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We show that gravity theories involving disformally transformed metrics in their matter coupling lead to
spontaneous growth of various fields in a similar fashion to the spontaneous scalarization scenario in scalar-
tensor theories. Scalar-dependent disformal transformations have been investigated in this context, and our
focus is understanding the transformations that depend on more general fields. We show that vector-
dependent disformal couplings can be obtained in various different ways, each leading to spontaneous
vectorization as indicated by the instabilities in linearized equations of motion. However, we also show that
spontaneous growth is not evident beyond vectors. For example, we could not identify a spontaneous
growth mechanism for a spinor field through disformal transformations, even though there is a known
example for conformal transformations. This invites further work on the fundamental differences between
the two types of metric transformations. We argue that our results are relevant for observations in strong
gravity such as gravitational wave detections due to their promise of large deviations from general relativity
in this regime.
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I. INTRODUCTION

Possible modifications to general relativity (GR) have
been a topic of interest for many decades, but until recently,
ideas in this line could only be tested in the weak field
regime, where GR has been confirmed in all attempts [1].
Gravitational wave (GW) observations are changing this
picture, and dynamical strong field gravity can now be
directly investigated [2–4]. Despite these advances, the
precision of GW detections is limited, which has led to an
increased interest in modifications of GR that provide large
deviations in strongly gravitating systems [5]. Spontaneous
scalarization in scalar-tensor theories where scalar fields
grow near neutron stars to provide nontrivial solutions
provides exactly this type of modification [6]. This growth
occurs due to a specific conformal transformation of the
metric in the matter coupling. In this study, we investigate
theories with disformal couplings that depend on fields
beyond scalars (such as vectors) and show that in many
cases we can observe the spontaneous growth of the field.
Spontaneous scalarization contains a fundamental scalar

degree of freedom (d.o.f.) that governs gravity in addition
to the metric tensor—that is, it is a scalar-tensor theory. Any
solution in GR is also a solution in the spontaneous
scalarization scenario, and it corresponds to a vanishing
scalar field. However, such solutions are unstable in the
presence of neutron stars [6]. Arbitrarily small scalar field
perturbations go through exponential growth, and the
eventual stable solution is a neutron star surrounded by
a scalar cloud. The amplitude of the scalar dies off away
from the star, hence known weak field tests of gravity are

satisfied. More strikingly, the value of the scalar field is
large in the vicinity of the neutron star, which leads to
order-of-unity deviations from GR, making spontaneous
scalarization a prime target for strong gravity observations.
We will explain the basic mechanism of spontaneous

scalarization and its generalizations in the following
section, but the central idea is a tachyonic instability. In
the original theory of Damour and Esposito-Farèse (DEF)
[6], the matter fields couple to a metric that is conformally
scaled by a function of the scalar (in the so-called Einstein
frame). At the level of the scalar equation of motion
(EOM), this leads to an imaginary effective mass in the
presence of matter. This is the famous tachyon, and it grows
exponentially in time instead of oscillating. The growth is
quenched by nonlinear terms, and the end point is a stable
scalarized neutron star.
The essence of spontaneous scalarization is in an

instability that is eventually suppressed at large field values.
It has been shown that a similar mechanism exists in many
other theories as well [7,8]. One idea to generalize
spontaneous scalarization utilizes the fact that the scalar
nature of the spontaneously growing field is not crucial.
One can have a spontaneously growing vector field as well,
as long as there is a conformal scaling of the metric that is a
function of the vector field, and the conformal function has
a similar form to that of the DEF theory [7]. The sponta-
neous growth idea applied to any field in this manner is
named “spontaneous tensorization” [8].
Another place where spontaneous growth appears is a

theory where matter fields couple to a disformally trans-
formed metric rather than a conformally scaled one, whose
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technical details we will explain in the next section.
Minamitsuji and Silva demonstrated that such a theory
contains an instability that causes spontaneous growth, and
they also numerically constructed explicit scalarized star
solutions, but they did not consider spontaneous growth for
other types of fields [9].
Our main task is combining the two aforementioned

approaches that generalize spontaneous scalarization.
Namely, we will study theories of gravity where disformal
transformations play a role, but these transformations are
based on fields other than scalars. Such gravity theories
have been in the literature, as we will discuss in more detail,
but the fact that they give rise to spontaneous tensorization
has been overlooked to the best of our knowledge.
Spontaneous growth generically leads to order-of-unity
deviations from GR, hence identification of its existence in
any theory of gravity is especially important, since it
dramatically increases the chances of studying the theory
using GWs or other means of strong field observations that
are becoming more commonly available. Our work dem-
onstrates that spontaneous growth is not merely a scenario
specific to a single theory, but it is a ubiquitous mechanism
that exists in a wide variety of gravity theories. On the other
hand, we will show that not every theory of spontaneous
growth with a conformal transformation can be automati-
cally turned to one with a disformal transformation, and
there are limits to known mechanisms that provide sponta-
neous growth.
In Sec. II, we give a basic explanation of spontaneous

scalarization and its generalizations to both disformally
transformed metrics and nonscalar fields, basically sum-
marizing the literature. In Sec. III, we present three different
forms of disformal transformations that can lead to sponta-
neous growth of vector fields. In Sec. IV, we investigate the
spontaneous growth of spinor and rank-2 tensor fields
through disformal couplings, and we see that for various
reasons, results from vectors cannot be extended to all
fields. In Sec. V, we summarize our results and their
limitations, discuss other related theories such as disformal
transformations beyond matter as in extended Gauss-
Bonnet gravity, and comment on connections to observa-
tions. We employ geometric units G ¼ c ¼ 1 throughout
the paper.

II. SPONTANEOUS SCALARIZATION THROUGH
CONFORMAL AND DISFORMAL COUPLINGS

The first example of spontaneous growth in the gravity
literature was devised by DEF in scalar-tensor theories as in
the action

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2gμν∇μϕ∇νϕ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Tϕ

− 2m2
ϕϕ

2
zfflfflffl}|fflfflffl{Vϕ �

þ Sm½fm; g̃μν�; ð1Þ

where

g̃μν ¼ A2ðϕÞgμν; ð2Þ
and fm represents any matter d.o.f. [6]. If the conformal
coupling is of the form AðϕÞ ¼ 1þ βϕ2=2þ � � �, such as
the original choice AðϕÞ ¼ eβϕ

2=2, ϕ ¼ 0 is a solution that
corresponds to GR, but it is an unstable one in the presence
of matter. When β is negative and of the order of unity,
neutron stars spontaneously grow scalar clouds around
them that typically lead to large deviations from GR.
Scalarization weakens away from the star, guaranteeing
conformity with known tests of gravitation. Thus, inves-
tigation of such modified theories is a realistic target for
gravitational wave science. We should add that the VðϕÞ
term in Eq. (1) actually inhibits spontaneous growth, and it
was not present in the original DEF theory, but it is strongly
favored to satisfy recent binary star observations. This, and
the details of other aspects of spontaneous scalarization
through this Lagrangian, can be found in Ref. [10].
The origin of the instability can be seen in the linearized

EOM for the scalar

□gϕ ¼
�
−8πA4

dðlnAðϕÞÞ
dðϕ2Þ T̃ þm2

ϕ

�
ϕ

≈ ð−4πβT̃ þm2
ϕÞ ϕ≡m2

effϕ: ð3Þ
The trace of the stress-energy tensor in the frame of g̃μν is
negative as long as matter is not ultrarelativistic, since
T̃ ¼ −ρ̃þ 3p̃ ≈ −ρ̃. So, for appropriate densities and β
values, the effective mass meff is imaginary, which causes
the lowest-frequency Fourier modes of the scalar to have a
tachyonic instability, since ω2 ∼ k⃗2 þm2

eff < 0. An equally
important fact is that this instability is eventually quenched
by nonlinear effects as the scalar grows to the nonpertur-
bative regime, and we end up with a stable scalar cloud.
To understand the first path to generalize the idea of

DEF, note that there is nothing specific to the scalar nature
of the field in the mechanism that incites the growth, or the
nonlinear terms that later suppress it. That is, one can
replace the scalar, for example, with a vector Xμ, as in the
action [7]

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν − 2m2
XX

μXμ�

þ Sm½fm; A2
XðηÞgμν�; η ¼ gμνXμXν; ð4Þ

and still have spontaneous growth. Here, Fμν ¼ ∇μXν−
∇νXμ, and AX is an appropriate function of the vector field
such as eβXη=2. The vector EOM

∇ρFρμ ¼ ð−4πA4
XβXT̃ þm2

XÞXμ ð5Þ

has a tachyonlike nature as in the DEF theory, and
observational signatures of the theories are very similar.
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This line of thought can also be extended to spinors [11]
and gauge bosons [12].
We should also add that the conformal coupling terms in

these theories can depend on the derivatives of the fields as
well as the fields themselves. For example, in the simplest
case of the scalar field, the action

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ − 2m2
ϕϕ

2�

þ Sm½fm; A2∂ðKÞgμν�; K ¼ gμν∂μϕ∂νϕ ð6Þ

leads to the equation of motion [8]

∇μ½ð−8πT̃A3∂A0∂ þ 1Þ∇μϕ� ¼ m2
ϕϕ: ð7Þ

This is radically different from the case in Eq. (3), since
there is no modification to the mass term. However, for
A∂ ¼ eβ∂K=2 with β∂ < 0, the principal part of the equation
(the part with the highest order of derivatives in the partial
differential equation) reads

ð−4πT̃β∂ þ 1Þ□ϕ ¼ � � � : ð8Þ

For large enough T̃β∂ , it is the kinetic term rather than the
mass-squared term that changes sign, which means that we
have a ghostlike instability rather than a tachyonic one.
This instability also grows exponentially from arbitrary
perturbations despite its different nature, which is the
essence of spontaneous growth. This is called “ghost-based
spontaneous scalarization.” We can also obtain “ghost-
based spontaneous vectorization” by changing the depend-
ence of the conformal factor in Eq. (4) AX → AFðFμνFμνÞ.
Another path to generalize spontaneous scalarization,

and the one we are going to examine in more detail in this
study, uses the fact that a conformal coupling is not the only
way to obtain an instability that causes spontaneous
growth. The most general scalar-dependent disformal
transformation is [13]

g̃μν ¼ A2ðϕÞ½gμν þ ΛB2ðϕÞ∂μϕ∂νϕ�: ð9Þ

If we use this in the action Eq. (1), the resulting EOM is
[9,14]

□ϕ¼m2
ϕϕþ

4π

1þΛB2∂μϕ∂μϕ

×fΛB2½ðδ−αÞTρσ∂ρϕ∂σϕþTρσ∂ρ∂σϕ�−αTg; ð10Þ

where αðϕÞ≡ A−1ðdA=dϕÞ, δðϕÞ≡ B−1ðdB=dϕÞ, and the
stress-energy tensor and its trace T are in the frame of gμν.
The linearized EOM arising from Eq. (10) is more
complicated than the case of conformal coupling in
Eq. (3), but they were analyzed similarly to the conformal
case, which shows the existence of instabilities. Scalarized

neutron star solutions for disformal couplings have been
explicitly constructed using numerical methods [9].
To understand the disformal transformation case better,

first see that the last αT term in Eq. (10) arises from the
overall conformal scaling A2 in Eq. (9), and behaves as an
effective mass term as in tachyonic spontaneous scalariza-
tion. The novel contribution of the disformal transformation
can best be seen when we set AðϕÞ ¼ BðϕÞ ¼ 1, in which
case the principal part of the linearized EOM becomes

ð−4πΛTρσ þ gρσÞ∂ρ∂σϕ ¼ � � � : ð11Þ

Hence, one can see that the character of the highest-
derivative term can change for large enough Λ and/or
stress-energy density. This is very similar to ghost-based
spontaneous growth, but it arises from a completely differ-
ent form of coupling.
In the following sections, we are going to unite the

two paths we discussed which generalize spontaneous
scalarization—that is, using fields other than scalars, and
using disformal rather than conformal transformations. This
way, we will investigate spontaneous tensorization of
vectors and other fields through disformal couplings that
depend on these fields.

III. SPONTANEOUS GROWTH FROM VECTOR
DISFORMAL COUPLINGS

A. Field disformal coupling

The simplest disformal transformation of a metric by a
vector field Xμ is given by [15,16]

g̃μν ¼ gμν þ BðxÞXμXν; ð12Þ

where x ¼ XμXμ. Here, we ignore the overall conformal
scaling that is present in Eq. (9) to concentrate our efforts
on the purely disformal part of the transformation. We can
devise a related modified gravity theory in analogy to DEF
given by the action

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν − 2m2
XXμXμ�

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lm½fm; g̃μν�; ð13Þ

where Fμν ¼ ∇μXν −∇νXμ, and we express the matter
term explicitly in terms of the matter Lagrangian Lm.
Replacing all occurrences of g̃μν with gμν corresponds to
minimal matter coupling, hence GR.
Varying the action provides the EOM

∇μFμν ¼ ðm2
X − 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xB

p
B0T̃ρσXρXσÞXν

− 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xB

p
BT̃μνXμ; ð14Þ
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where B0 ¼ dB=dx. Here, the two stress-energy tensors
defined with respect to the bare and tilde metrics are related
through

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−g̃

p
LmÞ

δgμν
¼ 2ffiffiffiffiffiffi−gp δg̃ρσ

δgμν

δð ffiffiffiffiffiffi
−g̃

p
LmÞ

δg̃ρσ

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xB

p ðT̃μν − B0T̃ρσXρXσXμXνÞ: ð15Þ

Note that the lowering of the indices of the stress-energy
tensors should be performed with their respective metrics.
Our main interest is the spontaneous growth of Xμ in

compact stars; hence, we will have a closer look at the
vector EOM in this setting. To the leading order in Xμ, the
EOM becomes

∇μFμν ≈ ðm2
Xδ

ν
μ − 4πBð0ÞT̃νρgρμÞXμ ¼ Mν

μXμ; ð16Þ

where M can be interpreted as an effective mass-squared
tensor, which is the analog of meff in Eq. (3). Then, all it
takes to have an instability is to have one negative
eigenvalue of M. For matter that is not ultrarelativistic,
the largest component of M is of the magnitude of the rest
mass density ρ̃ of the matter; hence, a negative mass mode
exists if 4πBð0Þρ̃≳m2

X, and suitable choices of B lead to
spontaneous vectorization.
Seeing the instability is easier for sufficiently symmetric

spacetimes where the metric and the stress-energy tensor
are diagonal. One common example is a spherically
symmetric star with perfect fluid matter, where the equation
simplifies to

∇μFμν ≈ ðm2
X − 4πBð0ÞT̃ννgννÞXν ¼ m2

effX
ν: ð17Þ

Here, the repeated indices are not summed on the right-
hand side.m2

eff is clearly negative for appropriate choices of
B, and this indicates a tachyonic instability.
Let us remember that an instability around the GR

solution Xμ ¼ 0 is desirable, but it is also essential that
the instability shut off as it grows so that the final solution is
stable. Inspired by the DEF theory, a natural choice is B ¼
λXeβXXμXμ

for some constants βX and λX. For example, in an
astrophysical system where X0 is the dominant growing
mode, βX > 0 ensures that the negative contribution to M
disappears as X0 grows, killing the instability, while a λX ∼
1 would likely provide a powerful enough instability in
analogy to the DEF theory.
It should be clear that there is nothing magical about the

exponential form of B, and any function that behaves
similarly when x ¼ 0 and x → ∞ provides spontaneous
growth. However, ensuring that this recipe provides stable
neutron star solutions—that is, that the instability indeed
shuts off eventually—requires more thorough numerical
studies, such as time evolution, which we will not
attempt here.

It is curious to observe that the instability we have
modifies the effective mass, and is of tachyonic nature,
unlike the scalar-dependent disformal coupling in Eq. (9)
which modifies the wave operator, leading to a ghostlike
instability. This difference is not due to the nature of the
field, but is related to the fact that the former directly uses
the field in the disformal transformation, whereas the latter
necessarily uses the derivatives, since scalars have no
intrinsic indices. Wewill now see that ghostlike instabilities
can arise for vector-dependent disformal couplings as well,
if the transformation includes the derivatives of the field.

B. Derivative disformal coupling

It is also possible to have a derivative vector disformal
coupling such as

g̃μν ¼ gμν þ λBFðxÞFμαFν
α; ð18Þ

where λ is a constant with dimensions of area that renders
BF dimensionless. This form of coupling has been dis-
cussed in the literature [17], but its consequences for any
concrete theory, let alone in terms of spontaneous growth,
have not been investigated. We will assume BFð0Þ ¼ 1
without loss of generality.1

If we insert Eq. (18) into Eq. (13), the vector EOM in the
resulting theory becomes

∇μFμν ¼ m2
XX

ν þ 4π∇μ½
ffiffiffi
χ

p
λBFðT̃μβFβ

ν − T̃νβFβ
μÞ�

− 4π
ffiffiffi
χ

p
λB0

FT̃
μβFμαFβ

αXν: ð19Þ

In this and all the following cases with disformal coupling,
we define the ratio of the determinants of the metrics in the
two frames as

ffiffiffi
χ

p ≡ ffiffiffiffiffiffi
−g̃

p
=

ffiffiffiffiffiffi
−g

p
: ð20Þ

The nature of this equation is less transparent compared
to Eq. (14), but we can have a better idea by first
linearizing, and then concentrating on the principal part—
i.e., considering only the highest-derivative terms:

½−4πλðT̃ρσgμν − T̃νσgρμÞ þ gρσgμν�∇ρFσμ ¼ � � � : ð21Þ

Note that the terms arising from the disformal transforma-
tion, T̃ρσgμν − T̃νσgρμ, generically would not vanish, and
hence would change the overall sign of the kinetic term
∇ρFσμ for appropriate (large enough) choices of λ. The
“wrong-sign” kinetic term simply means that there is a
ghostlike instability in such regions of spacetime similar to
the case of scalar-dependent disformal transformation in
Eq. (9). This is not a surprise, since we know that ghostlike

1This choice rules out Bð0Þ ¼ 0, but we will soon see that this
case is not relevant to the discussion of spontaneous growth.
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instabilities arise from derivative couplings, which is the
case in both theories.
The ghostlike instability can be more easily seen in

specific cases, such as when the metric and the stress-
energy tensor are diagonal, as for a nonrotating neutron star
with perfect fluid matter. Let us also assume that the rest
mass density, and hence T̃00, is dominant for ease of
analysis. Consider the ∂2

t terms in the EOM for the spatial
components ν ¼ i:

½−4πλBFð0ÞT̃00 þ g00�gii∂2
t Xi ≈ � � � ðno sumÞ; ð22Þ

where the right-hand side contains at most first time
derivatives. The coefficient of ∂2

t Xi can reverse its sign
in the presence of matter. For this to happen, λ≳ ρ̃−1 should
be satisfied. Our assumptions might look too restrictive,
since the pressure terms can be comparable to density terms
in T̃μν, especially for more massive neutron stars. This
would not qualitatively change our conclusions, since
T̃ρσgμν − T̃νσgρμ does not vanish in general, and it has a
value of ∼ρ̃, hence λ≳ ρ̃−1 would still be sufficient with
order of unity changes of λ.
Just as in Eq. (12), we still need the instability to shut off

as the field grows. This can again be satisfied by nonlinear
terms in Xμ—namely, a decaying function BF ¼ eβFx with
a choice of sign for βF that ensures that BF vanishes for
growing values of Xμ, or BF ¼ eβ̄Fx

2

for β̄F < 0, would
ensure that the initial instability around Xμ ¼ 0 would
vanish for larger fields.
The form of the disformal term in Eq. (18) is inspired by

the standard kinetic term FμνFμν, in a similar fashion to the
relationship between the standard Proca potential term
XμXμ and Eq. (12). Other choices, such as replacing Fμν

with nonsymmetric ∇μXν might seem possible, but they
may lead to unregularized ghosts in the flat-space limit,
hence we choose to avoid them [18]. Such terms are in
general possible with carefully chosen couplings in the
most general vector-tensor theories which contain at most
two derivatives to avoid Ostrogradsky’s theorem [15,19].
Our choice in Eq. (18) is to demonstrate the relevance of
derivative vector disformal couplings, especially in the
context of spontaneous tensorization, and we will not
attempt to construct the most general disformal vector
coupling in this study.
Lastly, we remind the reader that mX does not play an

essential role in our discussion, which means that the case
mX ¼ 0 still possesses the instability. Such a theory
preserves the gauge symmetry Xμ → Xμ þ ∂μρ for any
scalar ρ, which might be desirable depending on the
physical interpretation of Xμ.

C. Disformal coupling through the
Abelian Higgs mechanism

So far, we have considered the intrinsically massive
vector field, the Proca field, in Eq. (13). A second, and

physically better motivated, way of introducing mass to a
vector field is the Abelian Higgs mechanism, which
preserves the gauge symmetry of the massless vector.
This mechanism is given by the following action:

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν�

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ð2DμΦDμΦþ 2VðΦ̄ΦÞÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lm½fm; g̃μν�; ð23Þ

where Φ is a complex scalar, DμΦ ¼ ð∇μ − ieXμÞΦ is the
gauge covariant derivative with a coupling constant e, and
an overbar means complex conjugation. The gauge trans-
formation is Xμ → Xμ −∇μρ and Φ → eieρΦ. The Higgs
mechanism introduces the vector field mass through the
hidden e2Φ̄ΦXμXν in the scalar kinetic term. This is thanks
to the choice

VðΦ̄ΦÞ ¼ m2
0ðu2 − Φ̄ΦÞ2=ð2u2Þ; ð24Þ

which causes the ground state of Φ to attain a non-
zero value.
The trivial matter coupling choice that preserves the

gauge symmetry is

g̃μν ¼ gμν þ λDBDðΦ̄ΦÞDðμΦDνÞΦ; ð25Þ

where ðÞ represents symmetrization, and we choose the
normalization BDð0Þ ¼ 1. This disformal transformation
contains both scalar and vector dependences through the
gauge covariant derivative D. Similar disformal transfor-
mations have been investigated in the cosmology literature
[20], but its effects in terms of spontaneous tensorization of
compact objects is a novel concept to the best of our
knowledge. The action in Eq. (23) together with a con-
formal, rather than disformal, transformation for g̃μν is
known to cause spontaneous growth of vector and gauge
boson fields [12].
The EOMs for the scalar and vector fields arising from

Eq. (25) are

∇νFνμ ¼ Δν
μðe2Φ̄ΦXν þ JΦν Þ;

Θμν½∇μ∇ν − e2XμXν − 2ieXμ∇ν − ie∇μXν�Φ
− 4π∇μðλDBDTμνÞDνΦ

¼ ½m2
0ðΦ̄Φ=u2 − 1Þ þ μ2Φ�Φ; ð26Þ

where JΦμ ¼ ieðΦ̄∇μΦ −Φ∇μΦ̄Þ=2, and
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Δν
μ ¼ −4πλDBDTν

μ þ δνμ;

Θμν ¼ −4πλDBDTμν þ gμν;

μ2Φ ¼ −4πλDB0
DT

μνDμΦDνΦ: ð27Þ

Equation (26) behaves qualitatively similarly to the
spontaneous growth cases we have seen so far. Δν

μ and
Θμν cause the principal parts of the equations for Xμ and Φ
to change sign when λD is large enough, leading to
ghostlike instabilities in both. Note that Φ also gets a
contribution to its effective mass through μ2Φ that can
potentially drive a tachyonic instability for an appropriate
form of BD, but this term only appears beyond the linear
order in perturbations of Φ around its equilibrium value
Φ̄Φ ¼ u2. This means it does not initiate spontaneous
growth, but it can play a role once the fields grow to a level
where nonlinear effects are dominant.
Remember that we require the shutoff of the instability as

the fields grow, which suggests that we need BD to decay as
Φ grows. Inspired by our experience, BD ¼ eβDΦ̄Φ with
βD < 0 is a possible choice. Even though we considered a
BD that is only a function of Φ, it can be generalized to
include vector dependence, BDðΦ; XμXμÞ, which would
bring new effective mass terms to the vector as well.
However, these would not change the qualitative picture of
the spontaneous tensorization process we described.
The case for the spontaneous growth of a non-Abelian

gauge field Wa
μ is very similar to its Abelian version. The

action is given by

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FaμνFa
μν�

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½2ðDμΦÞ†DμΦþ 2VðΦ†ΦÞ�

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lm½fm; g̃μν�; ð28Þ

where † indicates the Hermitian conjugate, and

Fa
μν ¼ ∇μWa

ν −∇νWa
μ þ efabcWb

μWc
ν;

VðΦ†ΦÞ ¼ 1

2

m2
0

u2
ðu2 −Φ†ΦÞ2: ð29Þ

The Higgs field Φ is now a multidimensional object that
can be acted upon by Ta, generators of the Lie algebra of
the gauge group. The letters a, b, and c label Ta, and the
structure constants fabc are defined as ½Ta; Tb� ¼ ifabcTc.
Then, the disformal transformation

g̃μν ¼ gμν þ λWBWðΦ†ΦÞDðμΦ†DνÞΦ ð30Þ

results in a theory where the non-Abelian fields grow
spontaneously.

IV. DISFORMAL COUPLING BEYOND VECTORS

We have seen that spontaneous growth arising from
disformal couplings can be easily adapted to vectors.
However, the idea is even more general, and we can
consider disformal coupling of any field. We will inves-
tigate the cases of spin-half and spin-2 particles in this
section, and see that our approach to scalars and vectors
does not proceed as smoothly in all cases in terms of
obtaining spontaneous growth phenomena.

A. Spinor disformal coupling

Our extension of spontaneous growth through disformal
coupling from scalars to vectors can be generalized to other
fields. As in the vector case, we can get inspiration from
spontaneous growth through conformal transformation,
where the next targets after vectors were spinors [11].
Spontaneous growth of spinor fields in gravity is less
known; hence, we will try to summarize all the basic
aspects of a spinor-dependent conformal metric scaling
first, which will be crucial in understanding the spinor-
dependent disformal coupling and its role in spontaneous
growth.
Consider the following action:

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R

þ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðψ̄γμð∇μψÞ − ð∇μψ̄ÞγμψÞ − 2mψ̄ψ �

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lm½fm; g̃μν�; ð31Þ

where ψ is a Dirac bispinor and ψ̄ ≡ −iψ†γ̂0 is constructed
with the flat-space gamma matrix γ̂0. Definitions for the
flat-space gamma matrices γ̂ðμγ̂νÞ ¼ ημν, curved-space
gamma matrices γðμγνÞ ¼ gμν, covariant derivatives ∇μ

for spinors, and other relevant mathematical details can
be found in Ref. [11]. The second line is simply the action
for a minimally coupled spinor field in gravity. The spinor
field spontaneously grows in the presence of matter if we
have a conformal coupling of the form g̃μν ¼ A2

ψgμν in the
matter action with

Aψ ¼ eβψ ðψ̄ γ̂5γμð∇μψÞ−ð∇μψ̄Þγ̂5γμψÞ=4 ≡ eβψL
5;K
ψ =2 ð32Þ

for a constant βψ and

γ5 ≡ i
4!
ϵμνρσγ

μγνγργσ ¼ i
4!
ϵ̃abcdγ̂

aγ̂bγ̂cγ̂d ¼ γ̂5; ð33Þ

which gives the EOM
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γμ∇μψ −
I − ζψ γ̂

5

1 − ζ2ψ
½m − ð∇μζψÞγ̂5γμ=2�ψ ¼ 0; ð34Þ

with ζψ ≡ 4πT̃βψA4
ψ .

To understand why the above EOM leads to spontaneous
growth, let us examine the purely tachyonic spinor EOM in
flat space [21,22]:

ðγ̂μ∂μ − γ̂5mÞψ ¼ 0: ð35Þ

Let us investigate a plane wave solution ψ ¼ uðk⃗Þeikμxμ ¼
e−iωtþik⃗·x⃗ of this equation:

ðγ̂ν∂ν− γ̂5mÞðγ̂μ∂μ− γ̂5mÞψ ¼ 0

⇒ ½−ημνkμkν− iðγ̂μγ̂5þ γ̂5γ̂μÞmkμþ γ̂5γ̂5m2�ψ ¼ 0

⇒ω2¼ k⃗ · k⃗−m2;

ð36Þ

where we used γ̂μγ̂5 þ γ̂5γ̂μ ¼ 0. This clearly chows that ω
is imaginary for large-wavelength (small-jkj) modes, and
leads to exponential growth rather than oscillation in time.
This is the instability mechanism of the tachyon, hence the
name “tachyonic Dirac equation.”
We have a mix of tachyonic and nontachyonic terms in

Eq. (34), but this equation also has the exponential growth
modes for large enough λψ , details of which can be found
in Ref. [11].
One important aspect of Eq. (34) is that it contains the

term ∇μζψ . ζψ itself contains derivatives of Ψ [since it is a
function of Aψ in Eq. (32)], which means ∇μζψ has second
derivatives of ψ , seemingly becoming the principal part of
the EOM. This would be a radical change, since the
principal part has a dominant effect on the behavior of
the equation, as we have utilized so far. However, using the
EOM to express the derivative terms in Eq. (32) leads to the
expression

A4
ψ ¼ ζψ

4πβψ T̃
¼ exp

�
−2mβψ ψ̄ψ

ζψ
1 − ζ2ψ

�
: ð37Þ

That is, ζψ can be written as a function of ψ , albeit
implicitly, rather than its derivatives. This means the
equation of motion is still a first-order partial differential
equation.2 We will look at this important fact once more for
the disformal coupling case.
The task at hand is finding a disformally transformed g̃μν

that can possibly lead to spontaneous spinorization.
Examination of the relationship between conformal and
disformal transformations that lead to spontaneous growth
for scalars and vectors immediately suggests that we lower

one of the contracted indices in Eq. (32) and add such a
term to the metric

g̃μν ¼ gμν þ λψBψ ½ψ̄ γ̂5γðμ∇νÞψ − ð∇ðμψ̄Þγ̂5γνÞψ �; ð38Þ

where Bψ ðψ̄ψÞ can be normalized as Bψð0Þ ¼ 1. Varying
the action gives

ðζμνγ5 þ gμνIÞγμ∇νψ − ðμψ − ð∇μζ
μνÞγνÞψ ¼ 0; ð39Þ

where

ζμν ¼ 8π
ffiffiffi
χ

p
λψBψ T̃μν;

μψ ¼ m − 4π
ffiffiffi
χ

p
λψB0

ψ T̃μν½ψ̄ γ̂5γμ∇νψ −∇μψ̄ γ̂
5γνψ �: ð40Þ

At first sight, for large enough λψ , the γ̂5 term may seem
to dominate over I in Eq. (39). An instability occurs around
ψ ¼ 0 in a similar manner to our tachyonic dispersion
relation in Eq. (36).
The above explanation of the tachyonic nature of

Eq. (39) overlooks an important fact: the equation of
motion contains the ∇μζ

μν term. Note that ζμν already
contains derivatives of ψ through χ. For conformal trans-
formations, we were able to use the equation of motion to
express ζψ without any derivatives, as in Eq. (37), hence
∇μζψ stayed a first-order term in the differential equation.
We were not able to perform a similar procedure for

ζμν—that is, to the best of our knowledge, ζμν depends on
the derivatives of ψ , which means that ∇μζ

μν contains
second derivatives of ψ . In other words, ∇μζ

μν is the
principal part of the EOM [Eq. (39)]. This means that even
if its coefficient is small, it has a leading role in the time
evolution of ψ , and as a consequence the above analysis for
the existence of a tachyonic d.o.f. cannot be repeated
verbatim. A change in the order of the EOM as a partial
differential equation (from first to second in this case) is
radical, and has never been the case in any of the
spontaneous growth theories so far.
Moving beyond the above major modification to the

spinor EOM, we were also not able to find a clear tachyonic
mode in this second-order differential equation. This is an
important difference from the case of vectors, where the
instability directly appears both in conformal and in
disformal transformations.
We should add that any spontaneously growing spinor

should be considered as a classical object as opposed to a
quantum field [11]. This is mainly because spinor fields
obey the Pauli exclusion principle when quantized, which
means that their occupation numbers cannot have arbitrary
values. Spontaneous spinorization would result in a con-
tinuously adjustable spinor field value which is determined
by the spinorizing object (e.g., the neutron star), hence the
exclusion principle cannot be accommodated. A purely
classical spinor is not a commonly encountered object, and

2The ∇μζψ term was missing in the original publication, and is
added in a recent erratum.
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its spontaneous growth also calls for care in understanding
the basics of half-integer spins in nonquantum con-
texts [23].

B. Spin-2 disformal coupling

Can we have a disformal transformation based on a spin-
2 field, since it seems to be the natural choice after scalars
(spin-0) and vectors (spin-1)? The answer is negative,
based on our current knowledge of interacting spin-2 field
theories.
To start with, we should note that there is no known

theory of spontaneous growth of a spin-2 field, even when
we have a conformal transformation [8]. A good starting
point to understand this is looking at the known interacting
spin-2 theories, which have only recently been developed
[18]. Since the metric is also a spin-2 field, such theories
can be considered as theories of two metrics gμν and fμν
(bimetric theories), whose generic action is given by

S ¼ SEHðgÞ þ SEHðfÞ þ Sintðf; gÞ þ Sm½fm; gμν�; ð41Þ

where SEH is simply the Einstein-Hilbert action for a given
metric, and the interaction term between the metrics Sint has
to be of a specific form in order to avoid undesirable ghosts
[24,25]. We also included a minimal matter coupling Sm
with one of the metrics, which is known to preserve the
ghost-free nature of the theory.
Looking at our previous examples of spontaneous

growth through nonminimal matter coupling, the most
straightforward attempt to induce an instability in this case
would be replacing the metric in the matter coupling with a
transformed one:

Sm½ψm; gμν� → Sm½ψm; g̃μν�; ð42Þ

where g̃μν is a function of both gμν and fμν. For example, a
possible disformal transformation is

g̃μν ¼ gμν þ λffμν: ð43Þ

That is, matter field couples to both metrics at the same
time. However, coupling to a single metric is crucial for
having a ghost-free theory, and the ghost is known to
reappear with composite metric couplings as in Eq. (43)
[26]. Thus, stable spontaneous growth that comes with such
matter couplings seems to be impossible. One potential
way out of this can be a scenario where the ghost only
comes in at extremely high-energy scales and the theory
can be reconciled with observation [26]. Whether this
happens for our proposed disformal transformation is not
clear. We note that conformal transformations also contain
couplings to both metrics in a similar fashion, and seem to
fail due to the same reason [8]. Overall, all known coupling
forms that lead to spontaneous growth seem to fail for spin-
2 fields.

In summary, it is not straightforward to generalize
disformal transformation-based spontaneous growth
beyond vectors. This was not a surprise for spin-2 fields,
since spontaneous growth is not known for any form of
coupling. However, the spinor case is puzzling, since
spontaneous spinorization does occur for conformal trans-
formations. Understanding the deeper reasons for such
differences between conformal and disformal transforma-
tions is an important part of future studies on spontaneous
growth in gravity.

V. CONCLUSION

The original spontaneous scalarization theory of DEF is
the quintessential example of spontaneous growth in
gravity where large deviations from GR in strong fields
provide an ideal target for GWs. This theory has a scalar-
dependent conformal transformation in the metric that
couples to matter, which provides an imaginary effective
mass, hence the growth. This idea was recently generalized
in various ways, and here we investigated the interaction of
two such paths. First, one can replace the scalar in the
conformal scaling of DEF with other fields, e.g., a vector,
and obtain spontaneous tensorization for general fields.
Second, one can replace the scalar-dependent conformal
scaling of the metric with a still scalar-dependent disformal
transformation, and obtain a novel form of spontaneous
scalarization.
In this study, we combined the two approaches above,

and showed that spontaneous growth also occurs when the
scalar dependence of the disformal transformation is
generalized to other fields. We have devised three vector-
based disformal transformation theories, and showed that
they generically possess the instabilities that incite sponta-
neous growth. The first of these theories can be said to be
somehow simpler than the scalar-dependent case, since the
transformation only contains the field, and not its deriv-
atives. This is also reflected in the fact that the instability in
this theory is tachyonlike, while all other cases contain a
ghostlike instability which can lead to astrophysically
unusual structures [8].
We have also showed that ideas to generalize sponta-

neous growth have their limitations. It was already known
that the usual conformal transformations cannot be used to
obtain a theory of spontaneously growing spin-2 field, and
this continues to be the case for disformal transformations
due to similar reasons. The case is more curious for spinor
fields. Even though one can obtain spontaneous spinoriza-
tion based on conformal transformations, it is not clear
whether this happens for their disformal counterparts.
Disformal coupling changes the nature of the equation
of motion for the spinor from a first-order partial differ-
ential equation to a second-order one. This radical change
also makes it hard to establish that there is an instability in
the linearized equations, though we have not ruled out this
possibility either.
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Before we conclude, let us discuss one of the paths to
generalize the spontaneous scalarization of DEF that we
ignored so far: using couplings beyond the matter term. It
has been recently shown that a scalar-dependent coupling
to any term in the Lagrangian—for example, the Gauss-
Bonnet terms as in the action

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕþ λ2fðϕÞR2�; ð44Þ

leads to the spontaneous growth of the scalar [27–29]. Here
R2 ¼ R2 − 4RμνRμν þ RμνρσRμνρσ is the Gauss-Bonnet
invariant of gμν, and since it is nonzero purely due to
curvature, one can obtain spontaneous growth near black
holes as well as neutron stars. R2 can be replaced with
other curvature- or field-dependent terms [30], or the scalar
can be replaced with another field such as a vector [31], and
one can still obtain more general spontaneous tensorization
phenomena. Following the theme of the current study, we
can hope to find spontaneous growth in the analogues of
these theories with disformal transformations, e.g.,

1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕþ λ2R̃2�; ð45Þ

where R̃2 is the Gauss-Bonnet invariant of a disformally
transformed metric g̃μν. Unlike the above case, the coupling
of the scalar (or vector) field to the Gauss-Bonnet term is not
straightforward anymore. Even though such theories have
been considered in the past [32], their equations of motion
are quite complicated, and we were not able to find clear
signs of spontaneous growth with our linearized analysis.
More thorough studies may shed more light on this issue.
We have taken the path of considering a single form of

coupling and investigating its dependence on different fields,
but there are alternative directions to explore the landscape
for theories that feature spontaneous growth phenomena. For

example, one can consider the most general gravity theory
that contains a given field in addition to the metric, and then
consider all possible coupling terms for the field. Such
theories for scalar fields were pioneered by Horndeski [33],
and all possible mechanisms of spontaneous scalarization in
this case have been recently investigated [34]. This procedure
can be repeated for other fields, which would form a
systematic approach that would complement ours.
This study can be considered as a demonstration of the

fact that spontaneous growth is widespread in gravity
theories. Theories that have very different action formula-
tions can have very similar behavior if they contain similar
dynamical mechanisms. In our case, the mechanism is
spontaneous growth based on an instability, which is
eventually regularized due to nonlinear interactions. The
similarity is not merely a theoretical one—observational
signatures of these theories are also quite alike, and
particularly prominent in the context of GWs. Thus, we
think it will be fruitful to consider spontaneous tensoriza-
tion theories as members of the same family as far as
modifications to GR are considered, despite the diversity in
their Lagrangian formulations. On the other hand, there are
limitations to which fields can grow spontaneously by a
given coupling in the action, and discovering the under-
lying reasons for these will be an important aspect of
understanding spontaneous growth in gravity.
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