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We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude
of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four
spacetime dimensions. This constrains possible weakly coupled ultraviolet extensions of massive gravity,
ruling out gravitational analogues of the Higgs mechanism based on particles with spins less than two. Any
tree-level ultraviolet extension that is Lorentz invariant and unitary must involve additional massive
particles with spins greater than or equal to two, as in Kaluza-Klein theories and string theory.
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I. INTRODUCTION

The Higgs mechanism is a central feature of the standard
model, the theory of superconductivity, and countless other
more speculative scenarios. The mechanism is often con-
ceptualized in terms of spontaneous symmetry breaking: a
gauge symmetry is broken by the vacuum expectation value
of some scalar Higgs field, and the massless gauge fields
“eat” some components of the Higgs field to become
massive, leaving behind physical scalars.
Looking only at the S-matrix, we may think about the

Higgs mechanism differently: it is a method of raising the
ultraviolet (UV) strong coupling scale of an effective theory
of self-interacting massive spin-1 particles by adding
weakly coupled scalars to the theory. For example, in
the low-energy effective theory of W� and Z0 massive
vector bosons, the four-point amplitude of the longitudinal
modes grows at high energies as ∼E2=v2, and violates
perturbative unitarity when the center-of-mass energy E
becomes of order v ¼ 246 GeV. If this unitarity violation is
to be cured while remaining weakly coupled, then another
particle must enter before a scale of order v and contribute
to the tree amplitude in such a way as to cancel the bad
high-energy growth. The physical Higgs scalar is the
simplest particle that accomplishes this cancellation,

leading to an amplitude which does not grow with energy,
and thus raising the strong coupling scale all the way to
infinity.
A natural question is whether a similar mechanism exists

for the gravitational field, i.e., for a spin-2 particle. From
the symmetry breaking point of view, this would be a
mechanism in which a lower-spin Higgs field gets a
vacuum expectation value which breaks the diffeomor-
phism symmetry of the massless graviton. The graviton
would then eat some of the Higgs field, becoming a
massive graviton and leaving some other lower-spin physi-
cal fields left over. Given that the global symmetry which is
gauged to diffeomorphism symmetry is Poincaré sym-
metry, one might expect this gravitational Higgs mecha-
nism to spontaneously break Poincaré symmetry. Indeed,
the ghost condensate can be understood along these
lines [1].
However, despite this intuition, we would like to know if

there is a fully Poincaré-invariant gravitational Higgs
mechanism. This question is an old one, and there are
many previous proposals and studies, see e.g., [2–19]. In
terms of the S-matrix, the question is whether there is a
method of raising the UV strong coupling scale of an
effective field theory of self-interacting massive spin-2
bosons while remaining weakly coupled. In analogy to the
spin-1 case, we might expect that this can be done by
adding lower-spin massive particles to the theory.
The goal of this paper is to determine in complete

generality whether it is possible to introduce additional
particles with spins less than two into the effective field
theory of a single massive spin-2 particle so as to improve
the high-energy behavior of the tree amplitudes and thus
raise the strong coupling scale of the low-energy theory.
We know that the four-point tree-level amplitude in any
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effective theory of a massive spin-2 particle scales at least
as badly as ∼E6 at high energies [20], corresponding to a
strong coupling scale of Λ3 ¼ ðm2MpÞ1=3. We will thus be
asking whether this high-energy behavior can be softened
at all without sacrificing Lorentz invariance or unitarity.
This is a weaker requirement than asking for a full UV
completion, for which the amplitude would be bounded at
high energies, so we will say that we are looking for a
weakly coupled UV extension.
Our approach is to study in a model-independent way the

high-energy behavior of the tree-level four-point amplitude
of a massive spin-2 particle, allowing for the exchange
of various other particles, as depicted in Fig. 1.1 Our
conclusion will be that there is no way to improve the
high-energy behavior of the four-point amplitude by
exchanging any finite number of spin-0 and spin-1 particles
in four spacetime dimensions.2 This remains true even if we
include a massless spin-2 particle in the spectrum.
Our results apply to massive gravity and bigravity

theories. Finding UV completions of these theories remains
an important open problem in the field. Important clues
about possible UV completions of massive gravity or
bigravity come from positivity and causality constraints
[23–33]. These constraints pertain to full weakly coupled
UV completions that, according to conventional wisdom,
would require introducing infinitely many new particles
with arbitrarily high spins (see, e.g., Ref. [23] for an explicit
argument using the Froissart bound). Ghostfree theories of
massive gravity [34–38], bigravity [39], and multigravity
[40] have improved high-energy behavior compared to
generic ghostly theories of massive spin-2 particles, becom-
ing strongly coupled around the scale Λ3 ¼ ðm2MpÞ1=3

[41,42]. Our conclusions imply that for massive gravity and
bigravity, any tree-level UV extension must contain addi-
tional massive particles with spins greater than or equal to
two. This conclusion is consistent with the arguments
concerning full weakly coupled UV completions, but is
a stronger statement as it concerns a UV extension and as
we need no assumptions about the asymptotic behavior of
the full S-matrix. Explicit examples of theories with
massive spin-2 particles and improved UV behavior are
Kaluza-Klein theories, string theory and large-N QCD. In
each of these examples, an infinite tower of massive higher-
spin particles (i.e., s ≥ 2) appear in the theory with masses
that are parametrically close to that of the spin-2 particle.
Conventions: We work in four spacetime dimensions

and use the mostly plus metric signature. The four-
dimensional epsilon symbol is defined with ε0123 ¼ 1.
Conventions on kinematics and polarizations are detailed
in the Appendix A.

II. MASSIVE GRAVITY COUPLED TO
SCALARS AND VECTORS

We begin in this section by showing that the best high-
energy behavior of the four-point amplitude in a theory of
massive gravity coupled to scalars and vectors is ∼E6. In
using the words “massive gravity,”we are assuming that the
massive spin-2 interactions have the form of the Einstein-
Hilbert kinetic term plus a potential. This is not the most
general case, but it will serve as a good warm-up for the
general argument presented in Sec. III since we will be able
to show intermediate steps of the calculation and more
easily visualize what is going on in terms of a Lagrangian.

A. Interactions

We consider a massive gravity Lagrangian given by,

Lmg ¼
M2

p

2

ffiffiffiffiffiffi
−g

p �
R −

1

4
m2Vðg; hÞ

�
; ð2:1Þ

where the metric is gμν ¼ ημν þ hμν and m is the graviton
mass. The potential Vðg; hÞ can be expanded as

Vðg; hÞ ¼ hh2i − hhi2 þ c1hh3i þ c2hh2ihhi þ c3hhi3
ð2:2Þ

þ d1hh4i þ d2hh3ihhi þ d3hh2i2
þ d4hh2ihhi2 þ d5hhi4 þ…; ð2:3Þ

where angled brackets denote traces of matrix products
with indices raised using gμν, e.g., hh2i ¼ gμνgλρhμλhνρ. The
quadratic term is fixed to the Fierz-Pauli form. The
canonically normalized massive spin-2 field is given by

ĥμν ¼ 2hμν=Mp: ð2:4Þ

FIG. 1. Schematic depiction of the four-point tree amplitude for
a massive spin-2 particle. The sum is over exchanged states, X,
which we allow to include the massive spin-2 particle, a graviton,
and any number of scalars and vectors.

1A similar calculation, but restricting to operators with
dimensions ≤ 4 and bounded amplitudes, was presented in
Ref. [21].

2An argument against UVextending massive gravity up toMp
with a Higgs mechanism is given in Ref. [22], namely that at high
energies the massive graviton’s longitudinal mode does not
couple to its tensor modes with the interactions dictated by
the equivalence principle. However, as pointed out in Ref. [23],
the equivalence principle constraints do not apply straightfor-
wardly in the massless limit, since departures from masslessness
can be important due to factors of the inverse mass occurring in
interactions.

BONIFACIO, HINTERBICHLER, and ROSEN PHYS. REV. D 100, 084017 (2019)

084017-2



All the terms up to fourth order in hμν are shown, with
arbitrary coefficients in front of each. Only the terms
proportional to c1, c2, d1, and d3 contribute to the four-
point scattering amplitude.
We now add to the massive gravity Lagrangian a

collection of scalar fields ϕj and vector fields Aj;μ. We
consider both massive and massless scalars with masses
mϕj

and massive vectors with masses mAj
. The only new

graphs that contribute to the tree-level four-point ampli-
tude of massive gravitons are those that exchange one of
the new particles. These involve cubic interactions of the
form ĥ2ϕj and ĥ2Aj, which can be both parity even and
parity odd since we do not assume that parity is
conserved. The most general interactions of this form
are given by

Lĥ ĥϕj
¼ m2

2Mp

X

l≥0
ðc1;l;jĥμνĥμν þ c2;l;jm−2∂λĥμν∂νĥμλ þ c3;l;jm−4∂λ∂ρĥμν∂μ∂νĥλρ

þ c̃1;l;jm−2εμνλρ∂μĥλσ∂νĥρ
σ þ c̃2;l;jm−4εμνλρ∂μ∂σĥλγ∂ν∂γĥρσÞm−2l□lϕj; ð2:5Þ

Lĥ ĥ Aj
¼ mAj

m

Mp

X

l≥0
ðd1;l;jm−1ĥμν∂μĥνλ þ d2;l;jm−3∂ρĥμν∂μ∂νĥρλ

þ d̃1;l;jm−1εμνρλ∂μĥνσĥρ
σ þ d̃2;l;jm−3εμνρσ∂μ∂γĥρ

λ∂νĥσ
γÞm−2l

□
lAj;λ

þ mAj

2Mp

X

l≥0
ðd3;l;jĥμνĥμν þ d4;l;jm−2∂λĥμν∂νĥμλ þ d5;l;jm−4∂λ∂ρĥμν∂μ∂νĥλρ

þ d̃3;l;jm−2εμνλρ∂μĥλσ∂νĥρ
σ þ d̃4;l;jm−4εμνλρ∂μ∂σĥλγ∂ν∂γĥρσÞm−2l

□
l∂λAj;λ; ð2:6Þ

where ci;l;j, c̃i;l;j, di;l;j, and d̃i;l;j are real dimensionless coupling constants and the factors ofmAj
,MP extracted out front are

to simplify later expressions. To obtain these interactions we modified the procedure for finding all on-shell cubic vertices,
described in Appendix A, to allow the particle of lowest spin to be off shell. This amounts to ignoring terms involving ĥμ

μ

and ∂μĥμν, and any terms that can be brought to this form by integration by parts, since these do not contribute when the
massive spin-2 particle is an external leg. However, since the particles on the internal leg are off shell, we include
interactions containing ∂λAj;λ and powers of□ acting on the lower-spin fields, which are equivalent to higher-order contact
terms under a field redefinition and may contribute to the massive spin-2 four-point amplitude.
The total Lagrangian we consider is thus

L ¼ Lmg þ
X

j

�
−
1

2
ð∂ϕjÞ2 −

1

2
m2

ϕj
ϕ2
j þ Lĥ ĥϕj

−
1

4
Fj
μνF

μν
j −

1

2
m2

Aj
A2
j þ Lĥ ĥ Aj

�
þ…; ð2:7Þ

where Fj
μν ≡ ∂μA

j
ν − ∂νA

j
μ and the terms not shown do not

contribute to the four-point amplitude with external mas-
sive spin-2 particles. We assume that the total number of
derivatives in the interactions is bounded above by 2N for
some integer N > 1, so the index l in Eqs. (2.5) and (2.6)
has a finite range. This means that we do not consider the
possibility of having infinitely many derivatives that resum
into a function with soft high-energy behavior.

B. Amplitudes

We now calculate the four graviton tree amplitude from
this Lagrangian. For this calculation we use helicity polar-
izations and work in the center-of-mass frame (kinematic
details and conventions are reviewed in Appendix A).
We denote this amplitude by Ah1h2h3h4, where hj ∈
f0;�1;�2g denotes the helicity of particle j. Our aim
is to fix the coupling constants so that the tree amplitudes

have the best possible high-energy behavior for fixed-angle
scattering.
Consider the amplitudes with h1 ¼ h3 and h2 ¼ h4.

In massive gravity these amplitudes grow with energy at
worst like

Ah1h2h1h2 ∼ E10−2ðjh1jþjh2jÞ: ð2:8Þ

The scalar interactions with 2n derivatives or vector
interactions with 2n − 1 derivatives produce exchange
amplitudes that generically grow with energy like

Ah1h2h1h2 ∼ E4nþ6−2ðjh1jþjh2jÞ: ð2:9Þ

By comparing these, we see that the leading amplitudes
produced by the scalar and vector interactions with more
than two derivatives must cancel between themselves,
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otherwise the high-energy behavior would be as bad as or
worse than in massive gravity. As we will see, this
condition forces these higher-derivative interactions to
vanish.
By an explicit calculation, we find the scattering ampli-

tude for helicity-0 massive gravitons to be

A0000 ¼ −
1

576M2
pm4Nþ4

ðs2Nþ3 þ t2Nþ3 þ u2Nþ3Þ

×
X

j

ðð4c1;N;j þ 2c2;N−1;j þ c3;N−2;jÞ2

þ ð4d1;N−1;j þ 2d2;N−2;j − 4d3;N−1;j

− 2d4;N−2;j − d5;N−3;jÞ2Þ þ � � � ; ð2:10Þ

where here and below we display only the leading term for
high-energy fixed-angle scattering, i.e., terms with the
highest combined power of s and t for s, t ≫ 1.
Considering the leading terms in the amplitude (2.10),
we see that the couplings combine into a sum of squares
with the same sign coefficients. This property follows from
the Goldstone equivalence theorem and unitarity of scalar
amplitudes. Thus each term in the sum must separately
cancel to improve the high-energy growth, since unitarity
implies that the couplings are all real. For each jwe thus get
the constraints

c3;N−2;j ¼ −4c1;N;j − 2c2;N−1;j; ð2:11Þ

d5;N−3;j ¼ 4d1;N−1;j þ 2d2;N−2;j − 4d3;N−1;j − 2d4;N−2;j:

ð2:12Þ

With these constraints imposed, the helicity-1 amplitude
is now

A1111 ¼ −
1

256M2
pm4N s2Nþ1

X

j

ð4ð4c1;N;j þ c2;N−1;jÞ2

þ 4ð2d1;N−1;j − 4d3;N−1;j − d4;N−2;jÞ2
þ ð2c̃1;N−1;j þ c̃2;N−2;jÞ2
þ ð4d̃1;N−1;j þ 2d̃2;N−2;j − 2d̃3;N−2;j − d̃4;N−3;jÞ2Þ
þ � � � : ð2:13Þ

This is again a sum of squares, so enforcing that this
vanishes gives the additional constraints

c2;N−1;j ¼ −4c1;N;j; ð2:14Þ

d4;N−2;j ¼ 2d1;N−1;j − 4d3;N−1;j; ð2:15Þ

c̃2;N−2;j ¼ −2c̃1;N−1;j; ð2:16Þ

d̃4;N−3;j ¼ 4d̃1;N−1;j þ 2d̃2;N−2;j − 2d̃3;N−2;j: ð2:17Þ

With these constraints enforced, the helicity-2 amplitude is

A2222 ¼ −
1

4M2
pm4N−4 s

2N−1
X

j

ð4c21;N;j þ 4d23;N−1;j

þ c̃21;N−1;j þ ð2d̃1;N−1;j − d̃3;N−2;jÞ2Þ þ � � � ;
ð2:18Þ

which is again a sum of squares, giving us the further
constraints

c1;N;j ¼ d3;N−1;j ¼ c̃1;N−1;j ¼ 0; d̃3;N−2;j ¼ 2d̃1;N−1;j:

ð2:19Þ

To constrain the remaining (2N − 1)-derivative inter-
actions, we need to look at amplitudes with more than one
helicity type.3 The amplitude for helicity-1 and helicity-0
scattering is

A1010 ¼
suðs2N−1 þ u2N−1Þ
192M2

pm4Nþ2

X

j

m2
Aj
ðð2d1;N−1;j þ d2;N−2;jÞ2

þ 4d̃21;N−1;jÞ þ � � � : ð2:20Þ

Setting this to zero gives the constraints

d2;N−2;j ¼ −2d1;N−1;j; d̃1;N−1;j ¼ 0: ð2:21Þ

Lastly, we look at the amplitude for helicity-2 and helicity-1
scattering,

A2121 ¼
1

32M2
pm4N−2 s

2N−2u

×
X

j

m2
Aj
ðd̃22;N−2;j þ 4d21;N−1;jÞ þ � � � ; ð2:22Þ

which gives the constraints

d̃2;N−2;j ¼ d1;N−1;j ¼ 0: ð2:23Þ

The above argument shows that all of the highest-
derivative interactions have to vanish, otherwise the
high-energy behavior is at least as bad as in massive
gravity. Note that it was important that the leading parts
of the amplitudes we considered were not contaminated by
contributions from lower-derivative terms. We can thus
repeat this argument for the next highest-derivative inter-
actions, and so on, until only interactions with two or fewer
derivatives remain. These remaining interactions contribute

3The leading terms of the two amplitudes we consider next
arise at an order E2 lower than the power-counting estimate (2.9),
but they are still more divergent than the corresponding massive
gravity terms so have to independently cancel for N > 1.
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at the same order as the pure massive graviton terms, so we
next need to check whether these can cancel against
each other.
The helicity-0 amplitude is now

A0000 ¼ −
5stuðs2 þ t2 þ u2Þ

864M2
pm8

�
2ð6c1 þ 4c2 − 1Þ2

þ
X

j

ð3ð2c1;1;j þ c2;0;jÞ2 þ 12ðd1;0;j − d3;0;jÞ2Þ
�

þ � � � ; ð2:24Þ

which grows like ∼E10. We see that the contributions from
scalar and vector exchange cannot cancel the pure massive
gravity contribution, so setting this to zero gives the
constraints

c2 ¼
1

4
−
3

2
c1; ð2:25Þ

c2;0;j ¼ −2c1;1;j; ð2:26Þ

d3;0;j ¼ d1;0;j: ð2:27Þ

Imposing these constraints, the new leading part of the
helicity-0 amplitude is

A0000 ¼ −
1

144M2
pm6

ðs2 þ t2 þ u2Þ2ð16d1 þ 32d3 − 3Þ

þ � � � : ð2:28Þ

Setting this to zero further constrains the coefficients in the
graviton potential,

d3 ¼
3

32
−
d1
2
: ð2:29Þ

The constraints we have found on c2 and d3 are the
conditions defining the on-shell de Rham-Gabadadze-
Tolley (dRGT) potential up to this order [34]. Now we
look at the helicity-1 amplitude, whose new leading part is

A1111 ¼ −
1

64M2
pm4

s3
�
24ðc1 − 1Þ2

þ
X

j

ð4c21;1;j þ 4d21;0;j þ c̃21;0;j þ 4d̃21;0;jÞ
�
þ � � � :

ð2:30Þ

Requiring that this vanishes, we get the further constraints

c1;1;j ¼ d1;0;j ¼ c̃1;0;j ¼ d̃1;0;j ¼ 0; c1 ¼ 1: ð2:31Þ

The remaining helicity-0 amplitude is then

A0000 ¼
1

72M2
pm4

stu

�
128d1 − 115 − 6

X

j

c21;0;j

�
þ � � � ;

ð2:32Þ

and cancelling this gives

d1 ¼
1

128

�
115þ 6

X

j

c21;0;j

�
: ð2:33Þ

With the conditions determined so far, many but not all
of the ∼E6 terms of the amplitudes vanish. One of the
surviving amplitudes is

A2000 ¼
1

32
ffiffiffi
6

p
M2

pm4
stu

�
1þ 2

X

j

c21;0;j

�
þ � � � : ð2:34Þ

There is no way to set this to zero with real couplings, so we
conclude that it is impossible to improve the high-energy
behavior for Lagrangians of the form (2.7). This implies
that there is no tree-level UV extension of massive gravity
with only spin-0 and spin-1 particles.

III. MODEL INDEPENDENT NO-GO RESULT

In the previous section we assumed a particular form for
the massive spin-2 part of the Lagrangian, namely that it
was the Einstein-Hilbert term plus a general potential. Now
we relax this assumption and prove that there is no way to
improve the high-energy behavior of the tree-level four-
point amplitude for any theory with a massive spin-2
particle coupled to scalars and vectors. In addition, we
allow for the presence of a single massless spin-2 particle,
which covers the case of bigravity models.
Our approach here is somewhat different than in the

previous section. We bypass the Lagrangian and directly
write down the most general four-point amplitude with a
given high-energy behavior that is consistent with Lorentz
invariance, locality, unitarity, crossing symmetry, and a
bounded number of derivatives. We follow the procedure of
Refs. [20,43], which we review in Appendix A. In
particular, we construct the amplitudes using general on-
shell cubic and quartic vertices. This encompasses the
Lagrangian approach of the previous section as a special
case, since any cubic interactions in the Lagrangian that
vanish on-shell are equivalent to higher-point interactions
under a field redefinition.
The result we derive is stronger than the one from the

previous section, but it is also less transparent since we
cannot include the lengthy output from the intermediate
steps. In Appendix B we consider the simpler example of a
single spin-1 particle coupled to scalars and see that
improving the high-energy behavior leads to the Abelian
Higgs model, as expected.
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A. On-shell vertices

We again consider the coupling of a massive spin-2
particle hμν to arbitrary numbers of spin-0 particles ϕj with
masses mϕj

≥ 0 and arbitrary numbers of massive spin-1
particles Aμ

j with massesmAj
> 0. There are no on-shell h2A

cubic interactions between a massless spin-1 particle and a
single real massive spin-2 particle, thus massless spin-1
particles cannot contribute. In addition, fermions of any spin
cannot be exchanged by external bosons due to angular
momentum conservation. Thus the particles we consider are
all of the possible degrees of freedom (d.o.f.) with spins less

than two that can contribute to the four-point amplitude with
external massive spin-2 particles. In addition, we now also
include couplings to a single massless spin-2 particle, γμν.
We now list all the relevant on-shell cubic and quartic

vertices with these d.o.f. Details of how to classify these
vertices are given in Appendix A.

1. Cubic vertices

Let us start with the cubic vertices. The most general
cubic self-interactions of a massive spin-2 particle are
described by the following vertex:

Vh3 ¼ ia1ðϵ1 · ϵ2Þðϵ1 · ϵ3Þðϵ2 · ϵ3Þ þ ia2ððϵ2 · ϵ3Þ2ðϵ1 · p2Þ2 þ ðϵ1 · ϵ3Þ2ðϵ2 · p3Þ2 þ ðϵ1 · ϵ2Þ2ðϵ3 · p1Þ2Þ
þ ia3ððϵ1 · ϵ3Þðϵ2 · ϵ3Þðϵ1 · p2Þðϵ2 · p3Þ þ ðϵ1 · ϵ2Þðϵ2 · ϵ3Þðϵ1 · p2Þðϵ3 · p1Þ þ ðϵ1 · ϵ2Þðϵ1 · ϵ3Þðϵ2 · p3Þðϵ3 · p1ÞÞ
þ ia4ðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þððϵ1 · ϵ2Þðϵ3 · p1Þ þ ðϵ2 · ϵ3Þðϵ1 · p2Þ þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ
þ ia5ðϵ1 · p2Þ2ðϵ2 · p3Þ2ðϵ3 · p1Þ2 þ iã1ððϵ1 · ϵ3Þðϵ2 · ϵ3Þεðp1p2ϵ1ϵ2Þ − ðϵ1 · ϵ2Þðϵ2 · ϵ3Þεðp1p2ϵ1ϵ3Þ
þ ðϵ1 · ϵ2Þðϵ1 · ϵ3Þεðp1p2ϵ2ϵ3ÞÞ þ iã2ðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þððϵ3 · p1Þεðp1p2ϵ1ϵ2Þ − ðϵ2 · p3Þεðp1p2ϵ1ϵ3Þ
þ ðϵ1 · p2Þεðp1p2ϵ2ϵ3ÞÞ; ð3:1Þ

where ai and ãi are (in general dimensionful) coupling
constants and εð·Þ denotes the contraction of the antisym-
metric tensor with the enclosed vectors. Due to dimen-
sionally dependent identities, we can set

a4 ¼ 0 ð3:2Þ

without loss of generality, which from the Lagrangian point
of view corresponds to the vanishing of the Gauss-Bonnet
term in four dimensions.
The general h2γ interactions between a massive spin-2

particle and a massless spin-2 particle are described by the
following vertex:

Vh2γ ¼ ib1ðϵ1 · ϵ2Þ2ðϵ3 · p1Þ2 þ ib2ðϵ1 · ϵ2Þðϵ3 · p1Þððϵ2 · ϵ3Þðϵ1 · p2Þ þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ þ ib3ððϵ2 · ϵ3Þðϵ1 · p2Þ
þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ2 þ ib4ðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þððϵ2 · ϵ3Þðϵ1 · p2Þ þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ
þ ib5ðϵ1 · ϵ2Þðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þ2 þ ib6ðϵ1 · p2Þ2ðϵ2 · p3Þ2ðϵ3 · p1Þ2
þ ib̃1ððϵ2 · ϵ3Þðϵ1 · p2Þ þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞεðp3ϵ1ϵ2ϵ3Þ þ ib̃2ðϵ1 · ϵ2Þðϵ3 · p1Þεðp3ϵ1ϵ2ϵ3Þ
þ ib̃3ðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þεðp3ϵ1ϵ2ϵ3Þ þ ib̃4ðϵ1 · p2Þðϵ2 · p3Þðϵ3 · p1Þ2εðp1p2ϵ1ϵ2Þ; ð3:3Þ

where the bi, b̃i are coupling constants and particle 3 is
massless. Using dimensionally dependent identities, we
can set

b4 ¼ 0 ð3:4Þ
without loss of generality. If the massless spin-2 particle
self interacts via the cubic Einstein-Hilbert interaction, then
gauge invariance implies that4

2b1 ¼ b2 ¼
4

Mp
: ð3:5Þ

The general h2ϕj and h2Aj cubic interactions between
the massive spin-2 particle and the particles with spin 0 and
spin 1 are described by the following vertices:

Vh2ϕj
¼ ic1;jðϵ1 · ϵ2Þ2
þ ic2;jðϵ1 · ϵ2Þðϵ1 · p2Þðϵ2 · p3Þ
þ ic3;jðϵ1 · p2Þ2ðϵ2 · p3Þ2
− ic̃1;jðϵ1 · ϵ2Þεðp1p2ϵ1ϵ2Þ
− ic̃2;jðϵ1 · p2Þðϵ2 · p3Þεðp1p2ϵ1ϵ2Þ; ð3:6Þ

4This follows from gauge invariance of the amplitude for
graviton Compton scattering off a massive spin-2 particle, as
reviewed in the Appendix of Ref. [43], or from consistent
factorization of the amplitude in massive spinor-helicity variables
[44]. The constraint (3.5) can be violated in theories with linear
gauge symmetry [45], but here we assume that the spin-2 gauge
symmetry is nonlinear.
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Vh2Aj
¼ mAj

½d1;jðϵ1 · ϵ2Þððϵ2 · ϵ3Þðϵ1 · p2Þ
− ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ
þ d2;jðϵ1 · p2Þðϵ2 · p3Þððϵ2 · ϵ3Þðϵ1 · p2Þ
− ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ þ d̃1;jðϵ1 · ϵ2Þðεðp1ϵ1ϵ2ϵ3Þ
− εðp2ϵ1ϵ2ϵ3ÞÞ − d̃2;jεðp1p2ϵ1ϵ2Þððϵ2 · ϵ3Þðϵ1 · p2Þ
− ðϵ1 · ϵ3Þðϵ2 · p3ÞÞ�; ð3:7Þ

where ci;j, c̃i;j, di;j, and d̃i;j are coupling constants that are
real in a unitary theory and particle 3 is the low-spin
particle. These correspond to the on-shell vertices produced
by the interactions with l ¼ 0 in Eq. (2.5) and the first two
lines of Eq. (2.6) (up to factors of m and Mp). The fields
can be assigned definite parity if some of the couplings
vanish, e.g., a pseudoscalar would have zero ci;j and
nonzero c̃i;j. However, we consider the general case where
parity is not necessarily conserved.

2. Quartic vertices

We also need the quartic contact term for identical spin-2
particles. This can be written as

Vh4 ¼ i
X201

I¼1

fIðs; tÞT Iðϵ; pÞ; ð3:8Þ

where fIðs; tÞ are polynomials in the Mandelstam invar-
iants that we assume have bounded degree. The tensor
structures T Iðϵ; pÞ encode the different ways of contracting
polarization tensors and are invariant under the group of
permutations that preserve the Mandelstam invariants,Πkin,
which is defined in Eq. (A19). For example, the six zero-
derivative tensor structures are

T 1ðϵ; pÞ ¼ ðϵ1 · ϵ2Þ2ðϵ3 · ϵ4Þ2; ð3:9aÞ

T 2ðϵ; pÞ ¼ ðϵ1 · ϵ3Þ2ðϵ2 · ϵ4Þ2; ð3:9bÞ

T 3ðϵ; pÞ ¼ ðϵ1 · ϵ4Þ2ðϵ2 · ϵ3Þ2; ð3:9cÞ

T 4ðϵ; pÞ ¼ ðϵ1 · ϵ2Þðϵ1 · ϵ3Þðϵ2 · ϵ4Þðϵ3 · ϵ4Þ; ð3:9dÞ

T 5ðϵ; pÞ ¼ ðϵ1 · ϵ2Þðϵ1 · ϵ4Þðϵ2 · ϵ3Þðϵ3 · ϵ4Þ; ð3:9eÞ

T 6ðϵ; pÞ ¼ ðϵ1 · ϵ3Þðϵ1 · ϵ4Þðϵ2 · ϵ3Þðϵ2 · ϵ4Þ: ð3:9fÞ

Only 97 of the 201 tensor structures we use are independent
in four dimensions because of dimensionally dependent
identities, but finding a basis is difficult and not needed for
our calculation. We also consider only the parity-even
quartic vertex, corresponding to four-point amplitudes
where the sum of transversities of the external particles
is even, since this is sufficient to prove our result.

B. Results

With the complete list of on-shell vertices in hand, we can
follow the procedure outlined in Appendix A to determine if
there exists a four-point amplitude with improved high-
energy behavior compared to massive gravity.5 The output of
this procedure is a system of polynomial equations in the
cubic coupling constants and mass ratios. These equations
are sum rules that must be satisfied for the high-energy
amplitudes to grow more slowly than ∼E6, similar to what
we found in the previous section.
We now show that these equations have no real solutions.

First we look at the constraints that depend only on the
coupling constants ai, ãi, bi, and b̃i, which define the self-
interactions and gravitational interactions of the massive
spin-2 particle. Two of these constraints are given by

b̃23 þ ðb5 − b6Þ2 ¼ 0; b̃24 þ b26 ¼ 0; ð3:10Þ
so we conclude that b̃3 ¼ b̃4 ¼ b5 ¼ b6 ¼ 0. The remain-
ing constraints of this type are

ða1 þ 2a2Þa5 ¼ ð2a1 − a5Þa5 ¼ 6ã1ã2 þ a1a5

¼ 9ã22 þ 2a1a5 ¼ 0; ð3:11Þ

4a2a3 þ
3a1a5
8

− ã21 − 4a22 − a23 ¼ a3a5 ¼ 0: ð3:12Þ

The only real solution to these equations is

a3 ¼ 2a2; a5 ¼ ã1 ¼ ã2 ¼ 0; ð3:13Þ
which correspond to the cubic couplings in dRGT massive
gravity. Substituting this solution into the remaining
equations, four of them reduce to
X

j

c23;j ¼
X

j

c̃22;j ¼
X

j

m2
Aj
d22;j ¼

X

j

m2
Aj
d̃22;j ¼ 0;

ð3:14Þ
so we conclude that

c3;j ¼ c̃2;j ¼ d2;j ¼ d̃2;j ¼ 0: ð3:15Þ
Next we substitute these solutions into the remaining
equations and look for linear combinations that depend
only on the couplings b1, b2 and b3. This gives the
constraints

ð2b1 − b2Þb3 − b̃1b̃2 ¼ ðb1 − b2 þ b3Þb1
¼ ðb1 − b3Þb3 − b̃21

¼ b21 þ 3b1b3 − b22 − b̃22 ¼ 0: ð3:16Þ

5An alternative procedure is to construct the fully symmetric
contact terms up to some given number of derivatives. We have
checked that this gives identical results when including terms
with up to 14 derivatives.
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The S-matrix equivalence principle further implies that
b2 ¼ 2b1, as in Eq. (3.5). Enforcing this condition and
finding the real solutions to the constraints (3.16) gives

b2 ¼ 2b1 ¼ 2b3; b̃1 ¼ b̃2 ¼ 0: ð3:17Þ

By taking appropriate linear combinations of the remaining
equations, we get the following additional constraints:

2a21 þ 3
X

j

ðc22;j þ 4d21;jÞ

¼ 4b21 þ a22 − a21 þ
X

j

ðc̃21;j − 2m2
Aj
d21;j þ ð4þ 6m2

Aj
Þd̃21;jÞ

¼ 0: ð3:18Þ

These imply that

a1 ¼ a2 ¼ b1 ¼ c2;j ¼ d1;j ¼ c̃1;j ¼ d̃1;j ¼ 0: ð3:19Þ

Finally, substituting the solutions obtained so far into the
remaining equations gives

X

j

c21;j ¼ 0; ð3:20Þ

so we must also have c1;j ¼ 0. This shows that all of the
cubic couplings must vanish and the only surviving
amplitude is the trivial one.
The above argument shows that there are no nontrivial

unitary amplitudes that grow more slowly than ∼E6 for
high-energy fixed-angle scattering with the d.o.f. we
considered. This rules out the existence of a unitary and
Lorentz-invariant tree-level UV extension of any theory
with a massive spin-2 particle coupled to gravity and
particles with spin less than 2 in four dimensions. Any
such UV extension must contain additional massive par-
ticles with spins 2 or higher.

IV. DISCUSSION

We have shown that it is impossible to improve the high-
energy behavior of massive spin-2 tree amplitudes by
coupling to particles with spins less than 2, even in the
presence of ordinary massless gravity. This implies that any
tree-level UV extension of massive gravity or bigravity
must include additional massive particles with spins 2 or
higher. This has consequences for many proposed models,
e.g., the proposed UV completion of massive gravity with
an additional scalar field of Ref. [19]. Indeed, various
Lorentz-invariant extensions of massive gravity that
include extra scalars, such as quasidilaton [46,47] and
galileon-extended models [48,49], all have high-energy
behavior that is the same as in pure massive gravity.
Our result also has consequences for the supersymmetric

(SUSY) case. It might be thought that SUSY could help with
the UV behavior of massive gravity.6 The N ¼ 1 massive
spin-2 SUSY multiplet contains a massive spin-2 particle, a
massive vector and two massive spin-3=2 fermions [52–56].
Since the fermions can never appear in the internal line of the
tree-level graviton four-point amplitude, we can restrict
attention to only the additional massive vector, which then
falls under the assumptions of our result.
Examples of theories containing massive spin-2 particles

that do have improved high-energy behavior come from
Kaluza-Klein dimensional reduction. For example, dimen-
sionally reducing 5D general relativity on a single compact
extra dimension gives a lower-dimensional theory containing
a tower of complex massive spin-2 particles coupled to
gravity, a massless spin-1 graviphoton, and a scalar radion.
By 5D momentum conservation, the four-point amplitude of
one of these massive spin-2 particles receives contributions
from the exchange of the massless fields and a massive spin-
2 particle with twice the mass. With these additional fields,
cancellations of the worst high-energy parts of the amplitude
occur, resulting in a raised strong coupling scale of Λ3=2 ¼
ðmM2

pÞ1=3 [42].7 Another example is string theory, which
achieves soft high-energy amplitudes with the exchange of
an infinite number of massive higher-spin particles.8 Both of

6Supersymmetry does help in the analogous case of a massive spin-3=2 particle. The highest strong coupling scale for a
single massive spin-3=2 particle coupled to gravity is Λ2 ¼ ðmMpÞ1=2 [50]. By including a light scalar and pseudoscalar, this can be
raised to Mp, as realized by broken N ¼ 1 supergravity with a chiral supermultiplet [51].

7In contrast, dimensionally reducing higher-dimensional massive gravity cannot give a theory with a strong coupling scale aboveΛ3 [57].
8For example, in open bosonic string theory without Chan-Paton factors, the massive spin-2 particle on the leading Regge trajectory

has cubic interactions of the form 2-2-s with all of the even spin-s states on the leading trajectory with masses m2
s ¼ ðs − 1Þ=α0 [58],

V2;2;s ¼ ig2
s
2
−1ðϵ3 · p1Þs−4½ðs − 3Þ4ðϵ1 · ϵ3Þ2ðϵ2 · ϵ3Þ2 þ 4ðs − 2Þ3ðϵ1 · ϵ3Þðϵ2 · ϵ3Þððϵ2 · ϵ3Þðϵ1 · p2Þ

þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞðϵ3 · p1Þ þ 4ðs − 1Þsð2ðϵ1 · ϵ2Þðϵ1 · ϵ3Þðϵ2 · ϵ3Þ
þ ðϵ2 · ϵ3Þ2ðϵ1 · p2Þ2 þ 4ðϵ1 · ϵ3Þðϵ2 · ϵ3Þðϵ1 · p2Þðϵ2 · p3Þ þ ðϵ1 · ϵ3Þ2ðϵ2 · p3Þ2Þðϵ3 · p1Þ2
þ 16sððϵ2 · ϵ3Þðϵ1 · p2Þ þ ðϵ1 · ϵ3Þðϵ2 · p3ÞÞððϵ1 · ϵ2Þ þ ðϵ1 · p2Þðϵ2 · p3ÞÞðϵ3 · p1Þ3
þ 8ððϵ1 · ϵ2Þ2 þ 4ðϵ1 · ϵ2Þðϵ1 · p2Þðϵ2 · p3Þ þ 2ðϵ1 · p2Þ2ðϵ2 · p3Þ2Þðϵ3 · p1Þ4�; ð4:1Þ

where g is the string coupling constant and we have set m2
2 ¼ 1=α0 ¼ 1.

BONIFACIO, HINTERBICHLER, and ROSEN PHYS. REV. D 100, 084017 (2019)

084017-8



these examples contain infinite towers of massive particles
with masses that are not parametrically separated. An
obvious further question is whether there can be a weakly
coupled UV completion of massive gravity with a para-
metrically large gap between the mass of the graviton and the
scale of new physics, or whether any UV extension exists
using only a finite number of higher-spin particles.
Finally, we assumed Poincaré invariance throughout, but

another approach to the low strong coupling scale is to
consider backgrounds that break Poincaré invariance. For
example, in ghost-free massive gravity there are Poincaré
violating backgrounds with higher strong coupling scales
[59], and in AdS the strong coupling scale is raised and new
Higgs-like mechanisms are possible [60–78]. It would be
interesting to extend our S-matrix based arguments to AdS
by studying the dual CFT correlators.

ACKNOWLEDGMENTS

We would like to thank Brando Bellazzini and Clifford
Cheung for helpful conversations. K. H. and J. B. would
like the thank the University of Amsterdam for hospitality
while this work was completed. K. H. and J. B. acknowl-
edge support from DOE Grant No. DE-SC0019143 and
Simons Foundation Grant No. 658908. R. A. R. is sup-
ported by DOE Grant No. DE-SC0011941 and Simons
Foundation Grant No. 555117 and by NASA Grant
No. NNX16AB27G.

APPENDIX A: DETAILS AND CONVENTIONS

In this Appendix we collect various details and con-
ventions used in our calculations.

1. Kinematics

Here we specify the kinematics used to calculate four-
point scattering amplitudes. We consider center-of-mass
scattering of identical particles of mass m in the xz-plane
with particle 1 incoming along the þẑ direction and
particles 3 and 4 outgoing. The momenta can be written as

pj
μ ¼ ðE; p sin θj; 0; p cos θjÞ; ðA1Þ

where j labels the external particle, E2 ¼ p2 þm2 and
θ1 ¼ 0, θ2 ¼ π, θ3 ¼ θ, θ4 ¼ θ − π. The Mandelstam
variables are defined by

s ¼ −ðp1 þ p2Þ2; t ¼ −ðp1 − p3Þ2; u ¼ −ðp1 − p4Þ2:
ðA2Þ

These are related to the center-of-mass energy E and the
scattering angle θ by

s ¼ 4E2; cos θ ¼ 1 −
2t

4m2 − s
: ðA3Þ

A massive spin-1 particle has three independent polari-
zation vectors. The standard helicity polarizations used in
Sec. II are defined by

ϵð�1Þ
μ ðpjÞ ¼ 1ffiffiffi

2
p ð0;∓ cos θj;−i;� sin θjÞ; ðA4Þ

ϵð0Þμ ðpjÞ ¼ 1

m
ðp;E sin θj; 0; E cos θjÞ; ðA5Þ

where j labels the external particle. These are transverse,
orthonormal, and complete. They describe states that have
definite values of spin projected in their direction of motion.
To simplify the implementation of crossing symmetry in

Sec. III, we instead use a basis of polarizations that semi-
diagonalize the crossing matrix, the so-called transversity
basis [29,79,80]. For particle j, these are given by

ϵð�1Þ
μ ðpjÞ
¼ iffiffiffi

2
p

m
ðp; E sin θj � im cos θj; 0; E cos θj ∓ im sin θjÞ;

ðA6aÞ

ϵð0Þμ ðpjÞ ¼ ð0; 0; 1; 0Þ: ðA6bÞ

These are transverse, orthonormal, and complete, and
describe states with definite spin projection in the direction
transverse to the scattering plane.
A massive spin-2 particle has five polarization tensors. A

basis for these can be written in terms of the vector
polarizations as

ϵð�2Þ
μν ¼ ϵð�1Þ

μ ϵð�1Þ
ν ; ðA7aÞ

ϵð�1Þ
μν ¼ 1ffiffiffi

2
p ðϵð�1Þ

μ ϵð0Þν þ ϵð0Þμ ϵð�1Þ
ν Þ; ðA7bÞ

ϵð0Þμν ¼ 1ffiffiffi
6

p ðϵð1Þμ ϵð−1Þν þ ϵð−1Þμ ϵð1Þν þ 2ϵð0Þμ ϵð0Þν Þ: ðA7cÞ

These are transverse, traceless, orthonormal, and complete.
A general polarization can be written as a linear combi-
nation of these,

ϵjμν ¼ αj2ϵ
ð2Þ
μν þ αj1ϵ

ð1Þ
μν þ αj0ϵ

ð0Þ
μν þ αj−1ϵ

ð−1Þ
μν þ αj−2ϵ

ð−2Þ
μν ;

ðA8Þ
where

jαj2j2 þ jαj1j2 þ jαj0j2 þ jαj−1j2 þ jαj−2j2 ¼ 1: ðA9Þ

The propagator for a spin-0 particle with mass m is

−i
p2 þm2 − iϵ

: ðA10Þ
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Defining the projector

Πμν ¼ ημν þ
pμpν

m2
; ðA11Þ

the propagator for a spin-1 particle with mass m > 0 is

−iΠμν

p2 þm2 − iϵ
: ðA12Þ

The propagator for a spin-2 particle with mass m > 0 is

−
i
2

Πμ1ν1Πμ2ν2 þ Πμ1ν2Πμ2ν1 −
2
3
Πμ1μ2Πν1ν2

p2 þm2 − iϵ
: ðA13Þ

The massless spin-2 propagator (in de Donder gauge) is

−
i
2

ημ1ν1ημ2ν2 þ ημ1ν2ημ2ν1 − ημ1μ2ην1ν2
p2 − iϵ

: ðA14Þ

2. Classifying vertices

Here we review the classification of on-shell vertices.
Consider an n-point vertex in d dimensions where particle i
has integer spin si and mass mi. We write the symmetric
polarization tensor ϵ

μ1…μsi
i formally as a product of vectors

ϵμ1i � � � ϵμsii . The vertex can then be written as a polynomial
in the Lorentz-invariant contractions ϵi · ϵj, ϵi · pj, and
pi · pj, possibly also multiplied by a contraction of the
antisymmetric tensor εð·Þ with ϵ’s and p’s if d ≤ 2n − 1.
These contractions are not independent due to the on-shell
conditions

ϵi · pi ¼ 0; ϵi · ϵi ¼ 0; pi · pi ¼ −m2
i ;

Xn

i¼1

pi ¼ 0:

ðA15Þ

Moreover, the amplitude must be linear in each polarization
tensor. The tensor structures encoding the possible con-
tractions of polarizations are thus built from the following
building blocks [81]:

εðϵη11 …ϵηnn p
ηnþ1

1 …pη2n−1
n−1 Þ

�Yn

i;j¼1
i<j

ðϵi · ϵjÞnij
��Yn

i;j¼1
i≠j;jþ1

ðϵi ·pjÞmij

�
;

ðA16Þ

where ηi, nij ¼ nji, and mij are nonnegative integers
satisfying 0 ≤ ηi ≤ 1 and

Xn

j¼1
j≠i

nij þ
Xn

j¼1
j≠i;iþ1

mij þ ηi ¼ si; ðA17Þ

for i ¼ 1;…; n. If ηi ¼ 0 for all i, then we drop the εð·Þ
factor, otherwise we also require

X2n−1

i¼1

ηi ¼ d;
Xn

i¼1

ηi > 0: ðA18Þ

To get a general vertex, each tensor structure is multiplied
by a function of the independent contractions of momenta.
For a tree-level contact vertex this function is a polynomial.
When d ≤ 2n − 2 there can be nonlinear Gram identities,
which reduce the number of independent tensor structures.9

The number of independent tensor structures can be
obtained using the representation theory of stabilizer
groups and is equal to the number of independent helicity
amplitudes [82,83].
When n ≤ 4 there can also be fewer independent tensor

structures due to permutation symmetries that interchange
identical particles without changing the Mandelstam invar-
iants, which are called kinematic permutations [82]. For
n ¼ 3, the symmetry group consists of all permutations of
the identical particles, which is the symmetric group Sk if
k ≤ 3 particles are identical. For n ¼ 4, if all external
particles are identical then the kinematic permutations are
given by a Z2

2 subgroup of S4 [82],

Πkin ¼ fI ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg; ðA19Þ

where I is the identity element. If there are two pairs of
identical particles then the symmetry group is Z2. We
always work with tensor structures that are invariant under
the kinematic permutations.
Amplitudes with massless external particles must also be

gauge invariant. If particle j is massless then cubic vertices
should be invariant under

ϵj → ϵj þ ξpj; ðA20Þ

to first order in ξ. For n > 3, the total amplitude must be
gauge invariant.

3. Four-point amplitudes

Here we briefly review our procedure for obtaining the
general four-point amplitude with a given high-energy
scaling, following Refs. [20,43].
Denote the four-point tree amplitude for identical exter-

nal bosons with mass m by Aτ1τ2τ3τ4, where τj labels the
transversity of particle j, as given by the polarization basis
A 1. This can be written as the sum of exchange and contact
terms,

Aτ1τ2τ3τ4 ¼ Aexchange
τ1τ2τ3τ4 þAcontact

τ1τ2τ3τ4 ; ðA21Þ

9Gram identities also reduce the number of independent
momenta contractions when d ≤ n − 2.
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where the ambiguity of such a split is unimportant for us.
To calculate the most general Aτ1τ2τ3τ4 with a given high-
energy scaling ∼En, we go through the following steps:
(1) Calculate iAexchange

τ1τ2τ3τ4 using the general cubic vertex
for each exchanged particle.

(2) Construct an ansatz for Acontact that factors out the
kinematical singularities [80,84,85],

Acontact
τ1τ2τ3τ4ðs; tÞ ¼

acontactτ1τ2τ3τ4ðs; tÞ þ i
ffiffiffiffiffiffiffi
stu

p
bcontactτ1τ2τ3τ4ðs; tÞ

ðs − 4m2Þj
P

i
τij=2

;

ðA22Þ

where acontactτ1τ2τ3τ4ðs; tÞ and bcontactτ1τ2τ3τ4ðs; tÞ are polyno-
mials to be determined.

(3) Constrain the above polynomials by the requirement
that they cancel the exchange terms when the total
amplitude is expanded at high energies, down to
whatever assumed high-energy scaling is taken as
input. Replace the products of cubic couplings and
masses with new variables so that the equations are
linear.

(4) Impose crossing symmetry on the contact terms
[29,79]:

Acontact
τ1τ2τ3τ4ðs; tÞ ¼ eiðπ−χtÞ

P
j
τjAcontact

−τ1−τ3−τ2−τ4ðt; sÞ;
ðA23Þ

Acontact
τ1τ2τ3τ4ðs; tÞ ¼ eiðπ−χuÞ

P
j
τjAcontact

−τ1−τ4−τ3−τ2ðu; tÞ;
ðA24Þ

where

e−iχt ≡ −st − 2im
ffiffiffiffiffiffiffi
stu

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þtðt − 4m2Þ

p ;

e−iχu ≡ −suþ 2im
ffiffiffiffiffiffiffi
stu

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þuðu − 4m2Þ

p : ðA25Þ

These can be cast as linear equations in the param-
eters by equating the coefficients of the monomials
in s, t, and

ffiffiffiffiffiffiffi
stu

p
on each side.

(5) Impose little group covariance by enforcing that
iAcontact

τ1τ2τ3τ4 matches a covariant quartic vertex evalu-
ated at four-dimensional kinematics.

(6) Solve the nonlinear equations relating the products
of cubic couplings and masses to the linear variables
defined earlier. The parameters from the contact
terms appear linearly and are easily eliminated, so
the result is a system of polynomial equations in the
cubic coupling constants and mass ratios.

APPENDIX B: MASSIVE SPIN-1 EXAMPLE

In this Appendix we apply the procedure of Sec. III to the
simple example of massive spin-1 scattering with scalar
exchange, verifying that we find the expected Abelian
Higgs model. We compute the four-point amplitude where
all external particles have spin 1. For a single spin-1
particle, the best nontrivial high-energy behavior of this
amplitude is ∼E4, so we look for amplitudes that grow
more slowly than this.
First we need to write down all the relevant vertices. Our

d.o.f. are a single massive vector, Aμ, with mass mA and a
collection of real scalars, ϕj, with masses mϕj

. The general
on-shell cubic vertex between Aμ and ϕj that contributes to
the four-point spin-1 amplitude is

VA2ϕj
¼ im2

Ag1;jϵ1 · ϵ2 þ ig2;jðϵ1 · p2Þðϵ2 · p3Þ
þ ig̃1;jεðp1p2ϵ1ϵ2Þ; ðB1Þ

where g1;j, g2;j, and g̃3;j are real coupling constants. There
is no on-shell cubic self-interaction for a single spin-1
particle. The general quartic vertex with external spin-1
particles is

VA4 ¼ i
X17

I¼1

fIðs; tÞT Iðϵ; pÞ; ðB2Þ

where fiðs; tÞ are polynomials in the Mandelstam variables
and T Iðϵ; pÞ are Z2

2-invariant tensor structures. A basis for
these structures can be found in Appendix A of Ref. [20].
Applying the procedure outlined in A 3, we find that it is

possible to reduce the high-energy behavior of the ampli-
tude to ∼E2. However, with the appropriate contact terms
added, this gives no constraints on the cubic couplings. We
can further improve the high-energy behavior if the
following sum rules are satisfied:

X

j

g2;jðg2;jðm2
ϕj
− 2m2

AÞ þ 2g1;jÞ ¼ 0; ðB3Þ
X

j

ðg22;j þ g̃21;jÞ ¼ 0: ðB4Þ

The only real solution to these equations is

g2;j ¼ g̃1;j ¼ 0: ðB5Þ
This corresponds to the Abelian Higgs theory. The remain-
ing amplitudes are then bounded at high energies by
constants depending on the cubic couplings g1;j and masses
mϕj

. Perturbative unitarity implies that these constants
cannot be too large, so there are further constraints on
the masses of the spin-0 particles, as in the Lee-Quigg-
Thacker bound on the Higgs mass [86].
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