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We investigate the optical properties of the solar gravitational lens (SGL) with respect to an extended
source located at a large but finite distance from the Sun. The static, spherically symmetric gravitational
field of the Sun is modeled within the first post-Newtonian approximation of the general theory of relativity.
We consider the propagation of monochromatic electromagnetic (EM) waves near the Sun. We develop,
based on a Mie theory, a vector theory of diffraction that accounts for the refractive properties of the solar
gravitational field. The finite distance to a point source can be accounted for using a rotation of the
coordinate system to align its polar axis with the axis directed from the point source to the center of the Sun,
which we call the optical axis. We determine the EM field and study the key optical properties of the SGL in
all four regions formed behind the Sun by an EM wave diffracted by the solar gravity field: the shadow,
geometric optics, and weak and strong interference regions. Extended sources can then be represented as
collections of point sources. We present the power density of the signal received by a telescope in the image
plane. Our discussion concludes with considering the implications for imaging with the SGL.
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I. INTRODUCTION

Direct imaging of exoplanets requires significant light
amplification and very high angular resolution. The
reason is that exoplanets are very small, extremely dim,
and very distant targets for observation. When we consider
traditional astronomical instruments—telescopes and
interferometers—for this purpose, we face the sobering
reality of requiring prohibitively large apertures, prohibi-
tively long baselines, or a combination of both. For
instance, to capture a single-pixel image of an Earth-like
exoplanet from a distance of 100 light years, a diffraction-
limited telescope with an aperture of ∼90 km would be
required. Optical interferometers with moderate-size tele-
scopes and large baselines would require signal integration
times of hundreds of thousands if not millions of years to
achieve a reasonable signal-to-noise ratio. Clearly, these
scenarios are impractical. These challenges lead us to
examine other ways that have the potential to produce
high-resolution, multipixel images of such distant, small,
dim targets. This is our primary motivation for the ongoing
study [1–3] of the solar gravitational lens (SGL).
The large heliocentric distances separating us from the

beginning of the SGL focal region were previously hard to
contemplate. Multiple recent developments in deep space
exploration technologies (for review, see [4,5]), along with
the fact that the Voyager 1 spacecraft was able to reach
heliocentric distances beyond 140 astronomical units (AU)
while still transmitting valuable data, place such distances
within reach. This allows us to consider practical

applications of the SGL as an “optical instrument” that
could be used for multipixel imaging and spatially resolved
spectroscopy of an exoplanet [6]. Motivated by such a
unique opportunity, we recently studied the optical proper-
ties of the SGL in various conditions. Specifically, we
developed a wave-optical theory of the SGL [1,2] and
discussed its key features, including the SGL’s light
amplification and resolution. In [3] we studied the impact
of the plasma in the solar corona on light propagation in the
vicinity of the Sun and the extended solar atmosphere. As a
result, most of the analytical tools that are needed to model
the imaging of exoplanets have became available. With
these analyses concluded, we found no major obstacles for
imaging and spectroscopy applications of the SGL.
The next step was the development of realistic imaging

scenarios and relevant simulations. However, we realized
that a treatment of extended sources imaged by the SGL
was still missing. Most of the published wave-optical
analyses of the SGL assumed that the light comes from
a source positioned at an infinite distance from the Sun. In
reality, an exoplanet is a small, but extended object
positioned at a large, but finite distance from us. In this
paper we develop a wave-optical theory of the SGL for
such sources.
Our paper is organized as follows: Section II introduces

the SGL and presents Maxwell’s field equations for the
electromagnetic (EM) field on the background of the solar
gravitational monopole. Section III introduces the problem
of finding the EM field from the source at a finite distance
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and establishes the general principles to finding the needed
solution. Section IV discusses the EM field in the geometric
optics and weak interference regions. Section V is devoted
to determining the EM field in the strong interference
region. Section VI addresses the process of image for-
mation with the SGL for an extended source. Appendix
discusses an approximate solution for the radial function
that relies on the Wentzel-Kramers-Brillouin (WKB)
approximation. A solution for this function is derived for
the case when a plane EM wave originates at a large, but
finite distance from the Sun.

II. GENERAL PROPERTIES OF THE SOLAR
GRAVITATIONAL LENS

We consider the propagation of monochromatic light
originating at a source that is positioned at a large but finite
distance from the Sun, and received by a detector in the
focal region of the SGL. Our objective is to investigate the
effect of the finite distance from the source on image
formation by the SGL.

A. EM waves in a static gravitational field

We focus on solving Maxwell’s equations on the back-
ground set by the solar gravitational field. Following
[1,2,7], we begin with the generally covariant form of
Maxwell’s equations:

∂lFik þ ∂iFkl þ ∂kFli ¼ 0;

1ffiffiffiffiffiffi−gp ∂kð
ffiffiffiffiffiffi
−g

p
FikÞ ¼ −

4π

c
ji; ð1Þ

where gmn is the metric tensor and g ¼ det gmn is its
determinant.1 To describe the SGL in the first post-
Newtonian approximation, we use a static harmonic metric

with the line element in spherical coordinates ðr; θ;ϕÞ (see
Fig. 1), given as

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ; ð2Þ

where, to the accuracy sufficient to describe light propa-
gation in the solar system, the quantity u has the form
u ¼ 1þ c−2U þOðc−4Þ, with U being the Newtonian
gravitational potential. As in [2], we focus our discussion
on the largest contribution to the gravitational scattering
of light, which, in the case of the Sun, is due to the
gravity field produced by a static monopole. In this case,
the Newtonian potential may be given by c−2UðrÞ ¼
rg=2rþOðr−3; c−4Þ, where rg ¼ 2GM⊙=c2 is the
Schwarzschild radius of the Sun. Therefore, the quantity
u in (2) has the form

uðrÞ ¼ 1þ rg
2r

þOðr−3; c−4Þ: ð3Þ

In the case of a static, spherically symmetric gravita-
tional field (2) and (3), in the absence of sources or currents,
jk ≡ ðρ; jÞ ¼ 0, solving the field equations (1) is straight-
forward. We align the polar z axis of the coordinate system
along the wave vector k of the incident wave. The resulting
complete solution of Maxwell’s equations, following
[9,10], was developed in [2,3] with the components of
the EM field D ¼ uE and B ¼ uH:

�
Dr

Br

�
¼

�
cosϕ

sinϕ

�
e−iωtαðr; θÞ;

�
Dθ

Bθ

�
¼

�
cosϕ

sinϕ

�
e−iωtβðr; θÞ;

�
Dϕ

Bϕ

�
¼

�− sinϕ

cosϕ

�
e−iωtγðr; θÞ; ð4Þ

with the quantities α, β, and γ computed from the following
expressions:

FIG. 1. Focusing of light by the SGL. The heliocentric coordinate system is such that the z axis is along the incoming direction of the
wave propagation, given by the wave vector k. Spherical (r, θ) and cylindrical (ρ, z) coordinates, used in the text, are shown. The
azimuthal angle ϕ is suppressed. The trajectory of a light ray with impact parameter bwith respect to the Sun is deflected toward the Sun
by the angle θgr ¼ 2rg=b, causing it to intersect the z axis at the heliocentric distance z ¼ b2=2rg.

1The notational conventions used in this paper are the same as
in [2,8]: Latin indices (i; j; k;…) are spacetime indices that run
from 0 to 3. Greek indices α; β;…, are spatial indices that run
from 1 to 3. In the case of repeated indices in products, the
Einstein summation rule applies: e.g., ambm ¼ P

3
m¼0 amb

m.
Bold letters denote spatial (three-dimensional) vectors: e.g.,
a ¼ ða1; a2; a3Þ, b ¼ ðb1; b2; b3Þ.
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αðr;θÞ¼ 1

u

� ∂2

∂r2
�
rΠ
u

�
þk2u4

�
rΠ
u

��
þO

��
1

u

�00�
; ð5Þ

βðr; θÞ ¼ 1

u2r
∂2ðrΠÞ
∂r∂θ þ ikðrΠÞ

r sin θ
; ð6Þ

γðr; θÞ ¼ 1

u2r sin θ
∂ðrΠÞ
∂r þ ik

r
∂ðrΠÞ
∂θ ; ð7Þ

with k ¼ ω=c being the wave number of the monochro-
matic EM wave and Πðr; θÞ as the Debye potential given
as [1,2]

Πðr;θÞ¼ E0

2ik2
u
r

X∞
l¼kR⋆

⊙

il−1
2lþ1

lðlþ1Þ

×eiσlHþ
l ðkrg;krÞPð1Þ

l ðcosθÞ

−
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þ
×eiσlH−

l ðkrg;krÞPð1Þ
l ðcosθÞþOðr2gÞ; ð8Þ

where Hþ
l and H−

l are the Coulomb-Hankel functions [11]
representing outgoing and incident waves, correspond-
ingly, σl is known as the Coulomb phase shift (see [2]

for details), and Pð1Þ
l ðcos θÞ are the associated Legendre

polynomials.
To derive the solution for the Debye potential Πðr; θÞ

given by (8), we used the fully absorbing boundary
conditions that account for the physical size of the Sun
(see details in [2,3,7]). Specifically, we required that rays
with impact parameters b ≤ R⋆

⊙ ¼ R⊙ þ rg are completely
absorbed by the Sun [2] and no reflection or coherent
reemission occurs. Technically, such formulation relies on
the semiclassical relationship between the partial momen-
tum, l, and the impact parameter, b, that is given as l ¼ kb
(see relevant discussion in [3]). Therefore, we require that
no outgoing waves (i.e., ∝ Hþ

l ) exist in the region behind
the Sun for rays of light with impact parameter b ≤ R⋆

⊙ or,
equivalently, for l ≤ kR⋆

⊙. This results in the Debye
potential given by (8) that is valid for all distances outside
the Sun r > R⋆

⊙ and all angles.
The expression (8) for the Debye potential is rather

complex. It requires the tools of numerical analysis to fully
explore its behavior and the resulting EM field [12–14].
However, in most practical applications, we only need to
know the field in the forward direction. Furthermore, our
main interest is to study the largest effect of the solar
gravitational field on light propagation, which corresponds
to the smallest values of the impact parameter. In this
situation, we may simplify the result (8) by taking into
account the asymptotic behavior of the functions
H�

l ðkrg; krÞ, while considering the resulting EM field at
large heliocentric distances, such that kr ≫ l, where l is

the order of the Coulomb function (see p. 631 of [15]).
Given the fact that rg ≪ R�

⊙, this approach may be used to
describe the EM field immediately outside the solar photo-
sphere all the way to the focal region.

B. Optical properties of the SGL

The solution for the EM field given by Eqs. (4)–(8) was
analyzed extensively in [1–3]. The optical properties of the
SGL are now well known [7,16,17]. Below, we summarize
the most important of these.
As was shown in [1,2], the SGL exists due to the effect of

gravitation on the refractive properties of spacetime,
focusing light. According to Einstein’s general theory of
relativity, the trajectory of a photon that travels near the Sun
is deflected toward the Sun (its largest effect on light
propagation described by the solar gravitational monopole)
by the angle of θgr ¼ 2rg=b, where rg ¼ 2GM⊙=c2 is the
Schwarzschild radius of the Sun and b is the photon’s solar
impact parameter; see Fig. 1. Because solar gravity is weak,
the actual deflection angle is very small, so that parallel
rays of light passing by the Sun near the solar surface,
b ¼ R⊙, focus at the large heliocentric distance of
R2
⊙=2rg ¼ 547.6ðb=R⊙Þ2 AU. The SGL does not have a

single focal point. Rays with larger impact parameters
focus at greater distances from the Sun; thus, a focal half-
line forms, as shown in Fig. 2.
Based on the analysis presented in [2,3], we know that

diffraction of light on the solar gravitational monopole
together with the effect of light’s interaction with the Sun
results in the formation of four regions behind theSun (Fig. 2)
with characteristically different EM field behavior, namely:

(i) Rays with impact parameters b ≤ R�
⊙ are completely

absorbed by the Sun, resulting in the shadow region
directly behind the Sun. Because of the gravitational
bending of light, the shadow has a hyperboloidal
shape with its vertex at the heliocentric distance of
R2
⊙=2rg ¼ 547.6 AU and the rim touching the Sun.

As the edge of the solar disk is not optically smooth,
no Arago spot forms along the shadow centerline.
Thus, no discernible light from the distant source
reaches this region [7].

(ii) Most of the area outside the shadow region is
characterized by distances r ≥ R�

⊙ and the angles
θ ≫

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p
. As the Sun blocks rays with impact

parameter b ≤ R�
⊙, only one light ray passes through

any given point in this region. This is the region of
geometric optics. At any given point in this region,
the EM field is represented by the incident wave [2].
The phase of the incident ray is well described by the
geometric optics approximation, thus giving the
name for this region. The structure of the EM field
here was discussed in [2].

(iii) As the light rays propagate toward the focal line,
their deflected trajectories define a plane. The path
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of propagation ultimately begins to intersect trajec-
tories in the same plane, passing by the opposite side
of the solar monopole with impact parameter
r ≥ R�

⊙. The smaller the angle θ at the intersection
point, the smaller the optical path difference (OPD)
between the rays. As jθj ≫ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p

, from (9) we see
that the path difference is quite large, namely
OPD ¼ ffiffiffiffiffiffiffiffiffi

2rgz
p jθj ≫ 2rg ≫ λ. Although a weak in-

terference pattern forms, the geometric optics
approximation remains applicable here. This is what
we call the region of the weak interference. At any
given point in this region, the EM field can be
represented by the incident and scattered waves (see
[2] for details). An observer in this region would see
two images of uneven brightness representing the
same point source, situated on opposite sides of
the Sun. As the point of intersection gets closer to the
optical axis, the difference in brightness decreases.

(iv) For impact parameters b > R�
⊙ and thus the dis-

tances beyond 547.6 AU, in the immediate vicinity
of the optical axis, 0 ≤ jθj ≃ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p

, we enter the
region of strong interference, i.e., “the focal beam of
extreme intensity” [10]. Because of azimuthal sym-
metry, rays with different azimuthal angles (defining
different planes of propagation) intersect at or near
the focal line. These intersecting rays have the
smallest possible OPD ≃ λ, thus creating a strong
interference pattern (Fig. 2). The components of the
Poynting vector and the EM field intensity are
oscillating with a spatial period of ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi

z=2rg
p

λ.
If positioned exactly on the optical axis (i.e.,
θ ¼ OPD ¼ 0), the observer would see a complete
Einstein ring with the brightness of the source being
greatly amplified. If positioned slightly away from
the optical axis (i.e., 0 < jθj ≃ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p

and, thus,
λ < OPD≲ rg), two incomplete arcs with slightly
different angular sizes and intensities (albeit both
strongly amplified) would appear. This is the region
where the SGL acquires its most impressive optical
properties. To describe the image formation

processes here, one needs a wave-optical treatment
that was developed in [1–3].

The strong interference region is of the greatest practical
importance. This is the region where the SGL offers major
light amplification and high angular resolution, which are
both needed for the imaging of exoplanets. Using a wave-
optical treatment of light diffraction on the solar gravita-
tional monopole, we established [2] that for a point source
at infinity and for an observer at the heliocentric distance z,
the SGL’s light amplification factor is given by

μ̄z¼ μ0J20

�
2π

λ

ffiffiffiffiffiffiffiffiffi
2rgz

p
θ

�
; with μ0¼

4π2

1−e−4π
2rg=λ

rg
λ
: ð9Þ

For any given z, light amplification reaches its maximum
value when θ ¼ ρ=z ¼ 0. Away from the optical axis,
destructive interference becomes significant as light rays
with various optical path lengths converge on the same point.
An observer positioned on the optical axis would register a
major increase in brightness, characterized by the factor
∼4π2rg=λ in (9), which, for the wavelength of λ ¼ 1 μm, is
∼1011. Elsewhere in the image plane, rays with a non-
vanishing difference of their optical paths form the interfer-
ence pattern, as conceptually shown in Fig. 3. The average
amplitude of the intensity of the pattern falls off approx-
imately with the inverse of the distance from the optical axis,
characterized by the radial coordinate ρ ≃ θz. This level of
light amplification is one of the major benefits of the SGL.
The SGL’s other main advantage is its angular resolution of
∼0.5 nanoarcseconds that is determined at the first null of the
Bessel function in (9) which occurs quite close to the optical
axis: ρSGL0 ≃ 4.5ðλ=1 μmÞðz=547.6 AUÞ12 cm [2]. These
impressive values have motivated us to consider using the
SGL for imaging distant, small, and faint sources.
As we began the development of the appropriate sim-

ulation tools, we realized that the description above is based
on studying the EM field received from a point source that
is positioned at the infinite distance from the Sun. However,
this assumption is not valid when we attempt to describe the
imaging of extended and resolved sources analytically.

FIG. 2. The different optical regions of the SGL with respect to light from a source at infinity. Rays with a larger impact parameter
intersect at a greater distance, forming a focal half-line (shown by the dashed line). The shaded area is the strong interference region in
the immediate proximity of the optical axis as discussed in the text.
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It became necessary to develop analytical tools exactly for
this purpose. This is discussed next.

III. EM FIELD FROM THE SOURCE
AT A FINITE DISTANCE

Our previous work on the wave-optical theory of the
SGL relied on developments in atomic physics, dealing
with nuclear scattering on a Coulomb potential. The
relevant theoretical efforts from the twentieth century
provided us with a rich set of mathematical tools and
methods [14,15,18–21] that can be used to study the
scattering of light in the solar gravity field. These methods
are directly applicable to problems in atomic physics,
where the focus is on the asymptotic behavior of a scattered
field. In the case of a source at a finite distance, however,
these tools require additional development. We can still use
the geometric optics approximation to describe light
propagation in the region of geometric optics. The solution
to the appropriate geodetic equation is well known and
describes the trajectory and phase of a light ray along the
path from the source at a finite distance to the observer
position (see, for instance, discussion in Appendixes B.1
and B.2 of [2]). However, to describe the optical processes
in the weak and, especially, the strong interference regions,
this approach is inadequate. We need to solve the time-
independent Schrödinger equation with a Coulomb poten-
tial, as was done in [2]. Technically, the solution must be
sought using a form of the incident spherical wave for the
source at a finite distance [9] and would involve a set of
appropriately modified Coulomb functions. No exact sol-
ution to this problem is known. Instead, we are forced to
develop an approximation.

A. The geometry of the problem

We consider a point source located at a distance r0 from
the Sun (Fig. 4). The line connecting the point source and
the center of the Sun defines the optical axis of the SGL, z̄.
Clearly, there are an infinite number of rays that are emitted

by the point source in 4π steradians; many of these rays
travel toward the Sun. Depending on the impact parameter,
some of these rays either will be absorbed by the Sun or
else will travel beyond the Sun, eventually entering the
geometric optics and the interference regions. In the
spherically symmetric gravitational field (2) and (3),
the optical axis is the axis of axial symmetry. That is,
the geometry of the problem is invariant under a rotation
around the z̄ axis.
We introduce a heliocentric spherical coordinate system

with the polar axis directed along the z̄ axis. The coor-
dinates of the point source in this coordinate system are
ðr0; 0; 0Þ. Next, we take a ray of light emitted by the point
source in the direction toward the Sun with the solar impact
parameter b ≥ R�

⊙. This wave vector k of this ray and the
optical z̄ axis define a plane. We set up a z axis in this
plane, parallel with k. This axis corresponds to the z axis
that was used to describe the problem with the source being
at infinity (shown in Fig. 1 and discussed in Sec. II).
In the spherical coordinate system corresponding to this
z axis, the coordinates of the point source are given by
ðr0; b=r0;ϕ0Þ þOðb2=r20Þ.
At this point, we face a technical challenge. On the one

hand, we have the solution (4)–(8), which was obtained
under the assumption that the source is at infinity. This
solution was obtained in the coordinate system correspond-
ing to the z axis that we just defined. However, to properly
describe the problem, we need to find a solution for the ray
propagating with the incident wave vector k given in a
coordinate system corresponding to the optical z̄ axis
associated with a point source at a large, but finite distance.
This problem requires one either solving the Maxwell
equations in the z̄-coordinate system with an appropriate
form of the incident logarithm-modified plane wave (see
[2] for details) or to transform the solution (4)–(8) from z
coordinates to z̄ coordinates. No such solution is cur-
rently known.
To develop the needed solution for the EM field, we first

note that because of the separation of variables that was

FIG. 3. Wave-optical treatment of the diffraction of light on the solar gravitation field. In the strong interference region, rays with
different impact parameters would have different optical path lengths which lead to formation of the interference pattern (shown
conceptually, not to scale) on the image plane.
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used to solve the Maxwell equations (see [2] for details),
the solution (4)–(8) isolates the dependence on the azimu-
thal angle ϕ from the dependence on the other two
variables, r and θ, present in αðr; θÞ, βðr; θÞ, and γðr; θÞ,
given by (5)–(7). Thus, for any given angle ϕ ¼ ϕ0, the
needed solution is already available in the form of (5)–(8),
but the solution then needs to be rotated by the angle

β ¼ b
r0

þOðb2=r20Þ; ð10Þ

in the plane defined by ϕ ¼ ϕ0 and containing the optical
axis. This rotation transforms the polar angle as

θ̄ ¼ θ þ β; ð11Þ

but leaves r → rþOðb2=r20Þ. The azimuthal angle, how-
ever, changes according to

tan ϕ̄ ¼ tanϕþ sinðϕ − ϕ0Þ
tan θcos2ϕ

sin β þOðb2=r20Þ: ð12Þ

In other words, there is an additional rotation in
the azimuthal plane, ϕ → ϕ̄. As it turns out, the actual
magnitude of this rotation does not need to be computed,
for the following reasons:
(1) In regions other than the region of strong interfer-

ence, at any point in space, light arrives in the form
of at most two rays, both of which travel in the same
plane. The intensity of light, therefore, does not
depend on ϕ.

(2) In the strong interference region, we are near the
optical axis, axial symmetry is restored, and depend-
ence on the transformed azimuthal angle ϕ̄ vanishes,
which is also apparent from the obvious degeneracy
of Eq. (12) when θ → 0. Therefore, although in this

region, multiple rays of light traveling in different
azimuthal planes are combined, the result remains
independent of either ϕ or ϕ̄.

These considerations allow us to greatly simplify the
problem by considering light propagation in a plane only.
Another important concern regarding a point source at a

finite distance is that light from that source no longer
arrives in the form of a plane wave. However, when the
source is at a great distance and we are studying a narrow
beam of light, we may use the paraxial approximation,
which allows us to continue using the formalism developed
for incident plane waves instead of reformulating the
problem with spherical waves. Using this approximation,
we must rescale the field intensity of the plane wave, E0, to
account for its distance dependence from the source,
namely E0 → Es

0=r0, where Es
0 is the field intensity of

the corresponding spherical wave.

B. Solving Maxwell’s equations

Considering the solution for the Debye potential given
by Eq. (8), we observe that it depends on the associated
Legendre polynomials, Pð1Þ

l ðcos θÞ, and the Coulomb-
Hankel functions, H�

l ðkrg; krÞ. Both of these quantities
are given with respect to the z axis, which, as discussed
above, is not the most optimal axis to use in the case the
source is at a finite distance. Not only is the z axis not
uniquely defined but it breaks axial symmetry.
Given the coordinate transformation (11), we see that

the Legendre polynomials written with respect to the
z̄ axis may be given as Plðcosθ̄Þ¼PlðcosðθþβÞÞ¼
PlðcosθÞþOðθb=r0Þ, which is sufficient for our purposes.
Next, we turn our attention to the solution for the radial

function in (8) which is given by the Coulomb-Hankel
functions H�

l ðkrg; krÞ. The asymptotic form of these
functions has to account for the fact that the light source

FIG. 4. The three-dimensional geometry of the SGL, focusing light from a point source located at a finite distance. Two rays of light
with wave vectors k1 and k2 are shown. The rays move in different planes, which intersect along the optical axis. Note that the z axis is
no longer uniquely defined. However, the optical axis z̄ is unique and preserves the axial symmetry.
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is at a finite distance, at spherical coordinates
ðr0; b=r0;ϕ0Þ. We follow the path of propagation of a
light ray in the plane ϕ ¼ ϕ0. The corresponding asymp-
totic behavior of H�

l ðkrg; krÞ was established in Appendix

for kr → ∞ and r ≫ rt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=k (see [2,17]) in the
form of (A18) and is given by

lim
kr→∞

H�
l ðkrg; krÞ ∼ exp

�
�ikðrþ r0 þ rg lnð4k2rr0ÞÞ

þ lðlþ 1Þ
2k

�
1

r
þ 1

r0

�
þ σl −

πl
2

��
þOððkrÞ−2; r2gÞ; ð13Þ

which includes the contribution from the centrifugal term,
∝ lðlþ 1Þ=2kr, in the radial equation for the Debye
potential (see Appendix here or Appendix A in [16]).
Including the centrifugal term lets us better describe the
bending of the light ray’s trajectory under the influence of
solar gravity. In addition, Eq. (13) contains terms that
describe the dependence of the total phase of the EM wave
on the distance to the source, r0.
Furthermore, as the optical axis preserves the axial

symmetry, all the rays emitted toward the Sun from a
point on that axis with coordinates ðr0; 0;ϕ0Þ and impact
parameter b > R�

⊙ will intersect the optical axis behind the
Sun at one point, at the heliocentric distance of
z̄ ¼ b2=2rgð1þ b2=2rgr0Þ. As a result of this axial sym-
metry, the solution does not depend on the specific choice
of ϕ0.
The presence of the ∝ l2 term in (13) [and also in (A18)]

is important as it allows for a better description of the light
ray’s trajectory. Taking the semiclassical representation of
the partial momenta via the impact parameter as l ¼ kb,
for l ≫ 1 we may present the Euclidean part of the phase
of (13) as

kðrþ r0Þ þ
lðlþ 1Þ

2k

�
1

r
þ 1

r0

�

¼ k

�
rþ b2

2r

�
þ k

�
r0 þ

b2

2r0

�

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

q
þOðb4=r4; b4=r40Þ; ð14Þ

which now correctly describes the Euclidean distance that
the light travels from its emission at r0 to the point of its
detection, z̄. The remaining part of the phase in (13) that is
given as krg lnð4k2rr0Þ is due to the lengthening of the light
ray’s path in the curved spacetime that is induced by the
solar gravitational field.
Finally, as in the realistic exoplanet imaging situations,

the ratio β ¼ b=r0 is small, and any effect on the amplitude
of the EM field from the relevant β rotation of the EM field
is negligible. As we shall see in Sec. IV, most of the

contribution from β affects the phase of the EM wave,
which is our primary interest.

C. EM field in the shadow region

In the shadow behind the Sun (i.e., for impact parameters
b ≤ R⋆

⊙, see Fig. 2), the EM field is represented by the
Debye potential of the shadow, Πsh, which, from (8), is
determined solely by the incoming wave, as prescribed by
the fully absorbing boundary conditions:

Πshðr; θÞ ¼ −
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiσlH−

l ðkrg; krÞPð1Þ
l ðcos θÞ: ð15Þ

As discussed in [2,7], the potential (15), to the required
level of accuracy, produces no EM field in the area
−π=2 ≤ θ ≤ π=2. In other words, there is no light in the
shadow. Additionally, one can show that even outside the
shadow region behind the Sun, the potential (15) results in a
very small EM field, negligible for our analysis [7,16]. As a
result, we omit this term from the Debye potential (8) in our
analysis when we discuss the EM field in the geometric
optics and interference regions. Therefore, we focus on the
EM field produced only by the outgoing part of the Debye
potential (8), namely ∝ Hþ

l ðkrg; krÞ.

D. EM field outside the shadow

In the region outside the solar shadow (i.e., for light rays
with impact parameters b > R⋆

⊙), which includes the geo-
metric optics and both interference regions (see Fig. 2), the
EM field is derived from the Debye potential (8). For this,
we substitute (13) in (8) and derive the Debye potential
without the incident wave (discussed in Sec. III C):

Πðr; θÞ ¼ −
E0

k2
u
r
eikðrþr0þrg ln 4k2rr0Þ

×
X∞

l¼kR⋆
⊙

l−1eið2σlþ
l2
2kð1rþ 1

r0
ÞÞPð1Þ

l ðcos θÞ

þOðr2g; ðkrÞ−3Þ; ð16Þ

where we recognize that for large l ≥ kR⋆
⊙, we may replace

lþ 1 → l and lþ 1
2
→ l. Expression (16) is the Debye

potential that yields the EM field in the regions of geo-
metric optics and the interference region.
Introducing, for convenience, the effective distance r̃ in

the form

1

r̃
¼ 1

r
þ 1

r0
⇒ r̃ ¼ rr0

rþ r0
; ð17Þ

we derive the components of the EM field. For this, we use
(16) and (17) in the expressions (5)–(7) to derive the factors
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αðr; θÞ, βðr; θÞ, and γðθÞ, which, to the order of
Oðr2g; ðkrÞ−3Þ, are computed as

αðr; θÞ ¼ −E0

ueikðrþr0þrg ln 4k2rr0Þ

k2r2
X∞

l¼kR⋆
⊙

leið2σlþl2
2kr̃Þ

×

�
1 −

l2

4u2k2r2

�
Pð1Þ
l ðcos θÞ; ð18Þ

βðr; θÞ ¼ E0

ueikðrþr0þrg ln 4k2rr0Þ

ikr

X∞
l¼kR⋆

⊙

l−1eið2σlþ
l2
2kr̃Þ

×

�∂Pð1Þ
l ðcos θÞ
∂θ

�
1 −

l2

2u2k2r2

�
þ Pð1Þ

l ðcos θÞ
sin θ

�
;

ð19Þ

γðr; θÞ ¼ E0

ueikðrþr0þrg ln 4k2rr0Þ

ikr

X∞
l¼kR⋆

⊙

l−1eið2σlþl2
2kr̃Þ

×

�∂Pð1Þ
l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

�
1 −

l2

2u2k2r2

��
:

ð20Þ

Here we neglected small terms that behave as ∝ i=ðu2krÞ;
terms ∝ ikrg=l2 were also omitted because of the large
partial momenta involved, l ≥ kR⋆

⊙. Terms in both of these
groups are negligibly small when compared to the leading
terms in each of these expressions above (a similar
conclusion was reached in [3,17]).
Expressions (18)–(20) represent an important result,

allowing us to describe the EM field in the regions of
interest for the SGL, namely the geometric optics region
and the interference region.

IV. EM FIELD IN THE GEOMETRIC OPTICS
AND WEAK INTERFERENCE REGIONS

We are interested in the area that can be reached by light
rays with impact parameters b > R⋆

⊙ and located behind the
Sun at heliocentric distances r > R⋆

⊙. This is the region of
geometric optics for which angles θ are rather large,
satisfying the condition jθj ≫ ffiffiffiffiffiffiffiffiffiffiffi

2rg=r
p

[2]. To establish
the EM field (4) in this region, we need to develop
expressions (18)–(20) evaluating them to the appropriate
level of accuracy. We begin with the investigation of αðr; θÞ
from (18).

A. Solution for the function αðr;θÞ and the radial
components of the EM field

To evaluate the expression for αðr; θÞ in the region of
geometric optics and, thus, for θ ≫

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, we use the

asymptotic representation for Pð1Þ
l ðcos θÞ [12,22,23], valid

when l → ∞:

Pð1Þ
l ðcosθÞ¼ −lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πlsinθ
p ðeiðlþ1

2
Þθþiπ

4þe−iðlþ1
2
Þθ−iπ

4ÞþOðl−3
2Þ;

for 0<θ<π: ð21Þ

With the approximation above, we may replace the sum
in (18) with an integral yielding an expression for αðr; θÞ
that to the order of Oðr2g; ðkrÞ−3Þ has the form

αðr; θÞ ¼ E0u
k2r2

eikðrþr0þrg ln 4k2rr0Þ

×
Z

∞

l¼kR⋆
⊙

l
ffiffiffi
l

p
dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sin θ
p

�
1 −

l2

4u2k2r2

�

× eið2σlþ
l2
2kr̃Þðeiðlθþπ

4
Þ þ e−iðlθþπ

4
ÞÞ: ð22Þ

We note that integrating over l from kR⋆
⊙ to infinity is

equivalent to integrating over the impact parameter b
ranging from grazing the Sun at b ¼ R⋆

⊙ to infinity. We
evaluate this integral by the method of stationary phase [2],
which is suitable for the evaluation of oscillatory integrals
of the type

I ¼
Z

AðlÞeiφðlÞdl; l ∈ R; ð23Þ

where the amplitude AðlÞ is a slowly varying function of l,
while φðlÞ is a rapidly varying function of l. The integral
(23) may be replaced, to good approximation, with a sum
over the points of stationary phase, l0 ∈ fl1;2;…g, for
which dφ=dl ¼ 0. Defining φ00 ¼ d2φ=dl2, we obtain the
integral

I ≃
X

l0∈fl1;2;…g
Aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
eiðφðl0Þþπ

4
Þ: ð24Þ

Following [17], we see that the relevant l-dependent part
of the phase in (22) is of the form

φ�ðlÞ¼�
�
lθþπ

4

�
þ2σlþ

l2

2kr̃
þOðr2g;ðkrÞ−3Þ: ð25Þ

Similar to the approach used in [3,7], we evaluate σl for
l ≫ krg as

σl ¼ −krg lnl: ð26Þ

The phase is stationary when dφ½0�
� =dl ¼ 0, which,

together with (26), implies
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�θ −
2krg
l

þ l
kr̃

¼ Oðr2g; ðkrÞ−3Þ: ð27Þ

Relying on the semiclassical approximation that con-
nects the partial momentum, l, to the impact parameter, b,

l ≃ kb; ð28Þ

for small angles θ (or large heliocentric distances,
R⊙=r < b=r ≪ 1), we see that the points of stationary
phase that must satisfy (27) are given by (see [2] for details)

b
r
þ b
r0

¼ ∓θ þ 2rg
b

þOðθ3; r2gÞ; ð29Þ

which describes hyperbolas representing the geodesic
trajectories of light rays in the post-Newtonian gravitational
field of a mass monopole [2]. For impact parameters
b ≥ R⋆

⊙, these trajectories are outside the Sun, crossing
from the geometric optics region behind the Sun into the
interference region. In essence, Eq. (29) is a classical thin
lens equation that is familiar from geometric optics
[2,20,24]. Similar to the approach demonstrated in [3],
the validity of this expression may be extended to higher
powers of the small angle θ, yielding complete trigono-
metric identities.
The result given by (29) differs from a similar expression

given in [2,3] for a source located at infinity. The finite
distance to the source is captured by the term β ¼ b=r0,
defined in Eq. (10); see also Fig. 5. In the coordinate system
rotated by angle β in the ϕ ¼ ϕ0 plane, we can easily see
that light rays intersect the optical axis at slightly greater
heliocentric distances. For any given impact parameter, the
focal point of the SGL, located at r ¼ b2=2rg for a source at
infinity (β ¼ 0), is shifted r̄ ¼ b2=ð2rgÞð1þ b2=ð2rgz0ÞÞ.
The extra distance that a light ray needs to propagate before
it intersects the optical axis is δr ¼ ðb2=2rgÞ2=z0, which,

for nominal values of the parameters, is computed to be
δr ¼ 0.05ðb=R⊙Þ4ð30 pc=z0Þ AU. The extra distance is
small but nonvanishing. The heliocentric distance to the
focal point associated with a source at a finite distance,
calculated as r̄ with respect to the optical axis, is related to
the heliocentric distance r of the focal point associated with
a source at infinity by

r̄ ¼ rð1þ r=r0Þ þOðr3=r20Þ: ð30Þ

Equation (30) represents a rescaling of all relevant results
by an extra factor that depends on the distance to the
source. This mapping between the distances provides an
interpretation of the results that we obtain below.

B. Incident and scattered waves

We now continue to investigate (29). For small but finite
angles, jθj ≫ ffiffiffiffiffiffiffiffiffiffiffi

2rg=r
p

> 0, and large impact parameters,
b ≥ R⋆

⊙ ≫ rg, Eq. (29) yields two families of solutions for
the points of the stationary phase:

bin ¼ ∓
�
r̃θ þ 2rg

θ

�
þOðθ3; r2gÞ and

bs ¼ � 2rg
θ

þOðθ3; r2gÞ; ð31Þ

where the family bin represents the incident wave with
light ray trajectories bent toward the Sun, obeying the
eikonal approximation of geometric optics, and the family
bs describes the scattered wave.
Solution (31) offers a very nice representation of the

gravitational scattering of light. Consider the first term in
bin, given as b0 ¼ r̃θ ≥ R�

⊙. This term describes the
propagation of light at the distance b0 from the optical
axis that is representative for an empty (or Euclidian)
spacetime. The second term in bin, is identical to bs in

FIG. 5. The SGL focusing light from a point source located at a finite distance. Two rays of light with the same impact parameter b,
traveling in the same plane but on opposite sides of the Sun, are shown. The incident rays are no longer parallel. The diagram is arranged
such that the top incident ray appears horizontal, as in Fig. 1. The wave vector k is inclined with respect to the optical axis z̄ by the angle
β ¼ b=z0. Both rays intersect z̄ at the distance z̄ ¼ ðb2=2rgÞð1þ b2=2rgz0Þ.
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magnitude, but has the opposite sign. This second term
describes the scattering of light in the presence of the solar
gravitational monopole. For a given impact parameter with
respect to the optical axis, b0, as the heliocentric distance r
increases, the magnitude of the angle θ decreases. As θ gets
smaller, the scattering term becomes more significant,
effectively deflecting the trajectory of the light ray. At this
point we are still in the geometric optics region (see Figs. 2
and 6) characterized by only one ray of light from the point
source passing through any given point of space. For
θ ≥ 2rg=R�

⊙, the impact parameter for the scattered wave
is jbsj ≤ R�

⊙, and therefore, the scattered wave is blocked
by the Sun, as prescribed by the fully absorbing boundary
conditions [2].
Closer to the optical axis, where θ < 2rg=R�

⊙, the impact
parameter of the scattered ray is large enough,
jbsj ¼ 2rg=θ > R�

⊙, so that the scattered ray is no longer
blocked by the Sun. As the solution for bs has the sign
opposite to that of bin, the scattered ray enters the region
behind the Sun on the opposite side. After it crosses the
optical axis, the scattered ray intersects the incident ray. As
the two rays have drastically different optical paths, no
notable interference pattern emerges. An observer would
see these two rays correspond to two images of the same
source with uneven brightness on opposite sides of the Sun.
This is characteristic of the region of weak interference,
shown in Figs. 2 and 6.
As a result, the two families of solutions (31) represent

the incident and scattered parts of the same EM wave
shown by Eq. (21) of [2]. This provides support for the
interpretation given in [25], where these two solutions were
interpreted as distinct rays of light on opposite sides of the
Sun. (Note that the strong interference region is not covered
by the approximation (21). It is described in detail in
Sec. V.) As discussed in [2,3,7], the presence of both of
these families of light rays determines the physical proper-
ties of the EM field in three of the regions relevant for the
SGL, namely the shadow, the geometric optics region, and
both interference regions. In addition, the “�” or “∓” signs
represent light rays that propagate on opposite sides of the
Sun, as a manifestation of the existing axial symmetry.

C. Computing αinðr;θÞ and αsðr;θÞ
By extending the asymptotic expansion of Hþ

l ðkrg; krÞ
from (13) to the order of OððkrÞ−ð2nþ1ÞÞ (i.e., using the
WKB approximation as was done in the Appendix), the
validity of the result (31) may be extended to Oðθ2nþ1Þ.
This fact was observed in [17] and used to improve the
solution by including terms of higher order in θ.
The first family of solutions of (31), yieldinglin ¼ kbin,

allows us to compute the phase for the points of stationary
phase (25) for the EMwavesmoving toward the interference
region (a similar calculation was done in [17]):

φ�ðlinÞ ¼ � π

4
−
1

2
kr̃θ2 − krg ln k2r̃2θ2 þOðkrθ4; krgθ2Þ:

ð32Þ

From (25) we compute φ00ðlÞ as

d2φ�
dl2

¼ 1

kr̃
þ 2krg

l2
þOððkrÞ−3Þ: ð33Þ

After substituting lin in (33), we derive φ00ðlinÞ ¼
d2φ�=dl2jl¼lin which yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlinÞ

s
¼

ffiffiffiffiffiffiffiffiffiffi
2πkr̃

p �
1 −

rg
r̃θ2

þO
�
θ2;

rg
r
θ2
��

: ð34Þ

Now, using (34), we have the amplitude of the integrand
in (22), for lin ≫ 1, taking the form

lin
ffiffiffiffiffiffiffi
lin

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
in

4u2k2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlinÞ

s

¼ ð∓1Þ32k2rr̃u−2 sinðθ þ βÞ
�
1þ rg

rð1 − cosðθ þ βÞÞ

þO
�
θ3; β3;

rg
r
θ2
��

; ð35Þ

FIG. 6. The incident and scattered rays in the case of finite distance to the source. Scattered rays with impact parameter jbsj < R�
⊙

(shown by the third line from the bottom) are blocked by the Sun, resulting in the formation of the shadow and the geometric optics
regions (as shown in Fig. 2). Scattered rays with jbsj > R�

⊙ (first and second lines from the bottom) pass by the Sun and, after crossing
the optical axis at z̄ or beyond, intersect incident rays, leading to the formation of the weak interference region. When the intersection
occurs near or on the optical axis, the incident and scattered rays have similar optical path lengths, leading to the formation of the strong
interference region.
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where the angle β is from (10) and we used the definition
(17) for r̃ and the solution (31) for the impact parameter
bin, namely

r̃θ ¼ r

�
θ −

rθ
r0

�
þOðr3=r20Þ

¼ r

�
θ þ b

r0

�
þOðr3=r20Þ

¼ rðθ þ βÞ þOðr3=r20Þ: ð36Þ

As a result, the expression for αinðr; θÞ from (22) for the
incident wave takes the form

αinðr;θÞ¼E0u−1
r0

ðrþ r0Þ
sinðθþβÞ

�
1þ rg

rð1− cosðθþβÞÞ

þO
�
θ2;

rg
r
θ2
��

eiφinðr;θÞ; ð37Þ

where to derive the phase, φinðr; θÞ, according to (24), we
combined the WKB phase from the exponent in front of the
integral in (22) and the l-dependent contribution from (32):
kðrþ r0 þ rg ln 4k2rr0Þ þ φ�ðlinÞ þ π

4
, yielding

φinðr; θÞ ¼ kðr0 cos β þ rg ln 2kr0 þ r cosðθ þ βÞ
− rg ln krð1 − cosðθ þ βÞÞÞ: ð38Þ

We define kβ ¼ −n0 being the vector along the direction
from the point source to the center of the Sun, i.e., along the
optical axis. Then, the following identity holds: 2kr0 ¼
kr0 − kðkβ · r0Þ. With this, the expression (38) takes a
familiar form,

φinðr;θÞ ¼ k

�
kβ · ðx− x0Þ− rg ln

r− ðkβ · xÞ
r0 − ðkβ · x0Þ

�
; ð39Þ

that describes the phase of an EM wave obtained with the
geodesic equation [discussed in Appendix B of Ref. [2],
with relevant results given there by (B22) and (B33),
correspondingly]. The results (37) and (38) represent good
evidence that in the case of a finite distance to the source,
the overall solution for the EM field is rotated by the angle
β, aligning it with the optical axis specified by a point
source with coordinates ðb; r0Þ and the center of the Sun.
However, an obvious difference compared to a solution of
the geodesic equation is the fact that (39) describes the
evolution of the phase along the trajectory with a zero
impact parameter.
Result (39) justifies our approach of modifying the

existing solution for the EM field by applying the eikonal
approximation, as discussed in Sec. III A. The use of the
optical axis z̄ restores the axial symmetry of the problem,
and the entire EM field representing the family of rays
emitted toward the Sun with the same impact parameter b

may now be obtained by a simple rotation around the z̄ axis
by the angle ϕ0.
Now we consider the second family of solutions in (31),

given by ls ¼ kbs (similar derivations were made in [7]),
which allow us to compute the stationary phase as

φ�ðlsÞ ¼ � π

4
− krg ln 2kr̃þ krg ln kr̃

1

2
θ2 − 2krg ln

krg
e

þOðkrgθ2Þ: ð40Þ

Using (33) and ls ¼ kbs from (31), we compute the
second derivative of the phase with respect to l:

φ00
�ðlsÞ ¼

θ2

2krg

�
1þ 2rg

r̃θ2

�
þOðθ3Þ; and thus;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlsÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4πkrg

p
θ

�
1 −

rg
r̃θ2

�
: ð41Þ

At this point, we may evaluate the amplitude of the
integrand in (22), which, for ls ≫ 1, is given as

ls
ffiffiffiffiffi
ls

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
s

4u2k2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlsÞ

s

¼ ð∓1Þ32
�
2krg
θ

�
2 1

θ

�
1 −

rg
r̃θ2

�
: ð42Þ

As a result, the expression for αsðr; θÞ representing the
scattered wave in (22) takes the form

αsðr; θÞ

¼ −E0

�
2rg
r

�
2 1

θ3
eikðr0þrg ln 2kr0þrþrg ln krð1−cosðθþβÞÞÞþ2iσ0

∼Oðr2gÞ; ð43Þ

where the phase was computed by combining the WKB
phase from (22) and the l-dependent contribution (40), as
we did to compute (38). We conclude that to the order of
Oðr2gÞ, there is no scattered wave in the radial direction,
which is consistentwith the results reported in [2], extending
those to include dependence on the source position.
The results (37) and (43) are the radial components of the

EM wave corresponding to the two families of the impact
parameters (31). We use these solutions to discuss the EM
field in the geometric optics region.

D. Evaluating the function βðr;θÞ
To evaluate the magnitude of the function βðr; θÞ in (19),

we rely on the asymptotic behavior of Pð1Þ
l ðcos θÞ= sin θ

and ∂Pð1Þ
l ðcos θÞ=∂θ, which for fixed θ and l → ∞ is given

[3,13] as

IMAGING EXTENDED SOURCES WITH THE SOLAR … PHYS. REV. D 100, 084018 (2019)

084018-11



Pð1Þ
l ðcosθÞ
sinθ

¼
�

2l
πsin3θ

�1
2

sin

��
lþ 1

2

�
θ−

π

4

�
þO

�
l−3

2

�
;

ð44Þ

dPð1Þ
l ðcosθÞ
dθ

¼
�

2l3

π sinθ

�1
2

cos

��
lþ1

2

�
θ−

π

4

�
þO

�
l−1

2

�
:

ð45Þ

With these approximations, in the region of geometric
optics the function βðr; θÞ from (19) takes the form

βðr; θÞ ¼ E0

ueikðrþr0þrg ln 4k2rr0Þ

ikr

X∞
l¼kR⋆

⊙

l−1eið2σlþ
l2
2kr̃Þ

×

��
2l3

π sin θ

�1
2

�
1 −

l2

2k2r2

�
cos

�
lθ −

π

4

�

þ
�

2l
πsin3θ

�1
2

sin
�
lθ −

π

4

��
: ð46Þ

For large l ≫ 1, the first term in the curly brackets of
(46) dominates, so that this expression may be given as

βðr; θÞ ¼ E0

ueikðrþr0þrg ln 4k2rr0Þ

ikr

X∞
l¼kR⋆

⊙

�
2l

π sin θ

�1
2

×

�
1 −

l2

2u2k2r2

�
eið2σlþl2

2kr̃Þ cos
�
lθ −

π

4

�
: ð47Þ

To evaluate this expression, we again use the method of
the stationary phase. For this, representing (47) in the form
of an integral over l, we have

βðr; θÞ ¼ −E0

ueikðrþr0þrg ln 4k2rr0Þ

kr

×
Z

∞

l¼kR⋆
⊙

ffiffiffi
l

p
dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sin θ
p

�
1 −

l2

2u2k2r2

�

× eið2σlþl2
2kr̃Þðeiðlθþπ

4
Þ − e−iðlθþπ

4
ÞÞ: ð48Þ

Expression (48) shows that the l-dependent part of the
phase has a structure identical to that of (25). Therefore, the
same solutions for the points of the stationary phase apply.
As a result, using (31) and (34), from (48) and for the first
family of solutions (31) or lin ¼ kbin, to the order of
Oðθ4Þ, we have the amplitude in the stationary phase
solution

ffiffiffiffiffiffiffi
lin

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
in

2u2k2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlinÞ

s

¼
ffiffiffiffiffiffiffi∓1

p
kr̃u−1

�
cosðθ þ βÞ − rg

r

�
: ð49Þ

As a result, similar to (37), the expression for the
βinðr; θÞ takes the form [with φinðr; θÞ is given by (38)]

βinðr; θÞ ¼ E0u−1
r0

rþ r0

�
cosðθ þ βÞ − rg

r

�
eikφinðr;θÞ

þO
�
θ4;

rg
r
θ2
�
: ð50Þ

Now we turn our attention to the second family of
solutions in (31) or for ls ¼ kbs. Similar to (42), we have

ffiffiffiffiffi
ls

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
s

2u2k2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðlsÞ

s

¼
ffiffiffiffiffiffiffi
�1

p 2krg
θ2

þOðθ2; r2gÞ; ð51Þ

which yields the following result for βsðr; θÞ:

βsðr;θÞ¼E0

rg
2rsin2 1

2
θ
eikðr0þrg ln2kr0þrþrg lnkrð1−cosðθþβÞÞÞþ2iσ0

þO
�
θ2;

rg
r
θ2
�
: ð52Þ

E. Evaluating the function γðr;θÞ
To determine the remaining components of the EM field

(4), we need to evaluate the behavior of the function γðr; θÞ
from (20). For that, we use the asymptotic behavior of

Pð1Þ
l ðcos θÞ= sin θ and ∂Pð1Þ

l ðcos θÞ=∂θ from (44) and (45),
and we rely on the method of the stationary phase. Similar
to (46), we drop the second term in the curly brackets in
(20). The resulting expression for γðr; θÞ, for large partial
momenta, l ≫ 1, is now determined from the following
integral:

γðr;θÞ ¼ E0

ueikðrþr0þrg ln4k2rr0Þ

kr

×
Z

∞

l¼kR⋆
⊙

ffiffiffi
l

p
dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sinθ
p eið2σlþ

l2
2kr̃Þðeiðlθþπ

4
Þ − e−iðlθþπ

4
ÞÞ:

ð53Þ

Clearly, this expression yields the same points of
stationary phase (25); thus, all the results obtained in
Sec. IVA are also relevant here. Therefore, the l-dependent
amplitude of (53), for the first family of solutions (31),
lin ¼ kbin, is evaluated to be

ffiffiffiffiffiffiffi
lin

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

φ00ðlinÞ

s
¼ �

ffiffiffiffiffiffiffi∓1
p

kr̃þO
�
θ3;

rg
r
θ2
�
: ð54Þ

With φinðr; θÞ from (38), the function γinðr; θÞ is
given as
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γinðr; θÞ ¼ E0u
r0

rþ r0
eiφinðr;θÞ þO

�
θ3;

rg
r
θ2
�
: ð55Þ

Finally, for the second family of solutions (31),
ls ¼ kbs, the result for γsðr; θÞ is identical to that given
by (52).

F. Solution for the EM field in the region
of geometric optics

To determine the components of the entire incident EM
field in the region of geometric optics, we use the expressions
that were obtained for the functions αinðr; θÞ, βinðr; θÞ, and
γinðr; θÞ, which are given by (37), (50), and (55), corre-
spondingly, and substitute them in (4). Before we present the
resulting solution for the EM field, we recognize that these
functions αinðr; θÞ, βinðr; θÞ, and γinðr; θÞ are given with
respect to the optical axis [as is evident from (39)] that
connects the point source with the center of the Sun.
However, these functions are still constrained to the plane
ϕ ¼ ϕ0. In order to regain the axial symmetry, we need to
rotate the solution (4) by the angle β in the plane defined by
ϕ0. As we mentioned earlier, because β is very small, any
contribution of such a rotation to the amplitude to the EM
field is negligibly small. After performing the needed
substitutions and implementing the rotation by β, we estab-
lish the solution for the incidentwave produced by theDebye
potential Π0 from (8):

�
Dr

Br

�
in

¼ Es
0u

−1

rþ r0
sinðθ þ βÞ

�
1þ rg

rð1 − cosðθ þ βÞÞ
�

×

�
cos ϕ̄

sin ϕ̄

�
eiðφinðr;θÞ−ωtÞ; ð56Þ

�
Dθ

Bθ

�
in
¼Es

0u
−1

rþr0

�
cosðθþβÞ−rg

r

��
cosϕ̄

sinϕ̄

�
eiðφinðr;θÞ−ωtÞ;

ð57Þ
�
Dϕ

Bϕ

�
in

¼ Es
0u

rþ r0

�− sin ϕ̄

cos ϕ̄

�
eiðφinðr;θÞ−ωtÞ; ð58Þ

where the phase φinðr; θÞ is given by (38) or, equivalently,
by (39).
This is the solution for the EM field in the geometric

optics region formed by the solar gravitational monopole.

G. Solution for the EM field in the weak
interference region

We recall (see [2] for details) that in the case of
gravitational scattering, there are two waves that character-
ize the overall scattering process in the region of weak
interference: the incident wave given by (56)–(58) and the
scattered wave with αsðr; θÞ and βsðr; θÞ ¼ γsðr; θÞ are
given by (43) and (52), correspondingly, leading to the

following form of the scattered wave with ðDr; BrÞs ¼
Oðr2gÞ and the rest of the components given as

�
Dθ

Bθ

�
s
¼

�
Bϕ

−Dϕ

�
s

¼ Es
0

r0

rg
2rsin2 θ

2

�
cos ϕ̄

sin ϕ̄

�

× eiðkðr0þrg ln 2kr0þrþrg ln krð1−cosðθþβÞÞÞþ2σ0−ωtÞ:

ð59Þ

As a result, we established the EM field in the region of
weak interference in the presence of the incident wave and
the scattered wave, given by (56)–(58) and by (59),
correspondingly.
Note that the way we handled the sums in (18)–(20)—

replacing them throughout this section with integrals over l
and then evaluating the integrals via the method of a
stationary phase—amounts to an integral in the lens
plane typically encountered in the models for weak
gravitational lensing. In fact, results (56)–(58) and (59)
may now be used to compute the energy flux at the image
plane, similar to that done in Sec. II.F of [2]. Although this
is a rather simple step technically, wewill not discuss it here
as such a development is beyond the scope of the
present paper.
This completes the derivation for the EM field in the

geometric optics and weak interference regions formed by
the solar gravitational monopole. We now turn our attention
to the strong interference region, which is the region of
greatest importance for imaging with the SGL.

V. EM FIELD IN THE STRONG
INTERFERENCE REGION

We are interested in the area behind the Sun, reachable
by light rays with impact parameters b ≥ R⋆

⊙. The focal
region of the SGL begins where r ≥ b2=2rg and
0 ≤ θ ≃

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
. The EM field in this region is derived

from the Debye potential (8) and is given by the factors
αðr; θÞ, βðr; θÞ, and γðr; θÞ from (18)–(20), which we now
calculate.

A. The function αðr;θÞ and the radial components
of the EM field

We again begin with the investigation of αðr; θÞ from
(18). To evaluate this expression in the interference region
where 0 ≤ θ ≃

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, we use the asymptotic representa-

tion for Pð1Þ
l ðcos θÞ from [12,22,23], valid when l → ∞,

Pð1Þ
l ðcos θÞ ¼ lþ 1

2

cos 1
2
θ
J1

��
lþ 1

2

�
2 sin

1

2
θ

�
: ð60Þ
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We use the approximation above and replace the sum in
the resulting expression (18) with an integral to be
evaluated with the method of stationary phase,

αðr; θÞ ¼ −E0

ueikðrþr0þrg ln 4k2rr0Þ

k2r2

×
Z

∞

l¼kR⋆
⊙

l2dleið2σlþl2
2kr̃Þ

�
1 −

l2

4u2k2r2

�

× J1ðlθÞ þOðr2g; ðkrÞ−3; θ2Þ: ð61Þ
We see that the l-dependent phase in this expression is

given as

φðlÞ ¼ 2σl þ
l2

2kr̃
þOððkrÞ−3Þ

¼ −2krg lnlþ l2

2kr̃
þOððkrÞ−3Þ: ð62Þ

The phase is stationary when dφðlÞ=dl ¼ 0, resulting in

−
2krg
l

þ l
kr̃

¼OððkrÞ−3Þ
⇒l2¼2k2rgr̃þOððkrÞ−1Þ or l0¼k

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
: ð63Þ

This solution, l0, represents the smallest partial momenta
for the light trajectories to reach a particular heliocentric
distance, r, on the optical axis (Fig. 5). It is consistent with
the solution to the equation for geodesics (see Appendix B
in [2]) which yields the solution for the impact parameter of
b ¼ ffiffiffiffiffiffiffiffiffi

2rgr̃
p

. Note that we choose l to be positive.
We now return to evaluating (61). The solution given by

(63) allows us to compute the stationary phase (62),

φðl0Þ ¼ −krg ln 2kr̃þ σ0 þ
π

2
; ð64Þ

where σ0 is the constant given as σ0 ¼ argΓð1 − ikrgÞ [15].
For large values of krg → ∞ this constant is evaluated as
σ0 ¼ −krg lnðkrg=eÞ − π

4
(see details in [2]). Next, using

(62), we compute the relevant φ00ðlÞ ¼ d2φ=dl2 as

d2φ
dl2

¼ 1

kr̃
þ 2krg

l2
⇒

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffi
πkr̃

p
: ð65Þ

With (65), we now have the amplitude of the integrand in
(61), for l from (63), taking the form

l2
0

�
1−

l2
0

4u2k2r2

�
J1ðlθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ k22rgr̃
ffiffiffiffiffiffiffiffi
πkr̃

p �
1−

rgr̃

4r2
þOðr2g; ðkrÞ−1Þ

�
J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
θÞ:

ð66Þ

As a result, the expression for αðr; θÞ from (61) becomes

αðr; θÞ ¼ −iE0

ffiffiffiffiffiffiffi
2rg
r̃

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

�
r0

rþ r0

�
2

× J1ðk
ffiffiffiffiffiffiffiffiffi
2rgr̃

p
θÞeikðrþr0þrg ln 2kðrþr0ÞÞ: ð67Þ

We can use the same approach to compute the remaining
two factors βðr; θÞ and γðr; θÞ.

B. The function βðr;θÞ and the θ components
of the EM field

Similar to [2,3], to evaluate the magnitude of the function
βðr; θÞ, we need to establish the asymptotic behavior of the

Legendre polynomials Pð1Þ
l ðcos θÞ in the relevant regime.

The asymptotic formulas for the Legendre polynomials if
w ¼ ðlþ 1

2
Þθ is fixed and l → ∞ are [13]

Pð1Þ
l ðcos θÞ
sin θ

¼ 1

2
lðlþ 1ÞðJ0ðwÞ þ J2ðwÞÞ;

dPð1Þ
l ðcos θÞ
dθ

¼ 1

2
lðlþ 1ÞðJ0ðwÞ − J2ðwÞÞ: ð68Þ

Using (68), we transform (19) by also replacing the sum
in the resulting expression with an integral to derive β as

βðr;θÞ¼E0

ueikðrþr0þrg ln4k2rr0Þ

ikr

Z
∞

l¼kR⋆
⊙

ldleið2σlþl2
2kr̃Þ

×

�
J0ðlθÞ−

1

2
ðJ0ðlθÞ−J2ðlθÞÞ

l2

2u2k2r2

�
: ð69Þ

As the l-dependent phase in (69) is the same as (61),
corresponding results from Sec. VA are also applicable
here. In fact, the same solutions for the points of stationary
phase apply. As a result, using (63) and (65), from (69),
we have

l0

�
J0ðl0θÞ −

1

2
ðJ0ðl0θÞ − J2ðl0θÞÞ

l2
0

2u2k2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ kr̃
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q �
J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
θÞ þO

�
rg
r
; r2g

��
: ð70Þ

As a result, the expression for βðr; θÞ in the interference
region takes the form

βðr; θÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

r0
rþ r0

J0ðk
ffiffiffiffiffiffiffiffiffi
2rgr̃

p
θÞ

× eikðrþr0þrg ln 2kðrþr0ÞÞ
�
1þO

�
rg
r
; r2g

��
: ð71Þ
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C. The function γðr;θÞ and the ϕ components
of the EM field

The ϕ components of the EM field are governed by
the factor γðr; θÞ from (20). Similar to the discussion in
Sec. V B, we use (44) and (45) to transform the resulting
expression for γðr; θÞ to an integral, also taking l ≫ 1,

γðr;θÞ¼E0

ueikðrþr0þrg ln4k2rr0Þ

ikr

Z
∞

l¼kR⋆
⊙

ldleið2σlþl2
2kr̃Þ

×

�
J0ðlθÞ−

1

2
ðJ0ðlθÞþJ2ðlθÞÞ

l2

2u2k2r2

�
: ð72Þ

As we noticed while deriving (70), the term ∝
l2=2u2k2r2 produces a contribution of Oðrg=rÞ, which
is negligible in the interference region. This term may also
be neglected in the integrand of (72). With this simplifi-
cation, the resulting Eq. (72) is identical to that of (69).
Therefore, we conclude that in the interference
region γðr; θÞ ¼ βðr; θÞ þOðrg=r; r2gÞ.

D. The EM field in the interference region

Now we are ready to present the components of the EM
field in the interference region. We do that by using the
expressions that we obtained for the functions αðr; θÞ,
βðr; θÞ ¼ γðr; θÞ þOðrg=rÞ, which are given by (67), (71),
correspondingly, and substitute them in (4). As a result, we
establish the solution for the EM field produced by the
Debye potential Π given by (8) for the EM wave in
the interference region. After implementing, as before,
the rotation by β in the plane defined by ϕ0, we obtain the
solution in the following form:

�
Dr

Br

�
¼ −iE0

ffiffiffiffiffiffiffi
2rg
r̃

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

�
r0

rþ r0

�
2

× J1ðk
ffiffiffiffiffiffiffiffiffi
2rgr̃

p ðθ þ βÞÞeiðkðrþr0þrg ln 2kðrþr0ÞÞ−ωtÞ

×

�
cos ϕ̄

sin ϕ̄

�
; ð73Þ

�
Dθ

Bθ

�
¼

�
Bϕ

−Dϕ

�

¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

r0
rþ r0

J0ðk
ffiffiffiffiffiffiffiffiffi
2rgr̃

p ðθ þ βÞÞ

× eiðkðrþr0þrg ln 2kðrþr0ÞÞ−ωtÞ
�
cos ϕ̄

sin ϕ̄

�
: ð74Þ

The radial component of the EM field (73) is negligibly
small compared to the other two components, which is
consistent with the fact that while passing through solar
gravity the EM wave preserves its transverse structure.
Equations (73) and (74) describe the EM field in the

interference region of the SGL in the spherical coordinate

system. To study this field on the image plane, we follow
the approach demonstrated in [2], where instead of spheri-
cal coordinates ðr; θ;ϕÞ, we introduced a cylindrical
coordinate system ðρ;ϕ; zÞ, more convenient for these
purposes. In the region r ≫ rg, this can be done by defining
R ¼ ur ¼ rþ rg=2þOðr2gÞ and introducing the coordi-
nate transformations ρ ¼ R sinðθ þ βÞ, z ¼ R cosðθ þ βÞ,
which, from (2), result in the following line element:

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ
¼ u−2c2dt2 − ðdρ2 þ ðρ − βzÞ2dϕ2 þ u2dz2Þ
þOðr2g; β2Þ: ð75Þ

As a result, using (73) and (74), for a high-frequency EM
wave [i.e., neglecting terms ∝ ðkrÞ−1] and for r ≫ rg, we
derive the components of the EM field near the optical axis,
which, together with (36) and up to terms ofOðρ2=z2; βÞ, in
the paraxial approximation [see discussion after (58)], take
the form

�
Eρ

Hρ

�
¼

�
Hϕ

−Eϕ

�

¼ Es
0

rþ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr̄

p ðθ þ βÞÞ

× eiðkðrþr0þrg ln 2kðrþr0ÞÞ−ωtÞ
�
cos ϕ̄

sin ϕ̄

�
; ð76Þ

with the z components of the EM wave behaving
as ðEz;HzÞ∼Oðρ=z;βÞ. The quantity r̄¼rð1þr=r0þ
Oðr2=r20ÞÞ from (30) denotes heliocentric distances along
the line connecting the point source and the center of the Sun.
Also, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
¼ zþOðρ2=zÞ, θ ¼ ρ=zþOðρ2=z2Þ,

and β ¼ b=z0 þOðb2=z20Þ. Note that these expressionswere
obtained using the approximations (68) and are valid for
forward scattering when θ þ β ≈ 0, or when 0 ≤ ρ ≤ rg.
Using (76), we now compute the energy flux on the

image plane in the interference region of the SGL (see
Fig. 7). The relevant components of the time-averaged
Poynting vector for the EM field in the image volume, as a
result, may be given as [2]

S̄z ¼
c
8π

�
Es
0

rþ r0

�
2 2πkrg
1 − e−2πkrg

J20ðk
ffiffiffiffiffiffiffiffiffi
2rgr̄

p ðθ þ βÞÞ; ð77Þ

with S̄ρ ¼ S̄ϕ ¼ 0 for any practical purposes. Therefore, the
nonvanishing component of the light amplification vector
μ, defined as μ¼ S̄=jS̄0j [where jS̄0j¼ðc=8πÞðEs

0=ðrþr0ÞÞ2
is the time-averaged Poynting vector of a plane wave
propagating in empty spacetime] takes the form
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μ̄z¼μ0J20

�
2π

λ

ffiffiffiffiffiffiffiffiffi
2rgr̄

p ðθþβÞ
�
; with μ0¼

4π2

1−e−4π
2rg=λ

rg
λ
;

ð78Þ

where μ0 is the light amplification factor for imaging a
point source with the observer positioned on the optical
axis that is set by the position of that source and the origin
of the heliocentric coordinate system. The amplification
reaches its maximum value when the argument of the
Bessel function vanishes, which is happening when, for a
given value of β (that is set by the position of the point
source), the angle θ takes the opposite value, namely
θ ¼ −β. Clearly, one recovers (9) by taking in (78) the
limit of z0 → ∞ or, equivalently, by setting β ¼ 0.
The result given by Eq. (78) can be used to study the

image formation process in the case of an extended source.

VI. IMAGE FORMATION FOR AN EXTENDED
SOURCE WITH THE SGL

To study how the SGL forms an image of an extended
source, we model that extended source as a collection of
point sources in the source plane. We integrate the point-
spread function (PSF) for a single point source (78) over the
extended source (Fig. 8).

A. Generalization to the case of an extended source

To discuss image formation in the case of an extended
source, we introduce the vector of the position of an imaging
telescope in the coordinate system corresponding to the
optical axis, which can be done as r̄ ¼ r̄ðnþ kβÞ þOðβ2Þ.
Following [2], we recognize that for small angles θ and β the
argument of the Bessel function in (77) to the order of
Oðθ2; β2Þ has the form

FIG. 7. The SGL maps a point source with coordinates (x0, y0) in the source plane to a point with coordinates ðx; yÞ ¼ −ðz=z0Þðx0; y0Þ
in the image plane. The rotation of the PSF pattern, evident in Fig. 5, is not emphasized here.

FIG. 8. When the SGL maps an extended source (represented as multiple point sources) from the source to the image plane, the result
is a set of overlapping PSF patterns. The center of each PSF represents the location in the image plane where an observer, looking back at
the Sun, would see a complete Einstein ring attributed to that specific point source. Other point sources contribute light in the form of
partial Einstein rings. z0 and z̄ denote heliocentric distances to the source plane and image plane, correspondingly. As in Fig. 7, the
rotation of the individual PSF patterns, evident in Fig. 5, is not emphasized here.
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k
ffiffiffiffiffiffiffiffiffi
2rgr̄

p ðθ þ βÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where n⊥ ¼ ðx=r̄; y=r̄; 0Þ and kβ⊥ ¼ ðbx=r0; by=r0; 0Þ
are the components of these two vectors perpendicular
to k.
We introduce the coordinate system where the z axis lies

on the principal optical axis, which is the line that connects
the center of the exoplanet and the center of the Sun, before
intersecting the image plane (see Fig. 7). It is convenient to
express the results in terms of the distances along the
principal optical axis, z and z0, rather than the distances
along a particular optical axis r and r0. In addition, in
this coordinate system, any point in the source and/or
image planes is described by a deviation from that
principal optical axis and corresponding angles, namely
ðx0; y0; z0Þ ↔ ðρ0;ϕ0; z0Þ for the source and ðx; y; zÞ ↔
ðρ;ϕ; zÞ for the image, correspondingly.
Using the new coordinate system, the distances in (79)

are related to each other as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
¼ zþOðρ2=zÞ

and r0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20þρ02

p
¼z0þOðρ02=z0Þ, where we neglected

terms that are second order in ρ and ρ0, as ρ=z ≪ 1 and
ρ0=z0 ≪ 1. As a result, the distance r̄ is expressed
as r̄ → z̄ ¼ zð1þ z=z0Þ.
Now we can describe the imaging of an extended source.

For that we can generalize (78) by using (79), where,
relying on the axial symmetry of the problem, we replace
one point on the surface of the source ðby; by; r0Þ with a
generic point with coordinates ðx0; y0; z0Þ. This yields the
PSF of the SGL, expressed as a function of the location x of
a point source at a finite distance from the Sun, and a
location x0 in the image plane:

μ̄zðx;x0Þ ¼ μ0J20
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�
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This is our main result. It allows one to study the
image formation process, develop realistic imaging scenar-
ios, and perform relevant simulations. The result (80) is
different from the one that was obtained earlier [2] and
shown by (9). The new result explicitly accounts for the fact
that the distance to the source is finite. In addition, this
expression also explicitly depends on the coordinates x and
x0, not restricting them to a plane as was done in (9)
and (78).

B. Photometric imaging of an extended source
at a finite distance

To produce an image of an astronomical source, the
sources are assumed to be noncoherent. This allows us to use
photometric imaging techniques. In this case, a telescope is
used as a “light bucket,”measuring the total brightness of the
Einstein ring at various locations in the image plane,
corresponding to different parts of the source (see Fig. 7).
For an extended luminous source with the surface

brightness of Bðx0; y0Þ, the power density, I0ðx; yÞ, received
on the image plane at a distance of z̄þ z0 from the
source (see Fig. 8) is computed by integrating the PSF
(80) over the surface of the extended source, which may be
expressed as
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where Bðx0; y0Þ is a function with compact support having
nonzero values only within the source’s dimensions.
Examining (81), we see that monopole gravitational lens

acts as a convex lens by focusing light, according to

x ¼ −
z̄
z0

x0; y ¼ −
z̄
z0
y0: ð82Þ

This expression implies that the lens focuses light in
the opposite quadrant in the image plane by also com-
pressing the projected size of the source by a factor
of z=z0 ∼ 1.0 × 10−4ðz=650 AUÞð30 pc=z0Þ. Thus, the
diameter of the projection of an Earth-like exoplanet
at those distances is reduced to r⊕ ¼ R⊕ðz=z0Þ ¼
1.34ðz=650 AUÞð30 pc=z0Þ km.
Given the image radius of r⊕, a telescope with

aperture d < 2r⊕ centered at a particular point (x0, y0)
on the image plane will receive the signal Pdðx0; y0Þ ¼∬ dxdyI0ðx0 þ x; y0 þ yÞ, where the integration is done
within the telescope’s aperture jxj ≤ d=2, and with
jx0þxj≤r⊕, yielding the following result:
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We note that although this result does not include the
contribution from plasma in the solar corona [3,17], such
a contribution may easily be incorporated if needed.
This may be the case if we were to use the SGL for an
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application at microwave frequencies where the effect of
solar plasma is significant. For optical and IR wavelengths
the effect of the solar plasma on the optical properties of the
SGL is negligible.
This is our main result that may be used to study the

image formation for an extended source. This result opens
the way for using the SGL for imaging of faint targets
positioned at a large but finite distance from the Sun.
Expression (83) is rather complex and must be evaluated

numerically. However, an interesting limiting case exists
that may still be treated analytically: that of a point source
at a finite distance. For an incoherent source, the power
received by the telescope is given by (83). For a point
source positioned at the optical axis, x0 ¼ 0, and the
telescope at the center of the image, x0 ¼ 0, integral
(83) is easy to evaluate analytically. Assuming a uniform
source brightness, Bðx0; y0Þ ¼ Bs, we integrate (83),
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where we used the approximations for the Bessel functions
for large arguments [11],
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which is appropriate for typical parameters relevant to
imaging with the SGL.
Expression (84) may be used to estimate the signal

received from a distant unresolved source. Some approx-
imations exist to allow for a semianalytical treatment of
extended sources; however, their description is out of the
scope of this paper and will be given elsewhere.

C. Image formation by an optical telescope
at the image plane

A classical imaging technique relies on an imaging
telescope with a large focal plane sensor array capable
of capturing high-resolution images. This technique is well
developed for coherent sources; however, astronomical
sources may not be treated as such. Nevertheless, it is
interesting to consider the image formation process with the
SGL in the case when the extended source may be treated
as coherent.
To produce images with the SGL, we represent an

imaging telescope by a convex lens with focal distance
f and position the telescope at the image plane in the
interference region [9,24,26,27]. The amplitude of the wave
just in front of the lens from (76) and (80) is given as
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The presence of a convex lens with focal distance f is
equivalent to a Fourier transform of the wave (86).
Consider Aðx;x0Þ to be the EM field just in front of the
convex lens with focal distance of z̄ ¼ f. We position
the detector at the focal distance of the convex lens. Using
the Fresnel-Kirchhoff diffraction formula, the wave’s
amplitude on the detector’s focal plane at a pixel location
of p ¼ ðxi; yiÞ is given by

Aðp;x0Þ ¼ i
λ

Z Z
jxj2≤ðd=2Þ2

Aðx;x0Þe−i k2fjxj2 e
iks

s
d2x; ð87Þ

where s is the optical path. The function e−i
k
2fjxj2 ¼

e−i
k
2fðx2þy2Þ represents the action of the convex lens

which transforms incident plane waves to spherical
waves focusing at the focal point. Assuming that the
focal length is sufficiently larger than the radius of the
lens, we may approximate the optical path as s¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−xiÞ2þðy−yiÞ2þf2

p
∼fþððx−xiÞ2þðy−yiÞ2Þ=2f.

This allows us to present (87) as
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Integrating over the surface of the source, we have the
amplitude of the total EM field on the imaging detector,

AðpÞ ¼
Z Z

jx0j2≤R2
⊕

Aðp;x0Þd2x0: ð89Þ

With the amplitude AðpÞ given by (89), the EM field on
the detector (denoted by subscript p) is given as

�
Eρ

Hρ

�
p
¼
�

Hϕ

−Eϕ

�
p

¼ AðpÞ
z̄þ z0

eiðkðrþr0þrg ln2kðrþr0ÞÞ−ωtÞ
�
cosðϕþϕ0Þ
sinðϕþϕ0Þ

�
:

ð90Þ

Using these results, we compute the Poynting vector for
the EM field emitted by an extended source and received at
a particular pixel p on the imaging detector. Given the form
of EM field (90) and (89), the Poynting vector will have
only one nonzero component, Sz. With overline and
brackets denoting time averaging and ensemble averaging
(over the oscillators on the source’s surface), correspond-
ingly, we compute Sz as
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where ΩðtÞ is the entire time-dependent phase given as
ΩðtÞ ¼ kfð1þp2=2f2Þþ kðrþ r0þ rg ln2kðrþ r0ÞÞ−ωt.
The expectation value for hðReAðpÞeiΩðtÞÞ2i is given by the
following expression:
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where we introduced E0ðx0
aÞ and E0ðx0

bÞ to account for the
fact that the extended source may be incoherent.
Expression (92) is rather complex to be evaluated ana-

lytically in the general case. However, it can be evaluated
for a point source on the optical axis, x0 ¼ 0. In this case,
the integral in (92) is easy to compute analytically. As
we deal with the point source, we may model E0ðx0

aÞ ¼
E0ðx0

bÞ ¼ E0δðx0Þ, which takes care of the outer double
integrals over d2x0 in (92). With this, we only need to
integrate one inner double integral over d2x. To do this, we
introduce the relevant lens and detector coordinates as
ðx; yÞ ¼ ρðcosϕ; sinϕÞ and ðpx; pyÞ ¼ ρiðcosϕi; sinϕiÞ,
correspondingly, and, using these new variables, we com-
pute the integral d2x in (92):
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This result allows us to express the intensity of the EM
signal at the detector. After averaging over time, and using
(93) from (92), we get the following components of the
Poynting vector (NB: we arrange factors, e.g., of d2 in order
to present the Poynting vector in the form usually found in
the literature [9]), to Oðz̄=z0Þ:

SzðρiÞ ¼
c
8π

μ0Es2
0

z20

�
kd2

8f

�
2
�

2

1
2
kdð2rgz̄ − ρ2i

f2Þ

×

� ffiffiffiffiffiffiffi
2rg
z̄

r
J0

�
1

2
kd

ρi
f

�
J1

�
1

2
kd

ffiffiffiffiffiffiffi
2rg
z̄

r �

−
ρi
f
J0

�
1

2
kd

ffiffiffiffiffiffiffi
2rg
z̄

r �
J1

�
1

2
kd

ρi
f

���
2

: ð94Þ

Taking a limit of rg → 0 in (94), we obtain the Poynting
vector showing the classic Airy pattern:
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One may show that expression (94) is always finite. In
fact, even when 2rg=z̄ − ρ2i =f

2 ¼ 0, Eq. (94) remains finite
and describes the Einstein ring as it is seen at the detector at
the position given as

ρi ¼ f
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2rg
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r
: ð96Þ

For the image of the Einstein ring to be resolved on the
detector, the image size has to occupy several pixels
(Fig. 9). Assuming that the pixel size is δp ¼ 10 μm,
and the image occupies n0 ¼ 10 pixels, so that ρi ¼ n0δp,
such an imaging system would require a lens with the focal
length of
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We can also derive the power at the Einstein ring
deposited on the detector. For this, in (94), we take a limit
ρi → f
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p
and, relying on (85), obtain
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Comparing this expression with (95), we see that the light
at the Einstein ring is amplified with the amplification
factor given by the following expression:
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��
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�
2
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ð99Þ
We note that (94) is also finite when jρij ¼ 0 with the

corresponding value computed as
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From (100), using (85), for rg ≠ 0, the amplification factor
at the center of the detector is evaluated to be
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For rg→0, the amplification factor μ0det reduces to μ
0
det¼1

and the result (100) is equivalent to (95) for ρi ¼ 0.

VII. DISCUSSION AND CONCLUSIONS

Our main motivation for this paper was to study image
formation by the SGL in the case of an extended source
located at a large, but finite distance from the Sun. This is the
situation that we encounter when considering the use of the
SGL for multipixel imaging and spatially resolved spec-
troscopy of exoplanets. It is also relevant to many scenarios
that involve imaging of extended sources with microlensing
techniques. Yet surprisingly, no theoretical description of
this scenario could be found in the literature that we
surveyed, especially from the wave-optical perspective.
We began by recalling results of our investigations where

we studied the propagation of plane EM waves on the
background of a gravitational monopole. We relied on a
Mie theory that we developed [2] to account for the
refractive properties of the gravitational field in the vicinity
of the Sun. The resulting EM field is described in full by the

Debye potential (8), which accounts for the fully absorbing
boundary conditions introduced at the solar surface.
A key step in the new derivation is the development of

the radial function (13) that accounts for the phase shift
acquired along the path from the source to the image plane.
We obtained such a function by using the WKB approxi-
mation (A18), which is typically used to solve similar
problems in nuclear scattering. Using the approximate
solution to the radial function, we developed the corre-
sponding Debye potential and show that no EM field exists
directly behind the Sun in the shadow region.
Using the Debye potential (8) and the radial function

(13) in the region of geometric optics (see Sec. IV) yields a
solution for the EM wave propagating in this region. The
EM field in the region of geometric optics can be described
using incident and scattered waves, given by (56)–(58) and
(59), correspondingly. These solutions extend our previous
results [2,3] to the case of a source at finite distance. A
source that is positioned at a finite distance from the Sun
with coordinates (b, r0) can be dealt with by simply
introducing a rotation by the angle β ¼ b=r0, in the plane
defined by b, thus defining an optical axis of the SGL for
this particular point source. This optical axis connects the
point source and the center of the Sun, extending toward the
image plane. Rays of light envelop the entire solar circum-
ference and propagate toward this optical axis, ultimately
reaching it in the interference region (see Sec. V). An
observer at this location would see a perfect Einstein ring
formed around the Sun. A deviation from the optical axis
results in breaking the ring into arcs of uneven brightness.
The most practically interesting solution was obtained

for the EM field in the interference region (76). In the case
of a source at finite distance, for any given impact
parameter, the focal point of the SGL, which is nominally
given as b2=ð2rgÞ, is shifted farther out from the Sun by the
extra distance ðb2=2rgÞ2=z0 that must be accounted for in
any SGL mission design and simulations.
We extend our approach to imaging of extended sources

(see Sec. VI). For this we represent the surface of an

FIG. 9. Image formation in the sensor plane of an optical telescope with a 10 m focal length and an aperture of 25 cm (left), 1 m
(center), vs 2 m (right). The images depict the Einstein ring of a point source on the optical axis, as seen by the telescope. The image
produced by a 25 cm aperture is dominated by the diffraction pattern of the telescope. Larger telescope apertures, though still diffraction
limited, offer sufficient resolution, e.g., for the use of a coronagraph to block out light from the Sun inside the Einstein ring.
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extended source as a collection of point sources, each
selecting its own optical axis while imaged via the SGL.We
show that for each point in the source plane, there exists an
optical axis that points to a specific point on the image
plane, where the intensity of light from that point source is
maximal. As the SGL’s point-spread function is much
broader than the classical Airy pattern, there will be light
deposited at widely separated points on the image plane,
albeit at weaker levels. A telescope of modest size,
positioned in the image plane would see an Einstein ring
containing light from the entire extended body. At each
location on the image plane, such a ring is composed of the
complete Einstein ring produced by light from the source
location exactly opposite to the image plane location with
respect to the center of the Sun, and partial arcs from all
other points in the source plane. These rings and arcs
together determine the power density of the signal received
by a telescope in the image plane and, ultimately, the image
formed on the telescope’s optical sensor. Our treatment
leads to an expression for the surface power density in the
image plane (81) that describes the total power received by
an imaging telescope (83). The expressions obtained in this
paper generalize previously known results to the case of a
resolved extended source at a finite distance from the Sun.
The analysis can be extended to incorporate the optics of

a telescope that would be positioned at the focal plane to
collect light from the distant source. We presented an
analytic derivation of the Einstein ring that appears due to a
distant point source. This result is directly relevant to
studying the required aperture of the telescope and the
coronagraph that will be used to block out direct sunlight
and much of the light from the solar corona, without
obscuring light from the Einstein ring.
Thenext step is to analyze the signals received fromrealistic

sources in our stellar neighborhood. This work is ongoing and
results, when available, will be reported elsewhere.
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APPENDIX: SOLUTION FOR THE RADIAL
EQUATION IN THE WKB APPROXIMATION

Here we focus on the equation for the radial function, Rl,
used to identify the solution for the Debye potential (8).
This equation has the following form [see Eqs. (25) and
(F1) in [2] ]:

d2Rl

dr2
þ
�
k2
�
1þ 2rg

r

�
þ rg
r3

−
lðlþ 1Þ

r2

�
Rl ¼ 0: ðA1Þ

Following an approach presented in [2], we explore
an approximate solution to (A1) using the method of

stationary phase (i.e., the WKB approximation [28]). As
we are interested in the case when k is rather large (for
optical wavelengths k ¼ 2π=λ ¼ 6.28 × 106 m−1), we are
looking for an asymptotic solution as k → ∞. In fact, we
are looking for a solution for Rl in the form

R ¼ exp

�Z
r

r0

iðkα−1ðtÞ þ α0ðtÞ þ k−1α1ðtÞ þ � � �

þ k−nαnðtÞ þ � � �Þdt
�
: ðA2Þ

Defining 0 ¼ d=dr, with the help of a substitution of
R0=R ¼ w, for the function w we obtain the following
equation:

w0 þ w2 þ k2
�
1þ 2rg

r

�
þ rg
r3

−
α

r2
¼ 0; ðA3Þ

where α ¼ lðlþ 1Þ. Using this substitution, up to the
terms ∝ k−1, we have [2,3]

w¼ iðkα−1ðrÞ þ α0ðrÞ þ k−1α1ðrÞ þ � � � þ k−nαnðrÞ þ � � �Þ:
ðA4Þ

Substituting (A4) into (A3) and equating the terms with
respect to the same powers of k, we get

α2−1ðrÞ ¼ 1þ 2rg
r

; iα0−1ðrÞ − 2α−1ðrÞα0ðrÞ ¼ 0;

iα00ðrÞ − α20ðrÞ − 2α−1ðrÞα1ðrÞ þ
rg
r3

−
α

r2
¼ 0;

iα01ðrÞ − 2α−1ðrÞα2ðrÞ − 2α0ðrÞα1ðrÞ ¼ 0: ðA5Þ

These equations, to the order of Oðk−5; r2gÞ, may be
solved as

α−1ðrÞ ¼ �
�
1þ rg

r

�
; α0ðrÞ ¼ −i

rg
2r2

;

α1ðrÞ ¼ ∓ α

2r2

�
1 −

rg
r

�
;…: ðA6Þ

Note that the � signs in these expressions are not
independent; they all come from the solution for α−1ðrÞ
in (A6).
Substituting the solution for α−1ðrÞ from (A6) into (A2),

we have

S−1ðrÞ ¼
Z

r

r0

α−1ðr̂Þdr̂ ¼ �
Z

r

r0

�
1þ rg

r̂

�
dr̂: ðA7Þ

We evaluate this integral along the part of a ray
moving on the background of the solar gravitational
field as given by the metric (2) and (3). With k being
the unit vector in the gravitationally unperturbed direction
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of the light ray’s propagation and with x0 being the
initial position of the light ray, we introduce the parameter
τ ¼ τðtÞ as [2,3]

τ ¼ ðk · xÞ ¼ ðk · x0Þ þ cðt − t0Þ: ðA8Þ

Clearly, this quantity is negative all the way up to the
closest approach where it changes the sign.
The trajectory of a light ray in these conditions was

developed in [2,3] and to the post-Newtonian level it is
given by

rðτÞ ¼ bþ kτ − rg

�
k ln

τ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

τ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p þ b
b2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

þ τ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

q
− τ0Þ

�
þOðr2gÞ; ðA9Þ

where b ¼ ½½k × x0� × k� þOðGÞ is the impact parameter
of the unperturbed trajectory of the light ray. The vector b is
directed from the origin of the coordinate system toward the
point of the closest approach of the unperturbed path of
light ray to that origin. The radial distance specified by (A9)
is computed to be

jrðτÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
− rg

�
1þ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�
1þ ln

τ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

τ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p
þ τ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p

�
þOðr2gÞ: ðA10Þ

At the closest approach, where τ ¼ 0, the expression (A10)
takes the form

rc:a: ¼ jrð0Þj ¼ b − rg þOðr2g; rgb=τ0Þ: ðA11Þ

In the case of a gravitational field produced by a
monopole, the motion is constrained to a plane ϕ ¼ ϕ0.
Considering the motion within that plane, and using the
expressions above, we evaluate the integral (A7) as

S−1ðrÞ ¼ �
�Z

r

rc:a:

�
1þ rg

r̂

�
dr̂þ

Z
r0

rc:a:

�
1þ rg

r̂

�
dr̂

�

¼ �
�
rþ r0 − 2bþ rg ln

rr0e2

b2

�
: ðA12Þ

This expression describes the geometric phase delay
experienced by an EM wave as it travels from the source
at a large but finite distance from the Sun, r0, to the
image plane in the focal region of the SGL located at
heliocentric distance r. Similarly, we integrate the remain-
ing equations (A6):

S0ðrÞ ¼
Z

r

r0

α0ðr̂Þdr̂ ¼ −i
Z

r

r0

rg
2r̂2

dr̂ ¼ i

�
rg
2r

þ rg
2r0

−
1

b

�
;

ðA13Þ

S1ðrÞ¼
Z

r

r0

α1ðr̂Þdr̂

¼∓α

2

Z
r

r0

dr̂
r̂2

�
1−

rg
r̂

�

¼�
�
α

2r

�
1−

rg
2r

�
þ α

2r0

�
1−

rg
2r0

�
−
α

b

�
1þ rg

2b

��
:

ðA14Þ

As a result, an approximate solution for the partial radial
function Rl to OððkrÞ−2; r2gÞ is given as [2,3]

RlðrÞ¼clexp½iðkS−1ðrÞþS0ðrÞþk−1S1ðrÞÞ�
þdlexp½−iðkS−1ðrÞþS0ðrÞþk−1S1ðrÞÞ�; ðA15Þ

where cl and dl are arbitrary constants. Substituting
(A12)–(A14) in (A15), we obtain the following solution
for Rl:

RlðrÞ¼ cl exp

�
i

�
kðrþ r0þ rg ln4k2rr0Þ

þlðlþ1Þ
2k

�
1

r
þ 1

r0

���

þdl exp

�
−i
�
kðrþ r0þ rg ln4k2rr0Þ

þlðlþ1Þ
2k

�
1

r
þ 1

r0

���
þOððkrÞ−2;r2gÞ; ðA16Þ

where cl and dl now account for all the integration
constants in (A12)–(A14). In addition, we omitted the
terms ∝ rg=r in (A12)–(A14) as their contribution to the
amplitude of the EM wave is negligibly small (see [2,3] for
details).
We may further improve the asymptotic expression for

Rl from (A16) by accounting for the Coulomb phase shifts,
σl, that an EM wave experiences after passing by a
gravitating monopole, which can be done by simply
redefining the constants cl and dl yet again (see discussion
in [2]) as

cl → cl exp

�
i

�
σl −

πl
2

��
;

dl → dl exp

�
−i
�
σl −

πl
2

��
: ðA17Þ

As a result, the expression for the asymptotic behavior of
the partial radial function Rl takes the form [2,3]
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RlðrÞ ¼ cl exp

�
i

�
kðrþ r0 þ rg ln 4k2rr0Þ þ

lðlþ 1Þ
2k

�
1

r
þ 1

r0

�
þ σl −

πl
2

��

þ dl exp

�
−i
�
kðrþ r0 þ rg ln 4k2rr0Þ þ

lðlþ 1Þ
2k

�
1

r
þ 1

r0

�
þ σl −

πl
2

��
þOððkrÞ−2; r2gÞ: ðA18Þ

In [2] the asymptotic behavior of the Coulomb function was obtained for very large distances from the turning point,
r ≫ rt; the solution (A18) improves it further by extending the argument of these functions to shorter distances, closer to
the turning point while also presenting its explicit dependent on the distance to the source.
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