
 

Two-vierbein gravity action from the gauge theory of the conformal group
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We study the gravity action built from two gauge fields corresponding to the generators of the conformal
group. Starting with the action from which one can obtain Einstein gravity and conformal gravity upon
imposing suitable constraints, we keep two independent gauge fields and integrate out the field
corresponding to the generator of Lorentz transformations. We identify the two gauge fields with two
vierbeins and perturb them around anti–de Sitter space. This gives the linearized equations that differ from
both Einstein gravity and conformal gravity linearized equations. We also study the linearized equations for
one gauge field perturbed around the flat space and one around zero, and the case in which the gauge fields
are proportional to each other.
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I. INTRODUCTION

Conformal gravity was interpreted as a gauge theory of
conformal group O(4,2) by Kaku et al. [1] in 1977. The
motivation to study it was the fact that Einstein gravity has
been viewed as a gauge theory of the de Sitter group O(3,2)
[2], which upon contraction reduces to the Poincaré group.
Squaring the curvatures of the de Sitter group, one obtains
Einstein gravity [2], while the Poincaré group and the de
Sitter group are subgroups of the conformal group O(4,2). It
is natural to look at the square of the curvature of O(4,2). To
achieve the invariance of a constructed action under proper
conformal gauge transformations, the authors had to require
that the gauge generator of the translations vanishes. The
resulting action is invariant under conformal transforma-
tions, and it is a gauge theory of the conformal group. It is
built out of three independent gauge fields. Upon integrating
out the gauge fields, we are left with the remaining two. This
situation where one encounters two different fields appears
in bimetric gravity models, which contain two dynamical
metrics. These models [3–5] originated from the de Rham–
Gabadadze–Tolley (dRGT) massive gravity model [6–9]. It
has been shown that other higher derivative theories, one of
them being conformal gravity, can be rewritten and obtained
from bimetric and partially massless bimetric theory [10].
This has further motivated a study of bimetric gravity [3],
whose action takes the form [3]

S ¼ M2
g

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
RðgÞ þM2

f

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
RðfÞ

þ 2m2M2
eff

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p X4
n¼0

βnen
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q �

: ð1Þ

RðgÞ andRðfÞ are Ricci scalars with respect tometrics gμν and
fμν,Mg andMf are two different Planck masses, andMeff is
an effective Planck mass. The en are elementary symmetric
polynomials in eigenvalues of

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
, and βn are four

combinations of the mass of the graviton, the cosmological
constant, and the free parameters. The graviton mass and
cosmological constants for gμν and fμν are among five free
parameters of the theory. Four-dimensional spin-2 theories
have recently been studied within the different dimensional
reduction schemes coming from five-dimensional Chern-
Simons gauge theories. The resulting actions were four-
dimensional generalizations of Einstein-Cartan theory,
conformal gravity, and bimetric gravity [11].
Here, we study linearized gravity, perturbed around

maximally symmetric space, as a gauge theory of the
conformal group while keeping two dynamical gauge
fields. We find that perturbing the equations around
anti–de Sitter (AdS) space gives degeneracy in the fields.
The reason for this comes from the symmetric appearance
of the gauge fields in the initial action and perturbation
around maximally symmetric space. The linearized theory
is different from the sum of linearized Einstein gravities for
the two metrics since the equations of motion do not come
from the corresponding Einstein actions, where the linear-
ized MacDowell-Mansouri action has been studied in
Ref. [12]. It also differs from linearized conformal gravity
since we do not require invariance under the proper
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conformal gauge transformations, and a vanishing of the
generator of translations which has in Ref. [1] been
imposed “by hand.”
Comparison with linearized Einstein gravity (EG) and

conformal gravity (CG) further shows that the original
action should consist out of the two Ricci scalars, one for
each metric, and an additional potential. Just like CG, the
action has one dimensionless parameter α, but two dynami-
cal gauge fields, as one would expect from gauge theory for
bimetric gravity. We also compare the linearized equations
to the linearized equations of bimetric gravity. One could
remove the degeneracy between the fields by introducing a
parameter multiplying one of the gauge fields; however, the
fields would still be linearly dependent. In order for them
not to be linearly dependent, one would need to have the
kinetic part modified. Another possibility for removing the
degeneracy would be to perturb the fields around different
backgrounds; for example, one of the fields could be
perturbed around the AdS background, and another around
a black hole. For now, we focus on the perturbations of both
of the fields around AdS space, perturbation of one field
around AdS space and the other around flat space, and in
the nonperturbative case where gauge fields depend linearly
on each other. The content of the article is as follows.
Section II describes the action and corresponding equations
of motion, while Sec. III analyzes them as a perturbation
around the maximally symmetric spaces. In Sec. IV we
obtain the linearized equations of motion for the two gauge
field fluctuations, perturbed around the AdS space. In
Sec. V we show an example of linearization around
Minkowski space, while in Sec. VI we consider the case
in which the gauge fields are proportional to each other. In
Sec. VII we discuss the results and possible future
prospects.

II. ACTION

The most general parity conserving quadratic action that
can be constructed using the curvatures of a conformal
group with no dimensional constants is [1]

I ¼ α

8

Z
d4xϵμνρσϵabcdRμνabðJÞRρσcdðJÞ ð2Þ

for α as a dimensionless constant,

RμνabðJÞ ¼ Rμνab − 2ðeaμfbν − ebμfaνÞ
þ 2ðeaνfbμ − ebνfaμÞ; ð3Þ

and

Rμνab ¼ −∂μωνab þ ∂νωμab þ ωc
μaωνcb − ωc

νaωμcb: ð4Þ

It consists of the gauge fields eaμ and faμ, which appear
symmetrically in the action, and spin connection ωμab.

If we rewrite the action using Eq. (3) and omit the
topologically invariant, Gauss-Bonnet term ðRμνabðωÞÞ2,
the action becomes

I¼ α

8

Z
d4xϵμνρσϵabcdð−16Rμνabecρfdσ þ64eaμfbνecρfdσÞ

¼ α

8

Z
d4xL; ð5Þ

which contains three independent fields ωμab; eaμ, and faμ.
The fields eaμ and faμ appear symmetrically in action, so
we treat them on equal footing. If one imposes the
requirement that the action is invariant under proper
conformal gauge transformations, one needs to require
that the gauge generator of translations

RμνaðPÞ ¼ −ð∂μeaν − ωμ
b
aebνÞ þ ð∂νeaμ − ων

b
aebμÞ

þ ðeaμbν − eaνbμÞ ð6Þ

vanishes. This constraint on the generator determines the
gauge field ωμab identified with spin connection. The gauge
field bν is a generator of dilatations, and it does not appear
in the action. Action (5) is scale and proper conformal
invariant for ω ¼ ωðeÞ. Keeping this spin connection, one
can also integrate out the nonpropagating field faμ to obtain
the

I ¼ α

8

Z
d4xCμνabCρσcdϵ

μνρσϵabcd ð7Þ

conformal gravity action; here, Cμνab is a Weyl tensor.
One more approach to consider action is without

background expectation value for the field faμ. One can
integrate out faμ to obtain an action that depends on ωμab

and eaμ. The action would be nonunitary and similar to the
Weyl squared action but different from it since ωμab would
be an independent field and not a function of eaμ.

A. Equations of motion

Varying the Lagrangian under action (5) with respect to
ωμab, one obtains its equation of motion,

δωL ¼ ð−2ecν∂ρfdσ þ 2ecνωk
ρdfkσ

− 2fcν∂ρedσ þ 2fcνωk
ρdekσÞϵμνρσϵabcd ¼ 0; ð8Þ

in terms of the eaμ and faμ gauge fields. Since the fields eaμ
and faμ appear symmetrically, we can compute the equa-
tion of motion for one gauge field and know it for the other
gauge field as well. If we assume that eaμ is invertible and
has a nonzero determinant, we can determine its equation of
motion from variation with respect to eiκ,
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δeL ¼ ϵμνκσϵabid½−Rμνabfdσ þ 8fbνfdσeaμ� ¼ 0; ð9Þ

while for the analogous equation for fiκ we have to take
analogous assumptions for faμ,

δfL ¼ ϵμνκσϵabid½−Rμνabedσ þ 8ebνedσfaμ� ¼ 0; ð10Þ

which corresponds to [1]

faμ ¼ −
1

4

�
Raμ −

1

6
Reaμ

�
: ð11Þ

Here, we have used the contractions

Rbμ ¼ Rμνabeaν; R ¼ Raμeaμ; ð12Þ

and fμν ¼ eaμfaν. Equation (10), inserted back, is known
to give conformal gravity action for a vanishing of the
translation generator [1,13,14]. However, we keep both of
the gauge fields dynamical and perturbatively solve Eq. (8)
for ωμab.
We introduce perturbations of the gauge fields

eaμ ¼ vaμ þ η χaμ þ η2ζaμ þ � � � ; ð13Þ

faμ ¼ fð0Þaμ þ ηθaμ þ η2ψa
μ þ � � � ; ð14Þ

and the perturbation of spin connection ωμab,

ωμab ¼ ωð0Þ
μab þ ηωð1Þ

μab þ η2ωð2Þ
μab þ � � � ; ð15Þ

with an η small perturbation parameter. In the expansion of
curvatures in Eq. (10),

Rbμ ¼ Rð0ÞÞ
bμ þ ηRð1Þ

bμ þ � � � ð16Þ

for Rð0Þ
bμ ¼ Rð0Þ

μνabv
aν, one needs to take into account the

contractions Rð1Þ
bμ ¼ Rð1Þ

μνabv
aν þRð0Þ

μνab χ̃
aν from Eq. (12).

Analogously, the expansion of the Ricci scalar is

R ¼ Rð0Þ
bμ v

bμ þ ηðRð1Þ
bμ v

bμ þ Rð0Þ
bμ χ̃bμÞ þ � � � : ð17Þ

The allowed vacuum points around which we can
perturb the action and equations of motion need to be
backgrounds with curvature. One would naively perturb the
fields around the flat background; however, the choice of
eaμ ¼ faμ would not satisfy the equation of motion for faμ
or eaμ if both of them are flat. If one of them were flat, the
other one would have to be zero. One could further analyze
around which backgrounds is it allowed to perturb the
solution by studying the allowed solutions, as was done for
Einstein theory in Ref. [15].

III. PERTURBATION AROUND vaμ = f
(0)
aμ

We choose the background with vaμ ¼ fð0Þaμ . In the
leading order the solution for equation of motion (8) is

ωð0Þ
νab ¼ −

1

2
ðvbβ∂βvaν þ vaαv

β
bv

c
νð−∂αvcβ þ ∂βvcαÞ

− vaβ∂βvbν − vbβ∂νvaβ þ vaβ∂νvbβÞ; ð18Þ

which agrees with the well-known spin connection for
Einstein gravity. Leading order equations (9) and (10) will
expectedly give an equal solution, which is an Einstein
action with the cosmological constant

Rð0Þ
μν − 4vμν ¼ 0: ð19Þ

Here, we have defined vμν ¼ vbμvbν. For the analysis of the
linear order, it is convenient to introduce the tensor

eaμfbν ¼ Qabμν; ð20Þ

whose subleading order reads

Qð1Þ
abμν ¼ vbν χaμ þ vaμθbν; ð21Þ

and we rewrite the subleading order of Eq. (8) in terms of it:

vd½νvkσω
ð1Þ
ρ�

c

k
− vc½νvkσω

ð1Þ
ρ�

d

k
− ∂ ½ρQð1Þ½cd�

νσ� ¼ 0: ð22Þ

The combinations of the Qabμν tensor which appear in
Eq. (22) allow us to rewrite the partial derivatives in terms
of the general covariant derivative defined on the back-
ground space because the Christoffels and spin connections
added and subtracted to form the covariant derivative
exactly cancel. One obtains

ωð1Þ
κab ¼

1

2
vcαvdβðvbκvaγ − vbγvaκÞ∇½αQð1Þ½cd�

βγ�

þ vdβðvaαηbc − vbαηacÞ∇½αQð1Þ½cd�
δκ�: ð23Þ

The subleading order of the spin connection consists of the
background vielbeins which are a solution of Eq. (19),
Einstein spaces, and fluctuations χaμ, θaμ, which will be
defined through Eqs. (9) and (10). The subleading order of
Eq. (9),

θbμ ¼ −
1

4

�
Rð1Þ
bμ −

1

6
Rð0Þ χbμ −

1

6
Rð1Þvbμ

�
; ð24Þ

consists of
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Rð1Þ
bμ ¼ ð−∂μω

ð1Þ
νab þ ∂νω

ð1Þ
μab þ ωcð0Þ

μa ωð1Þ
νcb − ωcð0Þ

νa ωð1Þ
μcb

þ ωcð1Þ
μa ωð0Þ

νcb − ωcð1Þ
νa ωð0Þ

μcbÞvaν

þ ð−∂μω
ð0Þ
νab þ ∂νω

ð0Þ
μab þ ωcð0Þ

μa ωð0Þ
νcb − ωcð0Þ

νa ωð0Þ
μcbÞ χ̃aν

ð25Þ

for

Rð1Þ ¼ Rð1Þ
bμ v

bμ þ Rð0Þ
bμ χ̃bμ ð26Þ

and Rð0Þ ¼ Rð0Þ
bμ e

bμ, and it gives the dependence of χaμ
and θaμ.

IV. AdS BACKGROUND

We set the background perturbation to the AdS metric,
which is Weyl flat, allowing us to write

vaμ ¼ ρðxÞδaμ ð27Þ

and the leading order spin connection

ωð0Þ
νab ¼ −δ½aν∂b�ρðxÞ; ð28Þ

here, we denote ∂b ¼ δμb∂μ. Equations (9) and (10) reduce

to Rð1Þ
aμ ¼ 4δμν. The subleading order of Eq. (8), just as

Eq. (23) after a few technical manipulations, shows that the
linear term in the ωμab perturbation can be rewritten in
terms of the sum of two linear terms of Einstein spin
connections,

ωð1Þ
κak ¼ ωð1Þ

κakð χÞ þ ωð1Þ
κakðθÞ: ð29Þ

Here,

ωð1Þ
κakð χÞ ¼ −

1

4ρ
ðδαa∇α χkκ þ δαk∇κð χaαÞ þ δαkδ

b
κ δ

β
a∇β χbαÞ

− a ↔ k ð30Þ

is the linearized spin connection for Einstein gravity, and ∇
denotes the Lorentz covariant derivative. For transparency,
we keep the Lorentz covariant derivative, and do not
evaluate it for background AdS. The expression for the
linearized spin connection evaluated on AdS is given in

the Appendix. This form of ωð1Þ
μab allows us to split the

curvatures in parts depending only on χaμ or θaμ fluc-
tuation. Therefore, we can write the subleading order of the
Riemann tensor as sum of linearized Riemann tensors for
Einstein gravity. The subleading order of the Ricci tensor,
however, will not be possible to write in the form of two
linearized Ricci tensors for Einstein gravity because of the

term Rð0Þ
μνab χ̃

aν (Rð0Þ
μνabθ̃

aν), which is visible from Eq. (25):

Rð1Þ
bμ ¼ ðRð1Þ

μνabð χÞ þ Rð1Þ
μνabðθÞÞvaν þ Rð0Þ

μνab χ̃
aν: ð31Þ

Here,

Rð1Þ
μνabð χÞ ¼ −∂μω

ð1Þ
νabð χÞ þ ∂νω

ð1Þ
μabð χÞ þωcð0Þ

μa ωð1Þ
νcbð χÞ

−ωcð0Þ
νa ωð1Þ

μcbð χÞ þωcð1Þ
μa ð χÞωð0Þ

νcb −ωcð1Þ
νa ð χÞωð0Þ

μcb

ð32Þ

is a linearized Riemann tensor for Einstein gravity. We
contract Eq. (24) with vbσ and write

θbμvbσ ¼ −
1

4

�
Rð1Þ
bμ v

b
σ −

1

6
Rð0Þ χbμvbσ −

1

6
Rð1Þvbμvbσ

�
:

ð33Þ

In terms of the Einstein gravity perturbations in the fields
χaμ and θaμ, using Eqs. (31) and (26), this is

θbμvbσ¼−
1

4

��
Rð1Þ
μνabðχÞþRð1Þ

μνabðθÞvaν

þRð0Þ
μνab χ̃

aν−
1

6
Rð0Þχbμ

�
vbσ

−
1

6
ððRð1Þ

ανacðχÞþRð1Þ
ανacðθÞÞvaνþRð0Þ

ανac χ̃aνÞvcαvbμvbσ

−
1

6
Rð0Þ
cα χ̃cαvbμvbσ

�
: ð34Þ

This way, one obtains the constraint on the χμν related to
θμν. An analogous appearance of both equations of motions
for the faμ and eaμ gauge fields assuming them invertible
implies that equation for χbμ is

χbμvbσ ¼ −
1

4

��
Rð1Þ
μνabðθÞvaν þ Rð1Þ

μνabð χÞvaν

þ Rð0Þ
μνabθ̃

aν −
1

6
Rð0Þθbμ

�
vbσ

−
1

6
ðRð1Þ

ανacðθÞvaνvcα þ Rð1Þ
ανacð χÞvaνvcα

þ 2Rð0Þ
ανacθ̃aνvcαÞvbμvbσ

�
: ð35Þ

If we subtract Eqs. (35) and (34), we obtain

ðθbμ − χbμÞvbσ
¼ −

1

4

��
Rð0Þ

μνabð χ̃aν − θ̃aνÞ − 1

6
Rð0Þð χbμ − θbμÞ

�
vbσ

−
1

6
ð2Rð0Þ

ανacvcαÞvbμvbσð χ̃aν − θ̃aνÞ
�
: ð36Þ
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The equation does not contain any linearized curvatures
due to their cancellation. The reason for this is that
the terms with the linearized Riemann tensor can be
written as a sum of the linear Riemann tensor for
Einstein gravity and can contain both perturbations, χaμ
and θaμ, in both Eq. (34) and Eq. (35). Subtracting the
equations will cancel these terms. Using the conventions

Rð0Þ
μναβ¼−λ̃ð−vμβvναþvμαvνβÞ, Rαβ ¼ 3λ̃vαβ, χ̃aν ¼ − χaν,

and θ̃aν ¼ −θaν, we evaluate Eq. (36) and get

λ̃ðθμσ − χμσÞ ¼ 2ð2þ λ̃Þðθσμ − χσμÞ ð37Þ

for λ̃ ¼ −1; this is

χμσ − θμσ ¼ 2ðθσμ − χσμÞ ð38Þ

or

θμσ þ 2θσμ ¼ 2 χσμ þ χμσ: ð39Þ

Owing to Lorentz invariance, we can impose a gauge in
which χaμ is a symmetric matrix, χaμ ¼ χμa. This would
imply that χaμvaν ¼ χμavaν → χμν ¼ χνμ. This condition
requires that

θμσ þ 2θσμ ¼ 3 χσμ: ð40Þ

Summing Eqs. (35) and (34) and using the same notation
give

ðθσμ þ χσμÞ ¼ −
1

4
ðk:t:þ λ̃ð χμσ þ θμσÞ − 2λ̃ð χσμ þ θσμÞÞ

ð41Þ

for the k.t. kinetic term

k:t:¼
�
2Rð1Þ

μνabðχþ θÞvaνvbσ −
1

3
Rð1Þ
ανacðχþ θÞvaνvcαvμσ

�
:

ð42Þ

To evaluate the linear term Rð1Þ
μνab ¼ δRμνab, we linearize the

tensor in the metric formulation and use the projection to
the tetrad formulation

δRμνcdð χÞ≡ Rð1Þ
μνcdð χÞ

¼ Rð1Þ
λσμνvλcvσdð χÞ − Rð0Þ

μνabδ
a
c χ

b
d − Rð0Þ

μνab χ
a
cδ

b
d:

ð43Þ

We then obtain

k:t: ¼ 6λ̃ðhμσ þ qμσÞ −DσDμðhþ qÞ −D2ðhμσ þ qμσÞ

þ 2DðμDαðhασÞ þ qασÞÞ −
1

3
ð3λ̃ðhþ qÞ −D2ðhþ qÞ

þDαDβðhαβ þ qαβÞÞvμσ − 2λ̃ð χμσ þ θμσÞ: ð44Þ

Here, we have defined hμν ¼ vaμ χaν þ vaν χaμ and qμν ¼
vaμθaν þ vaμθaν, their traces h and q, respectively, and we
have not used any gauge conditions. The last term in
Eq. (44) comes from the two last terms in Eq. (43). For the
sum of the constraint equations on the linear term in the
perturbation of the gauge field, from Eq. (41) we obtain

0 ¼ −DσDμðhþ qÞ
−D2ðhμσ þ qμσÞ þ 2DðμDαðhασÞ þ qασÞÞ

−
1

3
ð−D2ðhþ qÞ þDαDβðhαβ þ qαβÞÞvμσ

þ 6λ̃ðhμσ þ qμσÞ − λ̃ðhþ qÞvμσ
− λ̃ð χμσ þ θμσÞ − ð2λ̃ − 4Þð χσμ þ θσμÞ ð45Þ

for 2DðμDαhσÞα ¼ DμDαhσα þDσDαhμα. One can also
choose the de Donder gauge DαðhαβþqαβÞ¼ 1

2
DβðhþqÞ,

which keeps in the equation Laplace operators acting on the
sum of the symmetrized linear terms in the expansion of the
gauge field, their traces, and the mass terms

0 ¼ −D2ðhμσ þ qμσÞ þ
1

6
D2ðhþ qÞvμσ þ 6λ̃ðhμσ þ qμσÞ

− λ̃ðhþ qÞvμσ − λ̃ð χμσ þ θμσÞ − ð2λ̃ − 4Þð χσμ þ θσμÞ:
ð46Þ

For λ̃ ¼ −1 Eq. (46) becomes

vaσTð1Þ
aμ≡−D2ðhμσþqμσÞþ

1

6
D2ðhþqÞvμσ

−6ðhμσþqμσÞþðhþqÞvμσ
þðχμσþθμσÞþ6ðχσμþθσμÞ

¼−D2ðhμσþqμσÞþ
1

6
D2ðhþqÞvμσ−5ðhμσþqμσÞ

þ5ðχσμþθσμÞþðhþqÞvμσ; ð47Þ

we call this equation “vaσTð1Þ
aμ.” From Eqs. (38) and (47)

one can notice that fluctuations cannot be fixed independ-
ently; they appear as a sum, which implies that there is an
extra symmetry.
Highly symmetric equations (38) and (47) are pointing

out the degeneracy of the perturbations around the max-
imally symmetric background. This becomes obvious when
one tries to symmetrize Eq. (38). One obtains the equality
χμσ þ χσμ ¼ θσμ þ θμσ, which inserted into symmetrized
equation (47) leads to two equal equations for χμσ þ χσμ
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and θμσ þ θσμ. One could further analyze symmetrized
equation (47) as

0 ¼ −2D2ðhμσ þ qμσÞ þ
1

3
D2ðhþ qÞvμσ − 5ðhμσ þ qμσÞ

þ 2ðhþ qÞvμσ; ð48Þ

rewriting the perturbations in the transverse traceless split,
and one could consider its one loop partition function;
however, one would have to keep in mind the implications
of Eq. (38).
Independently, one can antisymmetrize Eq. (47), which

will lead to cancellation of the derivatives and
χμσ − χσμ ¼ −θμσ þ θσμ. With the Lorentz invariance
requirement that χσμ is symmetric, antisymmetrizing
Eq. (40), one obtains that θσμ is also symmetric.
Equation (40) will then lead to θμσ ¼ χμσ .
Equation (48), however, cannot be compared to the

known linearized equations of EG or CG. As shown in
subsection C of the Appendix on the example of Einstein
gravity, projection of the general perturbed tensor Tμν ¼
Tð0Þ
μν þ ηTð1Þ

μν is Tð1Þ
μν ¼ vaμTð1Þ

aν þ χaνT
ð0Þ
aμ . We can recog-

nize Eq. (47) as the vaμTð1Þ
aν part of the equation. To be

able to compare the equation with linearized EG and CG

from the literature, we have to obtain Tð1Þ
μν , i.e., we have to

add χaνT
ð0Þ
aμ to the vaμTð1Þ

aν tensor. After that, Eq. (47)
becomes

Tð1Þ
σμ ¼−8ðχσμþθσμÞ−5ðhμσþqμσÞ

−D2ðhμσþqμσÞ−vμσ

�
−ðhþqÞ−1

6
D2ðhþqÞ

�
¼ 0;

ð49Þ

which can be symmetrized to give

− 9ðhμσ þ qμσÞ −D2ðhμσ þ qμσÞ

− vμσ

�
−ðhþ qÞ − 1

6
D2ðhþ qÞ

�
¼ 0: ð50Þ

One can compare this to the linearized minimal bimetric
gravity model where, for the massless spin-2 particle hμν
and a massive spin-2 particle uμν of mass m, one has [3]

S ¼
Z

d4xðhμνϵ̂μναβhαβ þ uμνϵ̂μναβuαβÞ

−
m2

4

Z
d4xðuμνuμν − uμμuννÞ: ð51Þ

Here, ϵ̂μναβ denotes the Einstein-Hilbert (EH) kinetic
operator. One can notice that Eq. (49), as well as linear
equations that would come from Eq. (51), has the form of

two equal operators acting on two separate fields and a mass
term. In Eq. (49) the kinetic operator is not EH. One could
think of the equation as consisting of two EH operators and
additional mass terms. When Eq. (49) is symmetrized and
one obtains Eq. (50), there are two equal kinetic operators for
two degenerate fields, which can be thought of as two EH
operators and mass terms. Upon lifting the degeneracy
between the fields, one should be able to diagonalize the
resulting equation such that there are two EH operators, one
for each field, and remaining terms which belong only to one
massive field, as in Eq. (51).
Analysis of the spin-2 massive graviton has been done in

tetrad formulation for the dRGT model using similar
methods [16]. A possibly convenient area of further
consideration might be in terms of the field Qμναβ. If we
express the subleading order equation (38) in terms of this
tensor, it reads

Qð1Þ
βμνσ −Qð1Þ

νσβμ ¼ 2ðQð1Þ
σνμβ −Qð1Þ

μβσνÞ; ð52Þ

while symmetrized equation (48) is

0¼−2D2ðQð1Þ
μβσνþQð1Þ

βμνσþQð1Þ
σνμβþQð1Þ

νσβμÞþ
1

3
D2Qð1Þvμσvβν

þ2Qð1Þvμσvβν−5ðQð1Þ
μβσνþQð1Þ

βμνσþQð1Þ
σνμβþQð1Þ

νσβμÞ: ð53Þ

It can be useful to notice the property

Qð1Þ
νμβσ þQð1Þ

βσνμ ¼ Qð1Þ
βμνσ þQð1Þ

νσβμ: ð54Þ

V. eaμ PERTURBED AROUND THE FLAT
BACKGROUND AND faμ AROUND ZERO

The linearized equations of motion when eaμ is perturbed
around the flat background and faμ around zero in Eqs. (13)
and (14) imply δaμ and zero, respectively, for leading order
terms, and the subleading terms remain to be determined.
The equation of motion for ωμab in the leading order
vanishes because it is multiplied by the leading order term
in the expansion of faμ. This naturally makes Eqs. (9) and
(10) identically zero.
The subleading order of ωμab,

ωð1Þ
μab ¼

1

6
ðδbρð−∂μ χaρ þ ∂ρ χaμÞ þ δa

ρð∂μ χbρ − ∂ρ χbμÞ
þ δa

ρδb
αeð0Þdμð∂α χdρ − ∂ρ χdαÞÞ; ð55Þ

agrees with a subleading term of ωμab in Einstein gravity,
while the subleading order of Eq. (10) is

θð1Þbμ ¼ −
1

4

�
Rð1Þ
bμ −

1

6
Rð1Þδbμ

�
: ð56Þ
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The curvature terms in expansion are Rð1Þ
bμ ¼ ð−∂μω

ð1Þ
νab þ

∂νω
ð1Þ
μabÞδaν and Rð1Þ ¼ Rð1Þ

bμ δ
bμ. Following the procedure of

the previous chapter,

Rð1Þ
bβ ¼ 1

2
ð∂α∂γh

γ
β − ∂β∂αhþ ∂β∂γh

γ
α − ∂γ∂γhαβÞδαb ð57Þ

and

Rð1Þ ¼ ∂β∂αhαβ − ∂β∂βh: ð58Þ

Using the de Donder gauge and writing the derivatives
with D,

θσμ ¼
1

8

�
DαDαhσμ −

1

3
DαDαhδσμ

�
: ð59Þ

We can notice that there is dependency only on χ on the
right-hand side of Eq. (59), which is a result of the fact that,

in ωð1Þ
μab, we have only χaμ appearing. The subleading order

of ωð1Þ
μab does not depend on θaμ because, in the equation of

motion that determines ωð1Þ
μab, fields faμ appear in pairs,

which will make such terms vanish in the subleading order

when fð0Þaμ is vanishing.
The leading order of the Eq. (9) will vanish because the

perturbation of the faμ field is expanded around zero. The
subleading order will also vanish because the first term of

Eq. (9) is given by Rð0Þ
μνabθaμ þ Rð1Þ

μνabf
ð0Þ
aμ , both of which

vanish. The second term in Eq. (9) will be multiplied by the

vanishing background fð0Þaμ .

VI. eaμ IS PROPORTIONAL TO faμ

Taking the condition

faμ ¼ ρðxÞeaμ ð60Þ

in the equation for ωμab, Eq. (8), with

faμ ¼ ρðxÞeaμ; fμa ¼ ρðxÞ−1eμa; faμ ¼ ρðxÞ−1eaμ; ð61Þ

one obtains

2ρðxÞe½cj½νekσωρ�kjd� ¼ 2ρðxÞe½c½ν∂ρed�σ� þ e½c½ν∂ρρðxÞed�σ�:
ð62Þ

To find ωμab, we multiply Eq. (62) with eνkηdiηρβ,
δβδeνjeρaηdi, and eβkeρaηdi, respectively, and solve the
system of equations for ωμab:

ωνab ¼
1

2ρðxÞ ðeaνeb
β∂βρðxÞ − eaβebν∂βρðxÞÞ

−
1

2
ðebβ∂βeaν þ eαae

β
be

c
νð−∂αecβ þ ∂βecαÞ

− eaβ∂βebν − ebβ∂νeaβ þ eaβ∂νebβÞ: ð63Þ

This form of ωμab has been expected based on the known
solution from Kaku et al. [1], where agreement is obtained
by setting ρðxÞ as a constant. The condition of proportion-
ality (60) would give the action

I ¼
Z

d4xLs ¼ 8α

Z
d4xρðxÞðRþ 24ρðxÞÞe; ð64Þ

which is equal to Einstein gravity for ρðxÞ ¼ 1. Here, we
used contractions

Rbμ ¼ Rð0Þ
μνabe

aν; R ¼ Rμaeaμ: ð65Þ

Obtaining Einstein gravity from Weyl gravity has been
studied from different angles [17,18]. In Ref. [18] the
relation between the Weyl and Einstein gravities have been
studied via breaking conformal gauge symmetries. After
imposing the relation between the gauge fields fμν and eμν
which breaks the conformal gauge symmetries, the
obtained Lagrangian agrees with the Lagrangian in
Eq. (64) when ρðxÞ → − 1

4
ρðx0Þ; i.e., ρðxÞ is taken to be

− 1
4
ρðx0Þ constant.

VII. DISCUSSION

We have studied linearized equations of motion of the
parity conserving action constructed from curvatures of
conformal group. Since we have not imposed additional
constraints by hand, the result is highly symmetric. One can
notice that the symmetry which appears between the
linearized fields χμν and θμν is a consequence of the
symmetry which appears in the action, and one can
speculate on whether its origin reaches the relations among
the generators of special conformal transformations (SCTs)
and translations (Ts) in the conformal group. The difference
between the SCTs and Ts in a conformal group is due to a
minus sign that, if absorbed in the SCT generator, ree-
merges in a change of sign of different commutation
relation.
We have obtained the constraint equations on the

fluctuations in the expansion of the gauge fields eaμ and
faμ around the background AdS. When the constraint
equations are symmetrized, one obtains two equal linear-
ized expressions for both fields. The reason for this
degeneracy, besides the conformal group, is in the pertur-
bation around AdS space. For comparison, EG describes a
massless graviton, and CG describes one massless and
one partially massless mode. Here, the perturbations are

TWO-VIERBEIN GRAVITY ACTION FROM THE GAUGE … PHYS. REV. D 100, 084012 (2019)

084012-7



linearly dependent on each other, and the system has
degeneracy. In order to count precisely the number of
degrees of freedom, one would have to perform a canonical
analysis of the theory. Based on current results, one may
expect one massless and partially massless or massive
mode. Inspecting the linearized equations and comparing
them with the linearized equations of EG and CG, it is
possible to speculate that the original effective theory
consists of two Ricci scalars each for one metric and an
additional potential. The exact form of the potential is yet to
be studied. The parameter of the theory is an α dimension-
less parameter inherited from the starting action. This is
similar to the theory with CG, but unlike in CG there are
two dynamical gauge fields, which is similar to dRGT
theory.
It would be interesting to compute observables such as

the one loop partition function for this theory and compare
it to Einstein and conformal gravity, and possibly to look
for generalizations to higher spins. If the generalization
were to arbitrary dimensions, one could consider the
general d-dimensional conformal algebra and its implica-
tions, which one could relate and motivate with multimetric
theories [19]. One could also look into the implications of
the gauge (40) and obtain symmetric vielbeins, as was done
in Ref. [20].
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APPENDIX A: INVERSE GAUGE FIELDS

To obtain the inverse of the perturbed gauge field faμ, one
starts with the general form of the inverse gauge field f̃μa.
The expansion of the latter,

f̃μb ¼ f̃ð0Þμb þ ηθ̃ð1Þμb þ η2θ̃ð2Þμb þ η3θ̃ð3Þμb ; ðA1Þ

in Oð0Þ order requires one to satisfy f̃ð0Þμb fð0Þaμ ¼ δab.
Multiplication of the two expansions in the leading order

gives that f̃ð0Þμb ¼ fð0Þμb . The subleading order Oð1Þ gives
the condition

fð0Þaα θ̃ð1Þαb þ f̃ð0Þμb θaμ ¼ 0;

from which it follows that θ̃ð1Þαb ¼ −fð0Þμb θð1Þaμ fð0Þαa . The
order Oð2Þ leads to

θ̃ð2Þαb ¼ −fð0Þμb θað2Þμf
ð0Þα
a þ θð1Þaγ fð0Þαa fð0Þβb θcβf

ð0Þγ
c : ðA2Þ

APPENDIX B: AdS BACKGROUND

When we consider above computation of the linear ωμab
on the AdS background, it is most convenient to start from
the equations of motion for ωμab. We can notice that Eq. (8)
can be written as

αðecνRρσdðKÞ þ fcνRρσdðPÞÞϵμνρσϵabcd ¼ 0 ðB1Þ

for

RμνaðPÞ ¼ −ð∂μeaν − ωb
μaebνÞ þ ð∂νeaμ − ωb

νaebμÞ; ðB2Þ

RμνaðKÞ ¼ −ð∂μfaν − ωb
μafbνÞ þ ð∂νfaμ − ωb

νafbμÞ: ðB3Þ

In the leading order Eq. (B1) reads

αðvcνRð0Þ
ρσdðKÞ þ fð0Þcν R

ð0Þ
ρσdðPÞÞϵμνρσϵabcd ¼ 0; ðB4Þ

where we have used index (0) in Rð0Þ
μνa to accent the order

of perturbation. Since we use fð0Þcν ¼ vcν, the equation
reduces to

2αvcνR
ð0Þ
ρσdðPÞϵμνρσϵabcd ¼ 0; ðB5Þ

where we can recognize the appearance of the no torsion
condition, which corresponds to the requirement that the
covariant derivative of the AdS vielbein vanishes. That
means that in the subleading order

α½vcνðRð1Þ
ρσdðKÞ þ Rð1Þ

ρσdðPÞÞ þ χcνR
ð0Þ
ρσdðPÞ

þ θcνR
ð0Þ
ρσdðPÞ�ϵμνρσϵabcd ¼ 0; ðB6Þ

the second and the third term may be taken to zero due to
the no torsion condition, so one obtains

αvcνðRð1Þ
ρσdðKÞ þ Rð1Þ

ρσdðPÞÞϵμνρσϵabcd ¼ 0 ðB7Þ

for

Rð1Þ
ρσdðPÞ ¼ −ð∂μ χaν − ωð0Þb

μ a χbν − ωð1Þb
μ avbνÞ

þ ∂ν χaμ − ωð0Þb
ν a χbμ − ωð1Þb

ν avbμ; ðB8Þ

and Rð1Þ
ρσdðKÞ gives the same expression with θaμ on the

place of χaμ in Eq. (B8).
Analogous to the procedure for Eq. (8), we can dualize

Eq. (B7) to obtain the equation for ωð1Þ
μab:

vc½νðRð1Þ
ρσ�dðKÞ þ Rð1Þ

ρσ�dðPÞ − vd½νðRð1Þ
ρσ�cðKÞ þ Rð1Þ

ρσ�cðPÞÞ ¼ 0:

ðB9Þ
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To solve Eq. (B9) for ωð1Þ
μab, we obtain three tensorial

equations whose manipulation leads to the expression for

ωð1Þ
μab. The simplification that can be taken for the AdS

background is that the AdS background is Weyl flat, and
one can define

vaμ ¼ ρðxÞδaμ: ðB10Þ

Here, ρðxÞ denotes the function of the coordinates on the
manifold. The multiplication for obtaining the tensorial
equations is therefore also done by using Eq. (B10). To

express ωð1Þ
μab, we use the Mathematica package xAct [21]

and classify the terms as follows:
(1) Terms ωð1Þ

μabðω; χ; θÞ with ωμab, χð1Þaμ , and θð1Þaμ .

(2) Terms ωð1Þ
μabð∂ χÞ with ∂μ χaν.

(3) Terms ωð1Þ
μabð∂θÞ with ∂μθaν.

There are no terms that involve the partial derivative acting
on the background vielbein. The reason for this becomes
clear from Eq. (B8). In the linear order we can have the
partial derivative of the background vielbein only from

ωð0Þ
μab, while the remaining terms vanished due to the no

torsion condition. (Below we omit writing (0) in ωð0Þ for
simplicity.)
For the terms in 1, we obtain

ω̃ð1Þ
κakðω; χ; θÞ ¼ −

1

4ρ
½ðωk

b
κ þ ωκ

b
kÞðθba þ χbaÞ

− ωa
b
kðθbκ þ χbaÞ�; ðB11Þ

here,

ωð1Þ
κakðω; χ; θÞ ¼ ω̃ð1Þ

κakðω; χ; θÞ − ω̃ð1Þ
κkaðω; χ; θÞ: ðB12Þ

The terms in 2 are ωð1Þ
μabð∂ χÞ ¼ ω̃ð1Þ

μabð∂ χÞ − ω̃ð1Þ
μbað∂ χÞ and

ω̃ð1Þ
μabð∂ χÞ ¼ −

1

4ρ
δk

αδκ
b∂a χbα −

1

4ρ
∂a χkκ −

1

4ρ
δk

α∂κ χaα;

ðB13Þ

and the terms in 3 are equal to the terms in 2, with θaμ in

place of χaμ: ω
ð1Þ
μabð∂θÞ ¼ ω̃ð1Þ

μabð∂θÞ − ω̃ð1Þ
μbað∂θÞ:

ω̃ð1Þ
μabð∂θÞ ¼ −

1

4ρ
δk

αδκ
b∂aθbα −

1

4ρ
∂aθkκ −

1

4ρ
δk

α∂κθaα:

ðB14Þ

To identify the covariant derivatives, let us rewrite the θaμ
part of Eq. (B11) with indices on ωμab not contracted:

−
1

4ρ
½ðδβkδαaδcκωβ

b
c þ δαaωκ

b
kÞθbα − δαaωα

b
kθbκ�: ðB15Þ

Combining the third term from Eq. (B15) and the appro-
priate term from Eq. (B11), we have

δαað∂αθkκ − ωα
c
kθcκÞ ¼ δαa∇αθkκ: ðB16Þ

The remaining terms from Eq. (B15) analogously combine
with the antisymmetric pairs of the terms in Eq. (B11) to
form covariant derivatives. Taking into account χaμ, θaμ,
and Eqs. (B11)–(B14), we obtain

ωð1Þ
κak ¼ −

1

4ρ
ðδαa∇αðθkκ þ χkκÞ þ δαk∇κðθaα þ χaαÞ

þ δαkδ
b
κ δ

β
a∇βðθbα þ χbαÞÞ − a ↔ k: ðB17Þ

For the EG spin connection it holds that

ωEG
μ
a
b ¼ −ebνDμeaμ; ðB18Þ

which is equal to Eq. (18) in the leading order, where we
denote the covariant derivative with D. In the linearized
order this is

ωEGð1Þ
μ
a
bð χÞ ¼ − χ̃b

νDμvaνvbνD
ð1Þ
μ vaν − vbνDμ χ̃a

ν:

ðB19Þ

We can write Eq. (29) as

ωð1Þ
μabð χ þ θÞ ¼ ωEGð1Þ

μab ð χÞ þ ωEGð1Þ
μab ðθÞ: ðB20Þ

Linearizing Eq. (B20) around AdS, we can write the terms

ωð1ÞEG
μabðAdSÞð χÞ ¼

1

2ρ2
ðð χbμ − χμbÞ∂aρþ ð− χaμ þ χμaÞ∂bρ

þ ð− χab þ χbaÞ∂μρ ðB21Þ

þ ðð−ηbμ − ημbÞ χνa þ ðηaμ þ ημaÞ χνbÞ∂νρÞ
ðB22Þ

þ 1

2ρ
ð∂aχbμ−∂bχaμþδb

ν∂μχaν−δa
ν∂μχbν

þδμ
cðδbλ∂aχcλ−δa

λ∂bχcλÞÞ ðB23Þ

and ωð1ÞEG
μabðAdSÞðθÞ analogously. We can notice that the choice

of symmetric perturbation χμb ¼ χbμ, χab ¼ χba reduces
Eq. (B23) to

ωð1ÞEG
μabðAdSÞsymmetric ¼

ð−ημb χaν þ ημa χb
νÞ∂νρ

ρ2
ðB24Þ

þ 1

2ρ
ð∂a χbμ − ∂b χaμ

þ δμ
cðδbλ∂a χcλ − δa

λ∂b χcλÞÞ: ðB25Þ
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Equation (B20) also requires that

−
1

4ρ
ðvαa∇αðχkκÞþvαk∇κðχaαÞþvαkv

b
κv

β
a∇βðχbαÞÞ−a↔ k

¼ð− χ̃k
νDκvνdþvνkΓð1Þα

κνvαd−vνkDκ χd
νÞηdc; ðB26Þ

where Γð1Þα
κν is Christoffel Γα

κν¼ 1
2
eαβð∂κeβνþ∂νeβκ−∂βeκνÞ

expanded for eμν ¼ eaμeaν, its expansion eμν ¼ vμν þ hμν,
and

hμν ¼ vaμ χaν þ χaμvaν: ðB27Þ

We have defined hμν as a symmetric term in the perturba-
tion of eμν. Expansion is analogous for θaμ,

qμν ¼ vaμθaν þ θaμvaν: ðB28Þ

Proving that Eq. (B20) holds makes it possible to write
the perturbation as a sum of perturbations in Einstein
gravity. We can consider the linearized projection of the
Riemann tensor from the vielbein to metric formulation.
For the projection of the Riemann tensor, we know that
Rλ

σμν ¼ eaλebσRμν
a
b. When we rewrite the definition

of Ra
bμν, Eq. (12), in terms of Eq. (B18), ωμ

a
b ¼

eaαebβΓα
μβ − ebα∂μeaα, the projection gives us Rλ

σμν. The
terms in the computation that contain one partial derivation
∂μ, ∂ν, and their combination fð∂μ; ∂νÞ (for the f function
in ∂μ and ∂ν) at leading order separately cancel.
Analogously, we consider them in linearized order.
We write the projection

Rλ
σμν ¼ eλaebσð−∂μðeaρeτbΓρ

ντÞ þ ∂νðeaρeτbΓρ
μτÞ

þ ∂μeτb∂νeaτ − ∂νeτb∂μeaτ ðB29Þ

−ðeaρeτcΓρ
μτ−eτc∂μeaτ Þðecρ0eτ

0
bΓ

ρ0
ντ0−eτ

0
b∂νecτ0 Þ ðB30Þ

þðeaρeτcΓρ
ντ−eτc∂νeaτ Þðecρ0eτ

0
bΓ

ρ0
μτ0−eτ

0
b∂μecτ0 ÞÞ ðB31Þ

and linearize it. The linearized order projection is

Rð1Þλ
σμνð χÞ ¼ vaλvbσRð1Þ

μνabð χÞ þ Rð0Þ
μνabvaλ χbσ

þ Rð0Þ
μνab χ̃

aλvbσ ; ðB32Þ

the subleading order ofRλ
σμν ¼ −∂μΓλ

νσ þ ∂νΓλ
μσ − Γλ

μαΓα
νσþ

Γλ
ναΓα

μσ .

APPENDIX C: COMPARISON WITH
EINSTEIN GRAVITY

An analogous consideration of Einstein gravity would
lead to equations of motion in the subleading order

Gð1Þ
aμ ¼ Rð1Þ

aμ −
1

2
Rð1Þeaμ −

1

2
R χaμ ¼ 0: ðC1Þ

Using the above method and the de Donder gauge leads to
the constraint on χaμ

−λ̃ χμν −D2 χμν þ
1

2
ð2λ̃ χ þD2 χÞvμν ¼ 0: ðC2Þ

To compare this with the familiar result for the linearized
Einstein operator, we have to consider hμν ¼ 2 χμν, which is
symmetric, and

Gð1Þ
μν ¼ Gð1Þ

aμ vaν þ Gð0Þ
aμ χaν ; ðC3Þ

whereGð0Þ
aμ χaν ¼ −3λ̃ χμν. We also need to take into account

the cosmological constant, which is 6λ̃ χμν for four dimen-
sions. Adding this to Eq. (C2), we obtain a familiar result,

2λ̃ χμν −D2 χμν þ
1

2
ð2λ̃ χ þD2 χÞvμν ¼ 0: ðC4Þ

APPENDIX D: RELATIONS USED IN TEXT

Here we list several equations that were used in text
1

4
ϵabcdϵ

μνρσeaμebνecρedσ ¼ e; ðD1Þ

1

2!
ϵabcdϵ

μνρσecρedσ ¼ eðeμaeνb − eνaeμbÞ; ðD2Þ

δe ¼ eeμaδeaμ; ðD3Þ

where e is a determinant.
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