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We study the gravity action built from two gauge fields corresponding to the generators of the conformal
group. Starting with the action from which one can obtain Einstein gravity and conformal gravity upon
imposing suitable constraints, we keep two independent gauge fields and integrate out the field
corresponding to the generator of Lorentz transformations. We identify the two gauge fields with two
vierbeins and perturb them around anti—de Sitter space. This gives the linearized equations that differ from
both Einstein gravity and conformal gravity linearized equations. We also study the linearized equations for
one gauge field perturbed around the flat space and one around zero, and the case in which the gauge fields

are proportional to each other.
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I. INTRODUCTION

Conformal gravity was interpreted as a gauge theory of
conformal group O(4,2) by Kaku et al. [1] in 1977. The
motivation to study it was the fact that Einstein gravity has
been viewed as a gauge theory of the de Sitter group O(3,2)
[2], which upon contraction reduces to the Poincaré group.
Squaring the curvatures of the de Sitter group, one obtains
Einstein gravity [2], while the Poincaré group and the de
Sitter group are subgroups of the conformal group O(4,2). It
is natural to look at the square of the curvature of O(4,2). To
achieve the invariance of a constructed action under proper
conformal gauge transformations, the authors had to require
that the gauge generator of the translations vanishes. The
resulting action is invariant under conformal transforma-
tions, and it is a gauge theory of the conformal group. It is
built out of three independent gauge fields. Upon integrating
out the gauge fields, we are left with the remaining two. This
situation where one encounters two different fields appears
in bimetric gravity models, which contain two dynamical
metrics. These models [3—5] originated from the de Rham—
Gabadadze—Tolley (dRGT) massive gravity model [6-9]. It
has been shown that other higher derivative theories, one of
them being conformal gravity, can be rewritten and obtained
from bimetric and partially massless bimetric theory [10].
This has further motivated a study of bimetric gravity [3],
whose action takes the form [3]
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S =M / d*x\/—detgR'Y + M3 / d*x\/—det fR)
4
—|—2m2M§ff/d4x\/—detg2ﬂnen<\/g‘lf>. (1)
n=0

R and R") are Ricci scalars with respect to metrics Gy and
fu» M, and M s are two different Planck masses, and M is
an effective Planck mass. The e, are elementary symmetric

polynomials in eigenvalues of \/¢g~'f, and f3, are four
combinations of the mass of the graviton, the cosmological
constant, and the free parameters. The graviton mass and
cosmological constants for g,, and f,, are among five free
parameters of the theory. Four-dimensional spin-2 theories
have recently been studied within the different dimensional
reduction schemes coming from five-dimensional Chern-
Simons gauge theories. The resulting actions were four-
dimensional generalizations of FEinstein-Cartan theory,
conformal gravity, and bimetric gravity [11].

Here, we study linearized gravity, perturbed around
maximally symmetric space, as a gauge theory of the
conformal group while keeping two dynamical gauge
fields. We find that perturbing the equations around
anti—de Sitter (AdS) space gives degeneracy in the fields.
The reason for this comes from the symmetric appearance
of the gauge fields in the initial action and perturbation
around maximally symmetric space. The linearized theory
is different from the sum of linearized Einstein gravities for
the two metrics since the equations of motion do not come
from the corresponding Einstein actions, where the linear-
ized MacDowell-Mansouri action has been studied in
Ref. [12]. It also differs from linearized conformal gravity
since we do not require invariance under the proper
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conformal gauge transformations, and a vanishing of the
generator of translations which has in Ref. [1] been
imposed “by hand.”

Comparison with linearized Einstein gravity (EG) and
conformal gravity (CG) further shows that the original
action should consist out of the two Ricci scalars, one for
each metric, and an additional potential. Just like CG, the
action has one dimensionless parameter a, but two dynami-
cal gauge fields, as one would expect from gauge theory for
bimetric gravity. We also compare the linearized equations
to the linearized equations of bimetric gravity. One could
remove the degeneracy between the fields by introducing a
parameter multiplying one of the gauge fields; however, the
fields would still be linearly dependent. In order for them
not to be linearly dependent, one would need to have the
kinetic part modified. Another possibility for removing the
degeneracy would be to perturb the fields around different
backgrounds; for example, one of the fields could be
perturbed around the AdS background, and another around
a black hole. For now, we focus on the perturbations of both
of the fields around AdS space, perturbation of one field
around AdS space and the other around flat space, and in
the nonperturbative case where gauge fields depend linearly
on each other. The content of the article is as follows.
Section II describes the action and corresponding equations
of motion, while Sec. III analyzes them as a perturbation
around the maximally symmetric spaces. In Sec. IV we
obtain the linearized equations of motion for the two gauge
field fluctuations, perturbed around the AdS space. In
Sec. V we show an example of linearization around
Minkowski space, while in Sec. VI we consider the case
in which the gauge fields are proportional to each other. In
Sec. VII we discuss the results and possible future
prospects.

II. ACTION

The most general parity conserving quadratic action that
can be constructed using the curvatures of a conformal
group with no dimensional constants is [1]

I = g/ d4X€ﬂUpG€adeRyuab (J)Rpacd(‘]) (2)
for @ as a dimensionless constant,

R/wah (J) = Rm/uh - Z(eaﬂfby - ehﬂfuv)
+ z(eaufbu - ebyfau)7 (3)

and
— ¢ ¢
Rm/ab - _auwuab + 8yw/4ab + WpaBych — DyaDycp- (4)

It consists of the gauge fields e,, and f,,, which appear

symmetrically in the action, and spin connection @,.

If we rewrite the action using Eq. (3) and omit the
topologically invariant, Gauss-Bonnet term (R, (@))%,
the action becomes

a
I= g/ d4xeﬂypaeab0d(_16Rﬂyubecpfd6 + 64eaufbuec/)fdo')

:% / &L, (5)

which contains three independent fields 4, €,,, and f,,.
The fields e,, and f,, appear symmetrically in action, so
we treat them on equal footing. If one imposes the
requirement that the action is invariant under proper
conformal gauge transformations, one needs to require
that the gauge generator of translations

R/wa(P) = _(ayeau - wybaebu) + (aueau - wubaebu)
+ (eaybu - eayby) (6)

vanishes. This constraint on the generator determines the
gauge field @, identified with spin connection. The gauge
field b, is a generator of dilatations, and it does not appear
in the action. Action (5) is scale and proper conformal
invariant for @ = w(e). Keeping this spin connection, one
can also integrate out the nonpropagating field f,, to obtain
the

a

1
8

/ d4xc/wab Cpacdelwpaeabai (7)

conformal gravity action; here, C,,,;, is a Weyl tensor.

One more approach to consider action is without
background expectation value for the field f,,. One can
integrate out f,, to obtain an action that depends on @,
and e,,. The action would be nonunitary and similar to the
Weyl squared action but different from it since @, would
be an independent field and not a function of e,

A. Equations of motion

Varying the Lagrangian under action (5) with respect to
@b, ONE Obtains its equation of motion,

6(1)L = <_26L‘l/8[)fd(7 + 2ecvw£dfka
—2f00,e4, + 2fwa)}§dekg)€””/"’€“b6d =0, (8)

in terms of the e, and f,, gauge fields. Since the fields e,
and f,, appear symmetrically, we can compute the equa-
tion of motion for one gauge field and know it for the other
gauge field as well. If we assume that ¢, is invertible and
has a nonzero determinant, we can determine its equation of
motion from variation with respect to e,
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5eL — €;¢L/Ka€abid[_

Rﬂvabfda + 8fbl/fd0‘etlﬂ] = 0’ (9)

while for the analogous equation for f* we have to take
analogous assumptions for f,,,

5fL = €ﬂww€abid[_R/wabeda + 8ebvedsza/4] = O’ (10)

which corresponds to [1]

1 1
_Z<Rall—6Real4>' (11)

Here, we have used the contractions

fa/A:

Ry, = Ryape®, R = Rye™, (12)
and f,, = e, f,. Equation (10), inserted back, is known
to give conformal gravity action for a vanishing of the
translation generator [1,13,14]. However, we keep both of
the gauge fields dynamical and perturbatively solve Eq. (8)
for @, q.

We introduce perturbations of the gauge fields
et = vl +nyt+ o+, (13)

fe= 0 et 4Pyl 4 (14)

and the perturbation of spin connection @,

wL(;)b + 11(1)(1)

o+ ol e (15)

w/mb = uab

with an # small perturbation parameter. In the expansion of
curvatures in Eq. (10),

Ry, = Ry + R + - - (16)

for RE;;Z = sz)abv Y, one needs to take into account the
contractions RE;) = R/(lly)abv”’“ + ng)abj(“” from Eq. (12).
Analogously, the expansion of the Ricci scalar is
R = R\ + p(Ry) o™ + R 7Y + . (17)
The allowed vacuum points around which we can
perturb the action and equations of motion need to be
backgrounds with curvature. One would naively perturb the
fields around the flat background; however, the choice of
€4y = fau would not satisty the equation of motion for f,,
or e, if both of them are flat. If one of them were flat, the
other one would have to be zero. One could further analyze
around which backgrounds is it allowed to perturb the

solution by studying the allowed solutions, as was done for
Einstein theory in Ref. [15].

III. PERTURBATION AROUND v, = f(")

We choose the background with vy = f,, . In the
leading order the solution for equation of motion (8) is

1
0
a)ia)b = _E (vbﬂaﬂvav + v, Ub%( -0, aVcp + 8ﬁvca)

— 0,004, — 1,00, 04 + v,S0,01). (18)

which agrees with the well-known spin connection for
Einstein gravity. Leading order equations (9) and (10) will
expectedly give an equal solution, which is an FEinstein
action with the cosmological constant

0)

RY —4p, =o0. (19)

v

Here, we have defined v, = vbﬂvb ,- For the analysis of the
linear order, it is convenient to introduce the tensor

eaﬂfblz = Qabﬂw (20)

whose subleading order reads
o) —y 0 21
abuv — bzz)(aﬂ + vay bvs ( )

and we rewrite the subleading order of Eq. (8) in terms of it:

ek w(l)c
LY e

— vtk = 0,000, =0, (22)
The combinations of the Q,;,, tensor which appear in
Eq. (22) allow us to rewrite the partial derivatives in terms
of the general covariant derivative defined on the back-
ground space because the Christoffels and spin connections
added and subtracted to form the covariant derivative
exactly cancel. One obtains

1
a)r(iz)b = 5 vcavd/}(vhl(vay - thUaK)V aQ(l)[ ]

+ Udﬂ<vaa’7bc - Uba’/lac) aQ [Cd . (23)
The subleading order of the spin connection consists of the
background vielbeins which are a solution of Eq. (19),
Einstein spaces, and fluctuations y,,, 0,,, which will be
defined through Eqgs. (9) and (10). The subleading order of
Eq‘ (9)’

1 1 1
Qbﬂ = —Z (R(bil) - ER(()))(I)” - ER(l)vbp> R (24)

consists of
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R(by - ( 0, 60 b +a C() ab +a)ﬂ(a>a)(1,) —605510)0)(1)

Hva veb uch
1) (0 1) (0 a
ol -odlal
0 ¢(0) (0)\ ~ay
+ (_ vah + a a) ub + a)ﬂgl >wl(/c)b - a)l"(fl )w;(u>b))(
(25)
for
R = Ryl v 4 R} 70 (26)
and R = Rg,o)eb", and it gives the dependence of y,,
and 0,,.

IV. AdS BACKGROUND

We set the background perturbation to the AdS metric,
which is Weyl flat, allowing us to write

Vau = p<x)5a;¢ (27)

and the leading order spin connection

a)(O) = _5[azxah]p('x>; (28)

vab —

here, we denote 0, = 5’;}8”. Equations (9) and (10) reduce

to Ra,f = 45,,. The subleading order of Eq. (8), just as
Eq. (23) after a few technical manipulations, shows that the
linear term in the ®,,, perturbation can be rewritten in
terms of the sum of two linear terms of Einstein spin
connections,

Ohak = ol (1) + 0Lk (0). (29)
Here,

1
a)f(la)k()() = T (6gva){klc + 5(]:vx(){aa) + 52511355vﬁ){ba)

4p
—a<k (30)

is the linearized spin connection for Einstein gravity, and V
denotes the Lorentz covariant derivative. For transparency,
we keep the Lorentz covariant derivative, and do not
evaluate it for background AdS. The expression for the
linearized spin connection evaluated on AdS is given in

the Appendix. This form of wLL)b allows us to split the

curvatures in parts depending only on y,, or 6,, fluc-
tuation. Therefore, we can write the subleading order of the
Riemann tensor as sum of linearized Riemann tensors for
Einstein gravity. The subleading order of the Ricci tensor,
however, will not be possible to write in the form of two
linearized Ricci tensors for Einstein gravity because of the

term R\, 7 (R%), %), which is visible from Eq. (25):

R(bl) — (RU) ( )+R(> (9)),Ucw+R(0) )?au' (31)

m mxab uvab uvab
Here,
1
Rl () = =0,00,(2) + 0,0l (1) + @5 @) (1)

c(0 0 1 .
i, () + o (el - i (ol

(32)

is a linearized Riemann tensor for Einstein gravity. We
contract Eq. (24) with v*, and write

1
Op 0’y = —~ (R(%ba -

4\

1 1
6R<O) )(by/uba - ER“)Ub,uUbO') .

(33)

In terms of the Einstein gravity perturbations in the fields

Xau and 0, using Eqgs. (31) and (26), this is

1 1
Hbﬂ Ub” = _Z ( (R/(tl/)ab ()() +R<1)/,wab(0) v

(0) Sav 1 (0) b

+R yuvabX _ER Xbu | V6
L Rt | w_ pO an ca

= & (Rewte (2) + Rentae (0)) "+ Ruae 7003, 0"
1
_ERE‘UJ)Z vbyvbzr) . (34)
This way, one obtains the constraint on the y,, related to
6,,,- An analogous appearance of both equations of motions

for the f,, and e,, gauge fields assuming them invertible
implies that equation for y,, is

1
)(bﬂvb(’ =~ Z ( <R/(41b)ab (9),Uay =+ R(l)/,wab()() v
~ 1
+R©,,,.,0% — 6R<0J9b,,> vb,

1

~ ¢ (Ruuue ()0 v & Rigie (1) v v
©0) Fav, ca b

+ 2R a0 v ) vp, 07, | (35)

If we subtract Egs. (35) and (34), we obtain

(Qbﬂ - )(bﬂ)vba

1 ~ nav 1
== <(R(O)ﬂmb()(ay -0%) - 6R<0)(1b/4 - 9bﬂ>> v’

- éw)) (36)

N

(2R v°®) vy, 0?4 (7%

|
N =

084012-4
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The equation does not contain any linearized curvatures
due to their cancellation. The reason for this is that
the terms with the linearized Riemann tensor can be
written as a sum of the linear Riemann tensor for
Einstein gravity and can contain both perturbations, y,,
and 6,,, in both Eq. (34) and Eq. (35). Subtracting the
equations will cancel these terms. Using the conventions

0 3 % ~
Rl(w)aﬂz—/l(—v”ﬂvm—i-Uﬂavvﬂ), Raﬂ = 3/11]0:,57 )(ay = _Zav’

and 6 = —0®, we evaluate Eq. (36) and get
;1(6#0 - )(/w) = 2<2 + j’)(@m - )(6;4) (37)

for 1 = —1; this is

Xue — 9/4(7 = 2(90.# - )(6/4) (38)
or

H;m + 26{7/4 = 2)(0’;4 + )(;w' (39)
Owing to Lorentz invariance, we can impose a gauge in
which y,, is a symmetric matrix, y,, = X q- This would

imply that y,,v) = ¥uav) = Xuw = Xuu- This condition
requires that

O + 205 =3 You- (40)

Summing Egs. (35) and (34) and using the same notation
give

1 ~ -
(90;4 + )(6/4) = _Z(k't' + ’1()(/40 + 9/40') - 2/1(Zoﬂ + 96/4))
(41)

for the k.t. kinetic term

1
k.t.= <2R,<;)ah()( +0) vl — gRt(xL)ac()( + 0)1}“’“1}""1}W> .
(42)

(1)

Hra
tensor in the metric formulation and use the projection to
the tetrad formulation

To evaluate the linear term R, = 6R,, 5, We linearize the

1
5R/wcd()(> = R;(w)cd()()
o 0 a 0 a
= R“)lo;wvﬁ‘vd()() - R,(w)ubéc)(bd - Riu)ub)( 052
(43)

‘We then obtain

k.t = 62(}1”0 + qlm) - DGDﬂ(h + 6]) - D2(hﬂ0 + ‘I;w)
1 -
+ 2D, Dy (k) + 5y) =5 (33 + q) = DX(h + )
+ DyDp(h? + q7)) 04 = 22(Jyo + bp0)- (44)

Here, we have defined h,, = v, x*, + v, 1", and q,, =
Va0, + 04,0, their traces h and g, respectively, and we
have not used any gauge conditions. The last term in
Eq. (44) comes from the two last terms in Eq. (43). For the
sum of the constraint equations on the linear term in the
perturbation of the gauge field, from Eq. (41) we obtain

0= —D(,Dﬂ(h +q)
- Dz(hua + q;m) + ZD(uDa(hz) + qZ)>

1
=3 (D2 (h +a) + DaDy(h” + 4)) v

+ 6;1<h/w + an) - j(h + q)”ya
- j‘()(/m + 9/46) - (2’}’ - 4)()(0;4 + 66}4) (45)

for 2D, Dyhs)® = D,Dyhs” + DyDyh,” One can also
choose the de Donder gauge D, (h%s+q%) =3Ds(h+q),
which keeps in the equation Laplace operators acting on the
sum of the symmetrized linear terms in the expansion of the
gauge field, their traces, and the mass terms

1 ~
0= _D2(hﬂa + o) + 8D2(h + q) Vo + 64 (s + Gyo)

- j“(h + q)vpm - z()(;m + 9#(7) - (2;1 - 4)()(6# + 9(7/4)'
(46)

For 1 = —1 Eq. (46) becomes

1
v, TW , ==D*(hup+q,) +57?2(h+617)v,m

_6(h/m+qlm) + (h+ q)vpm
+ (o1 0u0) +6(Xoyu +05)

1
=-D? (h/w + qM(r) +6D2 (h+Q>U/m_5(h/m +qlm)

+5(Wou+00) + (h+q) V05 (47)

we call this equation “U“UT(I)W . From Egs. (38) and (47)
one can notice that fluctuations cannot be fixed independ-
ently; they appear as a sum, which implies that there is an
extra symmetry.

Highly symmetric equations (38) and (47) are pointing
out the degeneracy of the perturbations around the max-
imally symmetric background. This becomes obvious when
one tries to symmetrize Eq. (38). One obtains the equality
Xuo T Xou = 0oy + 0,,, which inserted into symmetrized
equation (47) leads to two equal equations for y,, + x4,

084012-5



IVA LOVREKOVIC

PHYS. REV. D 100, 084012 (2019)

and 0,, +0,,. One could further analyze symmetrized
equation (47) as

1
0= _2D2(hﬂa + qMa) + §D2(h + q)v/w - S(h/w + q/m)

+2(h + q) vy, (48)

rewriting the perturbations in the transverse traceless split,
and one could consider its one loop partition function;
however, one would have to keep in mind the implications
of Eq. (38).

Independently, one can antisymmetrize Eq. (47), which
will lead to cancellation of the derivatives and
Xuo = Xou = —0, + 04, With the Lorentz invariance
requirement that y,, is symmetric, antisymmetrizing
Eq. (40), one obtains that 6,, is also symmetric.
Equation (40) will then lead to 6,, = y,,.

Equation (48), however, cannot be compared to the
known linearized equations of EG or CG. As shown in
subsection C of the Appendix on the example of Einstein
gravity, projection of the general perturbed tensor 7, =
T,(,(y + nT,(,]J is T,SL) =09, T, + )(“UT,(I(L). We can recog-
nize Eq. (47) as the U”MT“)a,, part of the equation. To be
able to compare the equation with linearized EG and CG
from the literature, we have to obtain Tw, i.e., we have to
add )(“,,Tg,)) to the U“HT(I)M tensor. After that, Eq. (47)
becomes

T = =8 (tou +0) =3 (o + )
~D* (Mo + ) = Vo (—(h+Q) —éDZ(thq)) =0,
(49)

which can be symmetrized to give
= (Mo + Gus) = D* (o + Qo)

— Uy (—(h +q) —éDz(h + q)) =0. (50)

One can compare this to the linearized minimal bimetric
gravity model where, for the massless spin-2 particle h,,
and a massive spin-2 particle u,, of mass m, one has [3]

S = /d“x(hﬂyé"”aﬂhaﬂ + 10, P u )
m2
- T/ d*x(uu,, — ut it ). (51)

Here, é*®’ denotes the Einstein-Hilbert (EH) kinetic
operator. One can notice that Eq. (49), as well as linear
equations that would come from Eq. (51), has the form of

two equal operators acting on two separate fields and a mass
term. In Eq. (49) the kinetic operator is not EH. One could
think of the equation as consisting of two EH operators and
additional mass terms. When Eq. (49) is symmetrized and
one obtains Eq. (50), there are two equal kinetic operators for
two degenerate fields, which can be thought of as two EH
operators and mass terms. Upon lifting the degeneracy
between the fields, one should be able to diagonalize the
resulting equation such that there are two EH operators, one
for each field, and remaining terms which belong only to one
massive field, as in Eq. (51).

Analysis of the spin-2 massive graviton has been done in
tetrad formulation for the dRGT model using similar
methods [16]. A possibly convenient area of further
consideration might be in terms of the field Q.. If we
express the subleading order equation (38) in terms of this
tensor, it reads

1 1 1 1
Q}?’[)IJ()’ - Ql(/rf)liﬂ = 2(QEIVL/} - Q/(J/)?O'I./)’ (52)

while symmetrized equation (48) is

1
0=—-2D%(Q}y%., +Qppur+ Qs+ Obo) +§DZQ D505

+200,05, = 5(Qypp + Qs + Qo+ Qi) (53)
It can be useful to notice the property

1 1 1 1
Ql(/y)/)’o’ + Q;)’(r)yﬂ = Q})’/)l/o’ + QE/(T;JM' (54)

V. e,, PERTURBED AROUND THE FLAT
BACKGROUND AND f,, AROUND ZERO

The linearized equations of motion when e, is perturbed
around the flat background and f,,, around zero in Egs. (13)
and (14) imply o5 and zero, respectively, for leading order
terms, and the subleading terms remain to be determined.
The equation of motion for w,,, in the leading order
vanishes because it is multiplied by the leading order term
in the expansion of f,,. This naturally makes Egs. (9) and
(10) identically zero.

The subleading order of @,

1
a);(iz)b = 6 (5bp(_au)(ap + 8/))(41/4) + 5ap(au)(bp - p)(b/,t)

4 5al)5ba€(0)dﬂ(aa)(dp - a/))(d(l))’ (55)

agrees with a subleading term of w,,;, in Einstein gravity,
while the subleading order of Eq. (10) is

I Lo 1
O == <R§],} - 6R<1>5,w>. (56)
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The curvature terms in expansion are REJL) = (—8ﬂa)£la>b +

0, a) )5“” and RV = E)L) 8°*. Following the procedure of
the previous chapter,

Ry = (0,0, 1 — 950h + 040, hly = 0,0 hy)55  (57)

l\)l'—‘

and

W) = 9,0,h™ — 050/ h. (58)

Using the de Donder gauge and writing the derivatives
with D,

1 1
O =3 <D Dyhgy ~3DaD h5W>. (59)

We can notice that there is dependency only on y on the

right-hand side of Eq. (59), which is a result of the fact that,
in wflla)b,
of wLL)h does not depend on 6, because, in the equation of

motion that determines a)flla)h, fields f,, appear in pairs,

we have only y,, appearing. The subleading order

which will make such terms vanish in the subleading order
when f E,(,),) is vanishing.

The leading order of the Eq. (9) will vanish because the
perturbation of the f,, field is expanded around zero. The
subleading order will also vanish because the first term of

Eq. (9) is given by wa)aﬁ + R, £l both of which

vanish. The second term in Eq. (9) will be multiplied by the
vanishing background fg,?).

VL ¢,, IS PROPORTIONAL TO f,,
Taking the condition

fau = p(x)eaﬂ (60)

in the equation for w,,;, Eq. (8), with

fi=p(x)ei  fa=p(x)~lea, fH=p(x)~le™,  (61)

one obtains

+€[ [Dapp( ) ]{7]
(62)

2p(x)e[c‘[uekrfw/)]k‘d] = Zp( ) uape

To find ®,.,, we multiply Eq. (62) with e*;n9n’”,
e’ je? ¥, and e per q, respectively, and solve the
system of equations for @'

(eazzehﬁa/}p (.X) - eaﬂebua/}p ()C))

-5 (e Dpen, + edehes(=0ue s + pecy)
- eaﬂaﬂehzz - ebﬂaveu} + €u/}3u6’bﬂ)- (63)

This form of @, has been expected based on the known
solution from Kaku et al. [1], where agreement is obtained
by setting p(x) as a constant. The condition of proportion-
ality (60) would give the action

_ / dxL, — Sa / dxp(x)(R + 24p(x))e,  (64)

which is equal to Einstein gravity for p(x) = 1. Here, we
used contractions

Ry, = R, e

R = R,e™. (65)
Obtaining Einstein gravity from Weyl gravity has been
studied from different angles [17,18]. In Ref. [18] the
relation between the Weyl and Einstein gravities have been
studied via breaking conformal gauge symmetries. After
imposing the relation between the gauge fields f,, and e,
which breaks the conformal gauge symmetries, the
obtained Lagrangian agrees with the Lagrangian in
Eq. (64) when p(x) —» —1p(x); i.e., p(x) is taken to be
—1p(x) constant.

VII. DISCUSSION

We have studied linearized equations of motion of the
parity conserving action constructed from curvatures of
conformal group. Since we have not imposed additional
constraints by hand, the result is highly symmetric. One can
notice that the symmetry which appears between the
linearized fields y,, and 6,, is a consequence of the
symmetry which appears in the action, and one can
speculate on whether its origin reaches the relations among
the generators of special conformal transformations (SCTs)
and translations (Ts) in the conformal group. The difference
between the SCTs and Ts in a conformal group is due to a
minus sign that, if absorbed in the SCT generator, ree-
merges in a change of sign of different commutation
relation.

We have obtained the constraint equations on the
fluctuations in the expansion of the gauge fields ¢,, and
fau around the background AdS. When the constraint
equations are symmetrized, one obtains two equal linear-
ized expressions for both fields. The reason for this
degeneracy, besides the conformal group, is in the pertur-
bation around AdS space. For comparison, EG describes a
massless graviton, and CG describes one massless and
one partially massless mode. Here, the perturbations are

084012-7



IVA LOVREKOVIC

PHYS. REV. D 100, 084012 (2019)

linearly dependent on each other, and the system has
degeneracy. In order to count precisely the number of
degrees of freedom, one would have to perform a canonical
analysis of the theory. Based on current results, one may
expect one massless and partially massless or massive
mode. Inspecting the linearized equations and comparing
them with the linearized equations of EG and CG, it is
possible to speculate that the original effective theory
consists of two Ricci scalars each for one metric and an
additional potential. The exact form of the potential is yet to
be studied. The parameter of the theory is an a dimension-
less parameter inherited from the starting action. This is
similar to the theory with CG, but unlike in CG there are
two dynamical gauge fields, which is similar to dRGT
theory.

It would be interesting to compute observables such as
the one loop partition function for this theory and compare
it to Einstein and conformal gravity, and possibly to look
for generalizations to higher spins. If the generalization
were to arbitrary dimensions, one could consider the
general d-dimensional conformal algebra and its implica-
tions, which one could relate and motivate with multimetric
theories [19]. One could also look into the implications of
the gauge (40) and obtain symmetric vielbeins, as was done
in Ref. [20].
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APPENDIX A: INVERSE GAUGE FIELDS

To obtain the inverse of the perturbed gauge field £, one
starts with the general form of the inverse gauge field Vil
The expansion of the latter,

f fb +'79 )ﬂ+’129 )M+n%9() (A1)
in O(0) order requires one to satisfy ]‘5,0)" fflo)“ = 5%

Multiplication of the two expansions in the leading order
gives that féo)” = fg,o)” . The subleading order O(1) gives

the condition
0)az(l)a 7O pa
fa( ) 957 ) + fg) ) 04 =

from which it follows that 9
order O(2) leads to

fb ”e 40 The

é(Z)a

D= = £+ 0 s (A2)

APPENDIX B: AdS BACKGROUND

When we consider above computation of the linear .,
on the AdS background, it is most convenient to start from
the equations of motion for ,,,;,. We can notice that Eq. (8)
can be written as

a(eaRpoa(K) + fouRpoa(P))ee*d =0 (B1)
for
Rua(P) = =(0,ew — waep,) + (0,64, — @luep,).  (B2)
Rya(K) = =(0ufa = @paf ) + (0uf ay = @Laf 1y,)- (B3)
In the leading order Eq. (B1) reads
a(ve, Ry (K) + f& R (P))errocbed = 0, (B4)

where we have used index (0) in R,(l(i)a to accent the order

of perturbation. Since we use fg,l) = v,,, the equation
reduces to

2av, R, (P)emoeebed = 0,

(B5)
where we can recognize the appearance of the no torsion
condition, which corresponds to the requirement that the
covariant derivative of the AdS vielbein vanishes. That
means that in the subleading order

0
alve, (RO(K) +RD(P)) + 1o, RO,(P)

+0,,RY

pad(P)]eﬂvpa abcd O,

(B6)

the second and the third term may be taken to zero due to
the no torsion condition, so one obtains

ave, (R (K) + Ry (P))emroeabed =0 (B7)
for
szir)d(P) = —(aﬂla» - w(0>ba)(bu - wl<41>haybu)
+ Oy Xap — o’ aXby = y)bavbw (B8)
and R/(m)d( ) gives the same expression with 6, on the

place of y,, in Eq. (B8).
Analogous to the procedure for Eq. (8), we can dualize
Eq. (B7) to obtain the equation for w,,,:

1 1 1
D (R (K) + RO, (P) = vgg, (R

e (K) + R%C(P)) =0.

(B9)
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To solve Eq. (B9) for a)flla)b, we obtain three tensorial
equations whose manipulation leads to the expression for

/(m)b The simplification that can be taken for the AdS
background is that the AdS background is Weyl flat, and
one can define

Vap = p(x)éaﬂ' (BIO)
Here, p(x) denotes the function of the coordinates on the
manifold. The multiplication for obtaining the tensorial
equations is therefore also done by using Eq. (B10). To

express wlala)b,
and classify the terms as follows:

(1) Terms a)l(lljh(a) x.0) with @,,,, ;(5,,), and 9,(1,)
(2) Terms a)Ua)b(ﬁ x) with 9, v 4.

(3) Terms wﬂab(ﬁé) with 0,0,,.
There are no terms that 1nvolve the partial derivative acting
on the background vielbein. The reason for this becomes
clear from Eq. (B8). In the linear order we can have the

partial derivative of the background vielbein only from
(0)

we use the Mathematica package xAct [21]

@,q» While the remaining terms vanished due to the no
torsion condition. (Below we omit writing (0) in »© for
simplicity.)
For the terms in 1, we obtain
. 1
Bt 1.0) = = 1[0+ 0. O + )
_wabk(gbk+ )(ba)]; (Bll)
here,
1 1
Ok (@, 2,0) = Dy (0, 1,0) = By (0, 2,0).  (B12)

The terms in 2 are a)lmb(a;() = a)ﬂab({?){) ﬂ,m(a;() and

1

1
— — 6,40 ,
4,0 k Ok Xaa

%) —
aXke 4ﬂ

1
ﬂab(a)() = _Eakaﬁkbaaxba -
(B13)

and the terms in 3 are equal to the terms in 2, with 6,, in

place of y,,: Im,,(ae) = a) (89) ha(@&):
1 as b 1 1 a
ﬂab (89) = _@5k O aaebot - Eaaekk - @5k akgaa’

(B14)

To identify the covariant derivatives, let us rewrite the 0,
part of Eq. (B11) with indices on @, not contracted:

1
Y (5535w, + 820,21 )0py — 5204”0 (B1S)

Combining the third term from Eq. (B15) and the appro-
priate term from Eq. (B11), we have

53(8a6kk - wackgck‘) = 5gva9kk‘~ (B16)
The remaining terms from Eq. (B15) analogously combine
with the antisymmetric pairs of the terms in Eq. (B11) to
form covariant derivatives. Taking into account y,,, 6
and Egs. (B11)-(B14), we obtain

ap»

0ok = = 3 OO0 + 210) + 9 Ou + )
+ 5265366%(91,& + Zpa) —a < k. (B17)
For the EG spin connection it holds that
w4, = —e)*Dye,t, (B13)

which is equal to Eq. (18) in the leading order, where we
denote the covariant derivative with D. In the linearized
order this is

wEG(1> ub()() - _)?bbpﬂvayvbypl(ll)yay

v > U
u — Uy Dp)(a

(B19)
We can write Eq. (29) as

(1)

Wiy (1 +0) = ol () + by (6).  (B20)

Linearizing Eq. (B20) around AdS, we can write the terms

1

1)EG

w,(m)b(Ads)(Z) = sz ((Zbu - )(ub)aap + (_)(au + )(;w)ahp
+ (_)(ab + )(ba)aup (BZI)
+ ((_nbﬂ - nyb))(ya + (naﬂ + nua))(yb)aup)

(B22)
1 v v

+Z(aa)(hﬂ - ah)(a;t +5h 8/,!)((11/ _5a 8/,!)(}11/
+5ﬂc(5biaaxcl_5alab)(ci)) (B23)

and a)fm)f(i as) (6) analogously. We can notice that the choice

of symmetric perturbation y,, = ¥pu» Xab = Xpa reduces
Eq. (B23) to

(1EG (b Xa" + Mua X6")0up
a’ﬂa)b(Ads)symmetric = 7 . (B24)
1
+ Z (aa)(by - ab)(aﬂ
+ 5ﬂc(5blaa)(cﬂ - 5alabxcﬂ)>- (B25)
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Equation (B20) also requires that

1
_%(Ugvu(xkk) + UZVK()(W) + ’UZ’U,;?U/ZV/}(){;]”)) —a<k

= (_}?kyvaud + Uykr(l)alcuvad - UDkDK)(dy)r]dw (B26)

where '} is Christoffel T, =16 (D,ep,+0,e5.—pe,)
expanded for e, = ¢,,e?,, its expansion e,, = v,, + h,,,
and

h/w = Uaﬂ)(au + %aﬂyaw (B27)
We have defined £, as a symmetric term in the perturba-
tion of e,,. Expansion is analogous for 0,,,

du = Uaygay + aaﬂvav- (B28)

Proving that Eq. (B20) holds makes it possible to write
the perturbation as a sum of perturbations in Einstein
gravity. We can consider the linearized projection of the
Riemann tensor from the vielbein to metric formulation.
For the projection of the Riemann tensor, we know that
R, =e,*e";R,",. When we rewrite the definition

of R%,,, Eq. (12), in terms of Eq. (BI8), w,, =

e“aebﬂrzﬂ —e,%0,e%,, the projection gives us Rﬁ,w. The

terms in the computation that contain one partial derivation
d,» 0,, and their combination f(0,.d,) (for the f function
in 0, and 0,) at leading order separately cancel.
Analogously, we consider them in linearized order.

We write the projection

R g = eter(=0,(eperlie) + 0, (eger i)

+0,e;0,ef — 0,e;0,ef (B29)
—(eberlhe—eid,e?) (¢S ey TV, —efd,et)  (B30)
+(egetlle—ei0,et) (¢S ey T, — ey 0,e5)) (B31)

and linearize it. The linearized order projection is

RUMG}UJ(%) = Ualvtbe“)/wab()() +R(O)m/abvaﬁ)(g

=~aA 5,b

+ R(());wab)( Vs (B32)

the subleading order of R, = —9,I'}, + 0,1, — Th, T % +
Fﬁal"fj(,.

APPENDIX C: COMPARISON WITH
EINSTEIN GRAVITY

An analogous consideration of Einstein gravity would
lead to equations of motion in the subleading order

1 1
~RWe,, —=Ry,, =0.

5 > (C1)

Using the above method and the de Donder gauge leads to
the constraint on y,,

- 1 -
—A = Dz;(ﬂy + 5 2y + sz)yw =0. (C2)

To compare this with the familiar result for the linearized
Einstein operator, we have to consider h,, = 2 y,,, which is
symmetric, and

0)

Gl = GUlve + G e, (C3)

where Ggi,) 74 = =31 X~ We also need to take into account

the cosmological constant, which is 61 X for four dimen-
sions. Adding this to Eq. (C2), we obtain a familiar result,

~ 1, -
200w — DZJ(W + 3 24y + DZZ)UW =0. (C4)

APPENDIX D: RELATIONS USED IN TEXT

Here we list several equations that were used in text

Zeabcdeﬂ"p"e“”ebbecpedg =e, (D1)
vpo ,¢ ,d v v
Eeabcdeﬂ P7e p€ 6 = e<eﬂae b—€ ae”b)’ (DZ)
— H
Se = eeydey, (D3)

where e is a determinant.
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