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We find exact nonlinear solutions of general relativity that represent twisted gravitational waves (TGWs)
in the presence of a cosmological constant. ATGW is a nonplanar wave propagating along a fixed spatial
direction with a null Killing wave vector that has a nonzero twist tensor. The solutions all turn out to have
wave fronts with negative Gaussian curvature. Among the classes of solutions presented in this paper, we
find a unique class of simple conformally flat TGWs that is due to the presence of a negative cosmological
constant and therefore represents part of anti–de Sitter spacetime. The properties of this special solution are
studied in detail.
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I. INTRODUCTION

A twisted gravitational wave is a free nonlinear unidi-
rectional radiative solution of general relativity (GR) such
that its null propagation vector k has a nonzero twist tensor
[1–3]. Imagine a gravitational field described by the metric
ds2 ¼ gμνðt − z; x; yÞdxμdxν in xμ ¼ ðt; x; y; zÞ coordinates
that represents a gravitational wave propagating along the z
direction. Throughout this paper, we use units such that
c ¼ G ¼ 1; moreover, the signature of the spacetime metric
is þ2 and greek indices run from 0 to 3, while latin indices
run from 1 to 3. Let k ¼ ∂t þ ∂z be the null propagation
vector of the wave; then,

kμkμ ¼ 0; kμ;ν þ kν;μ ¼ 0: ð1Þ

It follows from these relations that kμ;νkν ¼ 0, so that the
spacetime under consideration admits a null geodesic
Killing vector field that is nonexpanding and shearfree.
Spacetimes that admit a covariantly constant null vector

field k with kμkμ ¼ 0 and kμ;ν ¼ 0 represent plane-fronted
gravitational waves with parallel rays (pp waves). These
were first discovered in 1925 by Brinkmann [4] and have
since been the subject of detailed investigations [5–9]. As
discussed in Ref. [1], plane gravitational waves have at
least five Killing vector fields and form a subclass of pp
waves. From

kμ;ν ¼
1

2
ðkμ;ν þ kν;μÞ þ

1

2
ðkμ;ν − kν;μÞ; ð2Þ

we note that if the twist tensor

Tμν ¼
1

2
ðkμ;ν − kν;μÞ ¼ k½μ;ν� ð3Þ

of the gravitational wave under discussion in Eq. (1)
vanishes, then our assumptions in Eq. (1) lead to
kμ;ν ¼ 0, and hence we have a ppwave. On the other hand,
if Tμν ≠ 0, we then have twisted waves that are nonplanar;
that is, they have nonuniform wave fronts with nonzero
Gaussian curvature.
To illustrate these ideas in more detail, let us assume a

spacetime metric of the form

ds2 ¼ −γ0ðdt2 − dz2Þ þ γ1dx2 þ 2γ2dxdyþ γ3dy2; ð4Þ

where γμ ¼ γμðt − z; x; yÞ. The ðt; x; y; zÞ coordinate sys-
tem is physically admissible [10] if γ0 > 0, γ1 > 0, γ3 > 0,
and Δ ≔ γ1γ3 − γ22 > 0. In these coordinates, kμ ¼
ð1; 0; 0; 1Þ is the null propagation Killing vector field. It
is useful to introduce the retarded and advanced null
coordinates u ¼ t − z and v ¼ tþ z, respectively, and
write metric (4) as

ds2 ¼ −γ0dudvþ γ1dx2 þ 2γ2dxdyþ γ3dy2; ð5Þ

where k ¼ 2∂v. The wave front corresponds to hyper-
surfaces of constant u ¼ u0, in which case the metric
reduces to

dσ2¼ ds2ju¼u0

¼ γ1ðu0;x;yÞdx2þ2γ2ðu0;x;yÞdxdyþ γ3ðu0;x;yÞdy2:
ð6Þ
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The Gaussian curvature of this surface vanishes for pp
waves and is nonzero for twisted gravitational waves
(TGWs). The formula for the Gaussian curvature is given
in Appendix A. For metric (4), the null propagation vector k
is normal to the wave front, namely,

kμ ¼ γ0ðu; x; yÞð−1; 0; 0; 1Þ ¼ −γ0ðu; x; yÞ
∂u
∂xμ : ð7Þ

It follows that in this case, the wave’s twist tensor (3) is
given by

Tμν ¼
1

2

�∂γ0
∂xμ

∂u
∂xν −

∂γ0
∂xν

∂u
∂xμ

�
: ð8Þ

If γ0 is only a function of u, or if it is a constant independent
of coordinates, then Tμν ¼ 0 and we have a pp wave;
otherwise, Tμν ≠ 0 and we have a TGW. Using Eq. (7),
Eq. (8) can be written as

Tμν ¼
1

2γ0

�∂γ0
∂xν kμ −

∂γ0
∂xμ kν

�
; ð9Þ

where

∂γ0
∂xμ k

μ ¼ 0; ð10Þ

since 2∂vγ0 ¼ γ0;t þ γ0;z ¼ 0. Equations (9) and (10) imply
that the twist scalar ω vanishes in this case,

ω2 ≔
1

2
TμνTμν ¼ 0: ð11Þ

This result is in agreement with the theorem that ω ¼ 0 if
and only if the null geodesic congruence is hypersurface
orthogonal.
The TGWs under consideration here belong to the Kundt

class of solutions of GR [8,9]. As demonstrated in
Appendix A of Ref. [2], it is possible to write our TGW
metric (5) in Kundt’s form. The Kundt solutions have been
extensively studied, and the solutions presented in this
paper are probably known in some form in other coordinate
systems.
No reasonable astronomical source of TGWs is known.

Gravitational radiation emitted by known astronomical
sources are expected to have expanding nearly spherical
wave fronts far from the source. Therefore, TGWs have
been tentatively interpreted in terms of running cosmo-
logical waves [1–3]. Observations of distant supernovae
have led to the discovery of the accelerating expansion of
the universe. The standard cosmological models that take
this acceleration into account involve a positive cosmo-
logical constant Λ. Thus we might expect that TGWs
should be compatible with the existence of a cosmological
constant. However, in previous work on TGWs [1–3], the

cosmological constant was set equal to zero in order to
make the field equations tractable. It is therefore important
to look for TGWs in the presence of a nonzero cosmo-
logical constant. This issue will be addressed in the present
paper. We seek TGW solutions of the gravitational field
equations in vacuum but with a cosmological constant Λ,
namely,

Rμν ¼ Λgμν; ð12Þ

where Rμν ≔ Rα
μαν is the Ricci tensor. To render the

resulting differential equations manageable, we assume a
solution of the form (5) such that the gravitational poten-
tials are all functions of the dimensionless variable

w ¼ suþ pxþ qy; ð13Þ

where s, p, and q are in general nonzero constant
parameters of dimensions 1/length. We must specifically
assume that s ≠ 0 throughout; otherwise, the solution is
static and cannot represent a wave. Moreover, it is clear that
by a simple coordinate translation we can add any constant
to w; henceforth, such constants will be ignored throughout
with no loss in generality. There was a preliminary
indication in previous work that such solutions may
accommodate a cosmological constant [11]. We assume
throughout that γ00 ≔ dγ0=dw ≠ 0; otherwise, Tμν ¼ 0 and
the solution would represent pp waves. The gravitational
field equations (12) are worked out explicitly in
Appendix B for metric (5) when the metric coefficients
are all functions of w defined in Eq. (13).
The Riemann curvature tensor can be decomposed into

its Weyl, Ricci, and scalar curvature components.
Therefore, the Kretschmann scalar K can be expressed
in general as

K ≔ RαβγδRαβγδ

¼ W þ 2RμνRμν −
1

3
R2; W ≔ CαβγδCαβγδ; ð14Þ

where Cαβγδ is the Weyl conformal curvature tensor and R
is the scalar curvature. For the solutions of GR that satisfy
Eq. (12), R ¼ 4Λ and

K ¼ 8

3
Λ2 þW: ð15Þ

The TGWs that we study in this paper are such thatW ≥ 0

and W ∝ γ−30 . For W > 0, our solutions are singular at
γ0 ¼ 0 where W diverges.
In Sec. II, we present the general solution of the field

equations (12) for metric (4) where the gravitational
potentials are only functions of w; furthermore, we assume
that there is no cross term (γ2 ¼ 0) and q ¼ 0 in Eq. (13)
for the sake of simplicity. These latter restrictions are in
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turn removed in Secs. III and IV, respectively. That is, we
keep q ¼ 0, but extend our results to the case where a cross
term is present (γ2 ≠ 0) in Sec. III. In Sec. IV,we return to the
setting of Sec. II with no cross term, but with q ≠ 0 in
Eq. (13). In the presence of both positive and negativeΛ, we
find classes of TGW solutions in Secs. II–IV. Each TGW
depends on the solution of an ordinary differential equation
for AðwÞ ≔ ln γ0. We study the general character of these
TGW solutions with Λ ≠ 0; moreover, we determine their
curvature singularities and the algebraic properties of their
Weyl curvature tensors within the Petrov classification
scheme. From the results of Secs. II and IV, a simple unique
conformally flat TGW solution is found for negativeΛ such
that gμν ¼ w−2ημν and p2 þ q2 ¼ −Λ=3. It turns out to be
part of the anti–de Sitter (AdS) spacetime manifold. Various
properties of this solution are investigated in detail in Secs.V
and VI. A discussion of our results is contained in Sec. VII.

II. TGWS IN THE PRESENCE OF Λ

Consider a metric of the form

ds2 ¼ −eAðwÞðdt2 − dz2Þ þ eBðwÞdx2 þ eCðwÞdy2; ð16Þ

where

w ¼ suþ px; s ≠ 0; p ≠ 0 ð17Þ

and u ¼ t − z is the retarded null coordinate. This space-
time contains three Killing vector fields, namely, ∂t þ ∂z,
p∂t − s∂x, and ∂y. The gravitational field equations in this
case reduce to the following five equations:

p2A0ðA0 þ 2C0Þ þ 4ΛeB ¼ 0; ð18Þ

where A0 ≔ dA=dw, etc.,

2A00 þ A02 ¼ A0ðB0 þ C0Þ; ð19Þ

2C00 þ C02 ¼ A02 þ B0C0; ð20Þ

2A00 þ 2C00 þ C02 ¼ A0ðB0 þ C0Þ þ B0C0; ð21Þ

2A0ðB0 þ C0Þ ¼ B02 þ C02 þ 2B00 þ 2C00; ð22Þ

cf. Appendix B. These results can also be obtained from the
field equations in the presence of Λ given in Appendix A
of Ref. [1].
Equation (21) is equivalent to the sum of Eqs. (19) and

(20). After dividing both sides of Eq. (19) by A0 ≠ 0, the
resulting equation can simply be integrated, and we get

A0 ¼ 2kAe
1
2
ðBþC−AÞ; ð23Þ

where kA ≠ 0 is a dimensionless integration constant.
Furthermore, the sum of Eqs. (21) and (22) can be
integrated once and the result is

B0 − A0 ¼ kBe−
1
2
ðBþCÞ; ð24Þ

similarly, the difference between Eqs. (19) and (20) can
also be integrated, and we find

A0 − C0 ¼ kCe−
1
2
ð2A−BþCÞ; ð25Þ

where kB and kC are dimensionless constants of integration.
Let us now start with Eq. (23) and define a function

FðwÞ,

F ≔ e
1
2
A; F0 ¼ kAe

1
2
ðBþCÞ; A0 ¼ 2

F0

F
; ð26Þ

in terms of which B0 and C0 can be written using Eqs. (24)
and (25) as

B0 ¼ 2
F0

F
þ kAkB

F0 ; C0 ¼ 2
F0

F
−
kC
F2

e
1
2
ðB−CÞ: ð27Þ

We note that for A ∈ ð−∞;∞Þ, F ∈ ð0;∞Þ. To calculate C0
in terms of F, we go back to Eq. (19) and find

A0C0 ¼ 2

�
2
F00

F
− 2

F02

F2
−
kAkB
F

�
: ð28Þ

Substituting this result in Eq. (18), we get

2
F00

F
−
F02

F2
−
kAkB
F

þ λeB ¼ 0; ð29Þ

where

λ ≔
Λ
p2

ð30Þ

is in this case the dimensionless reduced cosmological
constant.
Let us now return to Eq. (26) and note that

F00 ¼ 1

2
kAðB0 þ C0Þe1

2
ðBþCÞ: ð31Þ

Next, using Eq. (27) we find

B0 þ C0 ¼ 4
F0

F
þ kAkB

F0 −
kC
F2

e
1
2
ðB−CÞ: ð32Þ

Substituting this relation in Eq. (31) results in

2F00 − 4
F02

F
− kAkB ¼ −

kAkC
F2

eB; ð33Þ
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where Eq. (26) has been employed as well. Assuming that
kC ≠ 0, we can find expðBÞ from Eq. (33) and substitute it
in Eq. (29) to find an autonomous second order ordinary
differential equation for the function FðwÞ. Indeed, we get

Fð2F00 − βÞð1þ αF3Þ − F02ð1þ 4αF3Þ ¼ 0; ð34Þ

where

α ≔ −
λ

kAkC
; β ≔ kAkB: ð35Þ

The first integral of Eq. (34) can be determined by writing
2F00 ¼ dðF02Þ=dF and integrating the resulting equation for
F02. We find

F02 þ VðFÞ ¼ 0;

VðFÞ ¼ −Fð1þ αF3Þ
�
κ −

1

3
β lnðαþ F−3Þ

�
; ð36Þ

where κ is a new dimensionless integration constant. In
terms of F > 0, the metric functions are

eA ¼ F2; eB ¼ F02

kAkC

�
3F

1þ αF3

�
;

eC ¼ kC
kA

�
3F

1þ αF3

�
−1
: ð37Þ

These general solutions have Weyl curvature tensors that
are algebraically special and of type II in the Petrov
classification. The Kretschmann scalar, K ≔ RμνρσRμνρσ,
for this class of solutions is positive and is given by

KII ¼
8

3
Λ2 þ 4

3

k2Ak
2
Cp

4

F6ðwÞ ; ð38Þ

so that we have a curvature singularity atF ¼ 0, as expected.
To gain insight into the nature of this class of solutions,

we note that Eq. (36) can be interpreted in terms of one-
dimensional motion of a classical particle with zero total
energy in the effective potential V . In this paper, we employ
the effective potential energy method to characterize the
nature of the TGW solutions with a cosmological constant.
In the plots of the effective potentials in the cases we
consider, the amount of available kinetic energy is given by
the absolute magnitude of the effective potential below the
horizontal axis. In this way, it is possible to give a
qualitative description of the behavior of F as a function
of w.
We have plotted the effective potential V in the left panel

of Fig. 1 for both signs of the cosmological constant. In our
numerical work, we assumed that kA > 0, kB < 0, and
kC > 0; more specifically, we choose α ¼ �0.4, β ¼ −0.5,
and κ ¼ 3. For Λ > 0, α < 0 and V vanishes at F ¼ 0 and

F ¼ ð−αÞ−1=3; see the solid red curve in the left panel of
Fig. 1. Between these turning points, the motion is
oscillatory and we have plotted FðwÞ for a complete period
of this oscillation in the right panel of Fig. 1; see the solid
red curve in the interval from w ≈ −0.84 to w ≈ 2.24. For
Λ < 0, α > 0 and V vanishes at F ¼ 0, monotonically
decreases with increasing F, and diverges as F → ∞; see
the dashed black curve in the left panel of Fig. 1. In this
case, FðwÞ vanishes at w ≈ −0.92 and diverges at the end
points of a finite interval in w from ≈ − 2.94 to ≈1.1. Only
half of this interval is plotted in the right panel of Fig. 1; in
fact, the other half is its mirror image such that FðwÞ
diverges at w ≈ −2.94.
The Gaussian curvature of wave front with constant u is

given in Appendix A. In this particular case, it can simply
be obtained from formula (B2) of Appendix B of Ref. [1],
namely,

KG ¼ −
1

4
e−B½2Cxx − ðBx − CxÞCx�; ð39Þ

or, since the gravitational potentials are all functions of w,

KG ¼ −
p2

4
e−B½2C00 − ðB0 − C0ÞC0�: ð40Þ

Using Eq. (20), we find

KG ¼ −
p2

4
A02e−B < 0: ð41Þ

Therefore, in general, our TGWs have wave fronts with
negative Gaussian curvature.
In the following subsections, we will consider some

special parameter values.

FIG. 1. Left panel: Plot of the effective potential V vs F for zero
total energy and parameter values β ¼ −0.5, κ ¼ 3, and
α ¼ �0.4. In fact, α ¼ 0.4 for Λ < 0, while α ¼ −0.4 for
Λ > 0. The solid red curve is for Λ > 0, while the dashed black
curve is for Λ < 0. Right panel: Plot of FðwÞ vs w. We integrate
Eq. (36) for FðwÞ ≥ 0 and Fð0Þ ¼ 0.7 with the same parameter
values as in the left panel. The solid red curve is for Λ > 0, while
the dashed black curve is for Λ < 0. In the latter case, FðwÞ
diverges at w ≈ 1.1.
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A. Λ= 0

It is a consequence of Eq. (18) that for Λ ¼ 0 we have
A0 ¼ −2C0, since A0 ≠ 0 by assumption. Moreover, A ¼
−2C plus a constant that can be absorbed in a redefinition
of the y coordinate. It then follows from Eq. (23) that

eB ¼ 1

k2A
FF02: ð42Þ

Furthermore, Eq. (25) implies kC ¼ 3kA in this case. The
wave front has negative Gaussian curvature given by
KG ¼ −k2Ap2=F3, where F is a solution of the differential
equation

2F00 − β ¼ F02

F
: ð43Þ

This equation and its first integral can be obtained from
Eqs. (34) and (36) for α ¼ 0, respectively. Let us note that
for kB ¼ 0, we have β ¼ 0 and

ffiffiffiffi
F

p
depends linearly on w.

In this special case, the spacetime metric takes the form

ds2 ¼ w4ð−dt2 þ dz2 þ dx2Þ þ w−2dy2; ð44Þ

which is of Petrov type D and essentially coincides with the
metric discussed in Refs. [2,3].

B. kC = 0

If we assume that kC ¼ 0, the difference between A and
C must be a constant that can be absorbed in the
redefinition of the y coordinate. Therefore, we set
A ¼ C. It then follows from Eq. (23) that

e
1
2
B ¼ 1

kA

F0

F
: ð45Þ

Substituting this relation in Eq. (18), we find

Λ ¼ 3KG ¼ −3k2Ap2 < 0: ð46Þ

The metric coefficients are determined in this case from the
differential equation for F, namely,

2F00 − β ¼ 4
F02

F
; ð47Þ

which also follows from Eq. (34) by writing it as

2F00 − β ¼ F02

F
1þ 4αF3

1þ αF3
ð48Þ

and formally letting α go to infinity. The first integral of
Eq. (47) is given by

F02 ¼ β0F4 −
1

3
βF; ð49Þ

where β0 is an integration constant. Finally, let us mention
that if kB ¼ 0 as well, then β ¼ 0 and via constant
rescalings of spacetime coordinates and parameters
ðs; pÞ, the spacetime metric can be rendered conformally
flat; that is,

ds2 ¼ w−2ημνdxμdxν; w ¼ su�
ffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=3

p
x; ð50Þ

where ðημνÞ ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric
tensor. A simple generalization of this conformally flat
TGW is derived at the end of Sec. IV.

III. ADDITION OF A CROSS TERM

Let us now continue the general approach adopted in
Sec. II with the addition of a cross term and look for TGW
solutions with metrics of the form

ds2 ¼ −eAðwÞðdt2 − dz2Þ þ eBðwÞdx2 þ 2hðwÞdxdy
þ eCðwÞdy2; ð51Þ

where the coordinate admissibility condition is in this case

f ≔ eBþC − h2 > 0: ð52Þ

We note that w ¼ suþ px; hence, the simple coordinate
transformation y ↦ −y changes the overall sign of the
cross term h, but otherwise leaves the metric invariant.
For the explicit determination of the field equations,

we introduce the standard null coordinates and write
dt2 − dz2 ¼ dudv in Eq. (51) and then work out the
consequences of Rμν ¼ Λgμν; cf. Appendix B. As before,
Rvv ¼ Rvx ¼ Rvy ¼ 0 are trivially satisfied by symmetry.
We then have four inhomogeneous equations depending
on the Λ term, namely, Rxy ¼ Λh, Ryy ¼ Λ expðCÞ,
Ruv ¼ −ðΛ=2Þ expðAÞ, and Rxx ¼ Λ expðBÞ, as well as
three homogeneous equations Rux ¼ Ruy ¼ Ruu ¼ 0. The
results of this section depend crucially on the assumption
that

hðwÞ ≠ 0: ð53Þ

Let us start with the inhomogeneous field equations.
Using Eq. (52) and its derivative, Rxy ¼ Λh and Ryy ¼
Λ expðCÞ lead to the same equation which can be
expressed as

C0f0 − 2fðC00 þ C02 þ C0A0Þ ¼ 4λf2e−C; ð54Þ

where λ is the reduced cosmological constant defined
in Eq. (30). In the same way, from Ruv ¼ −ðΛ=2Þ expðAÞ
we get
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A0f0 − 2fðA00 þ A02 þ C0A0Þ ¼ 4λf2e−C: ð55Þ

Finally, Rxx ¼ Λ expðBÞ implies

½C0f0 − 2fðC00 þ C02 þ C0A0Þ�eC

− 2f2
�
2A00 þ A02 −

f0

f
A0
�
e−B ¼ 4λf2: ð56Þ

If in this equation the part proportional to exp ð−BÞ
vanishes, we recover Eq. (54). Therefore Eqs. (54) and
(56) imply

2A00 þ A02 −
f0

f
A0 ¼ 0; ð57Þ

which can simply be integrated. The result is

f ¼ l0A02eA; ð58Þ

where l0 > 0 is a constant of integration. Moreover,
subtracting Eq. (54) from Eq. (55) results in

f ¼ l1ðA0 − C0Þ2e2ðAþCÞ; ð59Þ

where l1 > 0 is another constant of integration. From
Eqs. (58) and (59), we find

�
ffiffiffiffiffi
l0

l1

s
A0e−3A=2 ¼ ðA0 − C0Þe−ðA−CÞ; ð60Þ

which can simply be integrated to yield

eC ¼ � 2

3

ffiffiffiffiffi
l0

l1

s
e−A=2 þ l2eA; ð61Þ

where l2 is an integration constant. Employing Eq. (59) in
Eq. (54), we find

�
C0

A0

�0�C0

A0 − 1

�
−3

¼ 2λl1A0e2AþC: ð62Þ

Calculating C0=A0 via Eq. (61) and substituting the result in
Eq. (62), we get a formula for the reduced cosmological
constant, namely,

λ ¼ −
3

4

l2

l0

: ð63Þ

It remains to investigate the homogeneous equations. Let
us start with Ruy ¼ 0. As before, employing Eq. (52) and its
derivative in Ruy ¼ 0 leads to simplifications that turn this
field equation into

2f½ðC00 þ C02Þh − h00� − f0ðC0h − h0Þ ¼ 0; ð64Þ

which can simply be integrated to yield

f ¼ l3ðC0h − h0Þ2e2C; ð65Þ

where l3 > 0 is a constant of integration. From Eqs. (59)
and (65), one can derive a differential equation whose
solution is

eA ¼
ffiffiffiffiffi
l3

l1

s
hþ l4eC; ð66Þ

where we have written h instead of �h or ∓ h, since the
overall sign of h can be changed via the coordinate
transformation y ↦ −y, and l4 is an integration constant.
Next, using Eq. (61) in Eq. (66), we find

h ¼ L0e−A=2 þ L1eA; L0 ≔ ∓ 2

3
l4

ffiffiffiffiffi
l0

l3

s
;

L1 ≔

ffiffiffiffiffi
l1

l3

s
ð1 − l2l4Þ: ð67Þ

Let us now consider Rux ¼ 0, which reduces in the same
way to

ðf þ h2Þ
�
2ðC00 þ C02Þ − C0 f

0

f

�
þ hh0

f0

f
− 2hh00

− A0f0 þ 2A00f ¼ 0: ð68Þ

Substituting Eq. (64) in Eq. (68) and using Eq. (57), we find
after some algebra

2ðC00 þ C02Þ − C0 f
0

f
¼ A02: ð69Þ

This result is in fact a simple consequence of Eqs. (57)
and (61).
The last field equation to consider is then Ruu ¼ 0. In the

same manner as before, this field equation reduces to

f00 −
1

2

f02

f
− A0f0 ¼ B0C0eBþC − h02: ð70Þ

From Eq. (52) and its derivative, we find

B0 ¼ f0 þ 2hh0

f þ h2
− C0; ð71Þ

so that the field equation under consideration takes
the form
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f00 −
1

2

f02

f
− A0f0 ¼ C0ðf0 þ 2hh0Þ − C02ðf þ h2Þ − h02:

ð72Þ

It is useful at this point to introduce the function FðwÞ,
given as in Eq. (26) of Sec. II by F ¼ exp ðA=2Þ. Then,

f ¼ 4l0F02; A0 ¼ 2
F0

F
: ð73Þ

Employing Eq. (61) for C and Eq. (67) for h, field
equation (72) reduces, after much algebra, to the autono-
mous differential equation

F000

F0 þW1ðFÞ
F00

F
þ 1

2
W2ðFÞ

F02

F2
þW3ðFÞ ¼ 0; ð74Þ

where Wi, i ¼ 1, 2, 3, are given by

W1 ¼ −
1þ 4λ̃F3

1þ λ̃F3
; W2 ¼

�
1 − 2λ̃F3

1þ λ̃F3

�
2

;

W3 ¼
9l1

8l0l3

�
F

1þ λ̃F3

�
2

: ð75Þ

Here, λ̃ is proportional to the cosmological constant and is
given by

λ̃ ≔ ∓2λ
ffiffiffiffiffiffiffiffiffiffi
l0l1

p
: ð76Þ

Let us introduce Ψ given by

Ψ ≔
1

2
F02; ð77Þ

then, Eq. (74) can be written as

F2
d2Ψ
dF2

þW1ðFÞF
dΨ
dF

þW2ðFÞΨþF2W3ðFÞ¼ 0: ð78Þ

In principle, from this linear inhomogeneous second-order
ordinary differential equation we can determine AðwÞ and
hence the other metric functions for these TGWs with a
cosmological constant. That is, given an appropriate sol-
ution of Eq. (78) forAðwÞ, Eqs. (52), (58), (61), and (67) can
be used to find the corresponding spacetimemetric.We note
that the homogeneous part of Eq. (78) has regular singular
points at F ¼ 0;∞, and ð−λ̃Þ−1=3 for λ̃ < 0.
These TGWs have Weyl curvature tensors that are

algebraically special and of type II in the Petrov classi-
fication. The Kretschmann invariant is positive in this case
and is given by

KIII ¼
8

3
Λ2 þ p4

3l0l1

1

F6ðwÞ ; ð79Þ

so that, as expected, we have a curvature singularity at
F ¼ 0.
To investigate the general behavior of the spacetimes

under consideration here, we note that, as before, we can
think of the motion of a one-dimensional classical particle
with zero total energy that has kinetic energy Ψ ≔ 1

2
F02

and potential energy ϒ ¼ −Ψ. To find ϒ vs F, we must
investigate the nature of solutions of

F2
d2ϒ
dF2

þW1ðFÞF
dϒ
dF

þW2ðFÞϒ−F2W3ðFÞ¼ 0; ð80Þ

which depend upon two parameters, namely, 9l1=ð8l0l3Þ
and λ̃. For 9l1=ð8l0l3Þ ¼ �100 and λ̃ ¼ �20, the results
are presented in Fig. 2, where Eq. (80) has been integrated
with initial conditions that at F ¼ 0.1, ϒð0.1Þ ¼ −1 and
dϒ=dFð0.1Þ ¼ 0.1. We have checked that the general
shapes of the plots in Fig. 2 are insensitive to the parameters
of the system as well as the initial conditions of the
integration. It follows from the effective potential method
and the results of Fig. 2 that the motion is confined between
two turning points and the behavior of FðwÞ as a function
of w is therefore periodic.
The Gaussian curvature of the wave front for these TGWs

can be calculated using the formula given in Appendix A.
With w ¼ suþ px, where u ¼ u0 is a constant, we find

KG ¼ p2eC

4f2
½C0f0 − 2fðC00 þ C02Þ�; ð81Þ

which simplifies via Eq. (69), and the result is

KG ¼ −
p2A02eC

4f
< 0; ð82Þ

FIG. 2. Left panel: Plot of the effective potentialϒ vs F for zero
total energy and parameter values 9l1=ð8l0l3Þ ¼ 100 and
λ̃ ¼ �20. The solid red curve is for Λ > 0 (i.e., λ̃ ¼ −20), while
the dashed black curve is for Λ < 0 (i.e., λ̃ ¼ 20). Right panel:
Plot of the effective potential ϒ vs F for zero total energy and
parameter values 9l1=ð8l0l3Þ ¼ −100 and λ̃ ¼ �20. The solid
red curve is for Λ > 0 (i.e., λ̃ ¼ −20), while the dashed black
curve is for Λ < 0 (i.e., λ̃ ¼ 20).
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so that, as before, the Gaussian curvature of thewave front is
negative.
Returning to Eq. (78), let us note that this equation

simplifies considerably in the absence of a cosmological
constant (i.e., λ̃ ¼ 0). In fact, the general solution of this
equation can be expressed as

Ψ ¼ ðμ1 þ μ2 lnFÞF −
l1

8l0l3

F4; ð83Þ

where μ1 and μ2 are integration constants and F02 ¼ 2Ψ.

IV. A SIMPLE GENERALIZATION

We consider a metric of the form

ds2 ¼ −eAðwÞdudvþ eBðwÞdx2 þ eCðwÞdy2; ð84Þ

where x and y are now treated on the same footing, namely,

w¼ suþpxþ qy; s ≠ 0; p ≠ 0; q ≠ 0: ð85Þ

This spacetime contains three Killing vector fields as well,
that is, ∂t þ ∂z, p∂t − s∂x, and q∂t − s∂y. The field equa-
tions presented in Appendix B contain three trivial ones that
simply vanish by symmetry, namely,Rvv ¼ Rvx ¼ Rvy ¼ 0.
The others include four homogeneous and three inhomo-
geneous field equations, the latter involving the cosmologi-
cal constant. The four homogeneous equations, namely,
Rxy¼0,Ruy ¼ 0,Rux ¼ 0, andRuu ¼ 0 can be expressed as

2A00 þ A02 ¼ A0ðB0 þ C0Þ; ð86Þ

2B00 þ B02 þ 2A00 ¼ A0ðB0 þ C0Þ þ B0C0; ð87Þ

2C00 þ C02 þ 2A00 ¼ A0ðB0 þ C0Þ þ B0C0; ð88Þ

and

2B00 þ B02 þ 2C00 þ C02 ¼ 2A0ðB0 þ C0Þ; ð89Þ
respectively. Inspection of Eqs. (87) and (88) reveals the
symmetry betweenB andC, so that 2B00 þ B02 ¼ 2C00 þ C02;
then the other equations imply

2A00 þ A02 ¼ 2B00 þ B02 ¼ 2C00 þ C02 ¼ A0ðB0 þ C0Þ;
2A00 ¼ B0C0: ð90Þ

Substituting 2A00 ¼ B0C0 in Eq. (86), we find

ðA0 − B0ÞðA0 − C0Þ ¼ 0: ð91Þ

Thus either A0 ¼ B0 or A0 ¼ C0; however, the symmetry
betweenB andC implies that it is sufficient to consider one of
these; therefore, we choose the case A0 ¼ B0. Moreover, we
can henceforth simply set

A ¼ B; ð92Þ

since the constant of integration can always be absorbed in
the redefinition of the advanced null coordinate v. With
A ¼ B, Eq. (86) can now be integrated and we find

eC ¼ k̂2CA02; ð93Þ

where k̂2C is a nonzero integration constant. By a simple
rescaling of the y coordinate and parameter q, namely,
ðyk̂C; q=k̂CÞ → ðy; qÞ, it is possible to set k̂2C ¼ 1 with no
loss in generality. Using Eq. (93) in 2C00 þ C02 ¼ 2A00 þ A02
results in an ordinary differential equation for AðwÞ,

4A000 − 2A0A00 − A03 ¼ 0: ð94Þ

Next, the three inhomogeneous equations, namely, Ruv¼
−ðΛ=2ÞexpðAÞ, Rxx¼ΛexpðBÞ, and Ryy ¼ Λ expðCÞ, all
reduce to the same equation when we employ Eqs. (90) and
(92), namely,

ð4A00 þ A02Þe−A ¼ 3Σ0; Σ0 ¼ −
4Λþ 3q2

3p2
: ð95Þ

Remarkably, Eq. (95) turns out to be a first integral of
Eq. (94) and Σ0 is simply an integration constant. It is
possible to integrate Eq. (95) once, and the result is the
autonomous differential equation

A02 ¼ Σ0eA þ Π0e−
1
2
A; ð96Þ

where Π0 is another integration constant. Equation (96) can
be solved by quadrature; that is,

Z
e
1
4
A dζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Π0 þ Σ0ζ
6

p ¼ � 1

4
w: ð97Þ

To investigate the character of this class of TGW
solutions, it is useful to define F ≔ exp ðA=2Þ as in
Sec. II and write Eq. (96) as

4F02 þVðFÞ ¼ 0; VðFÞ ¼ −ðΣ0F4 þΠ0FÞ ≤ 0: ð98Þ

In terms of F > 0, the metric functions are

eA ¼ eB ¼ F2; eC ¼ Σ0F2 þ Π0

F
: ð99Þ

These general solutions have Weyl curvature tensors that
are algebraically special and of type D in the Petrov
classification.The Kretschmann invariant for this class is
positive and is given by
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KIV ¼ 8

3
Λ2 þ 3

4

Π2
0p

4

F6ðwÞ ; ð100Þ

so that, as in Secs. II and III, the curvature singularity
occurs at F ¼ 0. Let us note that the curvature singularity
disappears for Π0 ¼ 0. In this case, we must have Σ0 > 0,
and by constant rescalings of the y coordinate as well as
parameters ðs; p; qÞ the solution reduces to the special
conformally flat (AdS) spacetime discussed in detail in the
subsection below and Sec. V. Henceforth, we assume
Π0 ≠ 0. If Σ0 ¼ 0, then Λ ¼ −3q2=4 < 0 and we obtain,
after constant rescalings of the spacetime coordinates as
well as parameter q, a natural generalization of solution
(44) for a negative cosmological constant.
As before, we interpret Eq. (98) in terms of one-

dimensional motion of a classical particle of net energy
zero that has kinetic energy 4ðdF=dwÞ2 and potential
energy VðFÞ illustrated in Fig. 3. For Σ0 > 0, VðFÞ
diverges as F → ∞. The behavior of FðwÞ vs w is
essentially the same as described in Sec. II; cf. the right
panel of Fig. 1.
Finally, the wave front has negative Gaussian curvature.

Using the result given in Appendix A or formula (B2) of
Appendix B of Ref. [1], we find for the Gaussian curvature
of the wave front (u ¼ const)

KG ¼ −
1

4
A02ðp2e−B þ q2e−CÞ < 0: ð101Þ

In connection with the possibility of the addition of a
cross term in this case, we mention that the analytic

treatment of the problem appears to be prohibitively
complicated. This conclusion is based on a close inspection
of the field equations given in Appendix B.

A. Conformally flat solution

Let us assume that C ¼ A in Eq. (93), so that the
spacetime metric is conformally flat. This means via
Eqs. (95) and (96) that Σ0 ¼ 1, Π0 ¼ 0, and

p2 þ q2 ¼ −
4

3
Λ; ð102Þ

which is possible if the cosmological constant is negative.
We can recast this solution into the form ds2 ¼
Ω2ημνdxμdxν, where Ω−1 ¼ ŝuþ p̂xþ q̂y such that

ðŝ; p̂; q̂Þ ¼ 1

2
ðs; p; qÞ: ð103Þ

For q ¼ 0, this solution reduces to the simple conformally
flat solution (50) we found in Sec. II. It is convenient to
introduce an angle θ, 0 ≤ θ < 2π, such that

p̂ ¼ ð−Λ=3Þ1=2 cos θ; q̂ ¼ ð−Λ=3Þ1=2 sin θ: ð104Þ

We show in Appendix C that the TGW spacetime under
discussion here is indeed the unique solution of Rμν ¼ Λgμν
that is conformally flat and represents a unidirectional
gravitational wave. Henceforward, we drop the hats on
ðs; p; qÞ for the sake of simplicity.
Conformally flat plane wave spacetimes have been the

subject of extensive investigations; see, for instance,
Ref. [8], p. 603. The corresponding energy-momentum
tensor is of the null fluid type, which can be interpreted in
terms of either null dust or a pure (null) electromagnetic
radiation field [12,13]. An example of the latter situation
has been discussed in detail, in connection with the
phenomenon of cosmic jets [14], in Sec. IV of Ref. [15].
Conformally flat Kundt solutions with a cosmological
constant are treated in Ref. [9], Sec. 18.3.3, p. 344.

V. CONFORMALLY FLAT TGW DUE TO
A NEGATIVE Λ

The purpose of this section is to investigate in more
detail the Petrov type O solution that we found in the
previous section, namely,

gμν ¼Ω2ημν; Ω−1 ¼ suþϖ cosθxþϖ sinθy; ð105Þ

where u ¼ t − z is the retarded null coordinate, s ≠ 0 and θ
are constant parameters, and ϖ > 0 is given by

FIG. 3. Plot of the effective potential V vs F ≥ 0 for zero total
energy. We note that VðFÞ given in Eq. (98) vanishes at F ¼ 0

and F ¼ ð−Π0=Σ0Þ1=3. We choose p ¼ 1 and q ¼ 0.45. The red
curve, which represents 10V vs F to aid visualization, is for Π0 ¼
1 and Σ0 ¼ −0.47, so that Λ ≈ 0.2. The solid black curve is for
Π0 ¼ 1 and Σ0 ¼ 0.07, so that Λ ≈ −0.2. Finally, the dashed
black curve is for Π0 ¼ −1 and Σ0 ¼ 0.07, so that Λ ≈ −0.2.
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ϖ ≔
�
−
Λ
3

�
1=2

: ð106Þ

For a conformally flat spacetime, the Weyl curvature
tensor Cμνρσ vanishes. Therefore, a Ricci-flat spacetime
representing a nonlinear gravitational wave cannot be
conformally flat; otherwise, the Riemann curvature tensor
would completely vanish. Thus the existence of our
solution is purely due to the presence of the cosmological
constant Λ < 0. Indeed, for Λ ¼ 0, our metric in ðu; v; x; yÞ
coordinates under rescalings of the spacetime coordinates
via ðu; v; x; yÞ ↦ ðu−1;−s2v; sx; syÞ reduces to

ds2 ¼ −dudvþ u2ðdx2 þ dy2Þ; ð107Þ

which is simply flat as demonstrated at the end of
Appendix B of Ref. [16].
The curvature tensor for the spacetime under consid-

eration reduces to

Rμνρσ ¼
1

3
Λðgμρgνσ − gμσgνρÞ; ð108Þ

which means that the spacetime has constant negative
curvature and is thus part of the anti–de Sitter manifold
[8,9,17]. Furthermore, the wave front in this case has
constant negative Gaussian curvature

KG ¼ 1

3
Λ < 0; ð109Þ

cf. Appendix A. It is interesting to examine the connection
of TGW solution (105) with the anti–de Sitter solution.
This is done in the rest of this section.

A. Accelerated system in AdS spacetime

Imagine a congruence of accelerated observers in anti–
de Sitter spacetime. In coordinates xμ ¼ ðt; x; y; zÞ adapted
to these observers such that they are spatially at rest in
these coordinates, the uniformly curved anti–de Sitter
spacetime appears as a conformally flat TGW with metric
ds2 ¼ Ω2ημνdxμdxν, where 1=Ω ¼ b · x ¼ ηαβbαxβ with a
four-vector bα,

bα ¼ ð−s; p; q;−sÞ: ð110Þ

In this subsection, the inner (dot) product is defined only
via the Minkowski metric tensor; for instance,

b2 ¼ b · b ¼ p2 þ q2 ¼ −Λ=3 ¼ ϖ2: ð111Þ

One can start from the standard form of the metric of
anti–de Sitter spacetime and obtain the conformally flat
TGW via coordinate transformations. We find it convenient
to start instead with the TGW metric and transform it back

to the standard AdS form. In this process, the first step
involves the acceleration transformation x ↦ y given by

xμ ¼ yμ − aμy2

1 − 2a · yþ a2y2
; ð112Þ

where aμ is a constant four-vector. Under this transformation,

ημνdxμdxν ¼ ð1 − 2a · yþ a2y2Þ−2ηαβdyαdyβ ð113Þ

and

Ω2 ¼ ð1 − 2a · yþ a2y2Þ2½b · y − ða · bÞy2�−2; ð114Þ

so that the TGW metric now has a different conformally flat
form given by

ds2 ¼ ½b · y − ða · bÞy2�−2ηαβdyαdyβ: ð115Þ

Next, under the spacetime translation y ↦ z via a
constant four-vector χμ,

yμ ¼ zμ þ χμ; ð116Þ

we find

ds2 ¼ Φ−2ηαβdzαdzβ; ð117Þ

where

Φ ¼ b · χ − ða · bÞχ2 þ ηαβ½bα − 2ða · bÞχα�zβ − ða · bÞz2:
ð118Þ

We choose χμ and aμ such that

bα ¼ −
Λ
6
χα; a · b ¼ −

Λ
12

: ð119Þ

For instance, a possible choice for aμ is aμ ¼ bμ=4. Fixing
aμ and χμ in this way, we find

Φ ¼ 1þ Λ
12

z2; ð120Þ

which together with Eq. (117) constitutes a known con-
formally flat representation of the anti–de Sitter spacetime;
cf. Eq. (8.33) of Ref. [8].
Let us briefly digress here and mention that in

Minkowski spacetime the group of acceleration transfor-
mations (112) is an Abelian subgroup of the spacetime
conformal group, namely, the 15-parameter invariance
group of the light cone. For instance, it follows from
Eq. (112) that
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x2ð1 − 2a · yþ a2y2Þ ¼ y2;

ð1 − 2a · yþ a2y2Þ−1 ¼ 1þ 2a · xþ a2x2: ð121Þ

The final step involves transforming Eqs. (117) and
(120) to the standard AdS form. To simplify matters, let us
express all lengths in these equations in units of 1=ϖ ¼
ð−Λ=3Þ−1=2. With this proviso as well as the introduction of
spherical polar coordinates,

z0 ¼ Θ; z1 ¼ R sin ϑ cosφ;

z2 ¼ R sinϑ sinφ; z3 ¼ R cos ϑ; ð122Þ

we have

ds2 ¼ −dΘ2 þ dR2 þ R2ðdϑ2 þ sin2ϑdφ2Þ
½1þ 1

4
ðΘ2 − R2Þ�2 : ð123Þ

The transformation of this metric to the standard AdS
metric,

ds2¼−ð1þ r2Þdt̂2þ dr2

1þ r2
þ r2ðdϑ2þ sin2ϑdφ2Þ; ð124Þ

can simply be accomplished via

Θ ¼ tanðû=2Þ þ tanðv̂=2Þ;
R ¼ − tanðû=2Þ þ tanðv̂=2Þ; ð125Þ

where

û ¼ t̂ − arctan r; v̂ ¼ t̂þ arctan r: ð126Þ

More explicitly, we can write

Θ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
sin t̂

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
cos t̂

; R ¼ 2
r

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
cos t̂

:

ð127Þ

VI. PROPERTIES OF THE CONFORMALLY
FLAT TGW SOLUTION

It is interesting to study some of the main physical
characteristics of the special conformally flat TGW sol-
ution (105) and compare them with previous results
regarding TGWs [1–3].

A. Timelike geodesics

Let us first investigate the motion of free test particles in
this gravitational field. Null geodesics are conformally
invariant; hence, null geodesics in this conformally flat
TGW spacetime are the same as those in Minkowski
spacetime. We therefore concentrate on timelike geodesics.

There are three Killing vector fields in this spacetime,
namely,

∂t þ ∂z; ϖ cosθ∂t − s∂x; ϖ sinθ∂t − s∂y: ð128Þ

Thus there are three constants of timelike geodesic motion
that can be obtained from projecting the four-velocity
vector of a free massive test particle, _xμ ¼ dxμ=dη, on
the Killing vector fields. Here η is the proper time along the
timelike geodesic world line. We have

Ω2ð_t − _zÞ ¼ Cv; Ω2ðϖ cos θ_tþ s_xÞ ¼ C1;

Ω2ðϖ sin θ_tþ s_yÞ ¼ C2; ð129Þ

where Cv, C1, and C2 are constants of the motion.
Furthermore, the four-velocity is a timelike unit vector;
hence, Ω2ημν _xμ _xν ¼ −1.
It is convenient to take advantage of the circumstance

that the geodesic equations of motion can simply be
obtained from a Lagrangian of the form ðds=dηÞ2.
Therefore, we find

d
dη

ðΩ2_tÞ ¼ −sΩ;
d
dη

ðΩ2 _xÞ ¼ ϖ cos θΩ;

d
dη

ðΩ2 _yÞ ¼ ϖ sin θΩ; ð130Þ

etc. Let us write

d
dη

ðΩ−1Þ ¼ d
dη

ðsuþϖ cos θxþϖ sin θyÞ

¼ s
Cv

Ω2
þϖ cos θ _xþϖ sin θ _y; ð131Þ

where Eq. (129) has been used. Next, multiplying both
sides of this equation withΩ2>0 and employing Eq. (130),
we find

d2Ω
dη2

þϖ2Ω ¼ 0; ð132Þ

which has the general solution

ΩðηÞ ¼ Ω0 cos½ϖðη − η0Þ�; ð133Þ
where η0 and Ω0 ¼ Ωðη0Þ are constants of integration. It is
clear that as proper time η increases monotonically from η0,
ΩðηÞ decreases monotonically and eventually approaches
the singular value of zero at η ¼ η0 þ π=ð2ϖÞ. This is a
coordinate singularity and comes about due to the special
spacetime coordinates adapted to these geodesic observers.
It is now straightforward to use our result for ΩðηÞ in

Eqs. (129) and (131) to find _xμðηÞ. Integrating these results,
we determine xμðηÞ for a timelike geodesic, which may be
expressed as
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xμðηÞ − xμðη0Þ ¼
Cμ

ϖ2Ω2
0

tan½ϖðη − η0Þ�

−
Dμ

ϖ2Ω0

�
1 −

1

cos½ϖðη − η0Þ�
�
; ð134Þ

where

C0¼
s2

ϖ
CvþC1cosθþC2sinθ; C3¼C0−ϖCv; ð135Þ

C1 ¼ −sCv cos θ þ
ϖ

s
ðC1 sin θ − C2 cos θÞ sin θ; ð136Þ

C2 ¼ −sCv sin θ −
ϖ

s
ðC1 sin θ − C2 cos θÞ cos θ; ð137Þ

and

D0 ¼D3 ¼−s; D1 ¼ϖ cosθ; D2 ¼ϖ sinθ: ð138Þ

The integration constants in these equations are related via

1

Ω0

¼ suðη0Þ þϖ½xðη0Þ cos θ þ yðη0Þ sin θ�; ð139Þ

where uðη0Þ ¼ tðη0Þ − zðη0Þ, and

ϖ2Ω2
0 ¼ ðs2 −ϖ2ÞC2

v þ 2ϖCvðC1 cos θ þ C2 sin θÞ

−
ϖ2

s2
ðC1 sin θ − C2 cos θÞ2; ð140Þ

which follows from Ω2ημν _xμ _xν ¼ −1.

1. Cosmic jet

In certain dynamic spacetime regions, geodesics tend to
line up, as measured by static fiducial observers, and thus
produce a cosmic jet whose speed asymptotically
approaches the speed of light [14,15]. For plane gravita-
tional wave spacetimes, this cosmic jet property was first
demonstrated in Ref. [15] and further studied in Ref. [16].
A plane gravitational wave admits parallel null rays, so that
the four principal null directions of the Weyl tensor
coincide and are all parallel to the direction of propagation
of the plane wave and hence perpendicular to the uniform
wave front. With respect to the static observers in these
spacetimes, timelike geodesics exhibit the cosmic jet
property, where the jet motion is parallel to the direction
of motion of the plane wave [15,16]. However, the
nonuniformity of the wave front in the case of nonplanar
TGWs implies that the resulting cosmic jet direction is
oblique with respect to the direction of wave propagation
[16]. It is interesting to investigate this property for the case
under consideration here. To this end, imagine a congru-
ence of timelike geodesics in our conformally flat TGW
spacetime. We are interested in the motion of a member of

this congruence at time η with respect to a static observer
spatially at rest in this spacetime. The natural tetrad frame
of these static fiducial observers is given by

eαμ̂ ¼
1

Ω
δαμ; ð141Þ

where in 1=Ω ¼ suþϖ cos θxþϖ sin θy, the spatial coor-
dinates x, y, and z are constants. These fiducial observers
exist so long as Ω ≠ 0. Projecting _xα ¼ ð_t; _x; _y; _zÞ upon eαμ̂
at xαðηÞ results in the instantaneous relation

_xαeαμ̂ ¼ Ωð_t; _x; _y; _zÞ ¼ Uμ̂ ≔ Γð1; Vx; Vy; VzÞ; ð142Þ
where Uμ̂ is the four-velocity of the timelike geodesic as
measured by the fiducial static observer. We find

Uμ̂ ¼ 1

ϖΩ0

Cμ þΩ0Dμ sin½ϖðη − η0Þ�
cos½ϖðη − η0Þ�

: ð143Þ

It follows that as η → η0 þ π=ð2ϖÞ, Γ → ∞ and the
oblique cosmic jet is characterized by

Vx→
C1þΩ0D1

C0þΩ0D0

; Vy→
C2þΩ0D2

C0þΩ0D0

; Vz→
C3þΩ0D3

C0þΩ0D0

:

ð144Þ
One can check using Eq. (140) that indeed V2

xþV2
yþV2

z→1

as the cosmic jet develops.
Tidal effects of our conformally flat TGWs are studied in

the next subsection.

B. Jacobi equation

Imagine a static observer that is at rest in space in our
conformally flat TGW spacetime. The observer carries an
orthonormal tetrad frame eμα̂ along its world line and uses
this frame to set up a geodesic (Fermi) normal coordinate
system in its neighborhood. The Fermi system is discussed
in Appendix D. We are interested in the motion of nearby
geodesics with respect to the accelerated static observer that
permanently occupies the origin of the Fermi coordinate
system. This analysis is carried out in several steps.

1. Tetrad of the static observer

The static fiducial observer has a natural tetrad frame
eμα̂ ¼ Ω−1δμα, where Ω ≠ 0. The world line of such an
observer is given by x̄μ ¼ ðt; x0; y0; z0Þ, where

τ ¼ 1

s
½lnðstþϖ cos θx0 þϖ sin θy0 − sz0Þ

− lnðϖ cos θx0 þϖ sin θy0 − sz0Þ� ð145Þ
is the proper time of the static observer and we have
assumed that τ ¼ 0 at t ¼ 0. Such observers are not
geodesic; in fact, they are accelerated with
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Aμ ¼ Deμ0̂
dτ

¼ −ϖ cos θeμ1̂ −ϖ sin θeμ2̂ þ seμ3̂: ð146Þ

The static observer carries the spatial frame of the tetrad
along its world line for measurement purposes. It is
straightforward to check that the spatial frame eμ î, for
i ¼ 1, 2, 3, is indeed Fermi-Walker transported; that is, its
components satisfy the equation of Fermi-Walker transport,

dSμ

dτ
þ Γμ

αβe
α
0̂S

β ¼ ðA · SÞeμ0̂ − ðe0̂ · SÞAμ; ð147Þ

where Sμ is a vector that is Fermi-Walker transported
along eμ0̂.

2. Spacetime curvature as measured
by static observers

Suppose that the static observer with orthonormal tetrad
eμα̂ measures the spacetime curvature in our conformally
flat TGW spacetime. The components of the Riemann
curvature tensor as measured by the observer are given by

Rα̂ β̂ γ̂ δ̂ðτÞ ≔ Rμνρσeμα̂eνβ̂e
ρ
γ̂eσδ̂: ð148Þ

These constitute the projection of the Riemann curvature
tensor upon the tetrad frame of the static observer.
Taking advantage of the symmetries of the Riemann tensor,
this quantity can be represented by a 6 × 6 matrix
R ¼ ðRIJÞ, where the indices I and J range over the set
(01,02,03,23,31,12). Thus we can write

R ¼
�
E B

B† S

�
; ð149Þ

where E and S are symmetric 3 × 3 matrices and B is
traceless. The tidal matrix E represents the “electric”
components of the curvature tensor as measured by the
static observer, whereas B and S represent its “magnetic”
and “spatial” components, respectively. In the case under
consideration, eμα̂ ¼ Ω−1δμα, so that Eq. (108) implies

E ¼ −
1

3
ΛI ; B ¼ 0; S ¼ 1

3
ΛI ; ð150Þ

where I is the 3 × 3 identity matrix I ¼ diagð1; 1; 1Þ.
These results, expected for anti–de Sitter spacetime, should
be contrasted with the Weyl curvature of the Ricci-flat
TGWs in Ref. [2]. The absence of the gravitomagnetic
component of the Riemann tensor as measured by static
fiducial observers is a peculiar feature of this propagating
TGW that has no Weyl curvature. This point can be further
illustrated via the Bel tensor in this case.
The super-energy-momentum tensor of a gravitational

field is proportional to the symmetric and traceless
quantity [18,19]

T α̂ β̂ ¼ T̄μνρσeμα̂eνβ̂e
ρ
0̂e

σ
0̂; ð151Þ

where T̄μνρσ is the natural gravitational analog of the
energy-momentum tensor of the electromagnetic field

T̄μνρσ ¼
1

2
ðRμξρζRν

ξ
σ
ζ þ RμξσζRν

ξ
ρ
ζÞ − 1

4
gμνRαβργRαβ

σ
γ

ð152Þ

and was introduced by Bel in 1958 [20]. In general, Bel’s
tensor, T̄μνρσ, is symmetric and traceless in its first pair of
indices and symmetric in its second pair of indices. In a
Ricci-flat spacetime, Bel’s tensor reduces to the completely
symmetric and traceless Bel-Robinson tensor.
For the conformally flat TGW with Riemann curvature

(108), the Bel tensor is given by

T̄μνρσ ¼
�
Λ
3

�
2

Ω4

�
ημρηνσ þ ημσηνρ −

1

2
ημνηρσ

�
; ð153Þ

which is traceless in its second pair of indices as well. In
this case, the corresponding symmetric and traceless super-
energy-momentum tensor as measured by the static fiducial
observers is proportional to

T α̂ β̂ ¼
�
Λ
3

�
2
�
2ηα̂ 0̂ηβ̂ 0̂ þ

1

2
ηα̂ β̂

�
; ð154Þ

which has the peculiar character of a perfect fluid at rest
with energy density Λ2=6 and pressure Λ2=18. The super-
Poynting vector vanishes in this case in contrast to the
Ricci-flat TGWs discussed in Ref. [2]. This circumstance
illustrates the limitation of the supermomentum concept in
the absence of Weyl curvature.

3. Tidal equations

The equation for the motion of a timelike geodesic
relative to our fiducial static observer within the framework
of the Fermi coordinate system ðT;XÞ can be written as

d2Xî

dT2
þAî þ ðE î

ĵ þAîAĵÞXĵ ¼ 0; ð155Þ

where the contribution of relative velocity has been
neglected; see Appendix D. Here, A1̂ ¼ −ϖ cos θ, A2̂ ¼
−ϖ sin θ, A3̂¼s, and E î ĵ¼R0̂ î0̂ ĵ¼ϖ2δî ĵ. Thus Eq. (155)
can be expressed as

d2X1̂

dT2
þϖ2ð1þ cos2θÞX1̂ þϖ2 sinθ cosθX2̂ − sϖ cosθX3̂

¼ϖ cosθ; ð156Þ
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d2X2̂

dT2
þϖ2 sinθcosθX1̂þϖ2ð1þ sin2θÞX2̂− sϖ sinθX3̂

¼ϖ sinθ; ð157Þ

d2X3̂

dT2
−sϖcosθX1̂−sϖsinθX2̂þðs2þϖ2ÞX3̂¼−s: ð158Þ

It proves convenient to define Pi, i ¼ 1, 2, 3, as follows:

P1 ¼ ϖ cos θX1̂ þϖ sin θX2̂ − sX3̂;

P2 ¼ − sin θX1̂ þ cos θX2̂; ð159Þ

P3 ¼ s cos θX1̂ þ s sin θX2̂ þϖX3̂: ð160Þ

Then, Eqs. (156)–(158) can be written in terms of the new
quantities as

d2P1

dT2
þ ðs2 þ 2ϖ2ÞP1 ¼ s2 þϖ2; ð161Þ

d2P2

dT2
þϖ2P2 ¼ 0;

d2P3

dT2
þϖ2P3 ¼ 0: ð162Þ

It is now straightforward to write down the general solution
of the tidal equations in this case. That is,

P1 ¼
s2 þϖ2

s2 þ 2ϖ2
þ ξ1 cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2ϖ2

p
T þ ϕ1Þ; ð163Þ

P2 ¼ ξ2 cosðϖT þ ϕ2Þ; P3 ¼ ξ3 cosðϖT þ ϕ3Þ; ð164Þ

where ξi and ϕi, for i ¼ 1, 2, 3, are integration constants.
Let us note that we can write

P1 ¼ DiXî; P2 ¼ NiXî; P3 ¼ EiXî; ð165Þ

where Di are given by Eq. (138), and Ni and Ei are defined
here via Eqs. (159) and (160). That is, for i ¼ 1, 2, 3,

ðDiÞ ¼ ðϖ cos θ;ϖ sin θ;−sÞ;
ðNiÞ ¼ ð− sin θ; cos θ; 0Þ;
ðEiÞ ¼ ðs cos θ; s sin θ;ϖÞ; ð166Þ

which are three spatially orthogonal vectors. It follows that

Xî ¼ Di

s2 þ 2ϖ2
þ Di

s2 þϖ2
ξ1 cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2ϖ2

p
T þ ϕ1

�
þ Niξ2 cosðϖT þ ϕ2Þ þ

Ei

s2 þϖ2
ξ3 cosðϖT þ ϕ3Þ:

ð167Þ

The transverse character of linearized gravitational
waves in GR is well known. Twisted gravitational waves

that are Ricci-flat exhibit in addition a longitudinal com-
ponent as well [1]. For a general discussion of the
corresponding longitudinal component in the presence of
Weyl curvature tensor, see Refs. [21,22]. However, the
Weyl conformal curvature tensor vanishes for our special
solution; for a general discussion of the Jacobi equation in
this case, see Ref. [23]. The longitudinal component in the
absence of Weyl curvature is given by X3̂ in the present
case, which is along the direction of wave propagation and
can be obtained from Eq. (167) for i ¼ 3. This longitudinal
feature is illustrated in Fig. 4.

VII. DISCUSSION

Three classes of TGW solutions in the presence of a
cosmological constant have been presented in Secs. II–IV.
These are generally implicit, as each GR solution depends
upon the solution of an ordinary differential equation for
AðwÞ, where w depends linearly on spacetime coordinates
ðt; x; y; zÞ. Nevertheless, we have determined the general
behavior of these solutions and their curvature singularities;
moreover, we have characterized the algebraically special
nature of their Weyl curvature tensors. Among the new
solutions, there is a simple unique conformally flat solution
with gμν ¼ Ω2ημν that has a conformal factor Ω given by
Ω−1 ¼ suþ pxþ qy, where ðs; p; qÞ are constants subject
to p2 þ q2 ¼ −Λ=3. The wave front for this simple TGW
has constant negativeGaussian curvature determined by the
cosmological constant Λ, namely, KG ¼ Λ=3. This special
explicit solution for the negative cosmological constant

FIG. 4. Plot of ϖXî vs ϖT for i ¼ 1 (blue dotted curve), i ¼ 2

(red dash-dotted curve), and i ¼ 3 (solid black curve), where Xî is
given by Eq. (167). Initial conditions at T ¼ 0 are chosen such
that ðX1̂; X2̂; X3̂Þ ¼ ð1; 0.5; 0Þ and dXî=dT ¼ 0 for i ¼ 1, 2, 3.
Thus, ϕ1 ¼ ϕ2 ¼ ϕ3 ¼ 0. Moreover, s ¼ ffiffiffi

2
p

ϖ and θ ¼ 45°, so
that ξ1 ¼ 3ð ffiffiffi

2
p

− 1Þ=4, ξ2 ¼ −
ffiffiffi
2

p
=ð4ϖÞ, and ξ3 ¼ 3=2.
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represents part of the anti–de Sitter spacetime and has been
studied in detail in the previous section. That is, the
timelike geodesics of this solution have been worked out
and the deviation of these geodesics relative to the world
lines of static observers in this spacetime have been
examined in connection with measurements of static
fiducial observers. These observers in anti–de Sitter space-
time have ðt; x; y; zÞ coordinates adapted to their motions
such that the constant negative curvature AdS spacetime
appears in the form of a TGW in these adapted coordinates.
All of the known TGWs, regardless of the presence of

the cosmological constant, have wave fronts with negative
Gaussian curvature. It is not known whether this is a
general feature of TGWs or occurs due to the formal
simplicity of the solutions that have been found thus far.
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APPENDIX A: GAUSSIAN CURVATURE
OF THE WAVE FRONT

Consider a TGW spacetime with metric of the form

ds2 ¼−γ0dt2þ γ1dx2þ 2γ2dxdyþ γ3dy2þ γ0dz2; ðA1Þ

where γμ ¼ γμðu; x; yÞ and u ≔ t − z. The metric of the
wave front is given by

dσ2 ¼ γ1ðu; x; yÞdx2 þ 2γ2ðu; x; yÞdxdyþ γ3ðu; x; yÞdy2;
ðA2Þ

where u is a constant in this case. It is possible to show that
for any ðt; x; y; zÞ,

ðsÞRxyxy ¼ ðσÞRxyxy; ðA3Þ

where ðsÞRxyxy is a component of the Riemann curvature
tensor for metric (A1), while ðσÞRxyxy is the corresponding
component for metric (A2).
For metric (A2), the Gaussian curvature KG is given

by [8]

KG ¼
ðσÞRxyxy

Δ
; Δ ¼ γ1γ3 − γ22 > 0: ðA4Þ

From

γ3
ðσÞRxyxy ¼ ΔðσÞRx

yxy; ðA5Þ

we get the simple relation

KG ¼ 1

γ3
ðσÞRx

yxy: ðA6Þ

Using the standard formula for the Riemann tensor, we find

KG ¼ 1

2Δ
ð2γ2;xy − γ1;yy − γ3;xxÞ

−
γ3
4Δ2

ð2γ1;xγ2;y − γ1;xγ3;x − γ21;yÞ

−
γ1
4Δ2

ð2γ2;xγ3;y − γ1;yγ3;y − γ23;xÞ

þ γ2
4Δ2

½γ1;xγ3;y − 2γ1;yγ3;x

þ ð2γ2;x − γ1;yÞð2γ2;y − γ3;xÞ�; ðA7Þ

where a comma denotes partial differentiation.
In the special case where γ2 ¼ 0, γ1 ¼ eB, and γ3 ¼ eC,

Eq. (A7) reduces to formula (B2) of Appendix B of Ref. [1].

APPENDIX B: GRAVITATIONAL
FIELD EQUATIONS

The purpose of this Appendix is to present the gravi-
tational field equations (12) for metric (5) when condition
(13) is satisfied. It follows from the admissibility conditions
for the coordinates that the metric can be written as

ds2 ¼ −eAdudvþ eBdx2 þ 2hdxdyþ eCdy2; ðB1Þ

where A, B, C, and h are functions of w ¼ suþ pxþ qy
and fðwÞ ≔ expðBþ CÞ − h2 > 0. The metric is invariant
under the exchange of ðx; B; pÞ with ðy; C; qÞ, respectively.
This invariance is then reflected in the field equations
Rμν ¼ Λgμν. In this connection, it is convenient to introduce

HA ¼ h0−hA0; HB ¼ h0−hB0; HC¼ h0−hC0; ðB2Þ

where h0 ≔ dh=dw, etc. The homogeneous field equations
are then given by Ruu ¼ 0, Rux ¼ 0, Ruy ¼ 0, and Rxy ¼ 0,
which can be expressed as

ðfþh2ÞðHBþHCÞ2−2fHBHC

−2fh½A0ðHBþHCÞ− ðH0
BþH0

CÞ�−fh2ðB0−C0Þ2
−f2½2B00 þB02þ2C00 þC02−2A0ðB0 þC0Þ� ¼ 0; ðB3Þ

qeB½hðHBþHCÞHBþ2fH0
BþfðB0−C0ÞHB�

þp½h2ðHBþHCÞHC

−fhðA0HBþA0HCþB0HCþC0HB−2H0
CÞ

−f2ð2C00 þC02þ2A00−A0B0−A0C0−B0C0Þ� ¼ 0; ðB4Þ
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peC½hðHB þHCÞHC þ 2fH0
C − fðB0 − C0ÞHC�

þ q½h2ðHB þHCÞHB

− fhðA0HB þ A0HC þ B0HC þ C0HB − 2H0
BÞ

− f2ð2B00 þ B02 þ 2A00 − A0B0 − A0C0 − B0C0Þ� ¼ 0;

ðB5Þ

and

hq2eB½hðHBþHCÞB0 þfð2B00 þB02þ2A0B0−B0C0Þ�
þhp2eC½hðHBþHCÞC0 þfð2C00 þC02þ2A0C0−B0C0Þ�
þ2pq½−2fhh00−h2h0ðHBþHCÞþfhðB0 þC0ÞHA

þf2ð2A00 þA02−A0B0−A0C0Þ� ¼ 0; ðB6Þ

respectively. Furthermore, the three inhomogeneous field
equations, namely, Ruv¼−ðΛ=2ÞexpðAÞ, Rxx ¼ Λ expðBÞ,
and Ryy ¼ Λ expðCÞ are given by

−4f2Λ ¼ p2eC½hðHB þHCÞA0 þ fð2A00 þ 2A02 þ A0C0 − A0B0Þ�
þ q2eB½hðHB þHCÞA0 þ fð2A00 þ 2A02 þ A0B0 − A0C0Þ�
− 2pq½h2ðHB þHCÞA0 þ 2fh0A0 þ fhð2A00 þ 2A02 − A0B0 − A0C0Þ�; ðB7Þ

− 4f2Λ ¼ q2eB½hðHB þHCÞB0 þ fð2B00 þ B02 þ 2A0B0 − B0C0Þ�
þ p2e−B½h3ðHB þHCÞC0 þ 2fhðhC00 þ h0C0 þ 2h0A0 − hA0B0 − hB0C0Þ
þ f2ð4A00 þ 2A02 þ 2C00 þ C02 − 2A0B0 − B0C0Þ�
− 2pq½hh0ðHB þHCÞ þ 2fh00 þ fh0ð2A0 − B0 − C0Þ�; ðB8Þ

and

− 4f2Λ ¼ p2eC½hðHB þHCÞC0 þ fð2C00 þ C02 þ 2A0C0 − B0C0Þ�
þ q2e−C½h3ðHB þHCÞB0 þ 2fhðhB00 þ h0B0 þ 2h0A0 − hA0C0 − hB0C0Þ
þ f2ð4A00 þ 2A02 þ 2B00 þ B02 − 2A0C0 − B0C0Þ�
− 2pq½hh0ðHB þHCÞ þ 2fh00 þ fh0ð2A0 − B0 − C0Þ�: ðB9Þ

The field equations employed in this paper can be ob-
tained as special cases of the results given in this Appendix.

APPENDIX C: Conformally Flat TGW Solution
of Rμν =Λgμν

We look for solutions of the gravitational field equations
Rμν ¼ Λgμν with a conformally flat TGW metric of the
form

ds2 ¼ eAðu;x;yÞð−dudvþ dx2 þ dy2Þ: ðC1Þ

The corresponding field equations consist of three equa-
tions with source Λ, namely,

−2Ruv ¼ Rxx ¼ Ryy ¼ ΛeAðu;x;yÞ; ðC2Þ

which can be written out explicitly for metric (C1) as

A;xx þ A;yy þ ðA;xÞ2 þ ðA;yÞ2 ¼ −2ΛeA; ðC3Þ

3A;xx þ A;yy þ ðA;yÞ2 ¼ −2ΛeA; ðC4Þ

3A;yy þ A;xx þ ðA;xÞ2 ¼ −2ΛeA; ðC5Þ

respectively. Furthermore, there are four nontrivial source-
free field equations

Ruu ¼ Rux ¼ Ruy ¼ Rxy ¼ 0; ðC6Þ

which can be expressed as

2A;uu ¼ ðA;uÞ2; ðC7Þ

2A;ux ¼A;uA;x; 2A;uy ¼A;uA;y; 2A;xy¼A;xA;y; ðC8Þ

respectively.
Let us subtract Eq. (C3) from Eqs. (C4) and (C5) to get

2A;xx ¼ ðA;xÞ2; 2A;yy ¼ ðA;yÞ2: ðC9Þ

Then, Eq. (C3) reduces to

ðA;xÞ2 þ ðA;yÞ2 ¼ −
4

3
ΛeA: ðC10Þ
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Next, by virtue of Eq. (C7) we have�
e−

1
2
A

�
;uu

¼ 1

4
½2A;uu − ðA;uÞ2�e−1

2
A ¼ 0; ðC11Þ

which implies that exp ð−A=2Þ is a linear function of u.
Similarly, it follows from Eq. (C9) that exp ð−A=2Þ
depends linearly upon x and y as well. Thus, we can write

e−
1
2
A ¼ suþ pxþ qy ðC12Þ

plus a constant that can always be removed by a simple
coordinate translation. The integration constant s is arbi-
trary, while Eq. (C10) implies

p2 þ q2 ¼ −
1

3
Λ: ðC13Þ

The remaining field equations (C8) are all satisfied by this
unique class of conformally flat solutions with constant
parameters ðs; p; qÞ subject to restriction (C13). This
gravitational field disappears in the absence of a negative
cosmological constant.

APPENDIX D: DEVIATION EQUATION
IN FERMI COORDINATES

Consider an arbitrary static observer with proper time τ
following a world line x̄μðτÞ. Let eμα̂ðτÞ be a Fermi-Walker
transported tetrad along x̄μðτÞ. At each event on the
observer’s path, we imagine the set of all spacelike geo-
desics that are orthogonal to the world line at x̄μðτÞ and
form a spacelike hypersurface. Let xμ be an event on this
hypersurface that can be connected to x̄μðτÞ with a unique

spacelike geodesic of proper length ς. We assign to event xμ

Fermi coordinates Xμ̂ ¼ ðT; XîÞ, where

T ≔ τ; Xî ≔ ςσμðτÞeμ îðτÞ: ðD1Þ

The unit spacelike vector tangent at x̄μðτÞ to the unique
spacelike geodesic connecting x̄μðτÞ with xμ is denoted by
σμ; hence, σμðτÞeμ0̂ðτÞ ¼ 0. It is clear that the reference
observer occupies the spatial origin of the Fermi coordinate
system.
We wish to study the timelike geodesic equation in the

Fermi coordinate system. In this way, we can determine the
motion of a free test particle relative to the fiducial static
observer. Neglecting the relative velocity, the reduced
geodesic equation can be expressed as

d2Xî

dT2
þAîðTÞ þ ½E î

ĵðTÞ þAîðTÞAĵðTÞ�Xĵ ¼ 0; ðD2Þ

where Aî is the four-acceleration of the fiducial static
observer projected upon its frame and E î ĵ are the corre-
sponding components of the tidal matrix, namely,

AîðTÞ ¼ Deμ0̂
dτ

eμ î ¼ Aμeμ î;

E î ĵðTÞ ¼ R0̂ î 0̂ ĵ ¼ Rμνρσeμ0̂e
ν
îe

ρ
0̂e

σ
ĵ: ðD3Þ

For background material on the equations of motion in
Fermi coordinates, we refer to Refs. [24–26] and the
references cited therein. The Fermi coordinate system is
generally admissible in a certain cylindrical spacetime
domain around x̄μðτÞ.
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