Lorentzian

manifolds with boundary, endowed with a metric compat-
ible, affine connection. V− and Vþ can be smoothly
matched at a common, non-null, hypersurface N when
the following three conditions are verified:

(i) the induced metric at N is such that

½hab�� ¼ 0; ð98Þ

(ii) the jump of the extrinsic curvature of N is null,
that is

½Qab�� ¼ 0; ð99Þ

5Here we mix the distribution associated to a tensor and the
tensor itself which is, strictly speaking, an abuse of language. Our
conclusions, however, are not influence by this issue. See, e.g.,
Ref. [44] and references therein for more details.
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(iii) the jump of the contorsion tensor at N verifies

½Kαβ
ρ�� ¼ ϵnα½nμKμβ

ρ��; ð100Þ

where the vector field n represents the unit normal
to N .

Notice that writing Qab ¼ Kab − eαae
β
bKαβ

γnγ and using
Eq. (100), Eq. (99) is the same as imposing ½Kab�� ¼ 0.

A. 1 + 1 + 2 junction of static LRSII space-times
with torsion

Let us now express conditions (98)–(100) covariantly in
the specific case of two static LRSII space-times endowed
with a torsion tensor field of the form Sαβγ ¼ εαβuγτ, where
τ is a generic function of the space-time coordinates.
In what follows wewill be interested in the case when the

interior and exterior space-times are to be matched at a
timelike hypersurface, orthogonal to the vector field e.
Then, condition (98) reads

½Nαβ − uαuβ�� ¼ 0; ð101Þ

where Nαβ verifies Eq. (98). Using Eq. (8), in the
considered setup, Eq. (99) is simply�

1

2
ϕNαβ −Auαuβ

�
�
¼ 0; ð102Þ

which, contracting with the induced metric at N and using
Eq. (101), gives

½ϕþA�� ¼ 0: ð103Þ

From Eqs. (101)–(103), we find that at the matching
surface the following constraints have to be met:

½ϕ�� ¼ 0; ð104Þ

½A�� ¼ 0; ð105Þ

implying, for ϕ ≠ 0,

½Y �� ¼ 0: ð106Þ
Given that e is continuous across N , we can integrate
Eq. (58), finding K ¼ k0e−ρ. Using Eqs. (59) and (104) we
have

½K�� ¼ 0: ð107Þ
Using the previous results in Eq. (84) we arrive at

½8πp − δ2�� ¼ 0: ð108Þ
Finally, for the specific type of torsion that we consider

in this article, condition (100) imposes

½δ�� ¼ 0; ð109Þ

then, from Eq. (108),

½p�� ¼ 0: ð110Þ

We have then found that for a smooth matching between
two static LRSII space-times endowed with a torsion tensor
field of the form Sαβγ ¼ εαβuγτ, both the pressure of the
fluid and the spin density, as seen from each space-time,
must match at N .

VI. EXACT SOLUTIONS FOR STATIC
LRSII SPACE-TIMES

Given the set of structure equations (81)–(90) that
describe the behavior of a static, LRSII space-time filled
by a Weyssenhoff fluid, let us now find and study some
exact solutions.
As was stated before, the system of structure equations is

not closed until an equation of state and an expression for
the spin density are provided. Let us then consider some
particular relations for the pressure, energy, and spin
densities of the fluid in order to gain some insight into
the behavior of compact objects in a fully relativistic theory
with non-null spin.
For the remaining of the article we will consider only the

particular case of spherically symmetric space-times.
Moreover, in what follows we will refer to static, spheri-
cally symmetric compact objects as “stars.”Although this is
an abuse of language, it is also a trend in the literature since
such systems are expected to be a good model for slowly
varying astrophysical bodies.

A. Effective constant energy-density
and the Buchdahl limit

We start by considering the case of a system where the
effective energy density is assumed to be constant, that is,

8πμ − δ2 ¼ μ̃0; ð111Þ

where μ̃0 ∈ R. Notice that, contrary to the case of null
torsion, the above assumption does not have to imply that
the energy density, μ, is constant.
Using Eqs. (56) and (57) we have

KðρÞ ¼ e−ρ

r20
; ð112Þ

where r0 is an integration constant. Equation (112) then
yields

MðρÞ ¼ μ̃0r20e
ρKðρÞ: ð113Þ

Equation (113) allows us to solve Eq. (83), finding
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KðρÞ ¼ 3

12 − 4μ̃0r20e
ρ þ 3K0e−

ρ
2

; ð114Þ

where K0 is yet another integration constant. Setting
K0 ¼ 0 to avoid a conical singularity at ρ → −∞ [46],
the structure equations yield

pðρÞ − δðρÞ2
8π

¼ −
μ̃0ðP0 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ̃0r20e

ρ
p

Þ
24πðP0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ̃0r20e

ρ
p

Þ ; ð115Þ

AðρÞ ¼ −
μ̃0r0e

ρ
2ffiffiffi

3
p ðP0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ̃0r20e

ρ
p

Þ ; ð116Þ

ϕðρÞ ¼ 2

r0
ffiffiffi
3

p e−
ρ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ̃0r20e

ρ
q

; ð117Þ

E ¼ −
2

3
δ2; ð118Þ

where we have chosen the direction of e so that ϕ is
positive, and the value of the integration constant P0 is to be
determined by the boundary conditions.
Let us now assume that relations (111)–(118) describe

the interior of a compact object matched at a boundaryN to
an exterior space-time modeled by the Schwarzschild
vacuum solution. From Eqs. (109) and (110) we find that
the quantity in Eq. (115) must be zero at the boundary.
Setting, without loss of generality, the matching hypersur-
face to be at ρ ¼ 0, we find

P0 ¼ −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − μ̃0r20

q
: ð119Þ

The matching conditions, Eqs. (104) and (107), imply that
interior and exterior observers agree on the value of the
circumferential radius of N , say r0, and the Schwarzschild
parameter, M, is given by

M ¼ μ̃0r30
6

: ð120Þ

Moreover, from condition (109) we find that the spin
density must go to zero at the matching surface, that is,
δðρ ¼ 0Þ ¼ 0.
Given the previous results, we are now in position to

study some effects arising from the presence of spin in
compact objects. In the remainder of this subsection, for
clarity, we shall write the results in terms of the circum-
ferential radius r. Using the fact that, in the considered
setup, the quantity K, Eq. (55), represents the Gaussian
curvature of the 2-sheet, we have that the parameter ρ and r
are related by

ρ ¼ 2 ln

�
r
r0

�
; ð121Þ

where we have set the value of the arbitrary scaling factor to
be r0.
Now, defining the central pressure pc ≔ pðρ → −∞Þ,

from Eqs. (115) and (119), we have

pc ¼ −
μc
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r0

q 	
1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r0

q þ
δ2c
�
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r0

q 	
4π

�
1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r0

q 	 ; ð122Þ

where μc ≡ μðρ → −∞Þ and δc ≡ δðρ → −∞Þ. If we com-
pared directly the above expression to a similar system in
GR,wewould see that the second termon the right-hand side
of Eq. (122) represents an explicit contribution due to the
presence of spin. However, there is a subtlety: Eq. (120)
indicates that the presence of spin also modifies the match-
ing radius r0 and the value of the Schwarzschild parameter
M, making it difficult to draw conclusions only on (122).
A clearer idea of the differences between our case and

GR can be obtained by computing the maximum mass that
can be held by a star with constant radius. Considering
Eq. (111) and if neither the densities μc and δc diverge,
the central pressure in Eq. (122) will go to infinity when
r0 ¼ 9

4
M or, using Eq. (120), when

Mmax ¼
4

9
ffiffiffiffiffiffi
3π

p
�
μ −

δ2

8π

�−1
2

: ð123Þ

This result makes it clear that, when compared to a system
with the same energy density μ in GR, the presence of spin
increases the maximum allowed mass.
In analogy with the calculation of the Buchdahl limit in

GR we can generalize this discussion to nonconstant μ̃.
Consider the quantity μ̃ ≔ 8πμ − δ2 and assume it to be
non-negative and dμ̃=dr ≤ 0, for r ∈ ½0; r0�. Following the
same reasoning of Ref. [47] (see also [46]) we can find an
upper limit for the amount of mass a star with constant
radius can hold:

mðr0Þ
r0

≤
4

9
; ð124Þ

with

mðr0Þ ¼
1

2

Z
r0

0

μ̃ðrÞr2dr: ð125Þ

At first sight, the expression in Eq. (124) matches the one
found by Buchdahl [47] for GR. However, there is a
correction due to the presence of spin in the functionmðr0Þ,
Eq. (125), leading us to conclude that for the same value of
the circumferential radius, r0, a star can hold more matter in
the presence of spin than in the null-spin case. It is also
worth mentioning that the quantity mðr0Þ agrees with
the value of the Schwarzschild parameter of the exterior
space-time; therefore, the gravitational mass of such objects
is determined not only by the energy density, μ, but also by
the spin density, δ, which was expected because of
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the specific way in which spin gravitates in our specific
Einstein-Cartan setup.
As a final comment, although a priori there is nothing that

forces δ2 to be smaller than 8πμ, it is expected that in stars—
even neutron stars—δ2 ≪ μ (see Refs. [10,48]), hence,
μ̃ ≥ 0, as was assumed in the derivation of Eq. (124). On
the other hand, the requirement that dμ̃=dr ≤ 0might not be
as physically reasonable as in the case of GR since, as we
will see below, the presence of spin allows for a richer
possible behavior for the matter variables.

B. Spin held stars

In the previous subsection we have considered a classical
model for a relativistic star which is similar to the simplest
model for these types of objects in general relativity.
However, the presence of spin allows solutions which
are not contemplated in Einstein’s theory. The prototype
of such objects is a star which is supported only by the
gravitation of the spin of the Weyssenhoff fluid. In the
remainder of the subsection, we will analyze this case and
prove the following result:
Proposition 3: There are no static, spherically sym-

metric solutions of the Einstein-Cartan theory sourced by a
Weyssenhoff fluid with null isotropic pressure that have all
the following properties:
(1) δðrÞ is non-null for r ∈ ½0; r0½ and δðr0Þ ¼ 0, for

some r0 > 0;
(2) δ2ðrÞ is a monotonically decreasing function for

all r ∈ ½0; r0�;
(3) the spin and energy density functions: δðrÞ and μðrÞ,

are at least of class C1 and the function AðrÞ is
differentiable for all r ∈ ½0; r0�;

(4) the function MðrÞ ≔ 1
2

R
r
0 ½8πμðrÞ − δ2ðrÞ�x2dx is

such that 2MðrÞ < r, for all r ∈ �0; r0�.
To prove Proposition 3 we will consider first the

behavior of the quantities of interest in a neighborhood
of the center, r ¼ 0, and then on the boundary of the star. In
doing so, in order to make the reasoning more intuitive, we
shall consider here that the integral curves of the vector
field e are parametrized by the circumferential radius r.
Defining the quantities

μ̃ðrÞ ¼ 8πμðrÞ − δ2ðrÞ;
p̃ðrÞ ¼ 8πpðrÞ − δ2ðrÞ; ð126Þ

we find from the structure equations

r
2
ϕðrÞp̃;r ¼ −Aðμ̃þ p̃Þ; ð127Þ

r
2
ϕðrÞA;r þA2 þAϕ ¼ 1

2
ðμ̃þ 3p̃Þ; ð128Þ

p̃ ¼ Aϕ − K þ 1

4
ϕ2; ð129Þ

with

KðrÞ ¼ 1

r2
; ð130Þ

ϕðrÞ ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2MðrÞ
r

r
; ð131Þ

and

MðrÞ ¼ 1

2

Z
r

0

μ̃ðxÞx2dx; ð132Þ

where, without loss of generality, we chose the direction of
e so that ϕðrÞ is non-negative. Moreover, from Eqs. (129)
and (131) we find the useful relation

Aϕ ¼ 2MðrÞ
r3

þ p̃: ð133Þ

We will consider now the case of a static, spherically
symmetric compact object held entirely by spin, that is, the
case when pðrÞ ¼ 0 and p̃ðrÞ ¼ −δ2ðrÞ, smoothly matched
to an exterior space-time modeled by a vacuum solution of
the Einstein-Cartan field equations. Moreover, we will
assume that for r > 0, 2MðrÞ < r, otherwise the scalar
ϕðrÞ would take complex values.

1. Behavior at the center

Assuming that the functions μðrÞ, δ2ðrÞ ∈ C1 we can
write in a small enough neighborhood of r ¼ 0:

μðrÞ ¼ μð0Þ þ μ;rð0Þr;
δ2ðrÞ ¼ δ2ð0Þ þ ðδ2Þ;rð0Þr; ð134Þ

where the comma represents partial—or total—derivative
with respect to the variable in front. From Eq. (134), we
find that in a small enough neighborhood of r ¼ 0, the
mass function (132) is described by

2MðrÞ ¼ μ̃ð0Þ
3

r3 þ 1

4
ðμ̃;rð0ÞÞr4: ð135Þ

In particular, we find that MðrÞ goes to zero at least as fast
as r3.
Now, Eqs. (127) and (133) yield

2

r

�
1 −

2MðrÞ
r

�
dδ2

dr
¼

�
2MðrÞ
r3

− δ2
�
ðμ̃ − δ2Þ: ð136Þ

In a region where r ∈ ½0; ϵ½, with ϵ ≪ 1, the rhs of this
equation takes values in R, therefore,

ðδ2Þ;rð0Þ ¼ 0: ð137Þ
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Repeating the same reasoning in Eq. (133) we find that

Að0Þ ¼ 0: ð138Þ

Let us now assume that there exists an ra > 0 where for
r ∈ �0; ra½, AðrÞ > 0. From Eq. (127) we will find that in
this region μ̃þ p̃ ≤ 0 which implies that μ̃þ 3p̃ < 0.
Then, from Eq. (128) we find that A;rðrÞ < 0, for all
r ∈ �0; ra½. This, however, violates the initial hypothesis
since, Að0Þ ¼ 0 and we assume that AðrÞ > 0, for
r ∈ �0; ra½, that is, A;rðrÞ would have to be positive for
some r ∈ ½0; ra½.
Another possibility is that for a region r ∈ ½0; ra�,

AðrÞ ¼ 0 and for r ∈ �ra; rc� with rc > ra, AðrÞ > 0. If
this were the case, since for r ∈ �ra; rc�, AðrÞ > 0, there
would exist a value rb ∈ �ra; rc� such that A;rðrbÞ > 0.
Using this in Eq. (128), at r ¼ rb we find

μ̃þ 3p̃ > 0 ⇒ μ̃þ p̃ > 0; ð139Þ

but from Eq. (127) and imposing that ðδ2Þ;r ≤ 0 we find
that μ̃þ p̃jr¼rb ≤ 0, contradicting (139).
Another possibility is that AðrÞ ¼ 0, for all r ∈ ½0; r0�.

From Eqs. (127) and (128) this simply represents a vacuum
solution as such it does not represent a solution for a
compact object.
Gathering these results, we conclude that there exists an

rd > 0 such that in the region ½0; rd½, AðrÞ ≤ 0 and it must
take negative values in some subregion.

2. Behavior at the boundary

Let us now define the boundary of the compact object as
the hypersurface at which the spin density goes to zero, that
is, δ2ðr0Þ ¼ 0. In such a hypersurface we have three
possible behaviors for the function A:
(1) Aðr0Þ < 0;
(2) Aðr0Þ > 0;
(3) Aðr0Þ ¼ 0.

Let us consider each case separately.
(1) The case Aðr0Þ < 0
From Eq. (133) we have that at r ¼ r0

Aϕjr¼r0 ¼
2Mðr0Þ

r30
< 0: ð140Þ

Therefore, from Eq. (132) there exists a region �rf; rg½
where

μ̃ðrÞ < 0; ð141Þ

then μ̃þ p̃ < 0, in that region. From Eq. (127), to guar-
antee that the spin density is a monotonically decreasing
function of r, we find that AðrÞ ≥ 0, for r ∈ �rf; rg½. So,
either AðrÞ ¼ 0 ∧ A;rðrÞ ¼ 0 for all r ∈ �rf; rg½, that is,

the functionAðrÞ takes the value zero and stays zero for all
r ∈ �rf; rg½; or AðrÞ > 0 for some r ∈ �rf; rg½. The former
case is not possible: from Eq. (128), μ̃ðrÞ þ 3p̃ðrÞ ¼ 0,
hence, μ̃ðrÞ ≥ 0, for all r ∈ �rf; rg½, which contradicts the
inequality (141). As for the latter—the case when
AðrÞ > 0, for some r ∈ �rf; rg½—in the previous subsec-
tion it was shown that for some subregion of ½0; rd½,
AðrÞ ≤ 0, therefore the region �rf; rg½ cannot be a sub-
region of ½0; rd½. With this said, since AðrÞ is a differ-
entiable function, there exists a region with, say,
r ¼ re < r0, where AðreÞ > 0 ∧ A;rðreÞ > 0. Then, from
Eq. (128)

μ̃þ 3p̃jr¼re > 0 ⇒ μ̃þ p̃jr¼re > 0: ð142Þ

However, substituting this result in Eq. (127) we find
ðδ2Þ;rðreÞ > 0, which contradicts the assumption that the
spin density is a monotonically decreasing function.
(2) The case Aðr0Þ > 0
For the case when Aðr0Þ > 0, we can simply repeat the

proof in the previous subsubsection and conclude in the
same way that the assumptions are violated in a region. We
just remark that the point with radial coordinate r ¼ re, in
the proof, can always be chosen such that re < r0 since, for
whatever the value of Aðr0Þ > 0, there is a point where
0 < Aðr < r0Þ < Aðr0Þ.
(3) The case Aðr0Þ ¼ 0
In this the case when Aðr0Þ ¼ 0 we have, from

Eq. (133), that

Mðr0Þ ¼ 0: ð143Þ

From this we have three possibilities:
(a) μ̃ðrÞ ¼ 0, for r ∈ ½0; ra�;
(b) μ̃ðrÞ < 0, for r ∈ �0; ra�;
(c) μ̃ðrÞ > 0, for r ∈ �0; ra�;
for some ra > 0.
Let us consider each case individually.
(a) In the case when μ̃ðrÞ ¼ 0, for r ∈ ½0; ra� we have

from Eq. (133) thatAðrÞ < 0. However, using this result in
(127), we see that it implies that the spin density is an
increasing function of r, violating the hypothesis.
(b) In the case when the corrected energy density is such

that μ̃ðrÞ < 0, for r ∈ �0; ra�, from (132) we have that the
mass function is negative, in this region. From Eq. (133) we
than conclude that AðrÞ < 0, r ∈ �0; ra�. However, going
back to Eq. (127), we find that the spin density is an
increasing function of r, violating the hypothesis.
(c) Finally, consider the case when μ̃ðrÞ > 0, for

r ∈ �0; ra�. From (132), this implies that the mass function
is positive in this region. Since Eq. (143) must be verified,
there must be a region where μ̃ðrÞ < 0. We can then repeat
the arguments of the case Aðr0Þ < 0, which lead to the
conclusion that the hypothesis would be violated in some
region inside the star.
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Gathering the previous results we have proven the result
in Proposition 3.
We end this section by remarking that if instead of

imposing p̃ ¼ −δ2 we only imposed that p < δ2, that is,
the thermodynamical pressure is always smaller than
correction due to the spin density, then all the previous
results are valid if p̃;r ≥ 0. Notice, however, that in this
scenario, this condition simply measures the gradient of the
quantity 8πp − δ2.

C. Reconstructing exact solutions

As in the case of the theory of general relativity, when
torsion is present it is possible to generate exact solutions
via reconstruction algorithms [21,22]. The idea is to assign
a given metric tensor and deduce the corresponding
behavior of the energy density, pressure, and spin density.
Analyzing Eqs. (60) and (61) and using Eqs. (64) and

(66) shows that different from the case of anisotropic
compact objects in general relativity [22], the structure
equations cannot be solved for the spin density. This
implies that the reconstruction algorithm can only be used
if an additional relation is provided, either relating the spin
density to the other matter variables or an equation of state
for matter.
In the following we will show some applications of these

algorithms which return some interesting solutions from a
physical point of view.

1. Connecting the spin density to the energy density:
“Buchdhal stars”

A natural additional relation is to have the spin density be
proportional to the energy density of the Weissenhoff fluid.
In this case, however, the junction conditions that we have
seen in Sec. VA pose the problem to have both the energy
density and the pressure to be zero at the boundary. A class
of solutions which are devised to have exactly this property
was given by Buchdhal [49]. We will now reconstruct this
solution in the case of Eqs. (82)–(86).
Consider a spherically symmetric space-time character-

ized by the line element

ds2 ¼ −AðwÞdt2 þ BðwÞdw2

þ CðwÞðdθ2 þ sin2θdφ2Þ; ð144Þ

where

ηðwÞ ¼ ða− 1Þ sin ðRwÞ
Rw

; AðwÞ ¼ að1þ a− ηÞ
1þ aþ η

;

BðwÞ ¼ ð1þ aþ ηÞ
að1þ a− ηÞ CðwÞ ¼ w2ð1þ aþ ηÞ2

4a2
; ð145Þ

and w is connected to ρ by the relation

eρ ¼ w2

4a2
ð1þ aþ ηÞ2: ð146Þ

Notice that the circumferential radius, r, vanishes when
w ¼ 0.
From Eqs. (60), (61), (83), and (84), assuming W ¼ Δ

and Δ2 ¼ γM, we find

M ¼ 2K;ρ þ 4K2 −K
4ð1 − γÞK ; ð147Þ

P ¼ Y −Kþ 1

4
−
2K;ρ þ 4K2 −K

4ð1 − γÞK ; ð148Þ

0¼ð2Yþ1ÞK;ρ−4K2−K½4Y;ρþ4ðY−1ÞY−1�: ð149Þ

The form of Y and K that satisfies the constraint (149) can
be found directly from their definition in a general
coordinate system (see Refs. [21,22])

Y ¼ 1

2

CA;w

AC;w
¼ ð1þ aÞwη;w

2ðη − a − 1Þð1þ aþ ηþ wη;wÞ
;

K ¼ BC
ðC;wÞ2

¼ að1þ aþ ηÞ
ð1þ a − ηÞð1þ aþ ηþ wη;wÞ2

: ð150Þ

Using Eqs. (147), (148) and (150), the energy density and
the pressure are then given by

μ ¼ aR2ηð3η − 2 − 2aÞ
8πðγ − 1Þð1þ aþ ηÞ2 ;

p ¼ aR2η½2γð2η − a − 1Þ − η�
8πðγ − 1Þð1þ aþ ηÞ2 : ð151Þ

As said, this family of solutions has, by construction, the
property that the pressure, energy, and spin densities all
vanish at a particular hypersurface. In Figs. 1–3 we present
the behavior of these quantities for a few combinations of
the parameters, showing that the values of the parameters a
and γ have a direct impact in the profile of the densities,
whereas, the parameter R defines the value when the matter
variables go to zero. Moreover, from the plots it is clear that
the presence of spin markedly changes the type of behavior
the matter may have. In particular, for certain values of the
parameters a and γ the functions μ, p, or δ might not be
monotonically decreasing functions of the coordinate w.

2. Connecting the spin density to the pressure

Another option that reduces the number of conditions
related to the junction is to associate the spin density to the
pressure. This choice, which at first might appear unnatural,
corresponds to the case in which the spin depends on the
equation of state. We can imagine that particles with spin
will create different structures not unlike the ones that
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characterize the crystalline phases of water ice (see, e.g.,
Ref. [50]). Our ansatz refers to this kind of effect.
The reconstruction equations in this case, setting

Δ2 ¼ γP, read

M¼ 4K2þ2K;ρ−K
4ð1− γÞK −

γ½K;ρþKð4K−2Y−1Þ�
2ð1− γÞK ; ð152Þ

P ¼ 1 − 4Kþ 4Y
4ð1 − γÞ ; ð153Þ

0¼ð2Yþ1ÞK;ρ−4K2−K½4Y;ρþ4ðY−1ÞY−1�: ð154Þ

Let us now consider a metric in which the (0, 0)
coefficient, A, is given by

A ¼ A0ðaþ br20e
ρÞ2; ð155Þ

where a, b and r0 are arbitrary constants. From the
definition of Y one obtains

Y ¼ 1

2

A;ρ

A
¼ br20e

ρ

aþ br20e
ρ ; ð156Þ

and from Eq. (154) it follows that

K ¼ ðaþ 3br20e
ρÞ2=3

K0eρ þ 4ðaþ 3br20e
ρÞ2=3 ; ð157Þ

where K0 is an integration constant. In terms of the area
radius r, this result corresponds to the line element

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð158Þ

with

AðrÞ ¼ A0ðaþ br2Þ2;

BðrÞ ¼
�
1þ cr2

ðaþ 3br2Þ2=3
�−1

: ð159Þ

The energy density and the pressure are given by

(a)

(b)

FIG. 1. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Eqs. (144) and
(145) for a ¼ 1.6, γ ¼ 0.03=ð8πÞ, and R ¼ 0.24.

(a)

(b)

FIG. 2. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Eqs. (144) and
(145) for a ¼ 1.9, γ ¼ 0.03=ð8πÞ, and R ¼ 0.24.
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μ ¼ b2r2½5cð1 − 4γÞr2 − 12γðaþ 3br2Þ2=3�
8πðγ − 1Þðaþ br2Þðaþ 3br2Þ5=3

−
4ab½γðaþ 3br2Þ2=3 þ 2cð2γ − 1Þr2�
8πðγ − 1Þðaþ br2Þðaþ 3br2Þ5=3

þ a2cð3 − 4γÞ
8πðγ − 1Þðaþ br2Þðaþ 3br2Þ5=3 ;

p ¼ 4bðaþ 3br2Þ2=3 þ acþ 5bcr2

8πð1 − γÞðaþ br2Þðaþ 3br2Þ2=3 : ð160Þ

We give in Fig. 4 the behavior of this solution for
specific values of the parameters, showing the existence of
a hypersurface where both p and δ2 vanish, so that we can
smoothly match such solution with a vacuum exterior
space-time.
Another example, based on the same assumptions, can

be given considering

A ¼ A0ðaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c − beρ

p
Þ2; ð161Þ

which corresponds to

Y ¼ −
beρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c − beρ

p ðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c − beρ

p Þ ; ð162Þ

Eq. (154) then gives

K¼ cψða ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−beρ

p
−2beρþcÞ

ðc−beρÞ½4ψða ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−beρ

p
−2beρþcÞ−bdeρ� ; ð163Þ

with

ψ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 8c
p

þ aþ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c − beρ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8c

p
− a − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c − beρ

p
� affiffiffiffiffiffiffi

a2þ8c
p

: ð164Þ

Using the area radius r, we find the following solution for
the metric (158):

(a)

(b)

FIG. 3. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Eqs. (144) and
(145) for a ¼ 1.9, γ ¼ 0.5=ð8πÞ, and R ¼ 0.24.

(a)

(b)

FIG. 4. Plots of the behavior of the metric components
(a) and matter variables (b) associated with the solution in
Eqs. (158)–(160) in the case a¼5, b ¼ 1, c ¼ −1, γ ¼ 0.3=ð8πÞ,
and A0 ¼ 0.7.
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A ¼ A0½aþ yðrÞ�2;

B ¼ 4c½ayðrÞ þ 2yðrÞ2 − c�
yðrÞ2½4ayðrÞ þ 8yðrÞ2 þ dψðrÞðyðrÞ2 − cÞ − 4c� ;

ð165Þ

where

yðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c −

br2

r20

s
;

ψðrÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 8c
p

þ aþ 4yðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8c

p
− a − 4yðrÞ

� affiffiffiffiffiffiffi
a2þ8c

p
; ð166Þ

with the following expressions for the energy density and
pressure of the fluid:

μ ¼ bdγ½6y5 þ 7ay4 þ 2y3ða2 − 3cÞ − 4acy2�ψ
16πcðγ − 1Þr20ðaþ yÞ½c − yðaþ 2yÞ�2

þ bdγc2ð2yþ aÞψ
16πcðγ − 1Þr20ðaþ yÞ½c − yðaþ 2yÞ�2

−
bd½6y4 þ 3ay3 − 5cy2 þ 2c2�ψ
32πcðγ − 1Þr20½c − yðaþ 2yÞ�2

þ b½2γð2aþ 3yÞ − 3ðaþ yÞ�
8πcr20ðγ − 1Þðaþ yÞ ;

p ¼ bdyðay − 2cþ 3y2Þψ
32πcðγ − 1Þr20ðaþ yÞðay − cþ 2y2Þ

þ bðaþ 3yÞ
8πcr20ðγ − 1Þðaþ yÞ : ð167Þ

In Fig. 5 we show the behavior of this solution for specific
values of the parameters. Notice that this solution also
admits the existence of a common hypersurface where both
p and δ vanish.
Before finishing this section we remark that, as shown by

Figs. 1–5, in all considered cases it is possible to find values
of the parameters for which all the thermodynamical
quantities and spin density are positive, hence, all the
classical energy conditions are valid.

VII. GENERATING THEOREMS

As discussed in Ref. [21], the form of the structure
equations (82)–(90) is especially useful to find algorithms
for generating new solutions from previous known ones.
Consider a solution for the structure equations (82)–(90)

characterized by the functions

fP0;M0;Δ0; K0; E0;X0;Y 0; ðB1Þ0; ðB2Þ0; ðD1Þ0; ðD2Þ0g:
ð168Þ

Given the quantities

M ¼ M0 þM1; P ¼ P0 þ P1;

Δ2 ¼ Δ0
2 þ Δ1

2; K ¼ K0 þK1; ð169Þ

where fP1;M1;Δ1;K1g are sufficiently smooth arbitrary
functions, let us search conditions on the deforming func-
tions so that the set fP;M;Δ;K; E;X;Y ;B1;B2;D1;D2g is
a solution of the structure equations.
Substituting Eq. (169) in Eq. (83) we find

∂ρK1 þ 2K1
2 þ 2K0ðΔ1

2 −M1Þ

−K1

�
2M0 − 4K0 − 2Δ0

2 þ 2Δ1
2 − 2M1 þ

1

2

�
¼ 0:

ð170Þ

This equation has the form of a Riccati differential equation
to which, in general, there are no known closed form
solutions. We can, nonetheless, consider particular cases so
that the previous equation reduces to a Bernoulli differ-
ential equation, where general closed form solutions exist.

(a)

(b)

FIG. 5. Plots of the behavior of the metric components (a) and
matter variables (b) associated with the solution in Eqs. (158),
(165), and (160) in the case A0 ¼ 1, a ¼ −3, b ¼ 1, c ¼ 3,
d ¼ 0.03, r0 ¼ 1, and γ ¼ 0.9=ð8πÞ.
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A. Case 1

Let us first consider that

M1 ¼ Δ2
1: ð171Þ

In this case, Eq. (170) can be readily integrated forK1, such
that

K1 ¼ 0∨K1ðρÞ ¼
Exp½R ρ

ρ0
Λdx�

K⋆ þ 2
R
ρ
ρ0
Exp½R y

y0
Λdx�dy ; ð172Þ

where K⋆ is an integration constant and

Λ ¼ 2M0 − 2Δ0
2 − 4K0 þ

1

2
: ð173Þ

Using Eq. (171) in Eq. (82) we find

∂ρP1 þ P1

�
3K0 þ 3K1 −M0 þ 2P0 − Δ0

2 −
7

4

�

þ P1
2 þ 1

4
F ¼ 0; ð174Þ

with

F ¼ 4M0ðΔ1
2 þK1Þ − 8ðP0 þ P1ÞΔ1

2 þ 12P0K1

þ 4Δ0
2Δ1

2 − 4∂ρΔ1
2 þ 4Δ1

4 þ 7Δ1
2

− 12Δ1
2K0 − 16Δ0

2K1 − 12Δ1
2K1: ð175Þ

For Eq. (174) to reduce to a Bernoulli-like differential
equation we will require F ðρÞ ¼ 0, that is,

∂ρΔ1
2 −Δ1

4 −K1ðM0þ 3P0 − 4Δ0
2Þ

−Δ1
2

�
7

4
þM0 − 3K0 − 3K1 − 2P0 − 2P1 þΔ0

2

�
¼ 0;

ð176Þ

which, by setting K1 ¼ 0 or M0 þ 3P0 − 4Δ0
2 ¼ 0, can

be formally solved, such that

Δ2
1ðρÞ ¼ 0∨Δ1

2ðρÞ ¼ Exp½R ρ
ρ0
Φdx�

Δ⋆ −
R
ρ
ρ0
Exp½R y

y0
Φdx�dy ; ð177Þ

where Δ⋆ is an integration constant and

Φ ¼ M0 − 3K0 − 3K1 − 2P0 − 2P1 þ Δ0
2 þ 7

4
: ð178Þ

Consequently, from Eq. (174), we find

P1ðρÞ ¼ 0∨P1ðρÞ ¼
Exp½R ρ

ρ0
Γdx�

P⋆ þ
R
ρ
ρ0
Exp½R y

y0
Γdx�dy ; ð179Þ

with

Γ ¼ M0 − 2P0 þ Δ0
2 − 3K0 − 3K1 þ

7

4
; ð180Þ

and P⋆ is an integration constant.
Before we conclude this section, we should stress that

Eqs. (172), (177), and (179) present two possible solutions
for the considered functions and all combinations of those
solutions verify the structure equations with M1 ¼ Δ2

1,
leading, a priori, to distinct solutions.

B. Case 2

Another possibility to solve Eq. (170) is the case when

ðK0 þK1Þð2Δ2
1 − 2M1Þ ¼ GðρÞK1 þQðρÞK1

2; ð181Þ

where GðρÞ and QðρÞ are sufficiently smooth, arbitrary
functions. Setting

2Δ2
1 − 2M1 ¼ K1QðρÞ; GðρÞ ¼ K0QðρÞ; ð182Þ

and substituting Eqs. (181) and (182) in Eq. (170) we find

∂ρK1 þK1

�
2Δ0

2 − 2M0 þ 4K0 þK0QðρÞ − 1

2

�
þ ½2þQðρÞ�K1

2 ¼ 0; ð183Þ

which, providing an expression for QðρÞ can be solved for
K1, or vice-versa.
Now, to solve the remaining equations for the functions

Q, P1, and Δ1, we will consider that the original solution is
such that M0 ¼ P0 ¼ Δ0 ¼ 0, that is, the original space-
time is described by a vacuum solution of the field
equations. From Eq. (82) we then find

∂ρP1 þ P1
2 þ P1

�
3K0 þ 3K1 −

7

4

�
þ J ðρÞ ¼ 0; ð184Þ

where

J ðρÞ¼−∂ρΔ1
2þΔ1

4þ1

2
QðρÞK1

�
P1−K0−K1þ

1

4

�

þΔ1
2

�
−2P1−

1

2
QðxÞK1−3K0−3K1þ

7

4

�
: ð185Þ

As before, to reduce Eq. (184) to a Bernoulli differential
equation we will impose J ðρÞ ¼ 0. Unfortunately, this
equation itself is also not possible to solve in general since
it has the form of a Riccati differential equation. Let us then
further impose the last term in the first line of the previous
equation to be zero. Solving for K1, we have
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K1 ¼ P1 −K0 þ
1

4
; ð186Þ

where we have ignored the solutions whereQ ¼ 0∨K1 ¼ 0
since they lead to a particular case of subsection VII A.
Considering the constraint that originally we have a

vacuum solution, substituting Eq. (186) in Eq. (183) we
find,

Q ¼ −
8ð2∂ρP1 þ 4P1

2 þ P1Þ
ð4P1 þ 1Þð4P1 − 4K0 þ 1Þ : ð187Þ

Gathering the previous results we find the following
expressions for the remaining perturbations

P1 ¼
eρ

P⋆ þ 4eρ
;

Δ2
1 ¼ 0∨Δ1

2 ¼ Exp½− R
ρ
ρ0
Φdx�

Δ⋆ −
R
ρ
ρ0
Exp½− R

y
y0
Φdx�dy ;

M1 ¼ Δ2
1 þ

2∂ρP1 þ 4P1
2 þ P1

4P1 þ 1
; ð188Þ

where P⋆ and Δ⋆ are integrating constants and

Φ ¼ 2P1 þ
1

2
QðxÞK1 þ 3K0 þ 3K1 −

7

4
: ð189Þ

Notice that we did not consider the case when P1 ¼ 0
since it would lead to the case when QðρÞ ¼ 0, which,
as mentioned before, represents a particular case of
Sec. VII A. Let us also remark that, for solutions generated
using the above equations, the functional form of the
pressure, P ≡ P1, is independent of the original solution
and completely determined up to a constant. Moreover,
notice that the pressure—in such solutions—is only null
when ρ → −∞.

C. Case 3

Let us now consider the deformations in Eq. (169) with
the extra constraint

Y ¼ Y 0; ð190Þ

that is, we will impose that the function Y is unchanged
between the original and the perturbed space-time. This is
a generalization of the deformations considered in
Refs. [21,23], for non-null-spin density. Substituting
Eqs. (169) and (190) in Eq. (84) we find that

P1 ¼ Δ2
1 −K1: ð191Þ

Using Eqs. (169), (190), and (191) in Eqs. (83) and (82) we
find the following relations for M1 and K1:

M1 ¼
K1ð2Y 0 þ 3Þ
2Y 0 þ 1

þ Δ2
1; ð192Þ

K1 ¼
Exp½− R

ρ
ρ0
Φdx�

K⋆ −
R
ρ
ρ0

4
2Y 0þ1

Exp½− R
y
y0
Φdx�dy −K0; ð193Þ

where

Φ ¼ K0ð6þ 4Y 0Þ
2Y 0 þ 1

þ 2Δ2
0 − 2M0 −

1

2
; ð194Þ

and K⋆ is an integration constant. Equations (191)–(194)
generalize the results in Ref. [21] in the presence of a non-
null-spin density.6

Contrary to the previous cases, Eqs. (191)–(194) do not
completely determine the system since the function Δ2

1 is
unconstrained. Notice that K≡K1 is determined uniquely
by the unperturbed solution andΔ2

1 will only affectM1 and
P1. Therefore, provided an unperturbed solution, the metric
of the perturbed space-time is completely determined by
Eqs. (190) and (193). As already pointed out, Δ2

1 will not
only affect the energy density and the pressure of the fluid
but also the Weyl tensor components. Thus, although the
metric of the space-time is independent ofΔ2

1, the geometry
is profoundly influenced by the presence of spin.

VIII. CONCLUSIONS

In this paper we have used the 1þ 1þ 2 formalism to
derive the structure equations for LRSI and LRSII, sta-
tionary space-times with a Weyssenhof-like torsion field in
the context the ECSK theory of gravity. The structure of the
covariant equations show in detail how the spin interacts
with the space-time via the torsion tensor. In particular, the
presence of a torsion tensor field separates the magnetic
part of the Weyl tensor in two distinct tensors, which
behave differently. Even in the case of static LRSII space-
times, the magnetic parts of the Weyl tensor do not vanish
and some of its components depend on both the value and
spatial derivative of the spin density. This suggests, in
particular, that the effects of spin on the matter fluid, even
in the regimes expected to be found in neutron stars, may
not be negligible, as it was previously thought (see, e.g.,
[13]), even in the case in which the contribution to the spin
is very small.
The 1þ 1þ 2 equations were then used to derive the

covariant Tolman-Oppenheimer-Volkoff equations for
ECSK gravity for LRSI and LRSII space-times. In the
case of LRSII space-times, the equations are structurally
very similar to the ones of GR. Indeed, this similarity
allows us to recast them into the same form of the GR TOV

6Notice that there is an error in the expression for M1 in
Ref. [21]. The correct expression is found by setting Δ2

0¼Δ2
1¼0

in Eq. (192).
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equations via a redefinition of the matter variables and the
electric part of the Weyl tensor. As a consequence we found
that at the level of the metric it is possible to map static,
locally rotationally symmetric solutions of class II from the
Einstein-Cartan theory to the ones of the theory of general
relativity. Moreover, due to this mapping and the rescale in
the matter variables, some GR solutions which are physi-
cally irrelevant become, in the context of ECSK gravity,
interesting.
When we examine in detail the physical properties of

physically relevant solutions, the differences between the
Einstein-Cartan theory and GR become once more evident.
This is particularly true looking at junction conditions. We
found that the requirement that all of the components of the
Riemann tensor have finite discontinuities across the
separation surface N leads to additional constraints with
respect to the tornsionless case. This is especially evident
when looking at the structure equations for stationary LRSI
and LRSII space-times sourced by a Weyssenhoff fluid. In
these equations the magnetic parts of the Weyl tensor
depend explicitly on the derivatives of the torsion tensor
and the classical Israel junction conditions of GR do not
guarantee these terms to be finite across N . As conse-
quence of the generalized junction conditions, in the
considered setup, observers at the interior and exterior
space-times must measure the same value for the spin
density atN , turning the task of finding physically relevant
solutions even more daunting.
Using the full set of structure equations and boundary

conditions provided by the junction formalism, we were
able to study various properties of possible solutions. We
started by analyzing how the presence of spin changes the
Buchdahl limit for the maximum compactness of a star. We
concluded that the spin-geometry coupling allows stars
with a given circumferential radius to hold more matter
than the corresponding GR ones. Next we considered the
case of static, spherically symmetric compact objects
entirely held by the matter spin, smoothly matched to a
vacuum exterior. This scenario was expected to represent a
good model for cold neutron stars, where the thermody-
namical pressure is negligible when compared to the spin
density. We found, surprisingly, that such objects cannot be
simultaneously static, spherically symmetric and smoothly
matched to a vacuum exterior. This is a strong result and it
is necessary to discuss in detail the hypothesis that led to
such conclusion. More specifically our conclusion may not
be valid if:

(i) the spin density is not a monotonically decreasing
function of the radial coordinate inside the star;

(ii) we consider a nonvacuum exterior space-time;
(iii) we replace the uncharged Weyssenhoff fluid model;
(iv) we allow the presence of a thin shell.

The first possibility might lead to a total energy density and
a pressure density which is not monotonically decreasing.
While this is not a strong enough reason to discard this

case, we expect these oscillation to make the solution
unstable under small perturbations. The second case
suggests that if ECSK theory had a nontrivial vacuum
(vortical) solution, one could smoothly match the interior to
it, bypassing the requirement of the spin density to vanish at
a hypersurface. At present there is no evidence that such a
solution might/should exist. Indeed the theory is expected
to reduce to GR in vacuum. For what concerns hypothesis
(iii), the Weyssenhoff fluid can be advocated to be a good
model for the matter fluids that might constitute cold
neutron stars. However, in this work we made the sim-
plifying assumption that the fluid is electrically neutral. If,
instead, a charged Weyssenhoff fluid model is considered,
we expect that other effects will appear—such as aniso-
tropic pressure—which may drastically change the behav-
ior of the fluid. As for the last possibility, although a
smooth junction with a vacuum exterior might represent a
more reasonable scenario, it might be argued that neutron
stars may have a well-defined surface; therefore, it is not
completely unreasonable to consider the presence of a thin
shell of matter at the matching surface.
On top of the zero pressure solution considered above,

we have also considered solutions in which pressure is
nonzero. Using reconstruction algorithms, we have been
able to obtain various classes of solutions for the interior of
static, spherically symmetric compact objects that can be
smoothly matched to a Schwarzschild exterior. One family
of those solutions, which we dubbed Buchdahl stars,
represent a very interesting scenario: they admit the
existence of a common hypersurface where the pressure,
spin density, and energy density all vanish. This model,
studied for the first time by Buchdahl for gaseous stars in
GR [49], represents the scenario where the fluid that
composes a star will smoothly dissipate away from a
denser core and transition to vacuum. These solutions also
provided a key example for the effects that spin may have
on the behavior of the fluid. Figures 1–3 clearly exemplify
that even if the spin density is much smaller than the other
matter variables, it allows for a much richer behavior for
the fluid.
The natural question that emerges is about the stability of

these solutions. Because of the nontrivial role of the
magnetic part of the Weyl tensor, no standard “zeroth
order” (and Newtonian based) criterion is necessarily valid
in our case. In cases in which the spin density is decreasing,
one very heuristic criterium of stability of our solutions is to
guarantee (as we have done) that both energy density and
pressure of the fluid are decreasing functions of the radial
coordinate when the spin is small at least in a nonempty set
of values of the parameters. However, a complete study of
the stability of the solutions we have found requires a more
careful study, which will be the topic of a series of
future works.
Finally, as in the case of GR, in ECSK theory it is also

possible to derive generating theorems. In this work we
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have presented several algorithms to generate new exact
solutions from previously known ones. We should stress
here that the results we obtained followed from the simple
idea of finding conditions so that the Riccati differential
equations would reduce to Bernoulli equations. Although
this scheme allowed us to find various generating algo-
rithms, we make no claim that we have exhausted all
possibilities for finding new ones. On this note, the
integrability conditions for Riccati-type equations in
Refs. [51–53] were also considered. However, these did
not lead to useful results in the considered context.
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APPENDIX: COVARIANTLY DEFINED
QUANTITIES FOR THE DERIVATIVES

OF THE TANGENT VECTORS

Using the definitions of the projector operators on the
hypersurfaces V and W, let us show how the covariant
derivatives of the tangent vector fields v and e can be
uniquely decomposed in their components along u, e,
and W.

1. Decomposition on the sheet W

Let us first consider the projected covariant derivatives of
the tensors u and e on the sheet. These can be uniquely
decomposed as

δαuβ ≡ Nα
σNβ

γ∇σuγ ¼
1

2
Nαβθ̃ þ Σαβ þ εαβΩ; ðA1Þ

where

θ̃ ¼ δαuα; Σαβ ¼ δfαuβg; Ω ¼ 1

2
εσγδσuγ; ðA2Þ

and

δαeβ ¼
1

2
Nαβϕþ ζαβ þ εαβξ; ðA3Þ

with

ϕ ¼ δαeα; ζαβ ¼ δfαeβg; ξ ¼ 1

2
εσγδσeγ; ðA4Þ

where the curly brackets represent the projected symmetric
part without the trace of a tensor in W, that is, for a tensor
ψαβ,

ψfαβg ¼
�
NμðαNβÞν −

Nαβ

2
Nμν

�
ψμν: ðA5Þ

Using the 2-form volume εαβ a completely antisymmetric
tensor defined on the sheet, ψ ½αβ�, can be written as

ψ ½αβ� ¼ εαβ

�
1

2
ϵγσψγσ

�
: ðA6Þ

This property was used in Eq. (5).

2. Decomposition on V

The decomposition of the projected covariant derivatives
of uα onto V is given by

Dαuβ ¼ hσαh
γ
β∇σuγ ¼

1

3
hαβθ þ σαβ þ ωαβ; ðA7Þ

with

θ ¼ hαβDαuβ; ðA8Þ

σαβ ¼ Dhαuβi; ðA9Þ

ωαβ ¼ hσ ½αhβ�γDσuγ; ðA10Þ

where we used the angular brackets to represent the
projected symmetric part without trace of a tensor on V,
that is, for a tensor, ψαβ,

ψ hαβi ¼
�
hμðαhβÞν −

hαβ
3

hμν
�
ψμν: ðA11Þ

The scalar and tensor quantities in Eqs. (A8)–(A10) can
themselves be further decomposed in their contributions
exclusively on W and along e, such that

θ ¼ θ̃ þ θ̄; ðA12Þ

where θ̃ is defined in Eq. (A2) and

θ̄ ¼ −uβðeαDαeβÞ ¼ −uβêβ; ðA13Þ

σαβ ¼ Σαβ þ 2ΣðαeβÞ þ Σ
�
eαeβ −

1

2
Nαβ

�
; ðA14Þ

with

Σαβ ¼ σfαβg; Σα ¼Nγ
αeβσγβ; Σ¼ eαeβσαβ ¼−Nαβσαβ;

ðA15Þ
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and

ωαβ ¼ εαβΩ − εαλω
λeβ þ eαεβλωλ; ðA16Þ

where Ω is given in Eq. (A2) and

ωλ ¼ 1

2
εμνλDμuν; ðA17Þ

which can be itself decomposed as

ωλ ¼ Ωeλ þ Ωλ; with Ωλ ¼ Nλ
αω

α ¼ 1

2
Nλ

αε
μναDμuν;

ðA18Þ
therefore, equivalently,

ωαβ ¼ εαβγðΩeγ þ ΩγÞ: ðA19Þ

The quantities θ, Σ, θ̃, and θ̄ are not independent, in fact:

θ̄ ¼ 1

3
θ þ Σ; ðA20Þ

θ̃ ¼ 2

3
θ − Σ; ðA21Þ

as such, when setting up the 1þ 1þ 2 formalism only two
are chosen. The convention followed here uses the variables
θ and Σ.
For the projected covariant derivative of the vector field e

on V we have

Dαeβ ¼ hασhβγ∇σeγ ¼ δαeβ þ eαaβ; ðA22Þ
where δαeβ is given by Eq. (A3) and

aα ¼ eμDμeα ¼ êα: ðA23Þ

3. Decomposition on the full manifold

Finally, we can decompose the total covariant derivatives
of uα and eα, such that

∇αuβ ¼ −uαðAeβ þAβÞ þDαuβ; ðA24Þ

with

A ¼ −uγuμ∇μeγ ¼ −uγ _eγ; Aα ¼ Nαβ _uβ; ðA25Þ

and

∇αeβ ¼ Dαeβ − uααβ −Auαuβ þ
�
1

3
θ þ Σ

�
eαuβ

þ ½Σα − εασΩσ�uβ; ðA26Þ

where

αμ ¼ hσμ _eσ: ðA27Þ

4. The actual physical kinematical variables

As discussed in Refs. [35–38], the presence of a generic
torsion field will affect the definition of the kinematical
quantities that characterize a congruence of curves, such
that, θ, σαβ, and ωαβ, Eqs. (A8)–(A10), in general, do not
represent the actual geometric—physical—expansion,
shear, and vorticity of the timelike congruence to which
u is tangent. These, however, are related with the actual
kinematical quantities by

θg¼ θþWσ
σ; σgαβ ¼ σαβþWhαβi; ωgαβ ¼ωαβþW½αβ�;

ðA28Þ

where we have used the index g to represent the physical—
geometric—kinematical quantities and the definition of
angular brackets is given in Eq. (A11). In the same way the
presence of the torsion field will modify the kinematical
quantities ϕ, ζαβ, and ξ, Eq. (A4). In particular we have the
following relations:

ϕg ¼ ϕþ 2SγμνeγNμν; ζgαβ ¼ ζαβ þ 2SγμνeγN
μ
hαjN

ν
jβi;

ξg ¼ ξþ Sγμνeγεμν: ðA29Þ

In the particular setup that we propose to study—
Weyssenhoff-like torsion—the extra terms in the rhs of
Eqs. (A28) and (A29) that depend explicitly of the torsion
tensor will be null; therefore, in our case, the indicated
quantities will correspond to the actual geometric kinemati-
cal quantities.
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