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The Standard-Model Extension (SME) is the general phenomenological framework used to investigate
Lorentz violation at the level of effective field theory. It has been used to obtain stringent experimental
bounds on Lorentz violation in a wide range of tests. In the gravity sector of the SME, it is typically
assumed that the spacetime symmetry breaking occurs spontaneously in order to avoid potential conflicts
with the Bianchi identities. A post-Newtonian limit as well as matter-gravity couplings in the SME have
been developed and investigated based on this assumption. In this paper, the possibility of using the SME to
also describe gravity theories with explicit spacetime symmetry breaking is investigated. It is found that in a
wide range of cases, particularly when matter-gravity couplings are included, consistency with the Bianchi
identities can be maintained, and therefore the SME can be used to search for signals of the symmetry
breaking. Two examples with explicit breaking are considered. The first is ghost-free massive gravity with
an effective metric that couples to matter. The second is Hořava gravity coupled with matter in an infrared
limit.
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I. INTRODUCTION

General relativity (GR) and the Standard Model (SM) of
particle physics are well-tested theories that describe
the fundamental forces of nature. However, GR is not a
quantum theory since it is not renormalizable, and it must
be treated as an effective field theory at low energies. This,
as well as open questions about the nature of dark matter
and dark energy, has led to investigations of alternative
gravity theories that modify GR, where the ultimate goal is
to find a consistent quantum theory of gravity. In many
scenarios, small violations of local Lorentz and diffeo-
morphism invariance can occur, which would provide
important signatures of new physics [1].
The phenomenological framework known as the

Standard-Model Extension (SME) has been developed
and used to search for signals of spacetime symmetry
breaking in a wide range of experimental tests [2–5]. The
Lorentz- and diffeomorphism-breaking operators that
appear in the SME involve couplings with fixed back-
ground fields, usually referred to as SME coefficients. The
results of experimental tests can be interpreted as bounds
on the SME coefficients. Many different types of operators
and SME coefficients have been classified and probed.
These include both power-counting renormalizable and
nonrenormalizable operators [6]. Gravity sectors in the
SME can be defined using metric or vierbein descriptions
in Riemann spacetime or more generally in Riemann-
Cartan spacetime [3]. Relationships between Lorentz
violation and torsion [7], nonmetricity [8], and Riemann-
Finsler geometry [9] have been explored using the SME.

In investigations involving gravity, a post-Newtonian
limit of the SME has been developed [10], and matter-
gravity interactions have been incorporated [11]. These are
used to examine a variety of experiments, including lunar
laser ranging tests [12], atom interferometry [13], short-
range gravitational tests [14], analyses of baryon number
asymmetry [15], orbital motion analyses [16], gyroscope
precession [17], pulsar timing [18], perihelion and solar-
spin tests [10,19], and analyses of gravitational Čerenkov
radiation [20]. Lorentz-violating (LV) effects in gravita-
tional radiation have also been investigated using a linear-
ized version of the SME [21].
In the gravity sector of the SME, an important distinction

is made between spontaneous and explicit spacetime sym-
metry breaking [3]. With explicit breaking, the SME coef-
ficients are nondynamical background tensors, and they
appear directly in the Lagrangian as objects with preferred
spacetime directions [22–24]. However, with spontaneous
breaking, all tensors are dynamical, and the SME coefficients
arise as vacuum expectation values [25]. With spontaneous
breaking, the usual Noether identities involving the Bianchi
identities, the Euler-Lagrange equations for matter fields, and
covariant energy-momentum conservation all hold similarly
to how they hold in GR. In contrast, with explicit breaking,
potential conflicts can occur between the Bianchi identities,
the dynamical equations of motion, and covariant energy-
momentum conservation. In some cases, this puts severe
restrictions on a theory or results in it being inconsistent.
It is for this reason that the spacetime symmetry

breaking in the SME with gravity is usually assumed to
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be spontaneous since potential inconsistencies with the
Bianchi identities are then avoided [3]. This is because with
spontaneous breaking, the excitations have a known form
as massless Nambu-Goldstone (NG) modes or as massive
Higgs-like excitations, and these together with the vacuum
solutions combine in a way that maintains the unbroken
spacetime symmetry. The fact that the excitations have a
known form also plays an important role in developing the
post-Newtonian limit of the SME. It allows for a systematic
perturbative treatment that does not depend on the particu-
lar structure of an underlying Lorentz-breaking theory, and
this in turn allows the post-Newtonian limit of the SME to
be applied in a wide range of experimental tests.
The goal of this paper is to take a closer look at the case

of explicit spacetime symmetry breaking and to show that
in a wide range of cases the SME can still be applied. This
requires looking at the types of interactions and the form of
the extra excitations that can occur with explicit breaking
and showing that a useful post-Newtonian limit with
consistent matter-gravity couplings can still be obtained.
As examples, the SME is used to investigate effects of
explicit spacetime symmetry breaking that might occur in
ghost-free massive gravity [26] and Hořava gravity [27]
when matter-gravity couplings are included. Specifically,
the first example looks at ghost-free massive gravity with
matter couplings formed using an effective potential con-
sisting of a combination of the physical metric or vierbein
and a nondynamical background. The second example
considers possible matter couplings that might arise in the
infrared (IR) limit of Hořava gravity.
The organization of this paper is as follows. Section II

provides background on local Lorentz and diffeomorphism
breaking in gravity, including a discussion of the dif-
ferences between spontaneous and explicit breaking. This
is followed in Sec. III by a brief overview of the gravity
sector of the SME. Section IV looks at what happens in
the gravity sector of the SME when the symmetry breaking
is explicit as opposed to spontaneous. This is followed by
an examination of two gravity models with explicit break-
ing in Sec. V. A summary and conclusion are presented
in Sec. VI.

II. GRAVITY AND LORENTZ VIOLATION

At the level of effective field theory, local Lorentz
symmetry and diffeomorphism invariance are broken when
matter and gravitational fields interact with a fixed back-
ground tensor that has preferred directions in spacetime.
For a theory of this type in Riemann spacetime, the

general form of the action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LgravðgμνÞ þ LLIðgμν;φσÞ

þ LLVðgμν;φσ; k̄μν���Þ�: ð1Þ

In this expression, the components of the metric, gμν, are
defined with respect to a spacetime coordinate frame.
Symmetry-preserving pure-gravity terms are contained in
LgravðgμνÞ, which is assumed to include an Einstein-Hilbert
term. Conventional tensor matter fields are denoted col-
lectively as φσ , where σ denotes all of the relevant indices.
The term LLIðgμν;φσÞ includes all Lorentz-invariant (LI)
and diffeomorphism-invariant matter-gravity interactions.
The background field associated with the symmetry break-
ing is denoted with an unspecified number of indices as
k̄μν���. The LV and diffeomorphism-breaking terms are all
contained in LLVðgμν;φσ; k̄μν���Þ.
To generalize to Riemann-Cartan spacetime, which

allows fermions as well as torsion to be included, a vierbein
formalism is used. The vierbein eμa has components
defined with respect to both the spacetime frame and a
local Lorentz frame, and covariant derivatives involve a
spin connection [3,28]. For simplicity, only models in
a zero-torsion limit with a spin connection defined entirely
in terms of the vierbein are considered here. In this case, the
generic form of the action can be written as

S ¼
Z

d4xe½LgravðeμaÞ þ LLIðeμa;φσ;ψÞ

þ LLVðeμa;φσ;ψ ; k̄ab���; ēμaÞ�: ð2Þ
Here, e is the determinant of the vierbein, ψ represents a
generic fermion field, and k̄ab��� are the components of the
background relative to the local Lorentz frame. A back-
ground vierbein, denoted as ēμa, provides a link between
the spacetime and local frame components of the fixed
background tensor.
Note that if a theory is defined initially by making tensor

contractions of the spacetime indices k̄μν��� with only
dynamical fields in the spacetime frame, then the back-
ground vierbein must be used to introduce the local
components k̄ab���, where these are related by

k̄μν��� ¼ ēμaēμa � � � k̄ab���: ð3Þ
It is important to realize that if instead the components of
k̄ab��� are used directly to form contractions with dynamical
fields in local frames, then a different theory with different
consequences and consistency conditions results. See the
Appendix for an illustration of this.
In both metric and vierbein descriptions, all of the

dynamical gravitational and matter fields transform appro-
priately under diffeomorphisms and local Lorentz trans-
formations. In contrast, the components of tensor
background fields remain fixed or transform anomalously
under diffeomorphisms and local Lorentz transformations.
For example, the background vierbein ēμa is fixed under
both of these spacetime transformations.
It is important to emphasize that even though the back-

ground tensor can have preferred directions in spacetime,
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a physically viable theory must still be observer indepen-
dent. This is a hallmark feature of the SME. It requires that
an effective field theory with spacetime symmetry breaking
cannot depend on the choice of coordinates or local Lorentz
basis. The action and equations of motion must therefore be
covariant under general coordinate transformations and
under passive changes of local Lorentz bases. Note that
under these observer transformations, the components of
the background tensor and vierbein transform, along with
the gravitational and matter fields, in the conventional way.
An observer-independent Lagrangian can then be formed
as a scalar under the observer spacetime transformations.

A. Spontaneous versus explicit breaking

To understand the properties of the background tensor, it
is necessary to make distinctions between spontaneous and
explicit spacetime symmetry breaking [22,24].
In the case of spontaneous breaking, it is assumed that

the background tensor originates as the vacuum expectation
value of a fully dynamical tensor. The dynamical tensor can
be denoted (depending on the frame) as either kμν��� or kab���.
These components are linked by the physical vierbein eμa.
The fixed background is then given as the vacuum expect-
ation value, e.g.,

k̄μν��� ¼ hkμν���i; ð4Þ

in the spacetime frame. The components k̄ab��� give the
corresponding vacuum solution in the local Lorentz frame
when a vierbein treatment is used, and the background
vierbein ēμa is the vacuum expectation value heμai of the
physical vierbein eμa.
The full dynamical tensor can then be written as a sum of

the background plus excitations about the background,
where tildes are used to denote the excitations. In the
spacetime frame, this gives the expression

kμν��� ¼ k̄μν��� þ k̃μν���; ð5Þ

while in the local Lorentz frames, kab��� ¼ k̄ab��� þ k̃ab���.
Similarly, with spontaneous breaking, the physical vierbein
is the sum of the vacuum value plus excitations about the
vacuum [28].
With spontaneous symmetry breaking (SSB), a complete

dynamical description requires additional kinetic terms in
the action that describe the excitations as well as potential
terms that induce the symmetry breaking. Such terms can
be denoted generically as L0

SSBðgμν;φσ; k̄μν���; k̃μν���Þ in a
metric description and can be added to the action in Eq. (1).
Alternatively, in a vierbein description, the additional terms
would have the form L0

SSBðeμa;φσ;ψ ; k̄ab���; k̃ab���; ēμaÞ and
would be added to Eq. (2).
With SSB, the excitations k̃μν��� or k̃ab��� take the form of

NG modes and massive Higgs-like modes [28]. The NG

modes are generated by the broken symmetries. For
example, when diffeomorphisms generated by a vector
ξμ are spontaneously broken, the four infinitesimal NG
excitations take the form of a Lie derivative acting on the
vacuum solution k̄μν���,

k̃μν��� ≃ Lξk̄μν���: ð6Þ

In this case, the Lie derivative can be expanded, and the
vectors ξμ can be promoted to fields πμ representing the NG
modes. The full dynamical tensor then has the form

kμν��� ≃ k̄μν��� þ ðDμπ
αÞk̄αν��� þ ðDνπ

αÞk̄μα��� þ � � �
þ παDαk̄μν��� þ ðδkμν���Þmassive; ð7Þ

where Dμ represents covariant derivatives in the curved
spacetime, and the excitations labeled as ðδkμν���Þmassive

represent the massive Higgs-like modes that generally
occur with spontaneous symmetry breaking.
With SSB, equations of motion for the dynamical tensor

hold when all the excitations are included. These can be
obtained as field variations on the action, which have the
form

δS
δkμν���

¼ 0: ð8Þ

The background fields k̄μν��� by themselves are the vacuum
solutions, which obey

�
δS

δk̄μν���

�
vacuum

¼ 0: ð9Þ

Hence, with SSB the backgrounds k̄μν��� are dynamical
fields in the sense that they satisfy the vacuum equations of
motion.
In contrast, with explicit breaking the background tensor

is nondynamical. The components k̄μν��� or k̄ab��� are not
vacuum values, and there are no field variations with
respect to them that yield equations of motion. Instead,
mathematical variations with respect to k̄μν��� result in
expressions that need not vanish, e.g.,

δS

δk̄μν���
≠ 0: ð10Þ

With explicit breaking, the background tensor is simply a
prescribed nondynamical object that appears directly in the
Lagrangian.
However, there are additional degrees of freedom (d.o.f.)

that can appear in a theory with explicit symmetry break-
ing. This is because when diffeomorphisms and local
Lorentz symmetry are broken explicitly, there are fewer
gauge freedoms. These gauge freedoms would normally be
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used to eliminate components of the metric or vierbein, but
with explicit breaking these components instead remain as
possible extra modes. It is important to note as well that
when a gauge symmetry is broken, the constraint structure
of a theory is usually altered [29]. This can further modify
the nature and behavior of the physical d.o.f., or it can cause
a theory to be unphysical due to the appearance of ghost
modes. For this reason, it is important to work with theories
where mechanisms exist to eliminate potential ghosts.

B. Stückelberg approach and explicit breaking

It is common in theories with explicit symmetry breaking
to use a Stückelberg approach to describe the behavior of
the extra d.o.f. that arise [30]. In this approach, scalars are
added as dynamical fields, which restore the broken
spacetime symmetry. For example, with explicit diffeo-
morphism breaking in Riemann spacetime, four scalars,
ΦA, with A ¼ 0, 1, 2, 3, are used to replace the background
as follows:

k̄μν���ðxÞ → DμΦADνΦB � � � k̄AB���ðΦÞ: ð11Þ

While this adds four extra d.o.f. to the theory, four local
gauge freedoms (the restored diffeomorphisms) are created
as well, and therefore the net number of d.o.f. remains
unchanged.
The original theory with explicit breaking can be

obtained from the Stückelberg model by fixing the diffeo-
morphism invariance so the four scalars match the space-
time coordinates:

ΦA ¼ δAμxμ: ð12Þ

Inserting this into (11) gives back the original fixed
background. Notice, however, that if infinitesimal excita-
tions about the coordinates are included in the Stückelberg
scalars, denoted as fields πμ, where

ΦA ¼ δAμ ðxμ þ πμÞ; ð13Þ

then an expansion in Eq. (11) gives

DμΦADνΦB � � � k̄AB���ðΦÞ
≃ k̄μν��� þ ðDμπ

αÞk̄αν��� þ ðDνπ
αÞk̄μα��� þ � � � þ παDαk̄μν���:

ð14Þ

Comparing this with Eq. (7) shows that the infinitesimal
excitations in the Stückelberg approach reproduce the NG
excitations that would occur in a similar theory with
spontaneous breaking.
While the infinitesimal NG modes are found to be the

same, there are still some important differences that remain
between an explicit-breaking theory with Stückelberg fields
and a theory with spontaneous breaking. For example, there

are still no dynamical field equations for kμν��� in the
Stückelberg approach, and there are no massive Higgs-like
excitations ðδkμν���Þmassive in (14) as there are in (7). There
are also additional terms that would appear in the action of
a theory with spontaneous breaking, such as L0

SSB, which
are absent in an explicit-breaking model. What the
Stückelberg approach does is introduce the minimal num-
ber of excitations that are needed to restore the broken
symmetry, which is four in the case of broken diffeo-
morphisms, and it does so by creating the same NG modes
that would appear in a theory with spontaneous breaking.

III. GRAVITY AND THE SME

The SME is constructed as the general observer-
independent effective field theory formed from matter
and gravitational fields interacting with Lorentz-violating
tensors. The theory contains the SM and GR, including
possible Lorentz-preserving extensions, as well as a multi-
tude of additional interaction terms that lead to breaking of
spacetime symmetry.
Typically, experiments test for signatures of Lorentz

breaking and express their results as limits or bounds on the
SME coefficients. In most investigations in Minkowski
spacetime, the SME coefficients are treated as constant to a
first approximation (see [31] for an analysis including time
dependence). As a result, global translation invariance still
holds, while global Lorentz symmetry is broken. In this
context, it is not crucial whether the SME coefficients are
viewed as vacuum expectation values or purely as phe-
nomenological coefficients.
However, when gravity is included and GR becomes a

limiting subsector of the SME, there are geometrical
constraints, such as the Bianchi identities, which become
important. Moreover, with gravity, Lorentz symmetry
becomes a local symmetry, and diffeomorphism invariance
appears as an additional local symmetry. Field theories with
local symmetries have associated Noether identities that
link the Euler-Lagrange equations obeyed by the dynamical
fields in the theory. In GR, for example, the divergence of
the Einstein equations Gμν ¼ 8πGTμν is linked off shell via
Noether identities to the Euler-Lagrange equations for the
dynamical matter fields. When the matter fields are on
shell, and the contracted Bianchi identity, DμGμν ¼ 0, is
used, the result is that DμTμν ¼ 0 holds automatically as a
result of the identities. Essentially, the four diffeomorphism
invariances in GR cause the four equations DμTμν ¼ 0 to
be redundant with the Euler-Lagrange equations for the
dynamical matter fields.
These relations between the Bianchi identities, the

dynamical Euler-Lagrange equations, and covariant
energy-momentum conservation continue to hold even
when spontaneous spacetime symmetry breaking occurs
since the fields are all dynamical. However, if a non-
dynamical tensor field is introduced, which explicitly

ROBERT BLUHM, HANNAH BOSSI, and YUEWEI WEN PHYS. REV. D 100, 084022 (2019)

084022-4



breaks spacetime symmetries, it no longer has to obey
Euler-Lagrange equations, and as a result, potential incon-
sistencies with the Bianchi identities can arise. It is for this
reason that the SME coefficients are typically assumed to
arise as a result of spontaneous local Lorentz and diffeo-
morphism breaking.

A. Minimal SME with gravity

The minimal SME in Riemann spacetime restricts the
Lorentz-breaking operators to dimension four or less, and it
traditionally assumes the spacetime symmetry breaking is
spontaneous. The resulting action can be divided into
sectors,

SSME ≃
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ LLV þ LLI þ L0

SSB

�
: ð15Þ

The terms in LLV contain the diffeomorphism and
Lorentz-violating interactions of the SME coefficients with
gravitational and matter fields, while the ordinary sym-
metry-preserving matter terms, including their couplings to
gravity, are inLLI. The terms in L0

SSB contain the dynamical
terms for the excitations of the SME tensors that occur in a
process of spontaneous symmetry breaking.
At leading order in the SME coefficients, LLV can be

divided into terms with pure-gravity and matter-gravity
couplings,

LLV ≃ LðgravÞ
LV þ Lðmatter−gravÞ

LV : ð16Þ

The pure-gravity couplings at this level of approximation
involve three interaction terms given as

LðgravÞ
LV ¼ 1

16πG
ð−uRþ sμνRT

μν þ tκλμνCκλμνÞ; ð17Þ

where RT
μν is the trace-free Ricci tensor and Cκλμν is the

Weyl conformal tensor. The fields sμν and tκλμν have
symmetries that match those of the trace-free Ricci tensor
and the Riemann curvature tensor, respectively.
The dynamical fields u, sμν, and tκλμν give rise to SME

coefficients ū, s̄μν, and t̄κλμν as vacuum values in a process
of spontaneous local Lorentz and diffeomorphism break-
ing. This permits a separation of the dynamical fields into
SME coefficients and small fluctuations denoted using
tildes,

u ¼ ūþ ũ;

sμν ¼ s̄μν þ s̃μν;

tκλμν ¼ t̄κλμν þ t̃κλμν: ð18Þ

Since the SME coefficients originate from spontaneous
symmetry breaking, the excitations ũ, s̃μν, and t̃κλμν consist
of NG modes and massive Higgs-like modes, where the

terms in the action describing these excitations are con-
tained in LLV and L0

SSB. While there may not be known
expressions for LLV and L0

SSB, the consistency of the theory
is assured since DμTμν ¼ 0 holds automatically as the
result of the Noether and Bianchi identities when the
excitations ũ, s̃μν, and t̃κλμν are on shell.
In applications where gravity is weak, the metric can

be expanded perturbatively about a Minkowski back-
ground, gμν ≃ ημν þ hμν, and the effects of gravity in a
post-Newtonian limit can be investigated. The post-
Newtonian limit of the SME is described in Ref. [10],
where a systematic procedure based on a general set of
assumptions is used to find an expansion that decouples the
fluctuations, ũ, s̃μν, and t̃κλμν, from the vacuum values and
metric excitations. Central to this procedure is the fact that
with spontaneous symmetry breaking, diffeomorphism
invariance holds and consistency of the dynamics with
covariant energy-momentum conservation is maintained.
The result is a post-Newtonian description involving only
the metric and the SME coefficients. Interestingly, in this
context, sensitivity to ū and t̄κλμν in these expansions does
not appear [10,11,32]; however, cosmological inflationary
models may have effects depending on t̄κλμν [33]. It is for
this reason that the coefficients ū and t̄κλμν are largely
ignored in the remainder of this paper, including in Sec. V.
The bounds obtained for the pure-gravity sector of the
minimal SME only involve the s̄μν coefficients.
Matter-gravity couplings in the minimal SME have

been analyzed as well and are described in Ref. [11]. In
this case, a systematic perturbative method is developed,
and it is used to investigate Lorentz-violating effects
involving matter particles or light in a weak gravitational
field. With matter included, the minimal SME terms in

Lðmatter−gravÞ
LV include a number of coefficients that couple

with gravity. For example, a fermion has couplings with
coefficients aμ, bμ, cμν, dμν, eμ, fμ, gλμν, and Hμν, while a
photon has couplings with coefficient ðkFÞκλμν. However,
for the purposes of this paper, and in particular with regards
to the examples considered in Sec. V, it suffices to consider
a subset of the SME matter-gravity couplings. These are
chosen to consist of a single fermion field ψ coupled to a
symmetric coefficient cμν and a photon field Aμ coupled to
a coefficient ðkFÞκλμν having the same symmetries as the
Riemann curvature tensor.
The relevant terms in this illustrative model are then

given as

Lðmatter−gravÞ
LV ¼ −eμaψ̄cαβeβaeαbγbDμψ

−
1

4
ðkFÞκλμνFκλFμν; ð19Þ

where a vierbein description is used due to the presence of
the fermion. Note that the covariant derivative reduces to
partial derivatives in Fμν, while it is given as
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Dμψ ¼ ∂μψ þ 1

4
iωμ

abσabψ ð20Þ

when acting on a fermion field. The dynamical tensors in
the matter sector can be separated into background values
assumed to originate from spontaneous breaking plus
fluctuations:

cμν ¼ c̄μν þ c̃μν;

ðkFÞκλμν ¼ ðk̄FÞκλμν þ ðk̃FÞκλμν: ð21Þ

It is the backgrounds c̄μν and ðk̄FÞκλμν that are probed at
leading order in experimental tests.

B. Field redefinitions

As described in Refs. [3,11,32,34], not all of the SME
coefficients in a given experimental setup are independent
or physical. In many cases, coordinate changes, component
mixing in spinor space, or field redefinitions can be used to
move some of the sensitivity to Lorentz breaking from one
particle sector to another, or to remove a particular set of
coefficients completely. In particular, in the presence of
gravity, there are ten components of the SME coefficients
that are not physical. This can be seen in certain circum-
stances as a direct result of having four coordinates and six
local Lorentz bases to choose. Alternatively, the coordi-
nates and bases can be left unchanged while field redefi-
nitions on the ten components in the metric can be made
that eliminate components of the SME coefficients.
To illustrate this, consider a fermion of mass m and a

photon field in gravity, where the Lorentz-violating tensors
in the minimal SME are limited to u, sμν, cμν, and ðkFÞκλμν.
The action including the usual Lorentz-invariant terms can
then be written as

SSME ≃
Z

d4xe

�
1

16πG
½ð1 − uÞRþ sμνRμν�

þ ieμaψ̄ðγa − cαβeβaeαbγbÞDμψ −mψ̄ψ

−
1

4
Fκλðgκμgλν þ ðkFÞκλμνÞFμν

�
; ð22Þ

where in a vierbein treatment gμν ¼ eμaeνbηab, and the
curvature tensor and covariant derivatives are derived
using eμa.
In a perturbative approach that keeps terms to linear

order in the fields u, sμν, cμν, and ðkFÞκλμν, it has been
shown that redefinitions of the metric and vierbein can be
used to eliminate dependence on either sμν or cμν in SSME,
or alternatively, the symmetric combinations ðkFÞαμαν can
be eliminated. The new redefined metric is denoted as g̃μν,
and it is related to the original metric by

gμν ≃ ð1þ uÞg̃μν þ sμν; ð23Þ

with sμν symmetric and traceless. The new redefined
vierbein is denoted as ẽμa, and it is given by

eμa ≃
�
1þ 1

2
u

�
ẽμa þ

1

2
ẽσasμσ: ð24Þ

With these definitions, the following three integral relations
have been shown to hold to first order in the SME
coefficients [32].
For the Einstein-Hilbert term,

Z
d4x

ffiffiffiffiffiffi
−g

p 1

16πG
R

≃
Z

d4x
ffiffiffiffiffiffi
−g̃

p 1

16πG
½ð1 − uÞR̃þ sμνR̃μν�: ð25Þ

Here, the curvature on the right-hand side, which is defined
in terms of the redefined metric g̃μν, is denoted with a tilde.
Note that a total derivative term in the integral on the right
has been dropped.
For the Maxwell term,

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

4
FκλgκμgλνFμν

�

≃
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

4
Fκλðg̃κμg̃λν þ ðkFÞκλμνÞFμν

�
ð26Þ

where the SME coefficients are given as

ðkFÞκλμν ≃ sκ½μg̃ν�λ − sλ½μg̃ν�κ; ð27Þ

which have as their symmetric trace

ðkFÞαμαν ≃ sμν: ð28Þ

Finally, for the fermion term

Z
d4xe½ieμaψ̄γaDμψ −mψ̄ψ �

≃
Z

d4xẽ½iẽμaχ̄γaD̃μχ −mχ̄χ

− iẽμaχ̄cαβẽβaẽαbγbD̃μχ� ð29Þ

where the SME coefficients in this case are

cμν ¼ −
1

2
ðug̃μν þ g̃αμg̃βνsαβÞ: ð30Þ

Notice that the covariant derivative defined using ẽμa in
(29) is labeled with a tilde, and a rescaling of the fermion
field ψ , relabeled as χ, has been performed to keep the
action in a standard Dirac form [32].
As Eqs. (25), (26), and (29) reveal, field redefinitions of

the metric allow one set of the SME coefficients sμν,
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ðkFÞαμαν, or cμν to be eliminated while altering the others.
For example, redefinitions can be made that eliminate cαβ
while redefining sμν and ðkFÞαμαν, or that eliminate
ðkFÞαμαν while redefining sμν and cμν. The result is that
one set of the components sμν, cμν, and ðkFÞαμαν is
unphysical.
Note, however, that if u ¼ 0 and sμν, cμν, and ðkFÞκλμν are

all related to a common traceless symmetric tensor kμν as

sμν ≃ kμν

ðkFÞκλμν ≃ kκ½μgν�λ − kλ½μgν�κ

cμν ≃ −
1

2
gμαgνβkαβ; ð31Þ

then all three sets of components sμν, cμν, and ðkFÞαμαν can
be eliminated by redefining the metric and vierbein. Thus,
in this special case where u ¼ 0 and the remaining SME
coefficients all originate from a common set of coefficients,
which couple universally to gravity and all particle species
in the same way as the metric, there is no physical
spacetime symmetry breaking. In order to have physical
and potentially measurable spacetime symmetry breaking,
at least one set of the coefficients sμν, cμν, and ðkFÞαμαν
must be independent of the others.
As a consequence of these field redefinitions, experi-

ments aimed at testing spacetime symmetry breaking in
matter-gravity interactions must have sensitivity to more
than just one particle sector. In the action given in (22),
this requires that sensitivity to more than one set of the
coefficients sμν, cμν, and ðkFÞαμαν must be attained.
Experiments that do achieve sensitivity to two or more
of these sectors can choose as a convention to set one set of
coefficients to zero and place bounds on a second inde-
pendent set, or they can define parameters consisting of
combinations of SME coefficients from different sectors
and place bounds on them. For example, atom interferom-
etry tests that have sensitivity to both the gravity and
electromagnetic sectors of the SME place bounds on
combinations of sμν and the coefficients contributing to
ðkFÞαμαν. In the standard Sun-centered celestial equatorial
frame [5], where indices are labeled using letters JK � � �,
these combined parameters are denoted as σJK , and
measured bounds of order 10−9 have been placed on
them [13].

IV. SME WITH EXPLICIT BREAKING

The question of whether the SME can be used to
investigate gravity theories with explicit local Lorentz
and diffeomorphism breaking can be addressed generically
using k̄μν��� to represent a SME coefficient. In this case, the
background is assumed to be a fixed nondynamical tensor
that does not arise as a vacuum value from spontaneous
spacetime symmetry breaking. Instead, k̄μν��� is to be

interpreted as a SME coefficient that explicitly breaks
spacetime symmetry.
A general form of the explicit-breaking action in a metric

formalism can then be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ LLIðgμν;φσÞ

þ LR;k̄ðRκ
λμν; gμν; k̄μν���Þ þ Lg;k̄ðgμν; k̄μν���ÞÞ

þ Lφ;k̄ðgμν;φσ; k̄μν���Þ
�
: ð32Þ

This divides the action into distinct terms, consisting of the
Einstein-Hilbert term, a Lorentz-invariant matter term LLI,
a term LR;k̄ containing contractions of the curvature tensor
with the metric and the background, a potential term Lg;k̄

where the metric interacts with the background, and a
Lorentz-violating matter term Lφ;k̄ involving interactions of
the background with the metric and dynamical matter fields
φσ . Note that some of these terms contain dimensional
couplings. The term Lg;k̄ can, in principle, include covar-
iant derivatives acting on the background. Note as well that
each of these terms is assumed to be covariant under
general coordinate transformations, and thus each term in
the Lagrangian is an observer scalar. There could, of
course, also be terms in which k̄μν���, Rκ

λμν, φσ, and the
metric all interact together, but these are considered as
subleading-order interaction terms compared to the ones
given here.
Each of the Lagrangian terms in (32) has a corresponding

contribution to the energy-momentum tensor obtained by
varying the action with respect to the metric. These can be
written as Tμν

LI , T
μν
R;k̄

, Tμν
g;k̄
, and Tμν

φ;k̄
. Assuming the Lorentz-

invariant matter sector has a covariantly conserved energy-
momentum tensor by itself, consistency of the theory with
the Bianchi identities requires that

DμðTμν
R;k̄

þ Tμν
g;k̄

þ Tμν
φ;k̄

Þ ¼ 0 ð33Þ

must hold on shell. Note that a similar condition would
follow as well using a vierbein formalism, but with
energy-momenta tensors that are obtained using vierbein
variations.
With explicit symmetry breaking, the four equations in

(33) do not automatically hold when the dynamical matter
and metric fields are put on shell since the background
coefficient k̄μν��� does not satisfy Euler-Lagrange equations.
Thus, the consistency of the theory depends on whether or
not the four additional modes that arise as a result of the
symmetry breaking appear in such a way that allows (33)
to hold.
To examine the role of these extra modes, a Stückelberg

approach can be used. As shown in (11) and (14), this gives
the extra modes the form of four NG excitations denoted as
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πμ. These NG excitations are the same as those that occur in
the minimal SME with spontaneous breaking as shown in
(7). However, the massive Higgs-like modes in (7) do not
occur when the symmetry breaking is explicit.
Note that the contributions to the action in (32) with

explicit breaking are separated and organized differently
than those in (15) and (16), where the breaking is sponta-
neous. This is largely due to the absence of the massive
Higgs-like excitations in the case of explicit breaking. For
example, the term LR;k̄ in (32) contains the terms given in

LðgravÞ
LV in (17), when k̄μν��� in L

ðgravÞ
LV is replaced by the fixed

backgrounds ū, s̄μν, and t̄κλμν, and the excitations are
limited to just the NG modes. Similarly, the terms Lφ;k̄

in (32) can overlap with Lðmatter−gravÞ
LV in (15) when the

massive excitations in Lðmatter−gravÞ
LV are excluded. However,

terms of the form Lg;k̄ in (32) are not generally separated
out in (15) and (16), though they might emerge from L0

SSB
in a limit where the excitations decouple.

A. Pure-gravity post-Newtonian limit

In the post-Newtonian limit of the SME, a linearized
approach is used where the NG and massive modes can
emerge from both LðgravÞ

LV and L0
SSB. The form of these

excitations and their known symmetry properties allow a
systematic method to be applied, where the NG and
massive modes are eliminated in terms of the gravitational
excitations [10]. This permits an expansion in terms of
gravitational potentials, and the result is a useful post-
Newtonian framework for investigating Lorentz violation.
Since the SME with explicit breaking has the same NG

excitations as the theory with spontaneous breaking, it is
possible for them to play similar roles in both cases. This
suggests that unless the massive Higgs-like modes have an
essential role in consistently developing the post-
Newtonian limit of the SME, the same systematic approach
should work with explicit breaking as it does in the case of
spontaneous breaking.
The main obstacle that has to be overcome to maintain

consistency with explicit breaking is the requirement of
covariant energy-momentum conservation in (33), which
must hold despite the fact that the background k̄μν��� is
nondynamical and does not have Euler-Lagrange equa-
tions. With explicit breaking, it is the four NG modes that
must provide solutions that allow the four equations in (33)
to hold, and in principle, the counting of modes suggests
this is possible. However, in situations where the appear-
ance of the NG modes is suppressed or limited, it might not
then be possible for these modes to provide the needed
solutions. In that case, a useful post-Newtonian limit might
not exist.
The possibility of developing a pure-gravity post-

Newtonian limit of the minimal SME with explicit breaking
was examined in [22]. A pure-gravity sector consisting of
an Einstein-Hilbert term and a term of the form LR;k̄ was

considered, where the latter allows couplings between the
metric, the curvature tensor, and the background k̄μν���. The
NG modes πμ enter through the substitution (11) and the
expansion (14), and since they appear nonlinearly in Tμν

R;k̄
,

solutions ensuring that DμT
μν
R;k̄

¼ 0, in general, can exist.
However, in a linearized limit, the NG modes are

suppressed, which then stands in the way of obtaining a
useful post-Newtonian expansion. This is because the

linearized curvature tensor RðlinearÞ
κλμν is invariant under

infinitesimal diffeomorphism transformations, which take
the form hμν → hμν þ ∂μξν þ ∂νξμ in the linearized theory.

Therefore, a term of the form k̄κλμνRðlinearÞ
κλμν does not contain

any of the NG d.o.f., which have the form of virtual
diffeomorphisms. Attempting to use a Stückelberg approach

does not work either since terms ∼ð∂μπ
αÞRðlinearÞ

αλμν are of
higher order and must be dropped at the linearized level.
The result is that the equation DμT

μν
R;k̄

¼ 0 in linearized
form has no dependence on the NG modes. Therefore, it is
impossible for the NG modes to take values that set
DμT

μν
R;k̄

¼ 0. Since the SME with explicit breaking has
no massive Higgs-like excitations, these excitations cannot
play a role like they can with spontaneous breaking.
Instead, the curvature tensor itself must take restricted
values to make the equationDμT

μν
R;k̄

¼ 0 hold. For example,

with constant values of k̄μν���, partial spacetime derivatives
of the curvature tensor are forced to vanish, which severely
limits the geometry of the spacetime. Even with non-
constant backgrounds k̄μν���, severe limitations need to be
imposed on the curvature tensor, which does not allow a
useful post-Newtonian limit to be found [22].

B. Matter-gravity Lorentz-breaking interactions

When Lorentz-violating matter-gravity couplings are
included in the SME, the NG modes again play a crucial
role in developing a consistent methodology that can be
used to identify observable signals of spacetime symmetry
breaking. Interestingly, in the context of the SME based on
spontaneous breaking, the approach used in [11] makes the
assumption that the massive Higgs-like excitations are
either frozen out or have negligible excitations. Thus, it
is only the NG excitations that are considered in matter-
gravity interactions. As described in [11], a perturbative
treatment can be developed, using known symmetry
properties, which allow the NG modes to be eliminated
in terms of the gravitational excitations and background
SME coefficients. This methodology allows the dominant
signals of spacetime symmetry to be extracted regardless of
the details of the underlying theory.
The reason this approach works despite freezing out the

massive modes is because additional interaction terms
involving the background, metric, and matter terms provide
additional couplings to the NG modes. This allows the NG
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modes to satisfy equations maintaining the consistency of
the theory without the need of the massive Higgs-like
modes. It also includes higher-order contributions in a
perturbative treatment, as opposed to restricting the exci-
tations to just the linearized level.
Since this approach to analyzing matter-gravity cou-

plings drops the massive Higgs-like excitations, this same
methodology should still apply when the breaking is
explicit, where such excitations do not exist. The NG
modes that occur in a Stückelberg approach with explicit
breaking can then play the same role as the NG modes with
spontaneous breaking since both sets have the same
mathematical form.
With gravity-matter couplings included, the SME with

explicit breaking has additional Lagrangian terms besides
just LR;k̄. For example, both Lφ;k̄ and Lg;k̄ can be included
in (32). With all three of these terms included, the
consistency conditions in (33) involve three energy-
momentum contributions, Tμν

R;k̄
, Tμν

g;k̄
, and Tμν

φ;k̄
. Thus, even

if the NG modes drop out of the first term, DμT
μν
R;k̄

, in a
linearized treatment, they will still, in general, appear in the
other terms in (33). In this way, the NG modes can provide
solutions without having to put restrictions on the curvature
tensor.

V. APPLICATIONS

As examples, two gravitational theories with explicit
spacetime symmetry breaking are examined in this section.
Both have additional Lagrangian terms matching one or
more of the types of terms included in (32). In ghost-free
massive gravity, potential terms of the form Lg;k̄ are
included as part of the action, and matter interactions of
the form Lφ;k̄ can be considered as well. In an infrared limit
of Hořava gravity using a covariant formulation that allows
matter-gravity interactions, terms of the form Lφ;k̄ can
appear in the matter sector. In both of these examples, the
SME can be used to investigate effects of the explicit local
Lorentz and diffeomorphism violation that occurs in these
theories.

A. Massive gravity

For many years, attempts to construct a nonlinear
gravitational theory with a massive graviton, which gen-
eralizes the linear Fierz-Pauli theory and agrees with GR in
the massless limit, remained hindered by the presence of a
ghost mode known as the Boulware-Deser (BD) ghost [35].
However, more recently, the models found by de Rham,
Gabadadze, and Tolley (dRGT), which contain a particular
type of nonlinear interaction involving the metric, have
been shown to be ghost free [36,37].
A key feature of dRGT massive gravity is that a

symmetric background tensor, denoted here as f̄μν, must
be coupled with the metric in an interaction potential in
order to create mass terms for the metric. This background

is a nondynamical tensor with preferred directions, and its
appearance in the dRGT Lagrangian explicitly breaks
diffeomorphism invariance. In the original versions of
dRGT massive gravity, the background was assumed to
be Minkowski, with f̄μν ¼ ημν. However, it was sub-
sequently found that more general backgrounds f̄μν can
be used, which need not have constant components.
The dRGT action can be divided into a gravitational

sector and a matter sector,

SdRGT ¼ Sgrav þ Smatter; ð34Þ

and it can be used to describe massive gravity at the level
of effective field theory in either a metric or vierbein
formalism.

1. Gravity sector

In a metric description, the action in the gravity sector
has the form

Sgrav ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

4
UðXÞ

�
; ð35Þ

where μ is the graviton mass and UðXÞ is a potential formed
in terms of square roots Xμ

ν defined as

Xμ
ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαf̄αν

q
¼

� ffiffiffiffiffiffiffiffiffiffi
g−1f̄

q �
μ

ν
: ð36Þ

Effectively, these square roots are matrices that obey
Xμ

αXα
ν ¼ gμαf̄αν. However, their existence is not guaran-

teed [38], and often they are obtained in the context of a
specific model that provides ansatz forms for f̄μν and the
metric gμν.
The potential UðXÞ in (35) is given as

UðXÞ ¼
X4
n¼0

βnenðXÞ: ð37Þ

It consists of a sum of elementary symmetric polynomials
enðXÞ formed from traces of products of Xμ

ν, with
dimensionless couplings βn of order one. With such a
form for UðXÞ, the Boulware-Deser ghost does not appear.
Alternatively, in a vierbein description, a background

vierbein v̄μa is introduced, which obeys

f̄μν ¼ v̄μav̄νbηab: ð38Þ

When v̄μa appears in the Lagrangian, it explicitly breaks
both local Lorentz invariance and diffeomorphisms. The
potential U can be defined most simply in a vierbein
description as the sum of all possible wedge products that
can be formed using eμa and v̄μa. However, an equivalent
expression for U can be found that again has the form of a
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sum of elementary symmetric polynomials. In this case, the
sums are formed from products and traces of matrices
defined as

γμν ¼ eμav̄νa: ð39Þ

If the vierbein obeys a symmetry condition,

eμav̄μb ¼ eμbv̄μa; ð40Þ

then the metric and vierbein descriptions in the absence of
matter can be shown to be equivalent, and a solution for
Xμ

ν exists, where it equals γμν [39].
Notice that the potential UðXÞ in (35) has the form of an

explicit-breaking term Lg;k̄ in (32), when the generic
background k̄μν��� is replaced by f̄μν. However, there are
important differences between these terms as well. One
difference is that the dependence on f̄μν cannot be clearly
separated out in the potential in (35), while in the SME,
terms such as Lg;k̄ would have a well-defined dependence
on the background coefficient. Instead, it is the square root
Xμ

ν that appears explicitly in the potential UðXÞ, and it has
unusual properties. For example, while f̄μν is a fixed
nondynamical background, Xμ

ν has a hybrid form as the
square root of the dynamical metric contracted with f̄μν.
Since the background f̄μν remains fixed under diffeo-
morphisms, Xμ

ν must transform anomalously. If instead
a vierbein description is used, then there is a clear
separation between the dynamical vierbein eμa and the
background vierbein v̄μa. Nonetheless, their product γμν in
(39) also transforms anomalously under both diffeomor-
phisms and local Lorentz transformations.

2. Matter sector

When quantum corrections are taken into account, it is
expected that matter fields in dRGT massive gravity can
have couplings to both the metric gμν and the background
f̄μν. In [40], the form that these couplings can take as a
result of one-loop interactions was explored, and the
requirement that they do not introduce the BD ghost
was imposed. The result is that matter fields can couple

with an effective metric gðeffÞμν , which is formed out of both
the metric and the background field. At the same time, the
gravity sector remains unchanged, and the curvature in the
Einstein-Hilbert term is constructed using only the physical
metric gμν. The interactions with the background in the
pure-gravity sector continue to occur only through the
potential UðXÞ, which is why the ghost does not appear.
Matter couplings were also explored classically, and a
similar effective metric was found by requiring that the
weak equivalence principle must hold while not allowing
the BD ghost to appear [41]. The form of the effective
metric that was found in both cases is

gðeffÞμν ¼ α2gμν þ 2αβgμσXσ
ν þ β2f̄μν; ð41Þ

where α and β are constant coupling parameters. Using
instead a vierbein description, the corresponding form of
the effective vierbein that couples to matter is

eðeffÞμa ¼ αeμa þ βv̄μa: ð42Þ

If the symmetry condition in (40) holds, the effective
metric can be written in terms of γμν as

gðeffÞμν ¼ α2gμν þ 2αβγμν þ β2f̄μν; ð43Þ

where γμν ¼ gμσγσν. Note that with lower indices, the
square root matrix is symmetric, obeying γμν ¼ γνμ.
In terms of the effective metric, the action in the matter

sector has the form

Smatter ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðeffÞ

p
LmatterðgðeffÞμν ;φσÞ; ð44Þ

or if fermions are included, it is given as

Smatter ¼
Z

d4xeðeffÞLmatterðeðeffÞμa;φσ;ψÞ: ð45Þ

For β ≠ 0, matter interactions with gðeffÞμν break local
Lorentz symmetry and diffeomorphisms because the matter
fields can interact directly with the background field. Since
Lorentz breaking is known to be small, it is reasonable to
assume α ≃ 1 while β ≪ 1. Thus, to first order in β, the
effective metric has the form

gðeffÞμν ≃ gμν þ 2βγμν; ð46Þ

while the effective vierbein is

eðeffÞμa ≃ eμa þ βeαaγαμ; ð47Þ

and their inverses are given approximately as

gðeffÞμν ≃ gμν − 2βγμν; ð48Þ

eðeffÞμa ≃ eμa − βγμαeαa: ð49Þ

The matter terms in (44) or (45) can be mapped into the
SME by expanding the effective vierbein or metric and by
matching the interactions involving the background fields
with appropriate SME coefficients. Alternatively, field
redefinitions can be used to change the effective metric
back to the physical metric, which also results in the
appearance of SME coefficients.
As a specific example, consider matter-gravity inter-

actions in massive gravity involving photons and a fermion
of mass m. The action in this case is given as
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SdRGT ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

4
UðXÞ

�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðeffÞ

q �
−
1

4
FκλgðeffÞκμgðeffÞλνFμν

�

þ
Z

d4xeðeffÞ½ieðeffÞμaψ̄γaDðeffÞ
μ ψ −mψ̄ψ �: ð50Þ

Here, the pure gravity sector involves the physical metric
gμν, and the curvature is defined in terms of gμν, while the
matter interactions involve the effective metric, and the

covariant derivative DðeffÞ
μ is defined using gðeffÞμν .

Field redefinitions with forms similar to those in (23) and
(24) can be used on gðeffÞμν and ẽðeffÞμa, yielding new
effective fields g̃ðeffÞμν and ẽðeffÞμa defined by

gðeffÞμν ¼ ð1þ uÞg̃ðeffÞμν þ sμν; ð51Þ

eðeffÞμa ¼
�
1þ 1

2
u

�
ẽðeffÞμa þ

1

2
ẽðeffÞσasμσ: ð52Þ

Using the relations in (26) and (29), the matter sector terms
in SdRGT can be rewritten in terms of g̃ðeffÞμν and ẽðeffÞμa,
which introduces the SME coefficients in (27) and (30).
Then, by choosing specific values for the SME coefficients
in terms of β and γμν given as

u ¼ −
1

2
βγσσ; ð53Þ

sμν ¼ −2β
�
γμν −

1

4
γσσgμν

�
; ð54Þ

the redefined effective metric and vierbein are such that
they reduce to the physical metric and vierbein at leading
order in the SME coefficients:

g̃ðeffÞμν ≃ gμν; ð55Þ

ẽðeffÞμa ≃ eμa: ð56Þ

In this way, the massive gravity action SdRGT is expressed
entirely in terms of the physical metric and the redefined
fermion field χ, but with additional interactions with SME
coefficients. The result is

SdRGT ≃
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

μ2

4
UðXÞ

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
Fκλðgκμgλν þ ðkFÞκλμνÞFμν

�

þ
Z

d4xe½ieμaχ̄ðγa − cαβeβaeαbγbÞDμχ −mχ̄χ�:

ð57Þ

As a consequence of the field redefinitions, the Lorentz-

violating couplings to the effective metric gðeffÞμν have been
replaced by Lorentz-violating terms involving the SME
coefficients ðkFÞαμαν and cμν. Notice that because the field
redefinitions were performed only in the matter sector,
there are no independent gravity sector coefficients u or sμν

in (57). It is for this reason that the spacetime symmetry
breaking is physical as long as β ≠ 0 in the definitions of
ðkFÞαμαν and cμν in (53) and (54) since it is not possible to
perform further field redefinitions to remove ðkFÞαμαν and
cμν without generating new independent coefficients u and
sμν in the gravity sector.

3. Phenomenology

While the mass potential UðXÞ term in (57), which
includes a factor of the graviton mass μ squared, is essential
in giving massive gravity extra d.o.f. in the metric while
avoiding the ghost mode, and is important in cosmology
and gravitational radiation, it has a negligible effect in
matter-gravity tests performed in laboratories on Earth or in
space experiments on solar system scales. This is because
the graviton mass is experimentally bounded to extremely
small values of order μ≲ 10−29 eV [42].
In the context of matter-gravity tests, the gravitational

interaction can be modeled using a post-Newtonian limit
and a perturbative treatment in the context of the SME,
where the effects of μ can be ignored at leading order.
Instead, the effects of the interactions with the background
field can be probed, which depend on the parameter β.
Since the metric gμν and the background f̄μν are typically
approximated at lowest order as Minkowski backgrounds,
it follows that the contributions of γμν in the SME coeffi-
cients ðkFÞαμαν and cμν will be of order one. Hence, the
extent of the spacetime symmetry breaking is determined
primarily by β in (46) and (47), and it is therefore this
parameter that can be used as a phenomenological measure
of potential Lorentz violation in the matter sector of
massive gravity.
To investigate the phenomenology of matter-gravity

couplings in massive gravity, experiments with sensitivity
to two sets of SME coefficients must be analyzed. While an
sμν term is missing in (57), a field redefinition of the metric
gμν in the full action SdRGT would change ðkFÞαμαν and cμν
while also introducing a term sμν in the gravity sector.
Hence, suitable experiments that can place bounds on the
Lorentz-breaking matter-gravity interactions in massive
gravity are the matter-interferometry experiments that have
sensitivity to spacetime symmetry breaking in both the
gravity and electromagnetic sectors of the SME [13].
The experiments in [13] place bounds at the level of 10−9

on combinations of sμν and the coefficients that contribute
to the symmetric trace ðkFÞαμαν. With the assumption that
jγμνj ≃ 1, this gives a bound of
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β ≲ 10−9 ð58Þ

on the coupling parameter that determines the strength of
the Lorentz-violating interactions between matter and the
fixed background field in massive gravity.

B. Hořava gravity

In Hořava gravity, diffeomorphism invariance is broken
explicitly by the presence of a preferred foliation of
spacetime [43]. The preferred foliation introduces a physi-
cal distinction between time and space, which can be
labeled using coordinates t and xi, with i ¼ 1, 2, 3, where
constant values of t distinguish the preferred spatial
foliations, and xi labels the spatial points. In particular,
anisotropic scaling is introduced between t and xi, which
permits higher-dimensional terms to be added in the
action involving only spatial derivatives acting on the
metric or matter fields, while maintaining terms with
just two time derivatives. This in turn allows for the
construction of gravity models with power-counting
renormalizability.
The preferred foliation breaks the full diffeomorphism

group to a subgroup, consisting of three-dimensional
spatial diffeomorphisms and time reparametrizations,

xi → xi þ ξiðt; xjÞ; ð59Þ

t → tþ ξ0ðtÞ: ð60Þ

These transformations are called foliation-preserving dif-
feomorphisms.
The action in Hořava gravity can be divided into three

sectors,

SHorava ¼ SK þ SV þ SM; ð61Þ

consisting of kinetic (K) and potential (V) terms in the
gravity sector as well as a matter sector (M). The usual four-
dimensional diffeomorphism transformations in GR are
explicitly broken when they are applied to the action
SHorava. Instead, it is the foliation-preserving diffeomor-
phisms that are the fundamental spacetime symmetry in
Hořava gravity.
The low-energy or IR limit of Hořava gravity must

approach GR and the SM if it is to be phenomenologically
viable. This requires that coupling constants associated
with the spacetime symmetry breaking must have limits
consistent with GR and the SM in the IR limit. To make
connections with the SME, the IR limit of Hořava gravity
must be expressed in a covariant form, and correspondence
with appropriate SME coefficients must be identified. The
remainder of this section will only consider Hořava gravity
in the IR limit, and it will investigate how the SME can be
used to examine spacetime symmetry breaking in matter-
gravity couplings in this context.

1. Gravity sector

To construct the gravity sector of the action in the IR
limit of Hořava gravity, the four-dimensional metric gμν is
replaced by the ADM variables ðN;Ni; gijÞ consisting of
the lapse, the shift, and the three-dimensional spatial
metric. These become the fundamental fields of the theory
and are used to define the three-dimensional Ricci tensor

Rð3Þ
ij , the extrinsic curvature Kij, and covariant derivatives

Dj. Lagrangian terms can then be constructed by con-
tracting these field operators to form scalars under spatial
diffeomorphisms (59) and time reparametrizations (60).
The spacetime integrals in the action SHorava also include

factors of
ffiffiffiffiffiffiffi
gð3Þ

p
Nd3xdt, where gð3Þ is the determinant

of gij.
Time derivatives of gij are kept at second order to prevent

the appearance of ghosts, and they enter the Lagrangian
through the extrinsic curvature, which is defined as

Kij ¼
1

2N
ð−_gij þDiNj þDjNiÞ: ð62Þ

The kinetic term LK is defined in terms of the extrinsic
curvature as

LK ¼ 1

16πG
ðKijKij − λgK2Þ; ð63Þ

where K ¼ gijKij, and λg is a running coupling constant.
Note that the two terms in (63) are each independently
scalars under foliation-preserving diffeomorphisms, and λg
gives the relative weighting between these terms.
The potential term LV consists of contractions of spatial

components, which in most versions of Hořava gravity
include terms with up to dimension-six operators. It is the
inclusion of the higher-dimensional terms involving spatial
derivatives that makes Hořava gravity power-counting
renormalizable in the high-energy limit. However, the
leading-order terms at low energy are the three-dimensional
curvature scalar and a cosmological constant term. The
potential term then has the form

LV ¼ 1

16πG
ðRð3Þ − 2ΛÞ þ � � � ; ð64Þ

when the higher-order terms are not included. Note that
different versions of Hořava gravity include different
combinations of fields in the higher-order terms, and in
certain cases additional internal symmetries are included.
However, in the context of this discussion, the key element
is the explicit breaking of timelike diffeomorphisms, which
is a common feature of all types of Hořava gravity models,
and the specific form of the higher-dimensional operators is
not important. In particular, in the IR limit, the higher-order
terms all become small in comparison to the terms shown
in (64).
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For Hořava gravity to match with GR in the IR limit, the
running coupling λg must approach 1. With λg ¼ 1, the
terms LK and LK reproduce the usual Einstein-Hilbert and
Λ terms in GR in ADM formalism. It is assumed that when
these terms combine in the IR limit, the four-dimensional
metric and the reconstructed Einstein-Hilbert term recover
their usual transformation properties. In particular, for these
terms the full diffeomorphism invariance is restored when
λg ¼ 1. However, with small residual values of ð1 − λgÞ at
low-energy scales, there is still some spacetime symmetry
breaking, which results in an additional symmetry-breaking
term in the IR limit. With these assumptions, the action of
the gravity sector of Hořava gravity in the IR limit can be
written as

SK þ SV ≃
Z ffiffiffiffiffiffi

−g
p

d4x
1

16πG
ðR − 2ΛÞ

þ ð1 − λgÞ
1

16πG

Z ffiffiffiffiffiffiffi
gð3Þ

q
Nd3xdtK2: ð65Þ

Here, it can be seen that the parameter ð1 − λgÞ ≪ 1

becomes the primary measure of the spacetime symmetry
breaking in the gravity sector.
The residual symmetry-breaking term in (65) can be put

in covariant form by introducing a timelike unit vector nμ.
In terms of the coordinates ðt; xiÞ, it is given by nμ ¼
ð−N; 0Þ and nμ ¼ ð1N ;− Ni

N Þ, which obey nμnμ ¼ −1. Using
these, the four-dimensional metric gμν can be given in terms
of the three-dimensional spatial metric gij and the normal
vectors nμ as

gμν ¼ gijδμi δ
ν
j − nμnν: ð66Þ

The Kronecker delta functions such as δμi appear as a result
of using the coordinates ðt; xiÞ. If a foliation-preserving
coordinate transformation to new coordinates xμ

0
is per-

formed, the Kronecker delta δμi gets transformed into
coordinate transformation matrices

eμ
0
i0 ¼

∂xμ0
∂xα

∂xj
∂xi0 δ

α
j ; ð67Þ

and alternative expressions using eμ
0
i0 can be obtained.

However, the main results found using these more general
matrices can also be found in a simpler form using δμi and
coordinates ðt; xiÞ. For this reason, the coordinates ðt; xiÞ
are used in the remainder of this section.
The timelike unit vector nμ can also be used to define a

projection operator. First define

hμν ¼ gijδμi δ
ν
j

¼ gμν þ nμnν; ð68Þ
which obeys hμνnμ ¼ 0. Its mixed form is given as

hμν ¼ δμν þ nμnν; ð69Þ

which defines a projection operator that can be used to
project tensors in the four-dimensional spacetime into
the three-dimensional spatial foliation while maintaining
covariance.
Expressions involving the extrinsic curvature Kij can be

defined in terms of nμ as well. For example, in ðt; xiÞ
coordinates, it can be shown that [44]

Kij ¼ δμi δ
ν
jDνnμ ð70Þ

and that the extrinsic curvature is symmetric, obeying
Kij ¼ Kji. Its trace K ¼ gijKij in covariant form in the
four-dimensional spacetime is then given as

K ¼ hμνDνnμ

¼ ðgμν þ nμnνÞDνnμ: ð71Þ

With this expression, the gravity sector of Hořava gravity in
the IR limit can then be written in covariant form as

SK þ SV ≃
Z ffiffiffiffiffiffi

−g
p

d4x
1

16πG
½R− 2Λþ ð1− λgÞK2�: ð72Þ

It is important to realize, however, that despite its
covariant form, the action for the gravity sector of Hořava
gravity still explicitly breaks timelike diffeomorphisms. This
is because the vector nμ becomes a background field that
cannot transform under timelike diffeomorphisms when ξ0

depends on xj. It must remain normal to the preferred
foliation. In this way, contractions with nμ are similar to
couplings to SME coefficients, which transform as tensors
under general coordinate transformations, but which remain
fixed under diffeomorphisms. A significant difference from
the way the SME coefficients are usually thought of,
however, is that nμ is only partially fixed under diffeo-
morphisms. The subgroup consisting of foliation-preserving
diffeomorphisms, defined with ξiðxj; tÞ and ξ0ðtÞ, where the
latter only has time dependence, still transform nμ into new
physically equivalent normal vectors, and these transforma-
tions are symmetries of the action. However, the timelike
diffeomorphisms with ξ0 depending on position are broken
since nμ remains fixed under such transformations.
Thus, similarly to massive gravity, where the tensors

γμν are not fully fixed under diffeomorphisms and instead
transform anomalously, the backgrounds nμ are only par-
tially fixed under diffeomorphisms, and as a result they too
transform anomalously. In this way, both of these back-
grounds differ from how the SME coefficients are usually
defined. Nonetheless, for the symmetries or partial sym-
metries that are explicitly broken, the relevant couplings in
a theory with explicit breaking can still be matched to
corresponding couplings in the SME, and any bounds that
have been obtained in the SME can, in principle, be applied
to the theories with explicit breaking.
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In parallel with the case of massive gravity, a Stückelberg
approach can also be used to describe Hořava gravity. In the
case of Hořava gravity, however, only one Stückelberg
scalar is introduced because only one diffeomorphism is
broken. In a Stückelberg approach, the normal vector nμ is
replaced by ∂μΦ, where Φðt; xjÞ is the Stückelberg field.
The scalar Φ is assumed to be dynamical, which restores
the broken timelike diffeomorphism while at the same time
introducing one extra d.o.f. The original form of Hořava
gravity with explicit breaking can be obtained again by
setting Φ ¼ t. Thus, in many versions of Hořava gravity,
unless an extra internal symmetry is introduced that can be
used to removeΦ, a primary effect of Hořava gravity is that
there is an extra scalar d.o.f. in gravitational interactions.
Just as different versions of Hořava gravity have been

proposed and explored in the pure gravity sector [27], there
are correspondingly different ideas that can be considered
for how to couple matter to Hořava gravity [45]. The
broadest and most general approach, however, which
parallels the way in which the gravity sector is defined,
is to consider a matter action SM where foliation-preserving
diffeomorphism invariance is the fundamental spacetime
symmetry instead of the full diffeomorphism group. This is
the approach that is examined here.
By explicitly breaking timelike diffeomorphisms, the time

and spatial components of matter fields and their derivatives
can be separated and treated differently, similarly to how the
ADM fields for the metric are treated differently in the
gravity sector. To avoid ghosts, the usual forms for time
derivatives of matter fields, restricted to second order, can be
maintained, while higher-dimensional terms for the spatial
components can be added to the action. Coupling coeffi-
cients can be introduced to give relative weightings between
these separated terms, where each term is individually
symmetric under foliation-preserving diffeomorphisms. It
is expected that these weighting coefficients can run with
energy and that they must reduce to values consistent with
GR and the SM in the IR limit. There is also no reason to
assume that these couplings are the same in different particle
sectors or that they should be directly related to the
parameter λg in the gravity sector. Thus, different particle
sectors need to be considered independently.
In the absence of a vierbein formalism for Hořava

gravity, which would be needed to consider couplings to
fermion fields, the examples considered here look at the
cases of couplings to massive scalar and massless vector
particles, such as the Higgs boson and the photon. The
SME is used to investigate the phenomenology of matter-
gravity couplings to these types of particles in the context
of Hořava gravity.

2. Scalar matter fields

The simplest case to consider is a scalar matter field ϕ. In
GR, the usual matter terms for a scalar of mass m
interacting with gravity are

SGR;scalar ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2

�
: ð73Þ

Using ADM variables for the metric, the usual four-
dimensional kinetic term for the scalar can be rewritten as

1

2
∂μϕ∂μϕ ¼ −

1

2N2
ð _ϕ − Ni∂iϕÞ2 þ

1

2
gij∂iϕ∂jϕ; ð74Þ

where _ϕ ¼ ∂0ϕ. In Hořava gravity the two terms in (74) are
each independently invariant under foliation-preserving
diffeomorphisms, and therefore they can be given different
weightings. In addition, higher-dimensional operators that
are invariant under foliation-preserving diffeomorphisms
can be added to the action, as long as they do not introduce
additional time derivatives that modify the kinetic term.
However, in the IR limit, the higher-order couplings will be
subleading-order corrections and can be ignored here.
Taking different weightings of the two terms in (74), the

action for a massive scalar in the IR limit of Hořava gravity
can be written as

Sscalar ≃
Z ffiffiffi

g
p

Nd3xdt

�
cðϕÞ1

�
−

1

2N2
ð _ϕ − Ni∂iϕÞ2

�

þ cðϕÞ2

�
1

2
gij∂iϕ∂jϕ

�
−m2ϕ2

�
ð75Þ

where cðϕÞ1 and cðϕÞ2 have been introduced as weighting
parameters.
It is also possible to use projections of the derivatives,

which gives

1

2
gij∂iϕ∂jϕ ¼ 1

2
gijδμi δ

ν
j∂μϕ∂νϕ

¼ 1

2
ðgμν þ nμnνÞ∂μϕ∂νϕ; ð76Þ

where (66) has been used to replace the three-dimensional
spatial metric gij with the four-dimensional metric gμν. By
combining (74) and (76), the action Sscalar becomes

Sscalar ≃
Z ffiffiffiffiffiffi

−g
p

d4x

�
cðϕÞ2

�
1

2
∂μϕ∂μϕ

�
−m2ϕ2

þ ðcðϕÞ2 − cðϕÞ1 Þ
�
1

2
nμnν∂μϕ∂νϕ

��
: ð77Þ

Notice that this is now in covariant form.
By rescaling the field ϕ and the mass m, the diffeo-

morphism-invariant term can be put in standard form,
leaving just a relative parameter that multiplies the sym-
metry-breaking term. The rescaled field and mass can be
relabeled again as ϕ and m. These rescalings and relabel-

ings effectively set cðϕÞ2 ¼ 1 and rename cðϕÞ1 as λϕ, which
gives the final form of the scalar action as
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Sscalar ≃
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2

þ 1

2
ð1 − λϕÞnμnν∂μϕ∂νϕ

�
: ð78Þ

In this way, ð1 − λϕ) becomes a measure of the diffeo-
morphism breaking in the IR limit, similar to how ð1 − λgÞ
gives a corresponding measure in the gravity sector. Also,
λϕ can run as the energy scale changes just as λg does in the
gravity sector. Agreement with GR and the SM in the IR
limit requires ð1 − λϕÞ ≪ 1.
Notice that the spacetime symmetry breaking in the last

term in (78) is due to the coupling 1
2
ð1 − λϕÞnνnν acting as a

background that explicitly breaks timelike diffeomor-
phisms while maintaining the foliation-preserving sub-
group. Thus, a connection with a SME coefficient that
couples in the same way can be made. If experimental
bounds exist for the corresponding SME coefficient, they
can be applied to the couplings in (78). However, since
jnμj ≃ 1, the primary result will be that a bound can be
placed on the small coupling ð1 − λϕÞ.
The Higgs boson is the only elementary particle in the

SM that is a scalar, and it can be used as a specific example.
In the SME, there is sensitivity to Lorentz violation in the
Higgs sector, and it has been investigated and tested
experimentally. One of the SME coefficients in the
Higgs sector is given as ðkϕϕÞμν, which couples the same
way as 1

2
ð1 − λϕÞnνnν in Eq. (78). Thus, a correspondence

can be made, which gives

ðkϕϕÞμν ¼
1

2
ð1 − λϕÞnνnν: ð79Þ

With three unbroken spatial diffeomorphisms, a gauge
can be fixed that setsNi ¼ 0, which then gives nμ ¼ ð1N ; 0Þ.
This can be done in any coordinate system, including Sun-
centered celestial equatorial coordinates, which are used for
comparison purposes in the SME. Note that this procedure
using gauge fixing is very different from the traditional
SME based on spontaneous spacetime symmetry breaking.
In the traditional case, the background tensor is fixed under
all diffeomorphisms, and no gauge choices can be made to
simplify it. Special coordinates can always be chosen to
simplify its form; however, it cannot be assumed that a
specific simplified form holds in any given frame, such as
the Sun-centered celestial equatorial frame. In the tradi-
tional form of the SME, all of the components of a
background tensor must be assumed to be nonzero in
the Sun-centered celestial equatorial coordinate system, but
this is no longer the case with explicit breaking when only a
part of the symmetry is broken by the background field.
As a result of this partial breaking and choice of gauge,

there is effectively only a purely timelike component of the
SME coefficient ðkϕϕÞμν that is nonzero in the Higgs sector,
and it is given as

ðkϕϕÞ00 ¼
1

2N2
ð1 − λϕÞ: ð80Þ

Experiments looking to test this type of spacetime sym-
metry breaking therefore need to have sensitivity to purely
timelike interactions.
While experimental bounds have been obtained on the

SME coefficients ðkϕϕÞ00 in the Higgs sector, the experi-
ments done to date all assume a Minkowski spacetime and
ignore gravitational effects. These tests therefore cannot
provide meaningful bounds in the context of Hořava
gravity on the parameter (1 − λϕ) for the Higgs. To obtain
a physically meaningful bound, sensitivity to both gravity
and matter is required in order to avoid ambiguities
associated with the ability to make field redefinitions
involving the metric.

3. Photons

The case of a vector particle, such as the photon γ, is
considered next. Using ADM variables for the metric, the
usual four-dimensional Lagrangian term for a massless
vector under diffeomorphisms can be written as

−
1

4
FμνFμν ¼

1

2N2

�
gij −

NiNj

N2

�
F0iF0j

−
Ni

N2

�
gjk −

NjNk

N2

�
F0jFik

−
1

4

�
gij −

NiNj

N2

��
gkl −

NkNl

N2

�
FikFjl:

ð81Þ

For simplicity, a gauge-fixed form of this term is examined,
where the spatial diffeomorphisms are used to set Ni ¼ 0.
This reduces the usual Lagrangian to

−
1

4
FμνFμν ¼

1

2N2
gijF0iF0j −

1

4
gijgklFikFjl: ð82Þ

These two terms become the independent terms in
gauge-fixed form. Summing them with weighting param-
eters cðγÞ1 and cðγÞ2 gives, for the case of a photon field in
Hořava gravity,

Sγ ≃
Z ffiffiffi

g
p

Nd4xdt

�
cðγÞ1

1

2N2
gijF0iF0j

− cðγÞ2

1

4
gijgklFikFjl

�
: ð83Þ

The projections in (66) can then be used to obtain the
following two expressions:

gijF0iF0j ¼ ðgμν þ nμnνÞF0μF0ν; ð84Þ
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gijgklFikFjl ¼ ðgκλgμν þ 2gμνnκnλÞFκμFλν: ð85Þ

These can be combined with (82) to rewrite (83) in
covariant form. At the same time, the parameters in (83)

can be redefined as cðγÞ1 ¼ λγ and cðγÞ2 ¼ 1 so that the four-
dimensional kinetic term has its usual form. The resulting
action for a massless vector in the IR limit of Hořava
gravity is

Sγ ≃
Z ffiffiffiffiffiffi

−g
p

d4x
�
−
1

4
FμνFμν −

1

4
ðkFÞκλμνFκλFμν

�
; ð86Þ

where a photon sector SME coefficient ðkFÞκλμν defined as

ðkFÞκλμν ¼
1

2
ð1 − λγÞ½gκμnλnν − gκνnλnμ

− gλμnκnν þ gλνnκnμ� ð87Þ

has been introduced. In this context, nν acts as a partially
fixed background, which does not transform under timelike
diffeomorphisms when ξ0 depends on xi. When the gauge
choice with nμ ¼ ð1N ; 0Þ is applied, the SME components
ðkFÞκλμν reduce to

ðkFÞijkl ¼ 0;

ðkFÞ0ijk ¼ 0;

ðkFÞ0i0j ¼
1

2N2
ð1 − λγÞgij: ð88Þ

Thus, since jgijj ≃ 1, matter-gravity experiments with
sensitivity to the SME coefficients ðkFÞ0i0j can be used
to put bounds on (1 − λγ) in Hořava gravity combined with
electromagnetism.
In this case, experiments with sensitivity to both gravity

and the photon sector have been performed. In particular,
the same atom interferometry tests that give bounds on
matter-gravity interactions in massive gravity can also give
bounds on possible photon-gravity interactions in Hořava
gravity. By adopting a convention where field redefinitions
in the metric are made that eliminate the gravity-sector sμν

SME coefficients, this leaves only the sensitivity to ðkFÞκλμν
in these matter interferometry tests. The quantities σJK that
are bounded at the level of 10−9 in the Sun-centered
celestial equatorial frame can be applied to the SME
coefficients in (88) to give the bound

j1 − λγj≲ 10−9 ð89Þ

associated with the spacetime symmetry breaking involving
photons in Hořava gravity.

VI. SUMMARY AND CONCLUSIONS

The traditional SME based on the idea of spontaneous
spacetime symmetry breaking is widely used in gravita-
tional, astrophysical, particle, nuclear, solid matter, and
atomic experiments aimed at testing local Lorentz and
diffeomorphism invariance. When gravity is present, the
fact that the breaking is spontaneous avoids potential
inconsistency between the Bianchi identities, dynamics,
and covariant energy-momentum conservation. Also, with
spontaneous breaking, excitations consisting of NG and
massive Higgs-like modes occur, and knowledge of their
behavior allows systematic procedures to be developed for
taking a post-Newtonian limit of the SME and for incor-
porating matter-gravity interactions in a consistent manner.
This paper looks at the question of whether the SME can

also be used to investigate gravity theories with explicit
spacetime symmetry breaking. With explicit spacetime
symmetry breaking, there are nondynamical background
fields that appear directly in the action, and it is the
interactions with these backgrounds that cause the sym-
metry breaking. At the same time, to be observer inde-
pendent a gravity theory with explicit breaking must still be
covariant under general coordinate transformations. The
requirement of covariance can be used to derive four
mathematical identities that must hold in order for the
theory to be consistent with the Bianchi identities and
covariant energy-momentum conservation. Since four extra
d.o.f. exist in a theory with explicit diffeomorphism break-
ing, due to the loss of four gauge freedoms, these four extra
modes can, in principle, take values that permit the overall
consistency conditions to hold.
It is found using a Stückelberg approach that the extra

d.o.f. in a theory with explicit breaking have the same form
as the NG excitations in the corresponding theory where the
symmetry breaking occurs spontaneously. Thus, many of
the procedures and results that follow from having NG
modes in the theory with spontaneous breaking can also be
applied when the breaking is explicit. The main difference
is that with explicit breaking, there are no massive Higgs-
like excitations and the background field remains non-
dynamical. In the pure-gravity sector, the consistency of the
theory with explicit breaking therefore relies completely on
the presence of the extra NG modes. If one or more of these
modes is suppressed or decouples, then the consistency
conditions cannot be fulfilled. An example of when this
happens is in the linearized post-Newtonian limit of the
pure-gravity sector of the SME when the symmetry break-
ing is explicit. The NG modes decouple in this limit, and
the consistency conditions impose severe constraints on the
curvature tensor, resulting in a theory that is not useful.
However, when matter fields are included, there are addi-
tional interactions that can include the NG modes. In this
case, the same procedures that are used in the SME with
spontaneous breaking carry over and can be used as well
when the breaking is explicit. Thus, the SME is, in general,
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suitable for investigating matter-gravity interactions in
theories with explicit breaking.
With gravity, the role of field redefinitions that can be

made involving the metric is important to consider as well
before meaningful physical bounds on spacetime symmetry
breaking can be determined from a specific experiment.
In particular, field redefinitions of the metric can be used
to move the sensitivity to spacetime symmetry breaking
from one matter sector to another or from the gravity sector
to a matter sector (or vice versa). Specifically, any one of
the three sets of SME coefficients sμν, cμν, or ðkFÞαμαν can
be eliminated from the theory at first order in these
coefficients by making field redefinitions of the metric.
It is for this reason that matter-gravity tests in the SME
must have sensitivity to at least two independent sets of
SME coefficients.
There are a number of different features that occur in the

SME when it is applied to explicit breaking in comparison
to the traditional approach based on spontaneous breaking.
Most notable is that the background fields that cause
explicit breaking are not as clearly defined as they are
with spontaneous breaking, where they are understood as
vacuum expectation values. For example, with explicit
breaking, backgrounds that are hybrids of dynamical and
nondynamical fields or that partially break a spacetime
symmetry can appear. These backgrounds transform
anomalously under spacetime symmetry transformations,
and in some cases they can be partly gauge-fixed using
unbroken symmetries. In making a correspondence with the
SME, the identified SME coefficients might then have only
certain components that are nonzero, not just in a special
frame but in whatever frame one chooses. This is clearly a
very different feature of explicit breaking in that it allows
time and spatial directions to be physically distinguished
and treated differently.
Two gravity theories with explicit diffeomorphism

breaking serve as examples of how the SME can be used
to investigate matter-gravity interactions that might occur
in these theories. The first is ghost-free massive gravity
with matter interactions that couple to an effective metric
that consists of a linear combination of the physical metric
and a background. It is shown that the matter terms with
couplings to the effective metric can be replaced by
conventional couplings to the physical metric as well as
additional terms that can be matched to the SME. The
second example is Hořava gravity in the IR limit with
matter terms that have foliation-preserving diffeomorphism
invariance as their fundamental symmetry, just as this is
the fundamental symmetry in the pure-gravity sector. It
is shown that mixtures of these matter terms can be
replaced by a conventional relativistic term plus terms that
match those in the SME. In both examples, bounds on
the diffeomorphism-breaking matter-gravity couplings are
obtained using the SME. Atom interferometry tests with
sensitivity to both gravity and electromagnetism provide
bounds on the order of 10−9 in both examples.

APPENDIX: BACKGROUND VIERBEINS
AND THE SME

This appendix illustrates how the background vierbein
ēμa has an important role in theories with explicit spacetime
symmetry breaking. In particular, it needs to be included in
order to go between local and spacetime frames [24].
Related to this, it is also shown that the choice of whether to
couple matter with a background field using local versus
spacetime components makes a difference, and this differ-
ence has important consequences concerning consistency
conditions that must hold with explicit breaking.
For simplicity, consider a theory with a vector back-

ground field, where a vierbein formalism is used. The
background vector has components k̄μ with respect to the
spacetime frame and components k̄a with respect to a local
Lorentz frame. Since both sets of these components are
fixed under spacetime diffeomorphisms and local Lorentz
transformations, they must be connected by a nondynam-
ical background vierbein ēμa, which is also fixed under
these transformations. The relation between them is

k̄μ ¼ ēμak̄a: ðA1Þ
If the background vierbein ēμa is not included in a theory

with explicit breaking, then actions that couple k̄μ to matter
and gravitational fields are different from actions that
couple k̄a. To demonstrate this, consider the following
two action terms defined using, respectively, k̄a and k̄μ to
couple to the dynamical gravitational and matter fields:

SðkaÞ1;LV ¼
Z

d4xek̄aJaðeνb; fbÞ; ðA2Þ

S
ðkμÞ
2;LV ¼

Z
d4xek̄μJμðeνb; fνÞ: ðA3Þ

In these terms, fb and fν are dynamical matter fields, which
are linked by the physical vierbein, obeying

fν ¼ eνbfb: ðA4Þ

The action SðkaÞ1;LV assumes fb are the basic matter field
components that are varied in order to obtain their equa-

tions of motion, while S
ðkμÞ
2;LV assumes fν are the basic field

components. The quantities Ja and Jμ represent the parts of
the Lagrangian terms that are contracted with k̄a and k̄μ,
respectively.
The theories defined by these action terms are not the

same. This is because the background vierbein must be
used to link k̄μ and k̄a, while it is the dynamical vierbein
that links Ja and Jμ. As a result,

k̄μJμ ¼ ēμak̄aeμbJb

≠ k̄aJa: ðA5Þ
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These action terms can also have different consequences
concerning the consistency conditions that must hold when
the symmetry breaking is explicit.
For example, if an observer infinitesimal general coor-

dinate transformation, xμ → x0μ ¼ xμ − ξμ, is performed, it
must leave the action unchanged in both cases since both
theories are observer independent and have Lagrangians
that are observer scalars. Mathematical identities that
follow from this observer invariance can then be obtained,
and these provide consistency conditions that must hold for
each of these theories [24].
If these transformations are made in the first action

followed by Taylor expansions and relabeling, the result is

0 ¼ δSðk̄aÞ1;LV ¼
Z

d4x

�
δðek̄aJaÞ
δeμb

Lξeμb

þ ek̄a
δJa

δfb
Lξfb þ eJaLξk̄a

�
; ðA6Þ

where Lξ are Lie derivatives. Since fb is a dynamical field,
the variations k̄a

δJa

δfb
give the equations of motion for fb,

which vanish on shell. Here,

Lξk̄a ¼ ξν∂νk̄a; ðA7Þ

since k̄a is a scalar on the spacetime manifold. Using the
definition of the energy-momentum tensor,

eTμν ¼ δðek̄aJaÞ
δeμb

eνb; ðA8Þ

integrating by parts, and putting the matter fields on shell,
we obtain the result

0 ¼
Z

d4xeð−DμTμ
ν þ Ja∂νk̄aÞξν: ðA9Þ

Since this must hold for all ξν, it follows that

DμTμ
ν ¼ Ja∂νk̄a: ðA10Þ

Thus, in order for DμTμν ¼ 0 to hold, which is required for
consistency with the Bianchi identities, it must be that

Ja∂νk̄a ¼ 0 ðA11Þ

holds on shell over the spacetime manifold as a consistency
condition. Note that it was the severity of this condition that
led to the interpretation that explicit breaking is generally
incompatible with Riemann geometry in [3].
However, with explicit breaking, there are four extra

d.o.f. in the vierbein, which would normally be gauged
away in a theory with unbroken symmetry. As long as
these d.o.f. do not decouple, they can take values that

satisfy (A11). This requires that the extra vierbein modes
do not decouple in Ja, which imposes a stringent condition
on the theory. If it turns out that the extra modes decouple in
Ja, then the theory is incompatible with the Bianchi identity
and covariant energy-momentum conservation, and it must
therefore be ruled out as a viable theory.
In contrast, if similar procedures are followed starting

with the second action, S
ðk̄μÞ
2;LV, the resulting consistency

conditions are not as stringent. To see this, infinitesimal
general coordinate transformations followed by Taylor
expansions and relabeling of coordinates can again be
performed. The result in this case is

0 ¼ δS
ðkμÞ
2;LV ¼

Z
d4x

�
δðek̄σJσÞ
δeμa

Lξeμa

þ ek̄μ
δJμ

δfν
Lξfν þ eJμLξk̄μ

�
: ðA12Þ

Here, the equations of motion for fν give

k̄μ
δJμ

δfν
¼ 0: ðA13Þ

However, in this case, k̄μ is a spacetime vector, and its Lie
derivative is

Lξk̄μ ¼ ðDμξ
νÞk̄ν þ ξνDνk̄μ: ðA14Þ

Using integration by parts, the result in this case is

0 ¼
Z

d4xeð−DμTμ
ν − ðDμJμÞk̄ν

− ðDμk̄νÞJμ þ JμDνk̄μÞξν: ðA15Þ

Since this must hold for all ξν, the result is the condition

DμTμ
ν ¼ −ðDμJμÞk̄ν − ðDμk̄νÞJμ þ JμDνk̄μ: ðA16Þ

When DμTμν ¼ 0, consistency therefore requires that

−ðDμJμÞk̄ν þ JμðDνk̄μ −Dμk̄νÞ ¼ 0 ðA17Þ

must hold. Note that this consistency condition is different
from the one in (A11), and in general, it is less restrictive.
This is because additional couplings to the metric appear as
a result of the covariant derivativeDμJμ in (A17), and these
extra d.o.f. can take values that satisfy (A17) even if the

extra d.o.f. decouple in Jμ. Thus, the action S
ðk̄μÞ
2;LV describes

a theory that is more generically compatible with the

Bianchi identities than the one described by Sðk̄aÞ1;LV.
To summarize the results of this appendix, a Lagrangian

L ¼ k̄aJa is not the same as one with L ¼ k̄μJμ, and
conclusions based on one of these forms do not apply for
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the other. This is because k̄aJa ≠ k̄μJμ when k̄a and k̄μ are
components of a fixed background field. Since the SME is
defined in terms of coefficients with spacetime indices,
such as aμ, bμ, cμν, etc., it therefore has terms matching the
form of L ¼ k̄μJμ, where the SME coefficients replace k̄μ.
In general, couplings of this type allow the extra d.o.f.
in the vierbein or metric to take values that satisfy the

consistency conditions, and compatibility with the Bianchi
identities and covariant energy-momentum conservation
can therefore be maintained. However, it is important to
keep in mind that if couplings to the local components of
the SME coefficients are introduced, the theory also needs
to include couplings to the background vierbein ēμa in
order to maintain its overall consistency.
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