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We connect two formalisms that describe deformations away from general relativity, one valid in the
strong-field regime of neutrons stars and another valid in the radiative regime of gravitational waves: the
post-Tolman-Oppenheimer-Volkoff and the parametrized-post-Einsteinian formalisms respectively.We find
that post-Tolman-Oppenheimer-Volkoff deformations of the exterior metric of an isolated neutron star
induce deformations in the orbital binding energy of a neutron star binary. Such amodification to the binding
energy then percolates into the gravitational waves emitted by such a binary, with the leading-order post-
Tolman-Oppenheimer-Volkoff modifications introducing a second post-Newtonian order correction to the
gravitational wave phase. The lack of support in gravitational wave data for general relativity deformations at
this post-Newtonian order can then be used to place constraints on the post-Tolman-Oppenheimer-Volkoff
parameters. As an application, we use the binary neutron starmerger eventGW170817 to place the constraint
−2.4 ≤ χ ≤ 44 (at 90% credibility) on a combination of post-Tolman-Oppenheimer-Volkoff parameters.We
also explore the implications of this result to the possible deformations of the mass-radius relation of neutron
stars allowed within this formalism. This work opens the path towards theory-independent tests of gravity,
combining astronomical observations of neutron stars and gravitational wave observations.
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I. INTRODUCTION

Neutron stars are one of the prime objects in nature for
confronting our understanding of fundamental physical
interactions against observations [1–3]. Their small size
(radius around ≈12 km) and large mass (≈1.4 M⊙) result
in densities at their core that can exceed that of nuclear
saturation density, at which hadronic matter can transmute
into exotic forms, by 10 orders of magnitude [4]. Neutron
stars are also extreme gravity objects, second only to black
holes in the strength of their gravitational potential and
spacetime curvature, with fields that exceed those that we
experience in the neighborhood of our Solar System by
9 orders of magnitude. The strong-field regime of neutron
stars, critical in determining their structure and stability
[5–7], demands the use of relativistic gravity to describe
these stars, with Einstein’s general relativity (GR) as our
canonical theory for doing so. Moreover, neutron stars unlike
black holes, allow us to probe how matter couples with the
very fabric of spacetime in the strong-field regime [8].
The piercing power of neutron stars as tools to test our

understanding of nature is amplified when they are found
in binaries. From the discovery of the very first binary
pulsar [9] and the confirmation that its orbital period decays

in agreement with GR predictions, through the emission of
gravitational waves [10], to the spectacular detection of
the first binary neutron star merger event GW170817 [11]
by the LIGO/Virgo collaboration (LVC), neutron star
binaries have been in the forefront of experimental gravity
in astronomical settings with implications to cosmology
included [12–16].
Experimental tests of relativistic gravity have a long

history [17,18] and can basically be carried out in two
ways. In the first approach, one assumes a particular theory,
whose predictions are worked out and then tested against
observations. In the second approach, one introduces
deformations to the predictions or solutions of GR, in a
particular regime of the theory, and one then works out the
observational consequences of these deformations to con-
front them against observations. Both approaches have
been successful in aiding our understanding of the nature of
gravity. An example of the first approach is the ruling out of
Nordström’s theory of gravity (a predecessor to GR), which
for example fails to predict the deflection of light by the
Sun [19–21]. An example of the second approach is the
parametrized post-Newtonian framework (ppN) [22–24],
which allowed us to test GR against a myriad of new Solar
System tests starting in the 1960s, although early ideas date
back to Eddington [25].
Can we combine parametrized tests of gravity that

involve observations of the strong-field gravity created
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by isolated neutron stars with those that involve the
radiative and dynamical fields generated in the coalescence
of neutron star binaries? The purpose of this paper is to
build a bridge between two parametrizations for tests of
GR: the parametrized post-Tolman-Oppenheimer-Volkoff
(post-TOV) formalism [26,27] (which parametrizes devia-
tions to the stellar structure of isolated neutrons stars) and
the parametrized-post-Einsteinian (ppE) formalism [28,29]
(which parametrizes deviations to GR in the inspiral,
merger and ringdown of compact binary coalescence).
This bridge provides a theory-independent framework to
combine constraints on deviations to GR from the obser-
vation of the bulk properties of neutron stars and from the
generation and propagation of gravitational waves pro-
duced in the coalescence of binary neutron stars.
The connection between both formalisms is only possible

by realizing that the modified exterior spacetime of neutron
stars in the post-TOV formalisms affects the binding energy
of a neutron star binary [27], and thus, the gravitational
waves that such a binary emits [28]. This modification to the
binding energy or the gravitational waves emitted can be
mapped onto the ppE framework, which we have extended
here to encompass a wider set of modifications to the
conservative sector of the binary’s Hamiltonian. This allows
a particular combination of post-TOV parameters χ [defined
in Eq. (6)] to be mapped to the ppE modification to the
gravitational wave Fourier phase δψppE [cf. Eqs. (24)
and (29)]. We find that χ modifies the gravitational wave
evolution at second post-Newtonian order (2PN).1

The lack of support in gravitational wave data for a GR
deformation then allows for constraints on deformations of
the exterior metric of isolated neutron stars. In particular,
the constraints on GR modifications obtained by the LVC
[31] for the binary-neutron star gravitational wave event
GW170817 [32] can be used to place the first observational
constraint on χ, namely −2.4 ≤ χ ≤ 44 at 90% credibility
(see Fig. 1). This result strengthens the case for compact
binary mergers as laboratories to test GR, something which
would otherwise be very hard (if not impossible) with only
mass and radius measurements of isolated neutron stars due
to strong degeneracies between matter and strong-field
gravity. We provide explicit examples of this degeneracy by
computing the post-TOV deformations to the mass-radius
curves within −2.4 ≤ χ ≤ 44 for a fixed equation of state.
The remainder of the paper presents the details that led to

the results summarized above and it is organized as follows.
In Sec. I we briefly overview the post-TOV and ppE
formalisms, establishing the connection between the two.
Next, in Sec. III we use the public data on tests of GR
with GW170817 released by LVC to place constraints on a

combination of post-TOV parameters. In Sec. IV we
discuss the allowed deformation on the mass-radius
curves of neutron stars under this constraint, discussing
in detail the degeneracies between matter and strong
gravity. In Sec. V, we present our conclusions and outline
some directions for which our work can be extended.
Throughout this work we use geometric units G ¼ 1 ¼ c
and use a mostly plus metric signature.

II. FROM POST-TOV TO PPE

Let us start by briefly reviewing the post-TOV formalism
developed in Refs. [26,27] and the ppE formalism intro-
duced in Ref. [28] and expanded in [33].

A. Overview of the post-TOV formalism

The idea behind the post-TOV formalism is quite simple.
The formalism is based on the observation that the structure
of static, spherically symmetric stars in GR is determined
by only two differential equations:

�
dp
dr

�
GR

¼ −
ðϵþ pÞ

r2
ðmþ 4πr3pÞ
1 − 2m=r

; ð1aÞ
�
dm
dr

�
GR

¼ 4πr2ϵ; ð1bÞ

FIG. 1. Marginalized posterior distribution for the χ post-
TOV parameter, obtained from the Markov-chain-Monte-Carlo
(MCMC) samples released by the LVC for the GW170817 event.
The 90% credible interval bound on χ is −2.4 ≤ χ ≤ 44, as
indicated by the vertical lines. The lower support at zero is not an
evidence of a deviation from GR as explained in the text, but
rather it reflects a similarly skewed posterior distribution for δϕ4,
which peaks away from zero due to degeneracies between the
various binary parameters and nonstationarity of the detector
noise. The long tail of the distribution is produced by a similar tail
in the marginalized posterior for δϕ4, the parameter that encodes
deformations in the gravitational wave Fourier phase at 2PN
order (see Fig. 1 in Ref. [31]).

1The PN formalism is one in which the field equations are
solved perturbatively as an expansion in weak fields and small
velocities. A term of NPN order is of Oðv2N=c2NÞ relative to the
leading-order term, with v the orbital speed and c the speed of
light [30].
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which respectively govern the pressure and mass gradients
within the star. Here, r is the circumferential radius, m the
mass function, p the pressure and ϵ the total energy density.
The latter two variables are assumed to be related through
a barotropic equation of state (EOS), i.e., p ¼ pðϵÞ. For
later convenience we recall that ε can be written as
ε ¼ ρð1þ ΠÞ, where ρ is the baryonic rest-mass density
and Π the internal energy per unit baryonic mass.
The post-TOV formalism augments these equations to

the form

dp
dr

¼
�
dp
dr

�
GR

−
ρm
r2

ðP1 þ P2Þ ð2aÞ

dm
dr

¼
�
dm
dr

�
GR

þ 4πr2ρðM1 þM2Þ; ð2bÞ

where the first set of post-TOV corrections is

P1 ≡ δ1
m
r
þ 4πδ2

pr3

m
; ð3aÞ

M1 ≡ δ3
m
r
þ δ4Π; ð3bÞ

and the second set is

P2 ≡ π1
m2

ρr5
þ π2

m2

r2
þ π3pr2 þ π4

Πp
ρ

; ð4aÞ

M2 ≡ μ1
m2

ρr5
þ μ2

m2

r2
þ μ3pr2 þ μ4

Πp
ρ

þ μ5Π3
r
m
; ð4bÞ

where δi, πi and μi are all dimensionless constants.
The first set (P1, M1) arises from the ppN stellar

structure equations [26,34–36]. These non-GR terms in
the post-Newtonian regime were then added to the full GR
equations to capture effects of modifications to GR. Indeed,
the parameters δi are all related to the usual ppN parameters
via δ1 ≡ 3ð1þ γÞ − 6β þ ζ2, δ2 ≡ γ − 1þ ζ4, δ3 ≡
−ð1=2Þð11þ γ − 12β þ ζ2 − 2ζ4Þ and δ4 ≡ ζ3. Solar
System constraints impose jδij ≪ 1, yielding P1 ≪ 1
and M1 ≪ 1 in Eq. (2), and thus, we will here only study
the second set of post-TOV corrections.
The second set (P2, M2) represents 2PN corrections

which can be written in terms of fluid and metric variables.
As explained in detail in Ref. [26], the 2PN terms which
can be constructed from these primitive quantities can be
gathered in five “families,” each with an infinite number of
terms and with each family yielding a distinctive change to
the mass-radius relation of neutron stars. Fortunately, 2PN
terms belonging to each family exhibit qualitatively the
same radial profiles inside a star. This translates into terms
belonging to the same family affecting the mass-radius
relations in a self-similar manner (cf. [26], Figs. 3, 6 and 7).
This fact allows one to choose a single representative

member from each family to be included to the TOV
equations. The criteria used in [26] to make this choice was
that of overall magnitude of the modification (relative to
other terms in the same family) and simplicity of the
analytic form of the term.
Equation (2) is sufficient to determine the interior of

the star and its bulk properties i.e., the (Schwarzschild)
enclosed massM½≡mðRÞ� and the radius R [location r ¼ R
at which pðRÞ ¼ 0when integrating the post-TOVequation
outwards from r ¼ 0.]. In [27], the exterior problem was
addressed and it was found that the post-TOV equations
result in a post-Schwarzschild exterior metric given by

gtt ¼ −
�
1 −

2M
r

�
þ 2χ

3

�
M
r

�
3

; ð5aÞ

grr ¼
�
1 −

2M
r

�
−1

− 4πμ1

�
M
r

�
3

; ð5bÞ

where

χ ≡ π2 − μ2 − 2πμ1 ð6Þ

is a combination of the post-TOV parameters and

M ¼ M

�
1þ 2πμ1

�
M
R

�
2
�

ð7Þ

is the Arnowitz-Misner-Deser mass of the star. Equation (7)
was obtained under the restriction that μ1 ∈ ½−1.0; 0.1�,
outside of which the calculation of M requires solving a
transcendental equation and for which the exterior metric
cannot be written analytically in the simpler form (5).
The fact thatM ≠ M is not unusual in modified theories

of gravity (see e.g., [37]). In theories beyond GR, con-
tributions to the star’s mass due to the presence of new
degrees of freedom, such as scalar or vector fields arise,
although this is not always the case [38–40]. We stress that
it is M, not M, which would be observationally inferred,
e.g., by using Kepler’s law.
In dynamical situations, such as in the motion of a

neutron star binary, these additional degrees of freedom can
be excited, and thus, they can open new radiative channels
for the system to lose energy, modifying the binary’s
dynamic. As formulated, the post-TOV formalism cannot
account for the presence of extra fields and hence the
radiative loses of the binary will be the same as in GR. On
the other hand, since the exterior spacetime is different
from that of Schwarzschild, the conservative sector of the
binary motion will be different.
As we will see next, the ppE formalism aims to capture

generic deviations from GR to both sectors. This will allow
us to obtain a mapping between the parameters (that control
these deviations) in both formalisms.
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B. Overwiew of the ppE formalism

The ppE formalism was developed to capture generic
deviations from GR in the gravitational waves emitted by a
binary system [28]. These deviations can be separated into
those that affect the conservative sector (e.g., the binding
energy of the orbit) and the dissipative sector (e.g., the flux
of energy). In previous work, the conservative sector was
modified in a rather cavalier way, making some assump-
tions about the structure of the deformations. Let us then
here relax some of these assumptions and rederive the
modifications.
We begin with the Hamiltonian for a two-body system in

the center of mass frame, working to leading order in the
post-Newtonian approximation and to leading order in the
GR deformation:

H ¼ pαpα

¼ p2
r

2μ
ð1þ δprÞ þ

p2
ϕ

2μr2
ð1þ δpϕÞ −

μm
r

ð1þ δUÞ; ð8Þ

where r is the relative separation of the binary, μ ¼
m1m2=m is the reduced mass, with m1;2 the component
masses andm ¼ m1 þm2 the total mass, and pr and pϕ are
the generalized momenta conjugate to the radial and
azimuthal coordinates.
The functions ðδU; δpr; δpϕÞ characterize the deforma-

tion to the standard Newtonian Hamiltonian. For the
purposes of this work, we will parametrize these deforma-
tions as

δU¼A

�
m
r

�
a
; δpr¼B

�
m
r

�
b
; δpϕ¼C

�
m
r

�
c
; ð9Þ

where ðA;B;CÞ control the magnitude of the deformation
(assumed small here), while ða; b; cÞ control the character
of the deformation. We will also here assume that
a ¼ b ¼ c, meaning that all deformations enter at the
same post-Newtonian order, and we will discuss later
how to relax this assumption. Physically, we can think
of ðδU; δpr; δpϕÞ as modifying the ðt; tÞ, ðr; rÞ and ðϕ;ϕÞ
components of the metric respectively. Notice also that if
δpϕ ≠ 0, then the radius r and the angle ϕ are not your
usual circumferential radius and azimuthal angle (though
they are related to them via a coordinate transformation).
With this at hand, we can now derive the constants of the

motion and the field equations. Assuming the Hamilton
equations hold, there are two constants of the motion
associated with time translation and azimuthal-angle trans-
lation invariance. The former is simply the Hamiltonian
itself, which for a binary is the binding energy Eb. The latter
is the angular momentum of the orbit, which we can define
as L≡ pϕ=μ. The azimuthal component of the generalized
momenta can be obtained from

_ϕ ¼ ∂H
∂pϕ

¼ pϕ

μr2
ð1þ δpϕÞ þ

p2
ϕ

2μr2
∂δpϕ

∂pϕ
; ð10Þ

which then leads to

L ¼ ωr2ð1 − δpϕÞ; ð11Þ

where have used the definition ω≡ _ϕ, and because δpϕ

was assumed to be independent of pϕ by Eq. (9).
With this at hand, we can now derive the radial equation

of motion in reduced order form. We begin by evaluating _r,
which by Hamilton’s equation is simply ðpr=μÞð1þ δprÞ,
where again we have used that δpr was assumed to
be independent of pr from Eq. (9). We can then rewrite
Eq. (8) as

_r2

2
ð1 − δprÞ ¼

Eb

μ
þm

r
ð1þ δUÞ − L2

2r2
ð1þ δpϕÞ≡ Veff :

ð12Þ

Note that δpr, which is associated with a deformation of
the ðr; rÞ-component of the metric, does not affect the
location in phase space where _r ¼ 0 (or equivalently
where Veff ¼ 0).
Before we can find what the binding energy of the orbit

is as a function of the orbital angular frequency, we must
determine what the energy and the angular momentum of a
circular orbit in this perturbed spacetime is. We can do so
by setting Veff ¼ 0 and dVeff=dr ¼ 0 and solving for Eb
and L, which yields

Eb

μ
¼ −

m
2r

�
1þ Að1 − aÞ

�
m
r

�
a
þ C

c
2

�
m
r

�
c
�
; ð13Þ

L ¼ ffiffiffiffiffiffi
mr

p �
1þ A

2
ð1þ aÞ

�
m
r

�
a
−
C
2

�
1þ c

2

��
m
r

�
c
�
:

ð14Þ

From the above expression for L, we can solve for ωðrÞ as
well as rðωÞ (i.e., the modification to Kepler’s third law)
to find

m
r
¼ ðmωÞ2=3

�
1 −

A
3
ð1þ aÞðmωÞ2a=3

−
C
3

�
1 −

c
2

�
ðmωÞ2c=3

�
: ð15Þ

Using this in Eq. (13), we then find the final expression
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Eb

μ
¼ −

1

2
ðmωÞ2=3

�
1þ 2A

3
ð1 − 2aÞðmωÞ2a=3

−
C
3
ð1 − 2cÞðmωÞ2c=3

�
: ð16Þ

Reference [33] carried out a similar calculation, except
that in their calculation the whole Newtonian effective
potential was modified by the same term, namely

V ½33�
eff ¼

�
−
m
r
þ L2

2r2

��
1þ A½33�

�
m
r

�
p
�
: ð17Þ

Such a modification lead to a binding energy of the
form [33]

E½33�
b

μ
¼ −

1

2
ðmωÞ2=3

�
1 −

1

3
A½33�ð2p − 3ÞðmωÞ2p=3

�
: ð18Þ

From this, Ref. [33] showed that the gravitational waves
emitted by a binary, assuming the dissipative sector is not
modified (i.e., the flux of energy is the same as that in GR),
and assuming gravitational waves contain the same two
polarizations as in GR, lead to a Fourier detector response
(in the stationary phase approximation) of the form

h̃ ¼ AðfÞeiΨðfÞ; ð19Þ

where A is the Fourier amplitude and Ψ is the Fourier
phase. The latter can be decomposed into Ψ ¼ ΨGR þ δψ ,
where ΨGR is the Fourier phase in GR, while the GR
deformation is

δψ ¼ 5

32
A½33� ð2p2 − 2p − 3Þ

ð4 − pÞð5 − 2pÞ η
−2p=5u2p−5; ð20Þ

where

u ¼ ðπMfÞ1=3; ð21Þ

and f is the gravitational wave frequency.
Given the similarities in the calculations, the easiest way

forward is to map the results of Ref. [33] to the mod-
ifications we are considering here. Comparing the binding
energies in Eqs. (18) and (16), we see that

A½33� ¼ 2A
1 − 2a
3 − 2a

− C
1 − 2a
3 − 2a

; ð22Þ

and where we have used that a ¼ c ¼ p. We then see
clearly that the change in the Fourier phase is

δψ ¼ 5

32

�
2A

1 − 2a
3 − 2a

− C
1 − 2a
3 − 2a

�

×
ð2a2 − 2a − 3Þ
ð4 − aÞð5 − 2aÞ η

−2a=5u2a−5: ð23Þ

This deformation arising from a GR correction to the
binding energy can be mapped to the ppE waveform as
follows. Noting that the ppE phase is [29]

δψppE ¼ βðπMfÞb=3; ð24Þ

we then realize that

β ¼ 5

32

�
2A

1 − 2a
3 − 2a

− C
1 − 2a
3 − 2a

�

×
ð2a2 − 2a − 3Þ
ð4 − aÞð5 − 2aÞ η

−2a=5; ð25aÞ

b ¼ 2a − 5: ð25bÞ

Therefore, a ppE constraint on β for a given value of b
given a gravitational wave observation that is consistent
with GR can be straightforwardly mapped to a constraint on
A given a value of a.

C. Relating the parameters in both formalisms

Several paths are possible to relate the post-TOVand the
ppE formalisms. The path we choose here is to compare the
binding energy and angular momentum of a binary system
composed of neutron stars whose metrics in isolation
would take the form of Eq. (5). This can be achieved by
transforming from the two-body problem to an effective
one-body problem, in which a test particle of mass μ ¼
m1m2=m moves in a background of mass m ¼ m1 þm2.
Let us then consider the geodesic motion of a test particle in
a generic (but still stationary and spherically symmetric)
background.
Consider the line element

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð26Þ

where the metric functions f and h are decomposed as
fðrÞ ¼ f0ðrÞ þ εf1ðrÞ and hðrÞ ¼ f−10 ðrÞ þ εh1ðrÞ, and
where ε is a small bookkeeping parameter. In the
Appendix A we present a detailed analysis of geodesic
circular motion in such a perturbed metric, and we compute
the change to the binding energy E and the angular
momentum L of the orbit. Identifying f0 ¼ 1–2 M=r,
f1 ¼ −ð2χ=3ÞðM=rÞ3, substituting these expressions into
Eqs. (A16) and (A17), and expanding both in ε ≪ 1 and in
M=r ≪ 1, we find
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Eb

μ
≡ E − 1

μ
¼ −

m
2r

�
1 −

1

3
χ
m2

r2

�
; ð27Þ

L
μ
¼ ffiffiffiffiffiffi

mr
p �

1þ 1

2
χ
m2

r2

�
; ð28Þ

where χ is a post-TOV parameter.
We can now compare Eq. (27) to Eq. (13) and Eq. (28) to

(14) to find what A,C and a are in the post-TOV formalism.
Doing so, we find that A ¼ χ=3, C ¼ 0 and a ¼ 2. In fact,
we could have predicted that C had to vanish, because the
radial coordinate in the post-TOV formalism is the circum-
ferential radius. With this in hand, the ppE parameters are
then simply

β ¼ 5

32
χη−4=5; b ¼ −1: ð29Þ

This is one of the main results of this paper, since a
constraint on β can now straightforwardly be mapped to a
constraint on χ and vice versa. Note that one could also
use the mapping between ðA;C; aÞ → χ to compute the
modification to Kepler’s third law through Eq. (15) or the
binding energy as a function of the orbital frequency
through Eq. (16), but this is not needed here.
In the limit χ ¼ 0 the evolution of a neutron star binary in

GR and in the post-TOV formalism become identical.
However, we emphasize that this limit does not necessarily
correspond to the limit in which the post-TOV equation
reduces to the usual GRTOVequations. Indeed, χ ¼ 0 only
places a constraint on the combination of some of the post-
TOV parameters. Therefore, one can have the situation in
which a neutron star binary inspiral is identical to GR, yet
the structure of the individual stars is different from GR
either because π2 − μ2 − 2πμ1 ¼ 0 and/or because the
nonzero post-TOV parameters are the ones which do not
affect the exterior space. Thus, we will refer to the case
χ ¼ 0 as the coincident limit.

III. CONSTRAINTS ON THE POST-TOV
PARAMETERS FROM GW170817

The LVC released constraints on model-independent
deviations from GR to examine the consistency of the
GW170817 event with GR predictions [31,41]. The con-
straints were obtained using a variant of IMRPhenomPv2
[42–45], which improves upon IMRPhenomD [45,46] by
phenomenologically including some aspects of spin pre-
cession and tidal effects [47,48]. In this variant, deviations
from GR are described through relative shifts in the GR PN
coefficients of the Fourier phase of IMRPhenomPv2:

ϕi → ϕið1þ δϕiÞ; ð30Þ

where δϕi are additional free parameters in the model.

The parametrization used by LVC is an implementation
of the ppE formalism as explained in [29], with β and δϕ4

being related as

β ¼ 3

128
ϕ4δϕ4η

−4=5; ð31Þ

where ϕ4 is the GR coefficient of the Fourier phase at 2PN
order (cf. Appendix B in [46]). Comparing Eqs. (29) and
(31) we obtain

χ ¼ 3

20
ϕ4δϕ4; ð32Þ

which establishes the relation between δϕ4 with χ.
We can now translate the posterior distribution of δϕ4

into one for χ by using the MCMC samples available in
[41], where, for each step, we calculate the corresponding
value of χ using Eq. (32). The resulting probability density
is shown in Fig. 1 with the 90% credible region corre-
sponding to

−2.4 ≤ χ ≤ 44: ð33Þ
This is the first constraint on (a combination of) post-TOV
parameters and another one of the main results of this paper.
The fact that the posterior of χ has a peak outside of zero

(the coincident limit) is perplexing at first sight and may
be misinterpreted as evidence for a deviation from GR, but
this is not to be the case. Rather, it reflects the qualitative
behavior of the posterior distribution of δϕ4 (see Fig. 1 in
[31]), which also does not exhibit a peak at δϕ4 ¼ 0 and it
is skewed to positive values. Both distributions, however,
clearly do have a significant amount of support at zero, and
thus, they do not indicate an inconsistency with GR. The
skewness in the posterior for δϕ4 probably results from the
marginalization process over the various parameters that
describe the model, the degeneracies between these param-
eters, and the nonstationarity of the noise in the detectors.
The similarity between the posteriors for χ and δϕ4 can

be understood from the following argument. The two
posteriors, PðχÞ and Pðδϕ4Þ, are related by PðχÞ ¼
Pðδϕ4Þðdδϕ4=dχÞ. The Jacobian of the transformation
(dδϕ4=dχ) can be calculated from Eq. (32), where ϕ4 is
independent of δϕ4. From the MCMC samples we find that
the mean value of the prefactor is ð3=20Þ × ϕ4 ≈ 12.6 and
thus PðχÞ ≈ Pðδϕ4Þ=12.6. Moreover, χ ≈ 12.6δϕ4, which
stretches PðχÞ relative to Pðδϕ4Þ. We then come to the
conclusion that PðχÞ is nothing but a rescaled version
(by the same scale factor) in height and width of Pðδϕ4Þ.
In fact, this simple argument results in a posterior for χ that
is very similar to that shown in Fig. 1.
Having obtained a constraint on χ, is it possible to

translate it into constraints on the three-dimensional
parameter space spanned by μ1, μ2 and π2? The first step
to do this is to fix the prior ranges for these parameters. We
take μ1 ∈ ½−1.0; 0.1� (for the reasons discussed in Sec. II A)
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and assume μ2 and π2 are in the ranges ½−22; 22�. The latter
domains are chosen such as to include the GR limit and to
be large enough to include moderately large values of μ2
and π2 to encompass the upper bound χ ¼ 44. We then
draw samples from the probability density function PðχÞ
(shown in Fig. 1), and given a value χi, we then draw
samples of μ1, μ2 and π2 until Eq. (6) is satisfied.
Figure 2 shows the result of this calculation. The

diagonal panels in this corner plot show the marginalized
posteriors on μ1, μ2 and π2, while the off-diagonal panels
show two-dimensional joint posteriors with the 90%
credible contours delimited by the solid lines. The con-
straint on χ leaves μ1 essentially unconstrained, while the
favored values for μ2 and π2 are set by the bound of our
priors. This occurs due to the strong degeneracy between
these parameters arising from Eq. (6), which, together with
Eq. (33), constrains π2 − ðμ2 þ 4πμ1Þ < const. Thus, if the
prior ranges of μ2 and π2 were extended, the marginalized
posteriors in Fig. 2 would retain their qualitative shapes,
with peaks at the edge of their priors, as π2 − μ2 ¼ const
has an infinite number of solutions.

IV. DEGENERACIES BETWEEN MATTER
AND GRAVITY MODELS

In the previous section we have constrained the magni-
tude of the post-TOV parameter χ, as well as μ1, μ2 and π2.
How do these results impact the allowed deformations

away from a GR mass-radius curve as allowed by the
post-TOV formalism? Could one, for example, use these
deformed mass-radius regions, together with observations
of the mass and radius of isolated neutron stars, to place
further constraints on post-TOV parameters? We will
show in this section explicitly that this is not possible
due to degeneracies between post-TOV deformations and
the EOS.
To answer this question, we construct mass-radius curves

with a restricted set of post-TOV equations and a fixed set
of representative EOSs. The set of post-TOV equations is
obtained from Eq. (2) by fixing all parameters to zero other
than μ1, μ2 and π2, and we make this choice because these
three parameters are the only ones that can be directly
probed by electromagnetic or gravitational wave phenom-
ena. The set of EOSs consists of the SLy [49] and APRb
[50] EOSs, which are favored by the tidal deformability
measurements of the constituents of GW170817 [51] in GR
and the observation of two solar masses neutron stars
[52–54]. With this set of post-TOVequations and EOSs, we
then construct one thousand mass-radius curves each with a
different choice of post-TOV parameters that lay within the
bound of Eq. (33). The value of these parameters was
selected as follows. First, we drew random samples from
the probability distribution function PðχÞ, only accepting
values that satisfy (33). Next, we drew samples of μ1, μ2
and π2 (as in Sec. III) until Eq. (6) is met.
The results of these integrations are shown in Fig. 3 for

EOS APRb; the results for EOS SLy being very similar, so
we do not show them here. In this figure, the vertical
hatched (yellow) region contains all the mass-radius curves
that are consistent with the post-TOV constraints derived
in this paper, all truncated at the maximum mass of the
(stable) sequence. As is evident, the post-TOV formalism is
capable of capturing a wide variety of curves that span a
large region of the mass-radius plane, including exotic
types, which e.g., have very low maximum massesMmax ≈
1.5 M⊙ (despite both EOSs supporting ≳2 M⊙ stars in
GR). Other curves can enter the region in the mass-radius
plane that is excluded in GR (the “causality” curve), which
is derived by requiring only a very minimal set of
assumptions on the underlying unknown EOS [55,56],
with some even extending close to Buchdahl’s limit.2

Further exotica include mass-radius curves that do not
have an extrema at Mmax. These generically allow for
very large radii (≳15 km), even when the mass is 1.4 M⊙.
More common curves are only small deformations away
from the GR result.

FIG. 2. Corner plot showing the posterior for ðμ1; μ2; π2Þ, as
well as the allowed 90% credible regions (solid contour lines in
the off-diagonal panels). We see that whereas μ1 is essentially
unconstrained, values of μ2 (π2) which are smaller (larger) are
favored with peaks located at the boundary of our prior ranges.
The strong degeneracy between these parameters follows from
the fact that the constraints derive from an underconstrained
system, only requiring to satisfy Eq. (6).

2These high-compactness stars are supported in the post-TOV
formalism due to the fact that the P2 modification can be
associated to pressure anisotropy, with the difference between
radial and tangential pressures being pr − pt ¼ ρmP2=ð2rÞ [see
Eq. (4)]. Pressure anisotropy has long been known to support
ultracompact stars [57].
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Although the region of the mass-radius plane allowed
by Eq. (33) alone is rather large, it can be reduced by
combining other sources of information on the masses and
radii of neutron stars. For instance, by imposing that the
mass-radius curves are consistent with (i) the existence
of neutron stars with masses M ¼ 2.17þ0.11

−0.10 M⊙ [54] and
(ii) the canonical radius bound R1.4 ¼ 10.9þ1.9

−1.5 km [58],
then 99.3% (for SLy) and 96.3% (for APRb) of the curves
investigated are excluded. The resulting tighter contour
due to the surviving mass-radius curves is shown by the
horizontally hatched (red) regions in Fig. 3.
Figure 4 vividly shows several difficulties in testing

extreme gravity with observations of isolated neutron stars
that yield mass and radius measurements alone. First, even
in GR, our ignorance on the underlying neutron star EOS
gives rise to mass-radius curves that can overlap (see the
intersection of the SLy and APRb curves in Fig. 4). Second,
even in the event of the EOS being tightly constrained in the
future (under the assumption of neutron stars are described
by GR), a measurement of χ still leads to degeneracies
between the post-TOV parameters μ1, μ2 and π1, as shown
in the previous section. Each value of ðμ1; μ2; π1Þ should
correspond to a specific theory of gravity, and this
degeneracy prevents us from singling one out. Third, the
fact that the contours in Fig. 4 change as we change the

EOS makes the degeneracy between EOS and theory of
gravity explicit. This degeneracy arises in the post-TOV
formalism in a very explicit way: the post-TOV equations
(with P1 ¼ M1 ¼ 0) can be mapped into an effective
barotropic EOS, with p ¼ pðεeffÞ and εeff ≡ εþ ρM2

[26]. Therefore, observations of isolated neutron stars that
yield mass and radius measurements alone cannot really be
used to test gravity, unless more information is contained in
the data, which can be folded into the models to test GR.

V. CONCLUSIONS AND OUTLOOK

Neutron star observations, both through electromagnetic
and gravitational-wave astronomy, offer us a unique look
into the fundamental interactions of nature. For gravity (in
particular) it allows us to probe both the strong-field regime
of neutron star interiors and the radiative aspects of gravity,
when these object are found in binary systems. To be able
to do theory-independent tests of gravity through neutron
star observations, we have combined the post-TOVand ppE
formalisms, constructing a single, unified framework for
which tests of gravity can be performed from the radiative
level down to the level of stellar structure.
This framework is particularly relevant in light of

ongoing events on the observational front. For instance,
the Neutron Star Interior Composition Explorer (NICER)
mission [60–62] will soon release the mass and radius
measurements of a number of neutron stars within 10%
precision and probes the effects of spacetime curvature on
the motion of photons. Moreover, LIGO/Virgo is currently
on its third scientific observing run, with a binary neutron

FIG. 4. Similar to Fig. 3, however only showing the more
restrictive regions for both EOSs, APRb and SLy. This figure
explicitly shows the degeneracies between EOSs assuming a
theory of gravity to be known (see the solid and dashed curves)
and theory of gravity assuming that the EOS is known a priori
(individual hatched regions). Varying both EOS and theory of
gravity increases further the degeneracy between matter and
gravity models—a degeneracy due to the fact that neutron stars
are relativistic objects.

FIG. 3. Allowed modifications to the mass-radius relation of
neutron stars under the constraint −2.4 ≤ χ ≤ 44, for EOS APRb
[50] (the case for SLy is qualitatively similar). The vertically
hatched regions represent the allowed post-TOV deformations to
GR the GW170817 constraint on χ only, while the solid line
represents the GR result. Requiring that additional constraints be
satisfied, such as the mass measurement of MSP J0740þ 6620
[54] (M ¼ 2.17þ0.11

−0.10 M⊙, shaded region) and the radius of
canonical neutron stars [58] (R1.4 ¼ 10.9þ1.9

−1.5 km, horizontal solid
line), the allowed region is reduced to the horizontally hatched
region. For reference, we also included in the limit set by
Schwarzschild BHs (R¼2M), Buchdahl’s limit (R ¼ 9 M=8),
the limit set by causality (R ¼ 2.9 M) [55,56] in GR and the
cutoff mass (dotted line) M ¼ 2.6 M⊙ inferred from the mass
distribution of compact binaries containing neutron stars [59].
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star merger candidate already observed and tens of
events expected to be seen in the next years. It would be
interesting to combine these upcoming observational
results to further explore the resulting constraints on the
post-TOV parameters and thereby constrain modifications
to GR in a theory-independent way.
For instance, the contours in Fig. 4 reveal that the largest

variability occurs for massive stars with M ≳ 1.8 M⊙. One
of NICER’s targets (PSR J1614-2230) has a mass of
1.93 M⊙ [63,64] and a radius measurement of it would
constrain this region of the mass-radius plane. In turn, these
constraints could also be used to probe deviations from GR
in a number of astrophysical scenarios, for instance in the
quasiperiodic oscillations on matter disks in accreting
neutron stars [27], or in the pulse profiles emitted by hot
spots on the surface of rotating neutron stars (complemen-
tary to constraints on scalar-tensor gravity [65]). We have
here only taken a first step on using this new framework and
hope to explore further its applications in the near future.
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APPENDIX A: DERIVATION OF THE
BINDING ENERGY

In this Appendix, we derive general formulas for the
changes to the energy and angular momentum of point
particles orbiting in the static, spherically symmetric
spacetime of an object of mass M.

1. Particle motion in perturbed spacetimes

Consider the line element

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ðA1Þ

in Schwarzschild coordinates, on which a massive particle
follows geodesic motion, with trajectory xαðτÞ, where τ is
the proper time. Let uα ≡ dxα=dτ be the particle’s four-
velocity, constrained by gαβuαuβ ¼ −1.
As usual, the spacetime symmetries imply the existence

of two Killing vector fields which result in two conserved
quantities

E≡ −gtt_t; L≡ gϕϕ _ϕ; ðA2Þ

respectively, the energy and angular momentum (per unit
mass) of the particle.
Due to the conserved angular momentum, orbits are

confined to a single plane, which we take, without loss of
generality to be the one for which θ ¼ π=2. Using this
result we find that

1

2
E2 ¼ 1

2
fðrÞhðrÞ_r2 þ 1

2
fðrÞ

�
L2

r2
þ 1

�
: ðA3Þ

Let us consider spacetimes with metric g, which are a
small deformations to a static, spherically symmetric
background g0. More specifically, let us write the metric
functions f and h as

fðrÞ≡ f0ðrÞ þ εf1ðrÞ; hðrÞ≡ f−10 ðrÞ þ εh1ðrÞ; ðA4Þ
where (in this Appendix only) ε denotes a small book-
keeping parameter. For convenience, we omit hereafter the
dependence on r of the functions introduced above. Using
these decompositions of f and h, into Eq. (A3) and then
solving for _r2, we find to leading order in ε,

1

2
_r2 ¼ 1

2
E2 −

1

2
f0

�
L2

r2
þ 1

�

−
1

2
εf0h1

�
E2 − f0

�
L2

r2
þ 1

��
−
1

2
εE2f1f−10 :

ðA5Þ
Equation (A5) suggests the definition of a zeroth-order
effective potential V0

eff ,

V0
eff ≡ 1

2
E2 −

1

2
f0

�
L2

r2
þ 1

�
; ðA6Þ

and a leading-order correction V1
eff ,

V1
eff ≡ −

1

2
E2f1f−10 − f0h1V0

eff ; ðA7Þ

such that Eq. (A5) becomes

1

2
_r ¼ V0

eff þ εV1
eff : ðA8Þ

2. Properties of particles in circular orbits

Now let us focus on the properties of particles in (not
necessarily stable) circular orbits that we denote by r�.
These orbits satisfy the conditions

_r ¼ 0; dVeff=dr ¼ 0; ðA9Þ

where Veff ≡ V0
eff þ εV1

eff .
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As a warm-up exercise, let us consider the limit ε → 0
and obtain general formulas of the (zeroth-order) energy E0

and angular momentum L0 of particles in circular orbits on
g0. This calculation is particularly simple, because L0 can
be easily isolated from the dVeff=dr equation. With a little
algebra we can obtain the general formulas:

L2
0 ¼ −

�
df0
dr

��
dðf0r−2Þ

dr

�
2
����
r¼r�

; ðA10Þ

E2
0 ¼ f0ðr�Þ

�
1 −

1

r2

�
dðf0r−2Þ

dr

�
2
	����

r¼r�

: ðA11Þ

In the particular limit of the Schwarzschild spacetime
(f0 ¼ 1–2M=r) we readily obtain the familiar results

L2
0 ¼

Mr�
1 − 3M=r�

; E2
0 ¼

ð1 − 2M=r�Þ2
1 − 3M=r�

: ðA12Þ

Now, let us consider the general problem and obtain the
corrections to E0 and L0 due to the perturbation V1

eff in
Eq. (A5). To do this, we first solve Eq. (A9) for E2 and L2.
Next, we expand the resulting expressions to leading order
in ε. The outcome of this exercise is that E and L can be
written as

E2 ¼ E2
0 þ εE2

1; L2 ¼ L2
0 þ εL2

1; ðA13Þ
where the corrections to the zeroth-order energy and
angular momentum [cf. Eqs. (A10) and (A11)] are

E2
1 ¼

2f0
r6

�
2f0f1 − 2rf1

df0
dr

þ rf0
df1
dr

�

×

�
dðf0r−2Þ

dr

�−2����
r¼r�

; ðA14Þ

and

L2
1 ¼ −

2

r3
dðf0f1Þ

dr

�
dðf0r−2Þ

dr

�−2����
r¼r�

: ðA15Þ

These expressions are the main result of this Appendix.
Notice the absence of h1 in these expressions.
Finally, we can solve for E and L and write

E ¼ E0 þ δE≡ E0 þ ε
E2
1

2E0

; ðA16Þ

L ¼ L0 þ δL≡ L0 þ ε
L2
1

2L0

; ðA17Þ

our final results.
We emphasize that although the formulas obtained here

were applied for the post-Schwarzschild metric, our results
can be used to any perturbed spacetime—as long as its line

element can be written in the form of (A1)—and then
connected to the ppE formalism through Eq. (25).

APPENDIX B: ORBITAL PERIOD DECAY RATE

In this Appendix we derive an expression for the orbital
period rate of change _P in the post-TOV formalism
following closely [66] and obtain an order-of-magnitude
bound on χ from binary systems.
We start by assuming that energy is carried away from a

circular binary according to the GR gravitational-wave
luminosity formula,

_E ¼ 32

5
η2

m5

r5
; ðB1Þ

at the expense of the orbital binding energy given by (16),
i.e., _Eb ¼ − _E.
Taking a time derivative of Eq. (16) and using

ω ¼ 2π=PðtÞ we find

_Eb ¼ −
1

3
μ

�
2πm
P

�
2=3 _P

P

×

�
1 −

2

3
Að2a − 1Þðaþ 1Þ

�
2πm
P

�
2a=3

þ 1

3
Cð2c − 1Þðcþ 1Þ

�
2πm
P

�
2c=3

�
: ðB2Þ

Now, let us return to (B1). We can eliminate r in favor of
ω by using the modified Kepler’s law (15). Solving for r,
expanding in A, C and then substituting the resulting
expression in Eq. (B1) gives

_E ¼ 32

5
η2
�
2πm
P

�
10=3

�
1 −

5

3

�
Aðaþ 1Þ

�
2πm
P

�
2a=3

−
1

2
Cðc − 2Þ

�
2πm
P

�
2c=3

�	
: ðB3Þ

We can now use Eqs. (B2) and (B3) in the energy balance
law, solve for _P (while expanding once more in A, C) and
find

_P
P
¼

�
_P
P

�
GR

�
1þ 1

3
Að4a − 7Þðaþ 1Þ

�
2πm
P

�
2a=3

−
1

6
Cð4c2 − 3cþ 8Þ

�
2πm
P

�
2c=3

�
; ðB4Þ

which is the main result of this Appendix, where

�
_P
P

�
GR

¼ −
96

5

η2

μ

�
2πm
P

�
8=3

ðB5Þ
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is the corresponding GR result. In the particular case of
the post-TOV metric, we find after using A ¼ χ=3, C ¼ 0
and a ¼ 2 that

_P
P
¼

�
_P
P

�
GR

�
1þ 1

3
χ

�
2πm
P

�
4=3

�
: ðB6Þ

A simple constraint on χ (independent from the one in
the main text) can thus be obtained as follows. Since binary
pulsar observations of ð _P=PÞobs are in remarkable agree-
ment with GR up to some observational error δ we can
write ð _P=PÞobs¼ð _P=PÞGRð1þδÞ. Therefore, the post-TOV
correction in Eq. (B6) is bound by δ, which then constrains
χ to be

jχj ≤ 3δ

�
P

2πm

�
4=3

≈ δv−4c ; ðB7Þ

where vc ≈ 2.1 × 10−3 is characteristic velocity of the
system and δ ≈ 1.3 × 10−2 (for the quasicircular system
PSR J0737-3039 [67]), giving the weak bound
jχj≲ 7.2 × 108. This result is 7 orders of magnitude
weaker than the bound obtained from GW170817 and
exemplifies the constraining power of gravitational wave
events on modifications to GR relative to binary pulsar
constraints.3
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