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The little sibling of the big rip is a cosmological abrupt event predicted by some phantom cosmological
models that could describe our Universe. When this event is approached the observable Universe and its
expansion rate grow infinitely, but its cosmic derivative remains finite. In this work we have obtained the
group of metric fðRÞ theories of gravity that reproduce this classical cosmological background evolution.
Furthermore, we have considered the quantization of some of the resulting models in the framework of
quantum geometrodynamics, showing that the DeWitt criterion can be satisfied. Therefore, as it also
happens in general relativity, this event may be avoided in fðRÞ quantum cosmology.
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I. INTRODUCTION

What is the final fate of the Universe? This question can
be addressed in a scientific context since the formulation
of general relativity (GR). Einstein’s theory allows us to
describe the gravitational physics of small systems, con-
tained in our laboratory, and of the largest gravitational
system, that is the Universe, getting through all the
astrophysical scales. Furthermore, GR has passed all the
observational test so far, from those in the weak field
regime to those of the strong gravitational events that
generated the gravitational waves recently measured by the
LIGO-Virgo collaboration (first detection in [1]).
Nevertheless, we also had an amazing surprise in the

field of gravitation 20 years ago. That is, the discovery that
the expansion of the Universe is currently accelerating
[2,3]. This discovery changed our understanding about
what the Universe’s future could be. We now know that it is
not probable that the Universe will reach a big crunch
singularity. This is because the description of the accel-
erated expansion of the Universe in the framework of GR
requires the introduction of dark energy and, at least for the
most common models that we have, this fluid will dilute

slower than matter (if it does). The standard model of
cosmology assumes that dark energy (DE) is a cosmologi-
cal constant. In this case the Universe tends to be described
by a de Sitter space and approach a thermal death, slightly
different in nature than that predicted by decelerated
models. However, if the expansion is faster than that
predicted by a cosmological constant, that is known as
superaccelerated expansion, the Universe could have a
different fate. All the structures of the Universe and the
Universe itself might be ripped apart at a big rip singularity
[4,5]. The Universe could also reach a cosmic singularity
characterized by a divergent rate of expansion but a finite
size of the observable Universe, freezing its evolution at a
big freeze [6,7]. (See also [8–11], and references therein,
for other examples of cosmic singularities.) Whereas the
big rip and big freeze would take place at a finite cosmic
time, the cosmic catastrophe may also be delayed an
infinite cosmic time, in which case the singularity is called
an abrupt cosmic event. Indeed, the little rip is just a big rip
that would take place at an infinite cosmic time, although
the cosmic structures will be ripped apart at a finite time
[12] (see also [13]). The little sibling of the big rip (LSBR)
is another abrupt cosmic event. It is characterized by the
divergence of the observable Universe and the expansion
rate, keeping the derivative of this rate a finite value [14].
For observational constraints on this type of model see
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Refs. [15–17]. Nonetheless, the common belief is that
these singularities will be cured or avoided in the quantum
realm, as it is assumed to happen with the big bang (see
[11,18–20] for reviews on the topic). In Table I we include a
summary of these riplike curvature singularities. Further
information can be found in Refs. [12,14,21,22].
In GR that kind of superaccelerated expansion is

modeled by a dark energy fluid of phantom nature. This
phantom energy is characterized by an energy density that
increases with time and may have associated some potential
pathologies [21,23] [for an effective phantom behavior
in fðRÞ gravity, see e.g., [24–29]]. On the other hand,
alternative theories of gravity have attracted huge interest
over the past decades as a possible alternative framework to
describe the cosmic phases of accelerated expansion of the
Universe. In particular, fðRÞ metric theories of gravity are
one of the simplest ways to build such an alternative
framework, which can give an explanation for the observed
cosmic acceleration without the need of dark energy.
[For an introduction to fðRÞ metric theories see, e.g.,
Refs. [26–28,30–33].] The observational data currently
available can be used to constrain and set a selection rule
among the existing theoretical models (some examples can
be found in Refs. [34–37]). Several reconstruction methods
have been developed within fðRÞ theories to select a
particular theory that can describe an identical background
cosmic evolution that a given general relativistic model but
without introducing dark energy [38–43]. In this work we
investigate which fðRÞ theories of gravity predict an
accelerated expansion leading to a LSBR event, which is
compatible with current observations. To our knowledge,
this is the first study of fðRÞ theories with a LSBR in the
literature.
As the same background cosmic evolution can be

described by GR or fðRÞ gravity, one could wonder
whether cosmic singularities are avoided in the quantum
realm for different underlying fundamental theories of
gravity [11]. In the framework of quantum geometrody-
namics several works have evaluated different kinds of
cosmological singularities [44–46]. Furthermore, some
works have also investigated this issue for alternative

theories of gravity by formulating a modified quantum
geometrodynamical framework [29,47–49]. [See also
Ref. [50] for a different approach to quantum fðRÞ gravity.]
The avoidance of the LSBR in quantum geometrodynamics
has been considered in Refs. [51,52]. In the present work
we consider the possibility of avoiding the LSBR in fðRÞ
quantum cosmology.
This paper is organized as follows: In Sec. II we consider

that the LSBR event could take place if gravity is described
by a fðRÞ theory. Thus, in the first place, we briefly review
the characteristics of the LSBR in GR and the basics of the
reconstruction method for metric fðRÞ theories of gravity,
in Secs. II A and II B, respectively. Then, in Sec. II C, we
apply the reconstruction method to describe the same GR
dynamics that we have reviewed in II Awith fðRÞ theories.
Thus, we obtain the group of metric fðRÞ theories of
gravity that predict a LSBR. In Sec. III, we study the LSBR
in the framework of fðRÞ quantum geometrodynamics. For
that aim, we perform a brief summary of quantum geo-
metrodynamics for an arbitrary fðRÞ theory in Sec. III A.
Then, in Sec. III B, we analyze the behavior of the wave
function of the Universe nearby the LSBR event. The
analysis is made through the modified Wheeler-DeWitt
(WDW) equation for the reconstructed fðRÞ setup consid-
ering the DeWitt (DW) criterion. We summarize and
present our conclusion in Sec. IV. Finally, in Appendix
we discuss several details about the Wentzel-Kramers-
Brillouin (WKB) approximation carried to solve the modi-
fied WDW equation.

II. THE LSBR IN f(R) CLASSICAL COSMOLOGY

The so-called “reconstruction method” is a technique
used to recover a given background cosmological evolution
in the framework of a family of alternative theories of
gravity by restricting attention to a particular theory. For
example, in the framework of fðRÞ theories of gravity, one
can select the function fðRÞ that allows us to reconstruct a
given background cosmological evolution [38–43]. In
this section, we apply this method to obtain the group of
metric fðRÞ theories of gravity leading to a LSBR abrupt
cosmic event.

A. The LSBR

Let us briefly summarize the phenomenology of the
LSBR in GR. Homogeneous and isotropic cosmological
solutions are described by a Friedmann-Lemaître-
Robertson-Walker (FLRW) metric given by

ds2 ¼ −dt2 þ aðtÞ2ds23; ð1Þ

where we have set 8πG and c equal to unity. The function
aðtÞ is the scale factor and ds23 represents the three-
dimensional metric, whose spatial curvature is not fixed
at this point. Assuming that the Universe is filled with a

TABLE I. Characterization of the riplike events discussed in the
introduction by means of the time of occurrence, the scale factor
a, the Hubble parameter H, and its cosmic derivative _H. The
pseudorip corresponds to a mild event (before which the
structures are ripped apart) rather than to a curvature singularity.
Note that in GR the divergence in H implies that the energy
density blows up.

trip a H _H

Big rip Finite ∞ ∞ ∞
Little rip ∞ ∞ ∞ ∞
LSBR ∞ ∞ ∞ Finite
Pseudorip ∞ ∞ Finite Finite
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perfect fluid, the Einstein equations reduce to the well-
known Friedmann equations, cf. [53],

_a2

a2
¼ H2 ¼ 1

3
ρ −

k
a2

; ð2Þ

ä
a
¼ _H þH2 ¼ −

1

2

�
pþ ρ

3

�
; ð3Þ

where the dot represents the derivative with respect to the
cosmic time, H stands for the Hubble rate, k is the spatial
curvature of the Universe, and p and ρ are the pressure and
energy density of the fluid, respectively. According to the
interpretation of the observational data in the framework of
GR, that cosmic fluid is formed by dark energy, matter, and
radiation. We know that nowadays the fractional energy
densities of matter (M) and DE are ΩM;0 ∼ 0.306 and
ΩDE;0 ∼ 0.694 [54,55], respectively. Whereas the radiation
contribution can be ignored at present. So, the dominant
cosmic ingredient today is dark energy, and it will be even
more dominant in the future since matter tends to dilute
(faster). Therefore, from a practical point of view, we can
neglect the contribution of the matter and radiation com-
ponents to study the asymptotic evolution of these models.
So, we consider that p and ρ in Eqs. (2) and (3) are those
corresponding to dark energy.
The LSBR is a cosmological event that takes place at an

infinite cosmic time at which the Hubble rate and the scale
factor blow up but the cosmic derivative of the Hubble rate
does not. It is obtained by assuming a dark energy equation
of state that deviates slightly from that of a cosmological
constant by a constant factor. This is

pþ ρ ¼ −A=3; ð4Þ

A being a small positive parameter; see Refs. [14,52,56].
The conservation of the energy momentum tensor implies
that ρ evolves with the scale factor as

ρ ¼ Λþ A ln
a
a0

; ð5Þ

with Λ being an integration constant playing the role of an
effective cosmological constant at present and a0 repre-
senting the present scale factor of the Universe. The
equation of state parameter w reads

w ¼ p
ρ
¼ −1 −

A
3ðΛþ A ln a

a0
Þ : ð6Þ

It should be noted that w approaches the value −1
asymptotically as the scale factor evolves towards the
future. However, the behavior is not that of a de Sitter
model since the energy density is not constant and it even
tends to blow up at the LSBR. As it was shown in Ref. [14],

although the event takes place at infinite cosmic time in
the future, the cosmological bounded structures are
destroyed at a finite time scale. Furthermore, the evolution
described by this model was shown to be compatible with
that modeled by the ΛCDM scheme and constrained
observationally in [17].

B. The reconstruction method

We want to find a fðRÞ theory of gravity that describes
the same cosmic evolution as the model we have summa-
rized and, therefore, predicts the occurrence of a LSBR
event. With this aim, we follow a line of reasoning similar
to that presented in Ref. [43] and note that the scalar
curvature of the considered GR model satisfies the follow-
ing relation,

R ¼ 6

�
_H þ 2H2 þ k

a2

�
¼ ρ − 3p; ð7Þ

where in the last step we have used the Friedmann
equations (2) and (3). Moreover, taking into account these
Friedmann equations and the equation for the conservation
of the stress energy tensor of the perfect fluid, that is,

_ρþ 3Hðpþ ρÞ ¼ 0; ð8Þ

one can obtain

_ρ ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2

; ð9Þ

_p ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2 dp
dρ

; ð10Þ

where, for the time being, we have just assumed p ¼ pðρÞ.
These two equations can be used to get

_R ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2

�
1 − 3

dp
dρ

�
: ð11Þ

On the other hand, the cosmic field equations will not be
exactly the Friedmann equations for an alternative theory of
gravity. Indeed, for an fðRÞ theory of gravity, which is
described by the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð12Þ

the first modified Friedmann equation reads (see, e.g.,
Refs. [43,57,58])

3H2
df
dR

¼ 1

2

�
R
df
dR

− f

�
− 3H _R

d2f
dR2

− 3
k
a2

þ ρm; ð13Þ
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where ρm is the energy density of the minimally coupled
material content. We are interested in an fðRÞ theory with a
background cosmological expansion equivalent to that
provided by GR for a particular kind of fluid p ¼ pðρÞ.
So, in the next section, we assume that ρm ¼ 0 and that the
dark energy evolution is mimicked by the modifications
appearing in the Friedmann equation due to fðRÞ ≠ R.
Therefore, such a theory must be a solution to Eq. (13)
that satisfies Eqs. (2) to (11), where ρ and p are now
understood as the effective energy density and pressure that
encapsulate the modifications with respect to GR (see,
e.g., Ref. [43]).

C. f(R) theories predicting the LSBR

Let us now restrict our attention to a flat FLRW and an
effective equation of state given by Eq. (4). Therefore, the
expressions for the Hubble rate, the scalar curvature, and its
cosmic time derivative are given by

H2 ¼ 1

3
ρ; ð14Þ

R ¼ 4ρþ A; ð15Þ

_R ¼ 4
ffiffiffi
3

p

3
A
ffiffiffi
ρ

p
; ð16Þ

respectively. We emphasize that now ρ and p are effective
quantities encapsulating the modifications of the predic-
tions with respect to GR. Taking these expressions into
account in Eq. (13), one obtains fðRÞ as a function of ρ.
Substituting then ρ ¼ ðR − AÞ=4, one gets

AðA − RÞ d2

dR2
fðRÞ þ 1

4
ðRþ AÞ d

dR
fðRÞ − 1

2
fðRÞ ¼ 0:

ð17Þ

Considering y ¼ R−A
4A , this equation can be expressed as

y
d2

dy2
f −

�
1

2
þ y

�
d
dy

f þ 2f ¼ 0: ð18Þ

The above expression is known as the Kummer’s confluent
hypergeometric equation, cf. 13.1.1 of Ref. [59]. The
general solution is

fðRÞ ¼ c̃11F1

�
−2;−

1

2
;
R − A
4A

�

þ c̃2

�
R − A
4A

�3
2

1F1

�
−
1

2
;
5

2
;
R − A
4A

�
; ð19Þ

where 1F1 is the confluent hypergeometric function or
Kummer’s function; see Refs. [59–61], and c̃1 and c̃2 are
arbitrary constants. An important feature of 1F1ða; b; yÞ is

that it can be related with the generalized Laguerre
polynomials when a is a negative integer but b is not,
cf. Table 13.6 of Ref. [59]. Hence,

1F1

�
−2;−

1

2
;
R − A
4A

�
∝ L

−3
2

2

�
R − A
4A

�
∝ ðA2 − 6ARþ R2Þ; ð20Þ

where in the last step we have made use of Rodrigues’
formula [see, e.g., Eq. (22.1.6) of Ref. [59]]. Therefore, the
general expression for fðRÞ takes the form

fðRÞ ¼ c1ðA2 − 6ARþ R2Þ

þ c2

�
R − A
4A

�3
2

1F1

�
−
1

2
;
5

2
;
R − A
4A

�
; ð21Þ

with c1 and c2 being arbitrary constants. We emphasize that
the group of fðRÞ metric theories given in Eq. (21) lead
to an equivalent cosmological evolution to the general
relativistic model filled with a fluid described by (4).
Therefore, as the LSBR is a future cosmic abrupt event
of that model, the reconstructed fðRÞ theory will suffer the
same classical fate.

III. THE LSBR IN f(R) QUANTUM COSMOLOGY

Despite the lack of consensus about the existence a full
quantum theory of gravity, a quantum description of the
Universe as a whole leads to an interesting framework, that
is, quantum cosmology (a review on this topic can be found
in Refs. [62,63]). Currently there are different approaches
to quantum cosmology. One of the first attempts to quantize
cosmological backgrounds was due to DeWitt [64]. In his
work he provided a quantization procedure for a closed
Friedmann universe, leading to the first minisuperspace
model in quantum cosmology [64,65]. The expression
minisuperspace stands for a cosmological model truncated
to a finite number of degrees of freedom. In addition,
DeWitt proposed a criterion for the avoidance of classical
singularities within this quantum framework. This is, the
classical singularity is potentially avoided if the wave
function of the Universe vanishes in the nearby configu-
ration space. This criterion is, therefore, based on a
probabilistic interpretation of the wave function, which
would allow us to conclude that the probability to reach the
singularity is 0. However, we have to stress that, unfortu-
nately, this formulation is unknown in general.
In this section we make use of the quantum geome-

trodynamics approach for the particular fðRÞ theory we
have obtained in the previous section. This approach is
based on a canonical quantization with the WDW equation
playing a central role [62–67]. Then we evaluate the
quantum fate of the LSBR abrupt event with the DW
criterion. This criterion has been successfully applied in
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several cosmological scenarios in previous studies, e.g.,
Refs. [11,29,45–49,51,52,62].

A. Modified Wheeler-DeWitt equation

In cosmology, the gravitational action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ ð22Þ

can be reformulated as

S ¼ 1

2

Z
dtLða; _a; äÞ; ð23Þ

taking the form of metric (1) into account. In the preceding
action, the Lagrangian is expressed by means of

Lða; _a; äÞ ¼ Vð3Þa3fðRÞ; ð24Þ

with Vð3Þ being the spatial three-dimensional volume. As it
was pointed in Ref. [68], for the canonical quantization of
the theory a new variable can be introduced in order to
remove the dependence on ä and to make clear the
existence of an additional degree of freedom in metric
fðRÞ gravity. It is useful to choose the scalar curvature to be
the new variable, as in Refs. [29,68]. However, owing to
the fact that R and a are not independent [their dependence
is expressed in Eq. (7)], their relation needs to be
introduced via a Lagrange multiplier μ for the constraint
R ¼ Rða; _a; äÞ. Thence,

L ¼ Vð3Þa3
�
fðRÞ − μ

�
R − 6

�
ä
a
þ _a2

a2
þ k
a2

���
: ð25Þ

After solving for the Lagrange multiplier, the Lagrangian
can be rewritten as [29,68]

Lða; _a; R; _RÞ ¼ Vð3Þfa3½fðRÞ − RfRðRÞ�
−6a2fRRðRÞ _a _Rþ6afRðRÞðk − _a2Þg;

ð26Þ

with the notation fR ≡ df=dR and fRR ≡ d2f=dR2. The
derivative part of the Lagrangian is not in a diagonal form,
which leads to a quite unmanageable expression when
considering the quantization procedure. To overcome this
issue we perform a change of variables alike to that
described by Vilenkin in Ref. [68]. That is,

q ¼ a
ffiffiffiffiffiffi
R0

p �
fR
fR0

�1
2

and x ¼ 1

2
ln

�
fR
fR0

�
; ð27Þ

where fR0
≡ fRðR0Þ and R0 is a constant needed for the

new variables to be well defined. (We address further

discussion on the value of R0 in Sec. III B.) Consequently,
the Lagrangian from (26) becomes

Lðx; _x; q; _qÞ ¼ Vð3Þ

�
R0fR
fR0

�
−3
2

q3
�
f − 6fR

_q2

q2

−RfR þ 6fR _x2 þ 6k
R0

fR0

f2R
q2

�
; ð28Þ

where f and fR are now understood as functions of x.
Once the derivative part has been diagonalized, we can

proceed to obtain the corresponding Hamiltonian. The
conjugate momenta are

Pq ¼
∂L
∂ _q ¼ −12Vð3ÞR

−3
2

0 f
3
2

R0
f
−1
2

R q _q; ð29Þ

Px ¼
∂L
∂ _x ¼ 12Vð3ÞR

−3
2

0 f
3
2

R0
f
−1
2

R q3 _x: ð30Þ

Therefore, the Hamiltonian reads

H ¼ −Vð3Þq3
�
R0fR
fR0

�
−3=2

�
f þ 6k

R0

fR0

f2R
q2

−RfR þ 6R3
0

ð12Þ2V2
ð3Þf

3
R0

f2R
q4

�
P2
q −

P2
x

q2

��
: ð31Þ

For the quantization procedure, we assume Pq → −i∂q

and Px → −i∂x. Then, the classical Hamiltonian constraint
H ¼ 0 becomes the modified WDW equation for the wave
function Ψ of the Universe [62,64,68]. This is

ĤΨ ¼ 0: ð32Þ

After some manipulations, the former expression can be
rewritten as [68]

½q2∂2
q − ∂2

x − Vðx; qÞ�Ψðx; qÞ ¼ 0; ð33Þ

where the effective potential is given by

Vðx; qÞ ¼ q4

λ2

�
kþ q2

6R0fR0

ðf − RfRÞe−4x
�
; ð34Þ

with λ ¼ R0=ð12Vð3ÞfR0Þ. Note that when the expression
of the fðRÞ is given, the variables x and q in (27) are
completely set. Then, f and RfR must be expressed in
terms of x.

B. Quantum treatment of the LSBR

Now, let us focus our attention on the particular
expression for fðRÞ given by the reconstruction method
showed in Sec. II C; this is Eq. (21). Note that the term
with c2 cannot be directly expressed through elemental
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functions of R. This feature prevents us from inverting the
relations in Eq. (27), i.e., from obtaining R ¼ RðxÞ in terms
of elemental functions. However, this is crucial for com-
puting the WDW equation through the path previously
described. Therefore, for the sake of simplicity, we set
c2 ¼ 0 to consider the study of a simple, still general, fðRÞ
cosmological model with a LSBR. This model is given by

fðRÞ ¼ c1ðA2 − 6ARþ R2Þ: ð35Þ

For this model, the change of variables (27) reads

q ¼ a
ffiffiffiffiffiffi
R0

p �
R − 3A
R0 − 3A

�1
2

; x ¼ 1

2
ln

�
R − 3A
R0 − 3A

�
: ð36Þ

Regarding the value of R0, in Ref. [68] the curvature of the
self-consistent de Sitter solution was proposed as a possible
preferred value. In that case R0 would stand for the solution
to R0fR0

− 2fðR0Þ ¼ 0. Nevertheless, this choice may not
always be convenient, as it was shown in Ref. [29]. In our
case, if we adopt the definition through the de Sitter
solution we would obtain R0 ¼ A=3 and, therefore,
R0 − 3A < 0, changing sign as R increases. Therefore,
this choice is not compatible with a well-defined change
of variables given by (27). On the other hand, note that
(5) and (7) imply

R ¼ 4Λþ A½1þ lnða=a0Þ4�: ð37Þ

Thus, following Vilenkin’s spirit for a physical meaningful
constant R0, we define R0 ¼ 4Λþ A, which corresponds to
the present value of the scalar curvature. As A is small, we
ensureR0 − 3A ¼ 4Λ − 2A > 0 ð2Λ > AÞ. Thus, as for our
model R is an increasing function in the future, the change
of variables given by (27) is suitable to study the cosmic
future.
A straightforward substitution of Eq. (35) in Eqs. (33)

and (34) leads to the modified WDW equation for our
model

�
q2∂2

q − ∂2
x þ

q6

12λ2R0ðR0 − 3AÞ ½8A
2e−4x

þ 6AðR0 − 3AÞe−2x þ ðR0 − 3AÞ2�
�
Ψðq; xÞ ¼ 0; ð38Þ

where we have assumed a spatially flat Universe, that
is, k ¼ 0.
As the main motivation of the present work is the

evaluation of the wave function Ψ at the LSBR regime,
it is not necessary to find the whole solution to the WDW
equation in the complete configuration space but only in
the region close to the LSBR abrupt event. The most
important condition for the occurrence of this doomsday is
the divergence of the scalar curvature R at an infinite
cosmic time, which corresponds to x → ∞ and q → ∞.

In addition, given that we are mainly interested in the
asymptotic behavior of the wave function Ψ, further
simplifications can be made. Note that for x → ∞,

8A2e−4x ≪ ðR0 − 3AÞ2; ð39Þ

6AðR0 − 3AÞe−2x ≪ ðR0 − 3AÞ2: ð40Þ

Consequently, in the region close to the LSBR abrupt event
the potential dominant term depends only on one of the
variables, that is,

Vðx; qÞ ∼ − 1

12λ2R0

ðR0 − 3AÞq6: ð41Þ

Hence, the modified WDW equation is reassembled as

q2∂2
qΨ − ∂2

xΨþ Bq6Ψ ¼ 0; ð42Þ

where, for the sake of clarity, we have defined B ¼
1

12λ2R0
ðR0 − 3AÞ. The solution of this equation can be found

with the ansatz for the wave function

Ψðx; qÞ ¼
X
k̃

bk̃Ck̃ðxÞUk̃ðqÞ; ð43Þ

where bk̃ stands for the amplitude of each solution and k̃ is
related with the associated energy. Do not confuse k̃ with
the spatial curvature k, which has been set to 0 since the
spatial curvature term is subdominant close to the LSBR.
As a result, the WDW equation in (42) implies the
following equations:

d2

dx2
Ck̃ðxÞ − k̃2Ck̃ðxÞ ¼ 0; ð44Þ

d2

dq2
Uk̃ðqÞ þ

�
Bq4 −

k̃2

q2

�
Uk̃ðqÞ ¼ 0: ð45Þ

The first equation can be directly solved,

Ck̃ðxÞ ¼ a1ek̃x þ a2e−k̃x for k̃2 ≥ 0; ð46aÞ

Ck̃ðxÞ ¼ a3eijk̃jx þ a4e−ijk̃jx for k̃2 < 0; ð46bÞ

a1, a2, a3 and a4 being arbitrary constants.
On the other hand, the equation for Uk̃ðqÞ admits an

exact solution when k̃2 ¼ 0 by means of Bessel functions,
cf. Eq. (9.1.51) of Ref. [59],

U0ðqÞ ¼
ffiffiffi
q

p �
d1J1

6

� ffiffiffiffi
B

p

3
q3
�
þ d2Y1

6

� ffiffiffiffi
B

p

3
q3
��

; ð47Þ
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J1
6
and Y1

6
being the Bessel functions of first and second

kind, respectively, and d1 and d2 being constant parame-
ters. For values of k̃2 ≠ 0 the solution can be approximated
making use of the WKB method. In Appendix, we found
that the first order WKB approximation leads to

Uk̃ðqÞ ¼
�
Bq4 −

k̃2

q2

�
−1
4½d3eiI þ d4e−iI�; ð48Þ

where I is defined by

I ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bq6 þ jk̃2j

q
−

ffiffiffiffiffiffiffi
jk̃2j

q
3

coth−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

jk̃2j q
6 þ 1

s !
þ C;

ð49Þ

for k̃2 < 0 or

I ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bq6 − k̃2

q
þ

ffiffiffiffiffi
k̃2

p

3
cot−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

k̃2
q6 − 1

r �
þ C; ð50Þ

for k̃2 > 0 where C is an arbitrary constant. The solutions
(47) and (48) exhibit all the same asymptotic behavior,
that is,

Uk̃ðqÞ ∼
1

q

�
u1 cos

� ffiffiffiffi
B

p

3
q3
�
þ u2 sin

� ffiffiffiffi
B

p

3
q3
��

; ð51Þ

whatever the value of k̃2. Note that u1 and u2 are integration
constants. So, all Uk̃ðqÞ → 0 when q → ∞.
In summary, the solution for Ck̃ðxÞ with k̃2 < 0 is finite

for any value of x. Nevertheless, Eq. (46) remains bounded
if and only if a1 ¼ 0. Therefore, the choice a1 ¼ 0 leads to
a finite solution for Ck̃ðxÞ. In addition, the solution for
Uk̃ðqÞ shrinks to 0 as q tends towards infinity. Hence, for
the choice a1 ¼ 0, the wave function Ψðx; qÞ vanishes
at the LSBR regime. Thus, the DW criterion is satisfied,
pointing towards the avoidance of the LSBR abrupt event in
the quantum realm.

IV. CONCLUSIONS

The LSBR is a cosmic abrupt event predicted in general
relativistic phantom models with an equation of state that
slightly departs from a cosmological constant. Considering
the quantum cosmological framework based on quantum
geometrodynamics, it has been shown that this event may
be avoided when the corresponding classical cosmic
evolution is described by GR [51,52]. In this work we
have analyzed whether this is still the case when the
classical cosmic evolution is due to a fðRÞ theory of
gravity instead of a dark fluid.
Therefore, in the first place, we have obtained the group

of metric fðRÞ theories of gravity that predicts a LSBR

abrupt cosmic event. We have used a reconstruction method
to obtain the group of fðRÞ theories able to mimic this
particular cosmic evolution, which in GR corresponds to a
phantom energy model.
In the second part of the work, we have investigated the

quantum fate of the LSBR predicted by one of the obtained
fðRÞ theories of gravity. So, we have considered the
formulation of fðRÞ quantum cosmology in the framework
of quantum geometrodynamics for that particular theory.
We have found the solutions of the modified WDW
equation and show that those solutions satisfy the DW
condition when one of the integration constant is set to 0.
This fact points towards the avoidance of the LSBR abrupt
event in fðRÞ theories of gravity, since the wave function of
the Universe vanishes at the corresponding point in the
minisuperspace.
It should be noted that, when applying the DW criterion,

we have fixed to 0 an integration constant, discarding a
subgroup of solutions as unphysical. If future investigations
lead to the need to take into account the solution dismissed,
then it would be concluded that the DW criterion may not
always be satisfied.
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APPENDIX: THE WKB APPROXIMATION

For a second order homogeneous ordinary differential
equations of the form

ϵ2
d2U
dq2

þQðqÞU ¼ 0; ðA1Þ

the unknown exact solution can be approximated to an
exponential solution of the form [69–72]

UðqÞ ¼ exp
�
1

δ

X∞
n¼0

δnSnðqÞ
�
: ðA2Þ

Then, the first order WKB approximation reads

UðqÞ ∼Q−1
4

�
ũ1 exp

�
i
1

ϵ

Z
q

q0

ffiffiffiffiffiffiffiffiffiffi
QðzÞ

p
dz

�

þũ2 exp

�
−i

1

ϵ

Z
q

q0

ffiffiffiffiffiffiffiffiffiffi
QðzÞ

p
dz

��
; ðA3Þ
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where ũ1 and ũ2 are constants to be determined from initial
or boundary conditions and q0 is an arbitrary but fixed
integration point.
In the case of (44), QðqÞ=ϵ2 ¼ Bq4 − k̃2

q2 with k̃ ≠ 0.

Therefore, we obtain

Uk̃ðqÞ ∼
�
Bq4 −

k̃2

q2

�−1
4½ũ1eðiIÞ þ ũ2eð−iIÞ�; ðA4Þ

with

I ¼

2
641
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bq6 þ jk̃2j

q
−

ffiffiffiffiffiffiffi
jk̃2j

q
3

coth−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

jk̃2j q
6 þ 1

s !375
q

q0

;

ðA5Þ

for k̃2 < 0, and

I¼
"
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bq6− k̃2

q
þ

ffiffiffiffiffi
k̃2

p

3
cot−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

k̃2
q6−1

r �#q
q0

; ðA6Þ

for k̃2 > 0. It is worth mentioning that the freedom of fixing
the integration point q0 can be used in such a way that
QðqÞ ≥ 0 in the interval of integration. Consequently, I is
always real.
The validity of the first order WKB approximation is

given by fulfilling the inequality [70–72]

				Q0

Q
3
2

				≪ 1: ðA7Þ

In our case this leads to

				
�
4Bq3 þ 2k̃2

q3

��
Bq4 −

k̃2

q2

�
−3
2

				≪ 1; ðA8Þ

which is true for large values of q. Therefore, we conclude
that the first order WKB approximation for Uk̃ is valid in
the region close to the LSBR abrupt event.
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