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The multipolar post-Minkowskian (MPM) formalism represents an approach for determining the metric
density in the exterior of a compact source of matter. In the MPM formalism the metric density is given in
harmonic coordinates and in terms of symmetric tracefree (STF) multipoles. In this investigation, the post-
linear metric density of this formalism is used in order to determine the post-linear metric tensor in the
exterior of a compact source of matter. The metric tensor is given in harmonic coordinates and in terms
of STF multipoles. The post-linear metric coefficients are associated with an integration procedure. The
integration of these post-linear metric coefficients is performed explicitly for the case of a stationary source,
where the first multipoles (monopole and quadrupole) of the source are taken into account. These studies
are a requirement for further investigations in the theory of light propagation aiming at highly precise
astrometric measurements in the solar system, where the post-linear coefficients of the metric tensor of
solar system bodies become relevant.
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I. INTRODUCTION

The field equations of gravity [1,2] represent a set of ten
coupled nonlinear partial differential equations for the ten
components of the metric tensor gαβ which governs the
geometry of space-time. Despite of their complicated
mathematical structure, exact solutions of the field equa-
tions have been obtained for gravitational systems which
have a symmetry, for instance [3]: the Schwarzschild
solution for a spherically symmetric body [4], the Kerr
solution for a spherically symmetric body in uniform
rotational motion [5], the Weyl-Levi-Civita-Erez-Rosen
solution for an axially symmetric body [6–10], the
Reissner-Nordström solution for an electrically charged
spherically symmetric body [11,12], and the Kerr-Newman
solution for an electrically charged spherically symmetric
body in uniform rotational motion [13]. However, for a
body of arbitrary shape and inner structure and which can
also be in arbitrary rotational motions and oscillations, the
field equations of gravity can only be solved within some
approximation scheme.
For an asymptotically flat space-time it is convenient

to decompose the metric tensor into the flat Minkowski
metric ηαβ and a metric perturbation hαβ,

gαβðt; xÞ ¼ ηαβ þ hαβðt; xÞ: ð1Þ
The post-Minkowskian scheme is certainly one of the most
important approximations in the theory of gravity, which
states that for weak gravitational fields, jhαβj ≪ 1, the
metric perturbation can be series expanded in powers of the
gravitational constant,

hαβðt;xÞ¼G1hð1PMÞ
αβ ðt;xÞþG2hð2PMÞ

αβ ðt;xÞþOðG3Þ; ð2Þ

where hð1PMÞ
αβ is the linear term and hð2PMÞ

αβ is the post-linear

term of the metric tensor, and G2jhð2PMÞ
αβ j≪G1jhð1PMÞ

αβ j≪ 1.
Our motivation to consider the post-linear term in the

metric perturbation (2) is triggered by the rapid progress in
astrometric science, which has recently made the impres-
sive advancement from the milliarcsecond level [14–16] to
the microarcsecond level [17–21] in angular measurements
of celestial objects like stars and quasars. A prerequisite of
astrometric measurements is the precise modeling of the
trajectory of a light signal which propagates from the
celestial object through the curved space-time of the solar
system towards the observer. And because the trajectory of
a light signal depends on the geometry of space-time, it
becomes obvious why the metric perturbation (2) is of
fundamental importance in the theory of light propagation
and astrometry. Already at the microarcsecond level in
positional measurements of celestial objects, the linear term
of the metric perturbation (2) is not sufficient for modeling
the positional observations performed within the solar
system [22–34]. Meanwhile, there are several mission
proposals aiming at the submicroarcsecond and even the
nanoarcsecond scale of accuracy [35–39]. That is why post-
linear effects of the metric perturbation (2) are coming more
and more into focus of astronomers and in the theory of
light propagation [40–46].
The post-Minkowskian approach and the multipolar

post-Minkowskian formalism are based on the Landau-
Lifschitz formulation of Einstein’s theory. In this approach,
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instead of determining directly the metric tensor, one
operates with the gothic metric density, ḡαβ ¼ ffiffiffiffiffiffi−gp

gαβ

where g is the determinant of the metric tensor. Like in case
of the metric tensor, for an asymptotically flat space-time
it is appropriate to decompose the gothic metric density
into the flat Minkowskian metric ηαβ and a gothic metric
perturbation h̄αβðt; xÞ,

ḡαβðt; xÞ ¼ ηαβ − h̄αβðt; xÞ: ð3Þ

For weak gravitational fields, jh̄αβj ≪ 1, the corresponding
post-Minkowskian series expansion of the perturbation of
the gothic metric density reads as follows,

h̄αβðt;xÞ¼G1h̄αβð1PMÞðt;xÞþG2h̄αβð2PMÞðt;xÞþOðG3Þ; ð4Þ

where h̄αβð1PMÞ is the linear term and h̄αβð2PMÞ is the post-linear

term of the gothic metric, andG2jh̄αβð2PMÞj≪G1jh̄αβð1PMÞj≪ 1.

The knowledge of the contravariant components of the
gothic metric perturbation (4) allows us to determine the
covariant components of the metric perturbation (2);
relations between the gothic metric and the metric tensor
are given in Appendix D.
The multipolar post-Minkowskian (MPM) formalism

has been developed within a series of articles [47–52]
and provides a robust framework in order to determine the
gothic metric perturbation (4) of compact sources of matter.
In the MPM formalism, the gothic metric density is
expressed in terms of so-called symmetric and trace-free
(STF) multipoles, allowing for arbitrary shape, inner
structure, oscillations and rotational motions of the source.
The MPM approach was mainly intended for theoretical
understanding of the generation of gravitational waves by
some isolated source of matter, like inspiralling binary stars
which consist of compact objects like black holes or
neutron stars. The compact source of matter can of course
also be interpreted as some massive solar system body,
being of arbitrary shape and inner structure, and which can
be in arbitrarily rotational motions and oscillations.
Within the MPM approach the linear term and the post-

linear term of the gothic metric perturbation (4) have been
determined long time ago for the case of a compact source
of matter. Accordingly, the aim of this investigation is to
give the linear and the post-linear term of the metric
perturbation (2) for a compact source of matter.
The determination of post-linear metric coefficients

involves quite ambitious computations and the results of
the MPM approach become rather cumbersome already for
the very first few multipoles beyond the simple monopole
term [53]. However, for many applications, for instance in
the theory of light propagation, it is sufficient to consider
the stationary case, where the gravitational fields generated
by the body become time-independent, hence the post-
Minkowskian expansion (2) simplifies as follows,

hαβðxÞ ¼ G1hð1PMÞ
αβ ðxÞ þG2hð2PMÞ

αβ ðxÞ þOðG3Þ: ð5Þ

In the stationary case the computations of the MPM
formalism are considerably simpler than in the case of
time-dependent gravitational fields. In the theory of light
propagation in the solar system, the impact of post-linear
terms of the metric tensor on the light propagation is only
known for the monopole term, but not for higher multipoles.
It is, therefore, a further aim of this investigation to
determine, in a transparent manner, the post-linear metric
including the quadrupole structure of a compact source,
which can be considered as somemassive solar system body.
The manuscript is organized as follows: In Sec. II the

exact field equations of gravity in harmonic gauge are
given. The residual harmonic gauge freedom is considered
in Sec. III. The post-Minkowskian expansion and some
fundamental results of the MPM formalism which are
relevant for our considerations are summarized in Sec. IV
and Sec. V. The gothic metric density in the linear and post-
linear approximation for time-dependent sources is given in
Sec. VI. The metric tensor in the linear and post-linear
approximation for time-dependent sources is given in
Sec. VII. Finally, in Sec. VIII the metric tensor in the
linear and post-linear approximation is given explicitly for
the case of a source with time-independent monopole and
spin and quadrupole structure. A summary can be found in
Sec. IX. The notations as well as details of the calculations
are relegated to several Appendices.

II. THE EXACT FIELD EQUATIONS OF GRAVITY

The field equations of gravity [1,2] relate the metric
tensor gαβ of the physical space-time M to the stress-
energy tensor of matter Tαβ, which can be written in the
following form (Sec. 17.1 in [54]),

Rαβ −
1

2
gαβR ¼ 8πG

c4
Tαβ; ð6Þ

where Rαβ ¼ Γρ
αβ;ρ − Γρ

αρ;β þ Γρ
σρΓσ

αβ − Γρ
σβΓσ

αρ is the Ricci
tensor (cf. Eq. (8.47) in [54]),

Γα
μν ¼

1

2
gαβðgβμ ; ν þ gβν ; μ − gμν ; βÞ; ð7Þ

are the Christoffel symbols, and R ¼ Rμ
μ is the Ricci scalar.

The field equations (6) represent a set of ten coupled
nonlinear partial differential equations for the ten compo-
nents of the metric tensor. Because of the contracted
Bianchi identities (cf. Eq. (13.52) in [54]) there are only
six field equations which are independent of each other
[55]. These six field equations determine the ten compo-
nents of the metric tensor up to a coordinate transformation
which involves four arbitrary functions x0μ ¼ x0μðxνÞ. This
freedom in choosing the coordinate system is called general
covariance of the field equations of gravity.
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For practical calculations in celestial mechanics and in
the theory of light propagation it is very convenient to
chose concrete reference systems instead of keeping the
covariance of the field equations. A powerful tool is to use
harmonic coordinates xμ ¼ ðct; xÞ, which are introduced by
the harmonic gauge condition [54,56–61] (cf. Eq. (67.02)
in [57], Eq. (5.2a) in [56])

ð ffiffiffiffiffiffi
−g

p
gαβÞ; β ¼ 0; ð8Þ

where

ḡαβ ¼ ffiffiffiffiffiffi
−g

p
gαβ; ð9Þ

is the gothic metric density [54,56–61], with g being the
determinant of the covariant components of the metric
tensor. It is very useful to operate with the gothic metric
density ḡαβ rather than the metric tensor gαβ, because the
field equations in harmonic coordinates become consid-
erably simpler in terms of the gothic metric density.
It should not be surprising that (8) is not a general-

covariant relation, because this condition just selects a
specific type of reference system, namely the (class of)
harmonic reference systems. Although the harmonic coor-
dinate condition (8) is not general-covariant, it is Lorentz-
covariant in the slightly generalized meaning of linear
orthogonal transformations in curvilinear harmonic coor-
dinates [57]. The choice of harmonic reference systems is
in line with the philosophy of general relativity that one
may adopt concrete reference systems, while observables
(coordinate-independent scalars) are determined as the final
step in the calculations. The harmonic gauge condition (8)
is called de Donder gauge in honor of its inventor for the
exact field equations [62]. The harmonic reference system
for the exact field equations has also been introduced
independently by Lanczos [63], while the harmonic gauge
condition to first order (linearized gravity) was originally
introduced by Einstein [64,65] (cf. Eq. (4) in [64], Eq. (5)
in [65]).
An alternative form for the definition of harmonic

coordinates via the gauge condition (8) is given by the
condition (cf. Eq. (93.03) in [57], Eq. (3.270) in [58])

□gxμ ¼ 0; ð10Þ

where

□g ¼
1ffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
gαβÞ∂β ð11Þ

¼ gαβ∂α∂β ð12Þ

is the covariant d’Alembert operator, in (11) given in
arbitrary curvilinear four-coordinates, while in (12) given
in terms of harmonic curvilinear four-coordinates. It is
crucial to realize that the four functions xμ in (10) are just

functions, not components of a vector. A function which
obeys the homogeneous d’Alembert equation, □gf ¼ 0, is
called harmonic function. That evident similarity is the
reason of why coordinates xμ are called harmonic coor-
dinates. The harmonic four-coordinates ðct; xÞ provide the
closest approximation to rectilinear four-coordinates that
one can have in curved space-time and that is why they are
often called Cartesian-like coordinates.
Besides of the harmonic gauge (8) also the decompo-

sition (3) is used, which implies that the gothic metric
perturbation, h̄αβðt; x Þ, propagates as dynamical field
on the flat background space-time M0. Then, the exact
field equations of gravity (6) read [54,56,58,60,61]
(cf. Eq. (5.2b) in [56], Eq. (1.6.1) in [60], Eqs. (2.4)–
(2.6) in [61])

□h̄αβðxÞ ¼ −
16πG
c4

ðταβðxÞ þ tαβðxÞÞ; ð13Þ

where x ¼ ðct; x Þ are curvilinear harmonic coordinates of
the flat background space-time and □ ¼ ημν∂μ∂ν is the flat
d’Alembert operator given in terms of these curvilinear
harmonic coordinates [66]. The field equations (13) are
called Landau-Lifschitz formulation of Einstein’s theory of
gravity. The exact field equations of gravity (6) are general-
covariant, while the exact field equations in harmonic
coordinate systems (13) are only Lorentz-covariant. The
terms on the r.h.s. in (13) are given by

ταβðxÞ ¼ ð−gðxÞÞTαβðxÞ; ð14Þ

tαβðxÞ ¼ ð−gðxÞÞtαβLLðxÞ

þ c4

16πG
ðh̄αμ; νðxÞh̄βν; μðxÞ − h̄αβ ; μνðxÞh̄μνðxÞÞ;

ð15Þ
where Tαβ is the stress-energy tensor of matter, while tαβ is
the stress-energy pseudotensor of the gravitational field,
and tαβLL is the Landau-Lifschitz pseudotensor of gravita-
tional field, in explicit form given by Eq. (20.22) in [54]
and by Eq. (101.7) in [69].
It has already been emphasized that the usage of the

harmonic gauge condition, either in the form (8) or in the
form (10), implies the loss of the general covariance. That is
why the expressions ταβ and tαβ are not general-covariant
tensors, but they are Lorentz-covariant tensors. The vanish-
ing of the covariant derivative of stress-energy tensor of
matter, Tαβ

;β ¼ 0, implies [54,56,58,60,61,69] (cf. Eq. (5.4)
in [56], Eq. (2.8) in [61])

ðταβ þ tαβÞ; β ¼ 0 ⇒ ½ð−gÞðTαβ þ tαβLLÞ�; β ¼ 0 ð16Þ

which represents a local conservation law and admits
the formulation of a global conservation law for the
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four-momentum of the entire gravitational system;
cf. Eqs. (20.23a)–(20.23c) in [54] or Eqs. (1.1.7) and
(1.2.1) in [60].
The gravitational system is assumed to be spatially

compact, meaning that there exists a three-dimensional
sphere of finite radius R which completely contains the
source of matter, so that the stress-energy tensor of matter
Tαβðt; xÞ ¼ 0 when jxj > R. Furthermore, the gravitational
system is assumed to be isolated, that means flatness of the
metric at spatial infinity and the constraint of no-incoming
gravitational radiation are imposed [23,57,58,70–72],

lim
r→∞

tþr
c¼const

h̄μνðt; xÞ ¼ 0; ð17Þ

lim
r→∞

tþr
c¼const

� ∂
∂r rh̄

μνðt; xÞ þ ∂
∂ct rh̄

μνðt; xÞ
�

¼ 0; ð18Þ

where r ¼ jxj. These conditions are called Fock-
Sommerfeld boundary conditions. The formal solution of
the exact field equations (13) for an isolated system is given
by [54,58,60,61] (e.g., Eq. (36.38) in [54]),

h̄αβðt; xÞ ¼ −
16πG
c4

ð□−1
R ðταβ þ tαβÞÞðt; xÞ; ð19Þ

where the inverse d’Alembert operator reads [47–49,51,
53,73–75]

ð□−1
R fÞðt; xÞ ¼ −

1

4π

Z
d3x0

1

jx − x0j fðu; x
0Þ: ð20Þ

The time of retardation between the source point x0, for
instance located inside the source of matter, and the field
point x, for instance located outside of matter, is

u ¼ t −
jx − x0j

c
; ð21Þ

where the natural constant c is the speed of gravitational
action which equals the speed of light in vacuum [54,57].
The spatial integral in (19) runs over the entire three-

dimensional space, that means it gets support inside and
outside of the matter source, because the integrand depends
on the metric perturbation which extends to the entire
three-dimensional spatial space. It should be emphasized
that (13) are the exact field equations of gravity and (19)
represents an exact solution of the field equations, because
the only requirements to get these equations have been the
harmonic gauge and the Fock-Sommerfeld boundary con-
ditions. However, the exact solution (19) is an implicit
integrodifferential equation, because the metric perturba-
tion appears on both sides of Eq. (19).

III. THE RESIDUAL GAUGE FREEDOM

In order to solve the field equations of gravity (6) so-
called harmonic coordinates have been imposed by (10)
which have simplified the field equations in the form
given by (13). This coordinate condition (10) does not
uniquely determine the coordinate system but selects a
class of infinitely many harmonic reference systems, and
permits a coordinate transformation from the old harmonic
chart fxαg to a new harmonic chart fx0αg (cf. Box 18.2 in
[54] or Eq. (11.5) in [56] or Eq. (3.521) in [58]) [76],

x0α ¼ xα þ φαðxÞ; ð22Þ
where φαðxÞ is a vector field; see Figure 1.
The four-coordinates in both systems refer to one and the

same point P of the physical manifoldM, that means x0 ¼
x0ðPÞ and x ¼ xðPÞ denote the four-coordinates in both
systems but of one and the same point P of the physical
manifold, which is arbitrary: ∀P ∈ M. It is implicitly
assumed that the coordinate transformation (22) is infini-
tesimal in the sense that the derivatives of the functions φα

with respect to space and time are of the same order as the
metric perturbation, φα

;μ ¼ OðhαμÞ hence jφα
;μj ≪ 1.

For later purposes we note the Jacobian matrix of the
coordinate transformation (22),

Aα
μðxÞ ¼

�∂x0α
∂xμ

�
¼ δαμ þ φα

; μðxÞ: ð23Þ

The coordinate transformation (22) preserves the harmonic
coordinate condition (10) if the functions φα obey the
homogeneous Laplace-Beltrami equation in the old coor-
dinate system fxαg (cf. Eq. (3.522) in [58]),

gμνðxÞφα
; μνðxÞ ¼ 0; ð24Þ

where gμνðxÞ is the old metric tensor in the old coordinate
system. The exact field equations of gravity in harmonic
gauge (13) are invariant under a gauge transformation (22)
if the functions obey the homogeneous Laplace-Beltrami
equation (24). The functions φα in (22) are nothing more
than a change of coordinates and, therefore, they contain no
physical information about the gravitational system. They
are called gauge vector and the coordinate transformation
(22) with (24) is called residual gauge transformation.
These gauge functions φα are obtained by solving the
differential equation (24).
The coordinate transformation (22) is a passively

constructed diffeomorphism, that means there is a
differentiable inverse transformation from the newharmonic
system fx0αg to the old harmonic system fxαg, which reads

xα ¼ x0α þ χαðx0Þ; ð25Þ
where χαðx0Þ is a vector field; see Fig. 1. The four-
coordinates in both systems refer to one and the same point
P of the physical manifold M, that means x ¼ xðPÞ and
x0 ¼ x0ðPÞ denote the four-coordinates in both systems but
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of one and the same pointP of the curvedmanifold, which is
arbitrary: ∀P ∈ M.
The Jacobian matrix of the inverse coordinate trans-

formation (25) is given by

Bα
μðx0Þ ¼

�∂xα
∂x0μ

�
¼ δαμ þ χα; μðx0Þ: ð26Þ

The gauge functions χα obey the homogeneous Laplace-
Beltrami equation in the new harmonic coordinate
system fx0αg

g0μνðx0Þχα; μνðx0Þ ¼ 0; ð27Þ

where g0μνðx0Þ is the new metric tensor in the new harmonic
coordinate system. The inverse coordinate transformation
(25) is frequently used in the literature. Here it is emphasized
that the gauge functions φαðxÞ in the old harmonic system
fxαg have to be distinguished from the gauge functions
χαðx0Þ in the new harmonic system fx0αg. However, the
gauge-independent terms of the metric tensor remain unaf-
fected by a coordinate transformation, that means one is free
in choosing either (22) or (25), albeit one has to state clearly
which of them is used. Here, throughout this investigation,
the coordinate transformation (22) is used and the inverse
coordinate transformation (25) will not be applied.
Let us now consider how the metric tensor and the gothic

metric density transform under an infinitesimal gauge
transformation (22).

A. The residual gauge transformation
of the metric tensor

The covariant components of the metric tensor transform
as follows [54,56–58,60] (e.g., Eq. (11.10) in [56])

gαβðxÞ ¼
∂x0μ
∂xα

∂x0ν
∂xβ g

0
μνðx0Þ: ð28Þ

The arguments on the left-hand side (l.h.s.) and right-hand
side (r.h.s.) in Eq. (28) refer to one and the same point P of
the physical manifold M, that means x0 ¼ x0ðPÞ and x ¼
xðPÞ denote the four-coordinates in both systems but of one
and the same point P of the physical manifold, which is
arbitrary: ∀P ∈ M. By inserting (22) into (28) and
performing a series expansion (recall that the residual
gauge transformation is infinitesimal) of the metric tensor
on the r.h.s. around the old coordinates fxg of the same
point P of the physical manifold, one obtains (cf. Eqs.
(11.11a)–(11.11c) in [56])

gαβ ¼ g0αβ þ φμ
; α g0μβ þ φν

; β g0να þ φμ
; α φ

ν
; β g0μν

þ ðδμα þ φμ
; αÞðδνβ þ φν

; βÞ
X∞
n¼1

1

n!
g0μν; μ1…μnφ

μ1…φμn ;

ð29Þ
where all expressions are functions of one and the same
argument x ¼ ðct; xÞ. It should be noticed that this relation
is not general-covariant but Lorentz-covariant, in line with
the fact that the general-covariance of the field equations (6)
is lost when they are expressed in harmonic reference
systems: the exact field equations (13) are only Lorentz-
covariant. For some reflections about the general-covariant
gauge transformation of the metric tensor see Sec. III C.
The harmonic coordinates x0α on the l.h.s. in (22) are

curvilinear harmonic coordinates in the flat background
space-time, while the harmonic coordinates xα on the r.h.s.
in (22) are chosen as Minkowskian coordinates in the flat
background space-time , hence the partial derivatives in
(29) are just flat-space partial derivatives of Minkowskian
coordinates. The partial derivatives in (29) would have to

FIG. 1. A geometrical representation of the Lorentz-covariant
gauge transformation (22) and its inverse (25). The physical
manifold M is covered by coordinates fyg and is endowed with
the metric tensor gαβðyÞ which is a solution of the exact field
equations (6). The flat background manifold M0 is covered by
Minkowskian coordinates fxg and is endowed with the metric
tensor ηαβ. The diffeomorphism Φ∶M0 → M maps the flat
background manifold to the physical manifold, e.g. a point q ∈
M0 to a point P ∈ M. Its inverse diffeomorphism Φ−1∶M →
M0 maps the physical manifold to the flat background manifold,
e.g. a point P ∈ M to a point q ∈ M0. The metric tensor gαβðyÞ
of the physical manifoldM is pulled back on the flat background
manifold M0 (active coordinate transformation as given by
Eq. (A.9) in [59]). The pulled back metric is denoted by
Φ�gαβ and is defined by gαβðxÞ ¼ ηαβ þ hαβðxÞ. The pulled back
metric gαβðxÞ onM0 is physically equivalent to the metric gαβðyÞ
on M, that means: if the metric gαβðyÞ is a solution of the exact
field equations (6) on the physical manifold M, then hαβ ¼
Φ�gαβ − ηαβ will be a solution of the exact field equations (13) in
the flat background manifoldM0. The background manifold can
also be covered by another harmonic coordinate system fx0g,
which is related to the Minkowskian coordinate system fxg by
(22) with its inverse (25). The pulled back metric in coordinate
system fx0g is defined by g0αβðx0Þ ¼ ηαβ þ h0αβðx0Þ. The relation
between these pulled back metric tensors, gαβðxÞ and g0αβðx0Þ, in
M0 is given by (29) where a series expansion of the argument of
g0αβðx0Þ around x has been performed.
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be replaced by flat-space covariant derivatives if one would
use curvilinear coordinates in the flat background space-
time; cf. text above Eq. (1.1) in [56], text above Eq. (1.13a)
in [56] as well as text below Eqs. (11.11a)–(11.11c) in [56]
and see also Box 18.2 D in [54]. Further mathematical
insights can be found in Section 7.1 in [59].
The gauge dependent degrees of freedom in (29), i.e., all

those terms which depend on the gauge functions, are
redundant in the sense that they have no impact on physical
observables. That means, the two different metric tensors
g0αβðxÞ and gαβðxÞ in (29) describe one and the same
gravitational system. Accordingly, the residual gauge
freedom (22) permits to identify and to isolate nonphysical
degrees of freedom hidden in the old metric tensor gαβðxÞ
which allows to arrive at considerably simpler form for the
new metric tensor g0αβðxÞ.

B. The residual gauge transformation
of the metric density

The gothic metric (9) is a tensor density of weight
w ¼ −1 and transforms as follows [54,56–58,60,77,78]
(e.g., Eq. (4.4.4) in [77]),

ḡ0αβðx0Þ ¼ 1

jJðxÞj
∂x0α
∂xμ

∂x0β
∂xν ḡ

μνðxÞ; ð30Þ

where JðxÞ is the determinant of the Jacobi matrix (23),

J ¼ detðAα
μÞ ¼ eTrðlnAα

μÞ; ð31Þ

where the second relation in (31) is a theorem which allows
to compute the determinant [79] and which can be proven
by Schur’s matrix decomposition. One obtains

1

jJj ¼ 1 − φσ
; σ þ

1

2
φσ

;ω φ
ω
; σ þ

1

2
φσ

; σ φ
ω
;ω þOðφ3Þ;

ð32Þ

which is sufficient for our investigations in the post-linear
approximation. The arguments on the l.h.s. and r.h.s. in
Eq. (30) refer to one and the same point P of the physical
manifold M, that means x0 ¼ x0ðPÞ and x ¼ xðPÞ denote
the four-coordinates in both systems but of one and the
same point P of the physical manifold, which is arbitrary:
∀P ∈ M. By substituting (22) into (30) and performing a
series expansion (recall that the residual gauge transforma-
tion is infinitesimal) of the gothic metric on the l.h.s. around
the old coordinates fxg, one obtains

ḡ0αβ ¼ 1

jJj
�
ḡαβ þ φα

; μ ḡμβ þ φβ
; ν ḡνα þ φα

; μ φ
β
; ν ḡμν

�

−
X∞
n¼1

1

n!
ḡ0αβ ;μ1…μnφ

μ1…φμn ; ð33Þ

where all expressions are functions of one and the same
argument x ¼ ðct; xÞ. It should be noticed that this relation
is not general-covariant but Lorentz-covariant, in line with
the fact that the exact field equations in harmonic coor-
dinates (13) are only Lorentz-covariant; some comments
about the general-covariant gauge transformation of the
metric density are given in Sec. III C. The reason of why
there are flat-space partial derivatives of Minkowskian
coordinates in (33) is the same as described in the text
below Eq. (29).
Like in case of the metric tensors, the old gothic metric

ḡαβðxÞ and the new gothic metric ḡ0αβðxÞ in (33) describe
one and the same gravitational system; cf. text below
Eq. (7.14) in [59] and Theorem 4.5 in [47]. The gauge
dependent degrees of freedom are redundant in the sense
that the gauge terms in (33) have no impact on physical
observables. Nevertheless, the gauge-dependent terms have
to be treated carefully because they allow to transform the
old gothic metric density into a considerably simpler form.

C. Some comments on the general-covariant
gauge transformation

The gauge transformation considered above in
Secs. III A and III B is Lorentz-covariant and can therefore
be expressed in terms of partial derivatives. A general-
covariant gauge transformation must necessarily be given
in terms of Lie derivatives £ξ acting on the metric tensor
along a vector field ξμ which is a general-covariant differ-
ential operation [80]. Such a general-covariant gauge
transformation has been developed during the last two
decades [81–94]. It might be constructive to make some
comments about the general-covariant gauge transforma-
tion and its relation to the Lorentz-covariant residual gauge
transformation considered in the Secs. III A and III B.
In the investigations [81–94] the metric tensor is separated

in the form gαβ ¼ g0αβ þ hαβ, which generalizes (1) because
the background metric g0αβ of the curved background
manifold M0 is not simply the flat Minkowskian metric,
but can be the Schwarzschild metric or the Kerr metric or the
Friedmann-Lemaître-Robertson-Walker metric or some
other curved space-time. The dynamical degrees of freedom,
hαβ, are governed by field equations which are obtained by
inserting the decomposition gαβ ¼ g0αβ þ hαβ into Einstein’s
equations (6) describe a tensorial field hαβ which propagates
in the curved background space-timeM0 endowed with the
background metric g0αβ.
The general-covariant formalism distinguishes between

the physical manifold M covered by four-coordinates yα

and endowed with metric gαβ, the background manifold
M0 covered by four-coordinates xα and endowed with
background metric g0αβ, and a diffeomorphism and
inverse diffeomorphism between these manifolds, namely
ϕ∶M0 → M and ϕ−1∶M → M0, respectively; see Fig. 2.
The diffeomorphism ϕmaps each point p ∈ M0 to another

SVEN ZSCHOCKE PHYS. REV. D 100, 084005 (2019)

084005-6



point u ∈ M and, vice versa, the inverse diffeomorphism
ϕ−1 maps each point u ∈ M to another point p ∈ M0

(cf. Figure 7.1 in [59]). The diffeomorphism allows to pull
back the metric tensor gαβ from M to M0 which is given

by an active coordinate transformation: ϕ�gαβðxÞ ¼
∂yμ
∂xα

∂yν
∂xβ gμνðyÞ (cf. Eq. (A.9) in [59]). The metric gαβ in

M and the pulled back metric ϕ�gαβ in M0 are physically
equivalent (cf. Section 7.1. in [59] and Section 7.1
in [95]) and the metric perturbation is defined in the
background manifold as follows: hαβðxÞ ¼ ϕ�gαβðxÞ −
g0αβðxÞ (cf. Eq. (7.10) in [59]).
Furthermore, the general-covariant approach of gauge

transformations considers a family of actively constructed
diffeomorphisms acting on the background manifold,
ψε∶M0 → M0, which maps each point p ∈ M0 to
another point q ∈ M0 (cf. Figure 7.2 in [59]). These
diffeomorphisms are distinguished from each other by
some parameter ε and they are generated by a vector field
ξμðxÞ acting on the background manifold; for explicit
expressions cf. Eq. (2.18) in [88] or Eq. (2.56) in [93].
The combination of the family of diffeomorphisms ψε with
the diffeomorphism ϕ, that isΦε ¼ ϕ ∘ψε, leads to a family
of diffeomorphisms Φε∶M0 → M and its inverse
Φ−1

ε ∶M → M0. This family of diffeomorphisms allows
to pull back the metric tensor from the physical manifold
to the background manifold which implies a family of
metric perturbations defined on the background mani-

fold, hðεÞαβ ðxÞ ¼ Φ�
εgαβðxÞ − g0αβðxÞ (cf. Eq. (7.11) in [59]).

The dependence of the metric perturbation on the parameter
ε, that reflects the dependence of the metric perturbation
on the vector field ξμðxÞ, is called gauge freedom: each

member of the family of metric perturbations hðεÞαβ is
physically isometric (physically equivalent) to each other
and any of them describes the same physical system (i.e. all
observables are unchanged).
This geometrical approach leads in a natural way to the

gauge transformation of the metric tensor in terms of
multiple Lie derivatives acting on the metric tensor along
the gauge vector [81–94]. The active coordinate trans-
formation can be rewritten in terms of a passive coordinate
transformation which relates the four-coordinates of one
and the same point q ∈ M0 of the background manifold,
xμðqÞ and x0μðqÞ, in two different charts the background
manifold M0; explicit calculations and expressions up to
the third-order of the perturbation theory are given, for
instance, in [93]. In this way one arrives at a general-
covariant gauge transformation of the metric tensor in
terms of Lie derivatives by means of a passive coordinate
transformation.
In order to make a bridge between the general-covariant

approach in [81–94] and the Lorentz-covariant approach
described in Secs. III A and III B, one would have to
assume a flat background metric, g0αβ ¼ ηαβ, and one would
have to use harmonic reference systems as well as to
impose the Laplace-Beltrami condition (24) for the gauge
vector. In this way one would finally arrive at a Lorentz-
covariant residual gauge transformation in terms of Lie
derivatives and based on passive coordinate transforma-
tions. But it should be emphasized that the results of such
an approach would not differ from the Lorentz-covariant

FIG. 2. A geometrical representation of the general-covariant
gauge transformation. The physical manifold M is covered by
coordinates fyg and endowed with the metric gαβðyÞ which is a
solution of the exact field equations (6). The curved background
manifold M0 is covered by coordinates fxg and endowed with
the metric g0αβðxÞ. The diffeomorphism ϕ∶M0 → M (not shown
in the diagram) maps the curved background manifold to the
physical manifold, e.g. a point p ∈ M0 to a point u ∈ M. The
inverse diffeomorphism ϕ−1∶M → M0 maps the physical mani-
fold to the curved background manifold, e.g. a point u ∈ M to a
point p ∈ M0. The metric gαβðyÞ of the physical manifold M is
pulled back on the curved background manifold M0 (active
coordinate transformation as given by Eq. (A.9) in [59]). The
pulled back metric is denoted by ϕ�gαβ and defined by
gαβðxÞ ¼ g0αβðxÞ þ hαβðxÞ. The pulled back metric gαβðxÞ on
M0 is physically equivalent to the metric gαβðyÞ on M, that
means: if the metric gαβðyÞ is a solution of the exact field
equations (6) on the physical manifold M, then hαβ ¼ ϕ�gαβ −
g0αβ will be a solution of the exact field equations in the curved
background manifold M0. The set of diffeomorphisms Φ−1

ε ≡
ðϕ ∘ψεÞ−1 maps the same point u ∈ M of the physical space-
time M to a set of points qε ∈ M0 of the curved background
space-timeM0, where ψε represents a family of diffeomorphisms
which are distinguished by the parameter ε and which are acting
on the curved background manifold and generated by a gauge
vector field ξ. The composition of the diffeomorphisms ψε with ϕ
implies a family of pulled back metric tensors Φ�

εgαβ ≡
ðϕ ∘ψεÞ�gαβ which reads gðεÞαβ ðxÞ ¼ g0αβðxÞ þ hðεÞαβ ðxÞ in the same

chart fxg. The pulled back metric tensors gαβðxÞ and gðεÞαβ ðxÞ in
M0 are related by a gauge transformation which can be expressed
in terms of multiple Lie derivatives of gαβðxÞ in the direction of

the vector field ξ, that means gðεÞαβ ¼ P∞
n¼0

εn

n!L
n
ξgαβ.
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residual gauge transformation considered above, because
the physical content of the gravitational system is com-
prised in the gauge-independent metric perturbation and,
therefore, is independent of whether the Lorentz-covariant
gauge transformation in terms of partial derivatives or in
terms of Lie derivatives is applied. Here, the Lorentz-
covariant residual gauge transformation in terms of Lie
derivatives will not further be exposed, because the
multipolar post-Minkowskian (MPM) formalism actually
uses relation (29) and the series expansion (35) which,
subject to the Laplace-Beltrami equation (24) yields finally
the sequence of differential equations (54)–(56) for the
gauge functions, which will be used in what follows.

IV. THE POST-MINKOWSKIAN EXPANSION
AND GAUGE TRANSFORMATION

A. The post-Minkowskian expansion
of the metric tensor

In the weak-field regime the old metric tensor gαβ in the
old harmonic system fxαg can be expanded in powers of
the gravitational constant,

gαβðxÞ ¼ ηαβ þ
X∞
n¼1

GnhðnPMÞ
αβ ðxÞ; ð34Þ

which is called post-Minkowskian (PM) expansion. Each
individual term hðnPMÞ

αβ is invariant under Lorentz trans-
formations; cf. text below Eq. (3.527) in [58]. The residual
gauge transformation (22) from the old harmonic coordi-
nate system fxαg to a new harmonic coordinate system
fx0αg is assumed to admit a series expansion in powers of
the gravitational constant (cf. Eq. (4.23) in [47]),

x0α ¼ xα þ
X∞
n¼1

GnφαðnPMÞðxÞ; ð35Þ

where φαðnPMÞ
;β ¼ OðhαðnPMÞ

β Þ and each individual term

φαðnPMÞ is a Lorentz four-vector. In what follows the total
sum φα is called gauge vector, while the individual terms
φαðnPMÞ are called gauge functions. These gauge functions
φαðnPMÞ to any order of the perturbation theory are governed
by a sequence of equations which are given below by
Eqs. (54)–(56).
The coordinate transformation (35) transforms the old

metric tensor (34) in the old harmonic system fxαg to the
new (primed) metric tensor in the new harmonic system
fx0αg, and its post-Minkowskian expansion reads

g0αβðx0Þ ¼ ηαβ þ
X∞
n¼1

Gnh0ðnPMÞ
αβ ðx0Þ: ð36Þ

By inserting the post-Minkowskian expansions (34)–(36)
into (28) and performing a series expansion of (36)

around the four-coordinates xα, one arrives at the post-
Minkowskian expansion of the gauge transformation of the
metric perturbation,

X∞
n¼1

GnhðnPMÞ
αβ ¼

X∞
n¼1

Gn
�
h0ðnPMÞ
αβ þ∂φðnPMÞ

αβ þΩðnPMÞ
αβ

�
; ð37Þ

where all terms are given in the harmonic system fxg. The
equation (37) is nothing else than equation (29) expressed
in terms of a series expansion in powers of the gravitational
constant.
The gauge terms ∂φðnPMÞ

αβ have the following structure,

∂φðnPMÞ
αβ ¼ φμ ðnPMÞ

;α ημβ þ φμ ðnPMÞ
; β ημα; ð38Þ

which are called linear gauge terms since they are linear

in the gauge functions. The gauge terms ΩðnPMÞ
αβ are called

nonlinear gauge terms since they contain either products of
gauge functions or products of gauge functions and metric
perturbations. One may obtain a closed expression for

ΩðnPMÞ
αβ from Eq. (29) and using Eqs. (34) and (35). Here it

is sufficient to consider only the first two orders, given by

Ωð1PMÞ
αβ ¼ 0; ð39Þ

Ωð2PMÞ
αβ ¼ h0ð1PMÞ

μβ φμð1PMÞ
;α þ h0ð1PMÞ

μα φμð1PMÞ
; β

þ h0ð1PMÞ
αβ ; ν φνð1PMÞ þ φμð1PMÞ

; α φνð1PMÞ
; β ημν; ð40Þ

while the higher orders n ≥ 3 are not relevant for our

investigations. The linear 1PM term ∂φð1PMÞ
αβ is in agree-

ment with Eq. (21) in [82], while the linear 2PM term

∂φð2PMÞ
αβ and the nonlinear 2PM term Ωð2PMÞ

αβ are in agree-
ment with Eq. (22) in [82] (to verify that agreement one has
to adopt a flat background metric in [82]).

B. The post-Minkowskian expansion
of the gothic metric density

The weak-field regime admits a series expansion of the
gothic metric in powers of the gravitational constant
[47,51,56,58,60] (cf. Eq. (1.1) in [47], Eq. (9.5) in [56]),

ḡαβðxÞ ¼ ηαβ −
X∞
n¼1

Gnh̄αβðnPMÞðxÞ; ð41Þ

which is called the post-Minkowskian expansion of the
gothic metric. The post-Minkowskian expansion (41)
implies a corresponding post-Minkowskian expansion of
the expressions (14) and (15),

ταβ ¼ Tαβ þ
X∞
n¼1

GnταβðnPMÞ; ð42Þ
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tαβ ¼
X∞
n¼1

GntαβðnPMÞ: ð43Þ

Taking account of (3), inserting of (41)–(43) into (13)
yields a hierarchy of field equations,

□h̄αβð1PMÞ ¼ −
16π

c4
Tαβ; ð44Þ

□h̄αβð2PMÞ ¼ −
16π

c4

�
ταβð1PMÞ þ tαβð1PMÞ

�
; ð45Þ

..

.

□h̄αβðnPMÞ ¼ −
16π

c4

�
ταβððn−1ÞPMÞ þ tαβððn−1ÞPMÞ

�
: ð46Þ

The sequence of field equations (44)–(46) is invariant under
Lorentz-transformations. The post-Minkowskian expan-
sion (41) of the gothic metric inherits that the harmonic
gauge (8) must be satisfied order by order for the metric
perturbation (cf. Eq. (4.6b) in [47]),

ðh̄αβðnPMÞðxÞÞ; β ¼ 0 for n ¼ 1; 2; 3;…: ð47Þ

As discussed above, the harmonic gauge condition (47) still
allows for a residual gauge transformation (35). The post-
Minkowskian expansion of the new gothic metric in the
new harmonic coordinate system fx0αg reads

ḡ0αβðx0Þ ¼ ηαβ −
X∞
n¼1

Gnh̄0αβðnPMÞðx0Þ: ð48Þ

By inserting the post-Minkowskian expansions (41) and
(48) as well as (35) into (30) and performing a series
expansion of (48) around the four-coordinates xα, one
arrives at the post-Minkowskian expansion of the gauge
transformation of the gothic metric perturbation,

X∞
n¼1

Gnh̄αβðnPMÞ ¼
X∞
n¼1

Gn
�
h̄0αβðnPMÞ þ∂φ̄αβ

ðnPMÞ þ Ω̄αβ
ðnPMÞ

�
; ð49Þ

where all terms are given in the harmonic system fxg on the
flat background space-time by Minkowskian coordinates
x ¼ ðct; x Þ. The Eq. (49) is nothing else than Eq. (33)
expressed in terms of a series expansion in powers of the
gravitational constant.
The gauge terms ∂φ̄αβ

ðnPMÞ read

∂φ̄αβ
ðnPMÞ ¼ φα ðnPMÞ

; μ ημβ þ φβ ðnPMÞ
; μ ημα − φμ ðnPMÞ

; μ ηαβ; ð50Þ

which are called gothic linear gauge terms since they are
linear in the gauge functions. The gauge functions φαðnPMÞ
are governed by a sequence of equations, which will be
considered below; cf. Eqs. (54)–(56). The gauge terms

Ω̄αβ
ðnPMÞ are called gothic nonlinear gauge terms since they

contain either products of gauge functions or products of
gauge functions and gothic metric perturbations. One may
obtain a closed expression for Ω̄αβ

ðnPMÞ from Eq. (33) and

using Eqs. (41) and (35). Here it is sufficient to consider the
first and second order, given by

Ω̄αβ
ð1PMÞ ¼ 0; ð51Þ

Ω̄αβ
ð2PMÞ ¼ þφαð1PMÞ

; μ φβð1PMÞ
; ν ημν þ

�
φνð1PMÞh̄0αβð1PMÞ

�
; ν

þ 1

2

�
φμð1PMÞ

; ν φνð1PMÞ
; μ − φμð1PMÞ

; μ φνð1PMÞ
; ν

�
ηαβ

− φαð1PMÞ
; μ

�
h̄0μβð1PMÞ þ ∂φ̄μβ

ð1PMÞ
�

− φβð1PMÞ
; μ

�
h̄0μαð1PMÞ þ ∂φ̄μα

ð1PMÞ
�
; ð52Þ

while the higher orders n ≥ 3 are not relevant for our
investigations.

C. The equations for the gauge functions

The gauge functions are governed by Eq. (24) which can
also be written in the form (cf. Eq. (4.25) in [47])

ḡμνðxÞφα
; μνðxÞ ¼ 0: ð53Þ

By inserting the post-Minkowskian expansion of the
gothic metric (41) and of the gauge function φαðxÞ ¼P∞

n¼1G
nφαðnPMÞðxÞ into the Laplace-Beltrami equation

(53) one obtains a sequence of equations for the gauge
functions φαðnPMÞ given by

□φαð1PMÞ ¼ 0; ð54Þ

□φαð2PMÞ ¼ h̄μνð1PMÞφ
αð1PMÞ
; μν ; ð55Þ

..

.

□φαðnPMÞ ¼
Xn−1
m¼1

h̄μνððn−mÞPMÞφ
α ðmPMÞ
; μν ; ð56Þ

where h̄μνðnPMÞðxÞ are the terms of the post-Minkowskian

expansion (41) of the old gothic metric ḡαβðxÞ in the old
harmonic system fxαg. This sequence of equations allows
us to determine the gauge functions to any order in the post-
Minkowskian expansion.

V. THE MULTIPOLAR POST-MINKOWSKIAN
(MPM) FORMALISM

The multipolar post-Minkowskian (MPM) formalism
represents a powerful approach in order to determine the
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gothic metric ḡαβ external to the compact source of matter
in harmonic coordinates. The MPM formalism is a con-
siderable extension of previous investigations in [96–98]
and of the pioneering work [56]. The formalism has been
developed within a series of articles [47–52], where the
approach has thoroughly been described in detail; see also
the descriptions of the MPM formalism in subsequent
developments [99–101].
The fundamental concept of theMPMapproach is to solve

iteratively the hierarchy of field equations (44)… (46) for the
gothic metric density in a sequence of three steps:

(i) solving the field equations in the internal near-zone
Di of the source in the post-Newtonian (weak-field
slow-motion) scheme; see Eq. (1) in [101] for a
concrete definition of what a post-Newtonian source
is. The internal near-zone is defined by Di ¼ fðt; xÞ
with jxj < rig where R < ri ≪ λ, where R is the
radius of a sphere which encloses the source and λ is
the wavelength of the gravitational radiation emitted
by the source. So the internal near-zone is a spatial
region which contains the interior of the source and a
region in the exterior of the source but much smaller
than the wavelength of the gravitational radiation
emitted by the source.

(ii) solving the field equations in the external zoneDe of
the source in the post-Minkowskian (weak field)
scheme. The external zone is defined by De ¼
fðt; xÞ with jxj > reg where R < re < ri. So the
external zone contains the entire spatial region in the
exterior of the source.

(iii) performing a matching procedure of both these
solutions for the metric tensor in the intermediate
near-zoneDi ∩ De of the source, where both the post-
Newtonian expansion and the post-Minkowskian
expansion are simultaneously valid. The intermediate
near-zone is defined by Di ∩ De ¼ fðt; xÞ with
re < jxj < rig. The definitions of the internal near-
zone Di and external zone De are adjusted such
that the intermediate near-zoneDi ∩ De is not empty.
The intermediate near-zone is a spatial region in the
exterior of the source but much smaller than the
wavelength λ of the gravitational radiation emitted by
the source.

In what follows only those fundamental results of the
elaborated MPM formalism are considered which are of
relevance for our analysis. In particular, we will not consider
the specific issue related to the far-wave zone, where
so-called radiative coordinates and radiative moments VL
and UL are introduced, which are uniquely related to the
mass-multipoles ML and spin-multipoles SL via nonlinear
equations; cf. Eqs. (6.4a)–(6.4b) in [99]. In the far-wave zone
only the transverse traceless projection of the metric pertur-
bation, hTTαβ , is relevant because it contains the physical
degrees of freedom of the gravitational radiation field;
cf. Eq. (64) in [71]. That transverse traceless projection of

the metric perturbation has been given in several investiga-
tions in the 1PM approximation [71,101,102] (e.g., Eq. (64)
in [71], Eq. (66) in [101], Eq. (2.1) in [102]); note that
hTTαβð1PMÞ ¼ h̄TTαβð1PMÞ (cf. Eq. (7.119) in [59]). Here, we will

not consider the transverse-traceless gauge but emphasize
that all the subsequent statements about the gothic metric
perturbation and about themetric perturbation are valid in the
entire region in the exterior of the source of matter.

A. The general solution of the gothic metric

In the MPM formalism the most general solution of the
gothic metric is called general gothic metric and denoted
by ḡαβ genðxgenÞ given in the general harmonic reference
system fxgeng ¼ ðctgen; xgenÞ. According to Eq. (3) it is
decomposed in the flat Minkowskian metric and a general
gothic metric perturbation,

ḡαβ genðxgenÞ ¼ ηαβ − h̄αβ genðxgenÞ: ð57Þ

An important result of the MPM approach consists in a
theorem (Theorem 4.2 in [47]) which states that outside
the matter source the most general solution of the post-
Minkowskian hierarchy (44) … (46) depends on a set of
altogether six STF multipoles [47,100–102] (cf. Eq. (62) in
[100], Eq. (50) in [101], Eq. (4.1) in [102])

h̄αβgenðxgenÞ¼
X∞
n¼1

Gnh̄αβgenðnPMÞ½IL;JL;WL;XL;YL;ZL�; ð58Þ

where the square brackets denote a functional dependence
on these six STF multipoles. The MPM solution (58) is
the most general solution of Einsteins vacuum equations
outside an isolated source of matter. The STF multipoles
in (58) depend on the retarded time sgen defined by

sgen ¼ tgen −
jxgenj
c

; ð59Þ

which is the time of retardation between some field point
xgen and the origin of the spatial axes of the general
harmonic coordinate system fxgeng [103]. As stated above
by Eq. (47), the harmonic gauge (8) is satisfied order by
order for the metric perturbation, which in terms of the
MPM solution is given by (cf. Eq. (4.6b) in [47]),

∂
∂xβgen h̄

αβ gen
ðnPMÞ½IL; JL;WL; XL; YL; ZL� ¼ 0: ð60Þ

The MPM formalism is augmented by a matching
procedure described in detail in [99,101] which allows
us to determine these six multipoles as integrals over the
stress-energy tensor of the source of matter. For that
reason these multipoles IL, JL, WL, XL, YL, ZL are
collectively named as the source multipole moments [99].
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In fact, such an explicit closed-form expression for the
set of these six STF multipoles has been derived by
Eqs. (5.15)–(5.20) in [99]; see also Eqs. (85)–(90) in
[100], Eqs. (123a)–(125d) in [101].

B. Residual gauge transformation
of the general gothic metric

A further result of utmost importance of the MPM
formalism (Theorem 4.5 in [47]) is that there exists a
residual gauge transformation [cf. Eq. (35)],

xαcan ¼ xαgen þ
X∞
n¼1

GnφαðnPMÞðxgenÞ; ð61Þ

which preserves the harmonic gauge (47) and which allows
us to write the general metric perturbation in (58) in the
following form,

X∞
n¼1

Gnh̄αβ genðnPMÞ½IL; JL;WL; XL; YL; ZL�

¼
X∞
n¼1

Gn
�
h̄αβ canðnPMÞ½ML; SL� þ ∂φ̄αβ

ðnPMÞ þ Ω̄αβ
ðnPMÞ

�
ð62Þ

where all terms depend on the four-coordinates xαgen and the
STF multipoles depend on the retarded time sgen in (59).
The relation (62) is nothing else than relation (49)
expressed in terms of STF multiples of the MPM formalism
[104]. The relation (62) states that the general gothic metric
perturbation (58) in terms of six source multipoles is
physically isometric to the canonical gothic metric pertur-
bation (63) in terms of two canonical multipoles. That
means that the general gothic metric perturbation (58)
contains the same physical information as the canonical
gothic metric perturbation (63); see also text below Eq. (45)
in [100], text below Eq. (52) in [101], text above below
Eq. (4.26) in [102].
The term

h̄αβ canðxgenÞ ¼
X∞
n¼1

Gnh̄αβ canðnPMÞ½ML; SL� ð63Þ

on the r.h.s. in Eq. (62) is called canonical gothic metric
perturbation and

ḡαβ canðxgenÞ ¼ ηαβ − h̄αβ canðxgenÞ ð64Þ

is the canonical gothic metric. The multipoles ML and SL
are called canonical multipoles and they are related
to the source multipoles via two nonlinear equations
(cf. Eqs. (6.1a)–(6.1b) in [99] and text belowEq. (45) in [99]),

ML ¼ ML½IL; JL;WL; XL; YL; ZL�; ð65Þ

SL ¼ SL½IL; JL;WL; XL; YL; ZL�; ð66Þ

which are of complicated structure; cf. Eqs. (97) and (98) in
[101] for the case of L ¼ i1i2 and L ¼ i1i2i3. In view of the
highly involved structure of the relations (65)–(66) it seems
impossible to achieve an explicit closed-form expression for
the canonical multipoles ML, SL to any order of the
post-Minkowskian series expansion [99–101]. The gauge
terms on the r.h.s. in (62) depend, in the general case, on the
full set of all six STF source multipoles (cf. text below
Eq. (4.23) in [47]),

∂φ̄αβ
ðnPMÞðxgenÞ ¼ ∂φ̄αβ

ðnPMÞ½IL; JL;WL; XL; YL; ZL�; ð67Þ

Ω̄αβ
ðnPMÞðxgenÞ ¼ Ω̄αβ

ðnPMÞ½IL; JL;WL; XL; YL; ZL�: ð68Þ

The explicit structure of these gauge terms will be consid-
ered below in the linear and post-linear approximation.
These gauge terms are functions of the gauge functions

φαðnPMÞðxgenÞ ¼ φαðnPMÞ½IL; JL;WL; XL; YL; ZL�; ð69Þ

governed by Eqs. (54)–(56), which in terms of the STF
multipoles of the MPM formalism read (cf. Eqs. (4.26)–
(4.27) in [47])

□φαð1PMÞ ¼ 0; ð70Þ

□φαð2PMÞ ¼ h̄μνgenð1PMÞφ
αð1PMÞ
; μν ; ð71Þ

..

.

□φαðnPMÞ ¼
Xn−1
m¼1

h̄μνgenððn-mÞPMÞφ
αðmPMÞ
; μν ; ð72Þ

which are given in the harmonic system fxgeng and where
the general solution of the metric perturbations is given by
Eq. (58). The sequence of differential equations for the
gauge functions in (70)–(72) is nothing but the sequence of
differential equations for the gauge functions in (54)–(56)
expressed in terms of STF source multipoles.

C. The general solution of the metric tensor

The most general solution of the metric tensor in the
exterior of a compact source of matter is uniquely deter-
mined by the relation (cf. Eq. (D10) in Appendix D)

gαβ gen ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðḡμν genÞ

p
ḡαβ gen: ð73Þ

The terms on the r.h.s. of (73) are given by (57)–(58) and by
the isometry relation of the gothic metric [54,57,58]
(cf. Eq. (D4) in Appendix D)

ḡασ genḡσβ gen ¼ δαβ: ð74Þ
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According to Eq. (1), the general metric tensor in (73) is
separated into the flat Minkowskian metric and the general
metric perturbation,

gαβ genðxgenÞ ¼ ηαβ þ hαβ genðxgenÞ: ð75Þ
From (73) follows that the general metric perturbation
formally reads

hαβgenðxgenÞ¼
X∞
n¼1

GnhðnPMÞ
αβgen ½IL;JL;WL;XL;YL;ZL�: ð76Þ

The square brackets denote a functional dependence on the
six STF source multipoles which depend on the retarded
time sgen in Eq. (59). The Eqs. (75) and (76) represent the
most general solution of Einsteins vacuum equations out-
side an isolated source of matter.

D. Residual gauge transformation
of the general metric tensor

The residual gauge transformation (61) allows us to
transform the general metric perturbation in the following
form,

X∞
n¼1

GnhðnPMÞ
αβ gen½IL; JL;WL; XL; YL; ZL�

¼
X∞
n¼1

Gn
�
hðnPMÞ
αβ can ½ML; SL� þ ∂φðnPMÞ

αβ þ ΩðnPMÞ
αβ

�
ð77Þ

where all terms depend on the four-coordinates xαgen and
the STF multipoles depend on the retarded time sgen
in (59). The relation (77) is nothing else than relation
(37) expressed in terms of STF multiples of the MPM
formalism [104]. The relation (77) states that if the source
multipoles and the canonical multipoles are related to each
other via Eqs. (65)–(66), then the general metric pertur-
bation on the l.h.s. of (77) and the canonical metric
perturbation on the r.h.s. of (77) are related by the residual
coordinate transformation (61). They are physically iso-
metric to each other and either of them contains the entire
physical information in the exterior of the gravitational
source of matter. The term

hαβ canðxgenÞ ¼
X∞
n¼1

GnhðnPMÞ
αβ can ½ML; SL� ð78Þ

on the r.h.s. in Eq. (77) is called canonical metric
perturbation and

gαβ canðxgenÞ ¼ ηαβ þ hαβ canðxgenÞ ð79Þ
is the canonical metric. The canonical multipoles ML and
SL are related to the source multipoles via Eqs. (65)
and (66). The gauge terms on the r.h.s. in (77) depend,
in the general case, on the full set of all six STF source
multipoles,

∂φαβ
ðnPMÞðxgenÞ ¼ ∂φαβ

ðnPMÞ½IL; JL;WL; XL; YL; ZL�; ð80Þ

Ωαβ
ðnPMÞðxgenÞ ¼ Ωαβ

ðnPMÞ½IL; JL;WL; XL; YL; ZL�: ð81Þ

The explicit structure of these gauge terms will be con-
sidered below in the linear and post-linear approximation.
They are functionals of the gauge functions (69) which are
determined by means of Eqs. (70)–(72).
To simplify the notations, in all of the subsequent

sections, the four-coordinates of the general harmonic
system xαgen¼ðctgen;xgenÞ will be denoted by xα¼ðct;xÞ.
This implies that the retarded time sgen in (59) is now
denoted by s ¼ t − jxj=c.

VI. THE GOTHIC METRIC DENSITY
IN POST-LINEAR APPROXIMATION

The post-Minkowskian expansion of the gothic metric
density in the second post-Minkowskian approximation is
given by [cf. Eq. (4)]

ḡαβðt;xÞ ¼ ηαβ −G1h̄αβð1PMÞðt;xÞ−G2h̄αβð2PMÞðt;xÞ þOðG3Þ:
ð82Þ

In this section the linear term h̄αβð1PMÞ and the post-linear
term h̄αβð2PMÞ are considered.

A. The linear term of the gothic metric density

The solution of the field equations in the first
iteration (44) reads

h̄αβð1PMÞðt; xÞ ¼ −
16π

c4
ð□−1

R TαβÞðt; xÞ; ð83Þ

where Tαβ is the stress-energy tensor of matter and □
−1
R is

the inverse d’Alembert operator defined by Eq. (20). The
integration runs only over the finite three-dimensional
volume of the compact source of matter [47,48]. The
integral (83) is finite and has been determined in [48]
and has later been reconsidered in specific detail in [72].
According to the fundamental theorem (58) of the MPM

formalism, the most general solution for the 1PM term of
the gothic metric perturbation (83) in the exterior of a
compact source of matter depends on six STF source
multipoles and is denoted by h̄αβ genð1PMÞ. The residual gauge
transformation (61) in 1PM approximation transforms the
linear gothic metric perturbation h̄αβ genð1PMÞ in the following

form [47,48,56,99,101,102],

h̄αβ genð1PMÞ½IL; JL;WL; XL; YL; ZL�
¼ h̄αβ canð1PMÞ½ML; SL� þ ∂φ̄αβ

ð1PMÞðt; xÞ: ð84Þ
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The canonical gothic metric in 1PM approximation for one
body at rest with full multipole structure is given by

h̄00 canð1PMÞðt; xÞ ¼ þ 4

c2
X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r
; ð85Þ

h̄0i canð1PMÞðt; xÞ ¼ −
4

c3
X∞
l¼1

ð−1Þl
l!

∂L−1
_MiL−1ðsÞ

r

−
4

c3
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiab∂aL−1

SbL−1ðsÞ
r

; ð86Þ

h̄ijcanð1PMÞðt;xÞ¼þ 4

c4
X∞
l¼2

ð−1Þl
l!

∂L−2
M̈ijL−2ðsÞ

r

þ 8

c4
X∞
l¼2

ð−1Þll
ðlþ1Þ!∂aL−2

ϵabði _SjÞbL−2ðsÞ
r

: ð87Þ

The nonlinear relations (65) and (66) simplify in the 1PM
approximation as follows (cf. Eqs. (6.2a)–(6.2b) in [99],
Eqs. (4.25a)–(4.25b) in [102]),

ML ¼ IL þOðGÞ; ð88Þ

SL ¼ JL þOðGÞ: ð89Þ

The explicit expressions for the canonical multipoles ML
and SL are given by Eqs. (5.33) and (5.35) in [52] as
integrals over the stress-energy tensor of the matter source,
and they are represented by Eqs. (C1) and (C2) in
Appendix C. The linear gauge term in (84) is given by
[cf. Eq. (50)]

∂φ̄αβ
ð1PMÞðt; xÞ ¼ φαð1PMÞ

; μ ðt; xÞημβ þ φβð1PMÞ
; μ ðt; xÞημα

− φμð1PMÞ
; μ ðt; xÞηαβ: ð90Þ

The gauge function φαð1PMÞ is determined by Eq. (70). The
gauge function depends on four source moments,

φαð1PMÞðt; xÞ ¼ φαð1PMÞ½WL;XL; YL; ZL�; ð91Þ

and is given by Eqs. (5.31b) in [52]; see also Eqs. (4.13a)–
(4.13b) in [99] or Eqs. (3.560)–(3.561) in [58].

B. The post-linear term of the gothic metric density

The solution of the field equations in the second
iteration (45) reads

h̄αβð2PMÞðt; xÞ ¼ −
16π

c4
ðFPB¼0□

−1
R ðταβ1 þ tαβ1 ÞÞðt; xÞ; ð92Þ

where ταβ1 and tαβ1 denote the first iteration of (14) and (15),
respectively, and FPB¼0□

−1
R is the Hadamard regularized

inverse d’Alembert operator defined by Eq. (F2); details of
the Hadamard regularization are given in Appendix F. The
expression of ταβ1 follows from (14) by series expansion of
the determinant. The expression of tαβ1 follows from (15) by
using the 1PM approximation of the gothic metric pertur-
bation; cf. Eq. (3.3) in [102].
According to the fundamental theorem (58) of the MPM

formalism, the most general solution for the 2PM term of
the gothic metric perturbation (92) in the exterior of a
compact source of matter depends on six STF source
multipoles and is denoted by h̄αβ genð2PMÞ. The residual gauge
transformation (61) in 2PM approximation transforms the
post-linear gothic metric perturbation h̄αβ genð2PMÞ in the follow-

ing form [47,52,99,102] (cf. Eq. (4.26) in [102])

h̄αβ genð2PMÞ½IL; JL;WL; XL; YL; ZL�
¼ h̄αβ canð2PMÞ½ML; SL� þ ∂φ̄αβ

ð2PMÞðt; xÞ þ Ω̄αβ
ð2PMÞðt; xÞ: ð93Þ

The canonical gothic metric for a source of matter with
full multipole structure has not rigorously been determined
in the second post-Minkowskian (2PM) scheme thus far,
but in the following approximation (cf. Eqs. (2.28a)–
(2.28c) and Eq. (2.29) together with Eqs. (2.18a) and
(2.5) in [51])

h̄00 canð2PMÞðt; xÞ ¼
7

c4

�X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

þOðc−6Þ;

ð94Þ

h̄0i canð2PMÞðt; xÞ ¼ Oðc−5Þ; ð95Þ

h̄ij canð2PMÞðt; xÞ ¼ −
4

c4
FPB¼0□

−1
R

�
∂i

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

��
∂j

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�

þ 1

c4
δij

�X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

þOðc−6Þ: ð96Þ
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These expressions are also in agreement with Eqs. (3.5a)–
(3.5c) in [61]; the agreement of the MPM formalism and
the Will-Wiseman approach has been explained in Sec-
tion 4.3 in [101]. In the second line of (96) we have used the
following relation [106]

FPB¼0□
−1
R

�
∂k

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

¼ 1

2

�X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

þOðc−2Þ: ð97Þ

On the other side, the integral in the first line of (96) is
complicated because of the retarded time argument. Thus,
while the time-time components (94) are already given in
terms of multipoles, the spatial components (96) of the
gothic metric are associated with a complicated integration
procedure, FPB¼0□

−1
R , consisting of the inverse d’Alembert

operator and Hadamard’s regularization, which is explained
in more detail in Appendix F.
The spin-multipoles SL do not occur in (94)–(96)

because they are of the order Oðc−6Þ. A further comment
should be in order. In the solution of Eqs. (94)–(96) terms
of the order Oðc−6; c−5; c−6Þ are neglected [107] while the
perturbations are presented in terms of the retarded time
argument, which is not further expanded in powers of the
inverse of the speed of gravity. So the solution in (94)–(96)
is a hybrid representation in the sense that it is mixing the
post-Minkowskian expansion (series in powers of G) and
the post-Newtonian expansion (series in inverse powers
of c). A good reason of such a representation is that the
expressions (94)–(96) adopt their most simple form. But
the main reason for the hybrid representation is that it
permits to avoid problems regarding the convergence of the
post-Newtonian expansion of the metric for noncompact
support; cf. text below Eq. (2.5) in [51]. In this respect we
recall that the source of matter is assumed to be compact,
but one has to keep in mind that the integral (92) gets
support inside and outside the matter source, that means it
acquires a non-compact support; cf. text below Eq. (21).
The nonlinear relations (65) and (66) simplify in the

corresponding approximation as follows (cf. Eq. (6.3) in
[99], Eqs. (99a)–(99b) in [101], Eqs. (5.11a) and (5.11b)
in [102]),

ML ¼ IL þOðc−5Þ; ð98Þ

SL ¼ JL þOðc−5Þ: ð99Þ
The explicit expressions for the canonical multipoles ML
and SL are given by Eqs. (5.33) and (5.35) in [52] as
integrals over the stress-energy tensor of the matter source,
and they are represented by Eqs. (C1) and (C2) in
Appendix C. The linear gauge term in (93) is given by
[cf. Eq. (50)]

∂φ̄αβ
ð2PMÞðt; xÞ ¼ φαð2PMÞ

; μ ðt; xÞημβ þ φβð2PMÞ
; μ ðt; xÞημα

− φμð2PMÞ
; μ ðt; xÞηαβ: ð100Þ

The gauge function φαð2PMÞ is determined by Eq. (71). Its
solution reads formally (cf. Eq. (4.28) in [47])

φαð2PMÞðt; xÞ ¼ FPB¼0□
−1
R ðh̄μν genð1PMÞφ

αð1PMÞ
; μν Þðt; xÞ ð101Þ

where FPB¼0□
−1
R is the Hadamard regularized inverse

d’Alembertian (F2). The formal solution (101) leads to

φαð2PMÞðt; xÞ ¼ φαð2PMÞ½IL; JL;WL; XL; YL; ZL�; ð102Þ

that means the gauge function φαð2PMÞ depends on the full
set of the STF source moments. The explicit expression for
the gauge function in (102) is complicated, but we will not
pursue it here because one may show that

∂φ̄αβ
ð2PMÞðt; xÞ ¼ Oðc−6; c−5; c−6Þ; ð103Þ

which is of the same order of the neglected terms in the
canonical gothic metric perturbation in (94)–(96). The
nonlinear gauge term of the coordinate transformation
reads [cf. Eq. (52)]

Ω̄αβ
ð1PMÞðt; xÞ ¼ 0; ð104Þ

Ω̄αβ
ð2PMÞðt; xÞ ¼ φαð1PMÞ

; μ ðt; xÞφβð1PMÞ
; ν ðt; xÞημν

þ ðφνð1PMÞðt; xÞh̄αβ canð1PMÞðt; xÞÞ; ν
− φαð1PMÞ

; μ ðt; xÞðh̄μβ canð1PMÞðt; xÞ þ ∂φ̄μβ
ð1PMÞðt; xÞÞ

− φβð1PMÞ
; μ ðt; xÞðh̄μα canð1PMÞðt; xÞ þ ∂φ̄μα

ð1PMÞðt; xÞÞ

þ 1

2
φμð1PMÞ

; ν ðt; xÞφνð1PMÞ
; μ ðt; xÞηαβ

−
1

2
φμð1PMÞ

; μ ðt; xÞφνð1PMÞ
; ν ðt; xÞηαβ: ð105Þ

The gauge function φαð1PMÞ on the r.h.s. in (105) depends
on four source multipoles [cf. Eq. (91)] and is explicitly
given by Eqs. (5.31b) in [52]; see also Eqs. (4.13a)–(4.13b)
in [99] or Eqs. (3.560)–(3.561) in [58]. The gauge
term ∂φ̄αβ

ð1PMÞ is given by Eq. (90), while the 1PM canonical

gothic metric perturbation h̄αβ canð1PMÞ has been given by

Eqs. (85)–(87). It has been checked that one would obtain
the same non-linear gauge term Ω̄αβ

ð2PMÞ as given by

Eq. (4.7a) in [102] if one would use the residual gauge
transformation (25) instead of (22) and if one would series-
expand the gothic metric in the system fx0g which then
would have to be endowed by Minkowskian coordinates.
Here it should be emphasized again that the canonical piece
of the gothic metric density (and of the metric tensor) is
gauge-independent, hence is independent of whether one
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uses the residual gauge transformation (22) or (25) (cf. text
below Eq. (27)).

VII. THE METRIC TENSOR IN POST-LINEAR
APPROXIMATION

The post-Minkowskian expansion of the metric tensor up
to terms of the orderOðG3Þ is given by [cf. Eqs. (1) and (2)]
gαβðt;xÞ ¼ ηαβ þG1hð1PMÞ

αβ ðt;xÞ þG2hð2PMÞ
αβ ðt;xÞ þOðG3Þ:

ð106Þ
In this section the linear term hð1PMÞ

αβ and the post-linear term

hð2PMÞ
αβ of the metric tensor are considered.

A. The linear term of the metric tensor

In order to determine the linear term hð1PMÞ
αβ of the metric,

the following relation between

hð1PMÞ
αβ ¼ h̄μνð1PMÞηαμηβν −

1

2
h̄ð1PMÞηαβ; ð107Þ

where h̄ð1PMÞ ¼ ημνh̄
μν
ð1PMÞ. The relation (107) allows to

determine the covariant components of the metric tensor
from the contravariant components of the gothic metric in
1PM approximation. By inserting Eq. (84) into Eq. (107)
with the expressions in (85)–(87) and (90), one obtains the
general solution for the metric perturbation in the 1PM
approximation,

hð1PMÞ
αβ gen½IL; JL;WL; XL; YL; ZL�
¼ hð1PMÞ

αβ can ½ML; SL� þ ∂φð1PMÞ
αβ ðt; xÞ: ð108Þ

The linear term of the canonical metric perturbation for
one body at rest with full multipole structure is given by

hð1PMÞ
00 can ðt; xÞ ¼ þ 2

c2
X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r
; ð109Þ

hð1PMÞ
0ican ðt;xÞ¼þ 4

c3
X∞
l¼1

ð−1Þl
l!

∂L−1
_MiL−1ðsÞ

r

þ 4

c3
X∞
l¼1

ð−1Þll
ðlþ1Þ!ϵiab∂aL−1

SbL−1ðsÞ
r

; ð110Þ

hð1PMÞ
ij can ðt; xÞ ¼ þ 2

c2
δij

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

þ 4

c4
X∞
l¼2

ð−1Þl
l!

∂L−2
M̈ijL−2ðsÞ

r

þ 8

c4
X∞
l¼2

ð−1Þll
ðlþ 1Þ! ∂aL−2

ϵabði _SjÞbL−2ðsÞ
r

:

ð111Þ

In order to get (109)–(111) we made use of the property that
M̈ii ¼ 0 since the multipoles are tracefree, as well as of the
identity ϵabði _SiÞbL−2 ¼ 0 due to antisymmetry of the Levi-
Civita symbol and the symmetry of multipoles. One may
verify that Eqs. (109)–(111) agree with Eq. (2) in [108]; just
use the decomposition of the metric tensor as given by
Eq. (A.1) in [108] and apply the orthogonality relation of
the metric tensor in 1PM approximation. The gauge term in
(108) reads [cf. Eq. (38)]

∂φð1PMÞ
αβ ðt; xÞ ¼ φμð1PMÞ

;α ðt; xÞημβ þ φμð1PMÞ
; β ðt; xÞημα; ð112Þ

where the gauge function φαð1PMÞ on the r.h.s. in (112) is
governed by Eq. (70). The gauge function depends on four
source multipoles [cf. Eq. (91)] and its explicit form is
given by Eqs. (5.31b) in [52]; see also Eqs. (4.13a)–(4.13b)
in [99] or Eqs. (3.560)–(3.561) in [58].

B. The post-linear term of the metric tensor

In order to determine the post-linear term hð2PMÞ
αβ of the

metric, the following relation between the metric and
gothic metric is used, which is shown in Appendix E
(cf. Eq. (1.6.3) in [60]),

hð2PMÞ
αβ ¼ h̄μνð2PMÞηαμηβν −

1

2
h̄ð2PMÞηαβ þ

1

8
h̄2ð1PMÞηαβ

−
1

2
h̄ð1PMÞh̄

μν
ð1PMÞηαμηβν þ h̄ρνð1PMÞh̄

μσ
ð1PMÞημνηαρηβσ

−
1

4
h̄μνð1PMÞh̄

ρσ
ð1PMÞημρηνσηαβ; ð113Þ

where h̄ð2PMÞ ¼ ημνh̄
μν
ð2PMÞ. The relation (113) allows to

determine the covariant components of the metric tensor
from the contravariant components of the gothic metric in
2PM approximation. By inserting Eqs. (84) and (93) into
(113) with the expressions in (85)–(87) and (90) as well
as (94)–(96) and (100) and (105), one obtains the
general solution for the metric perturbation in the 2PM
approximation,

hð2PMÞ
αβgen ½IL;JL;WL;XL;YL;ZL�
¼ hð2PMÞ

αβcan ½ML;SL�þ∂φð2PMÞ
αβ ðt;xÞþΩð2PMÞ

αβ ðt;xÞ: ð114Þ

The post-linear term of the canonical metric perturbation
for one body at rest with full multipole structure reads

hð2PMÞ
00 can ðt; xÞ ¼ −

2

c4

�X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

þOðc−6Þ;

ð115Þ

hð2PMÞ
0i can ðt; xÞ ¼ Oðc−5Þ; ð116Þ
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hð2PMÞ
ijcan ðt;xÞ¼−

4

c4
FPB¼0□

−1
R

�
∂i

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

��
∂j

X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
þ 2

c4
δij

�X∞
l¼0

ð−1Þl
l!

∂L
MLðsÞ

r

�
2

þOðc−6Þ:

ð117Þ

The spatial components (117) of the metric tensor are
associated with an integration procedure, FPB¼0□

−1
R ,

consisting of the inverse d’Alembert operator and Hada-
mard’s regularization, which is explained in Appendix F.
The canonical mass-multipoles ML are given by
Eq. (5.33) in [52] as integrals over the stress-energy
tensor of the matter source; note that there are no spin-
multipoles in (115)–(117) because they are of the order
Oðc−6Þ. The linear gauge term in (114) is given by
[cf. Eq. (38)]

∂φð2PMÞ
αβ ðt; xÞ ¼ φμð2PMÞ

; α ðt; xÞημβ þ φμð2PMÞ
; β ðt; xÞημα;

ð118Þ

where the gauge function φαð2PMÞ on the r.h.s. in (118) is
governed by Eq. (71). Its explicit form is formally given
by Eq. (101) and depends on all six STF source multi-
poles; cf. Eq. (102). That explicit expression for the
gauge function in (118) is complicated and we will not
pursue it here because one may show that

∂φð2PMÞ
αβ ðt; xÞ ¼ Oðc−6; c−5; c−6Þ; ð119Þ

which is of the same order of the neglected terms in the
canonical metric perturbation in (115)–(117). The non-
linear gauge term in (114) reads [cf. Eq. (40)]

Ωð2PMÞ
αβ ðt; xÞ ¼ hð1PMÞ

μβ can ðt; xÞφμð1PMÞ
; α ðt; xÞ

þ hð1PMÞ
μα can ðt; xÞφμð1PMÞ

; β ðt; xÞ
þ hð1PMÞ

αβ can; νðt; xÞφνð1PMÞðt; xÞ
þ φμð1PMÞ

; α ðt; xÞφνð1PMÞ
; β ðt; xÞημν: ð120Þ

The gauge function φαð1PMÞ on the r.h.s. in (120) is
formally given by Eq. (91) and explicitly given by
Eqs. (5.31b) in [52]; see also Eqs. (4.13a)–(4.13b) in
[99] or Eqs. (3.560)–(3.561) in [59]. The linear gauge

term ∂φð1PMÞ
αβ is given by Eq. (112), while the cano-

nical linear metric perturbation hð1PMÞ
αβ can is given by

Eqs. (109)–(111).

VIII. STATIONARY SOURCES

In many applications of general theory of relativity it is
possible to neglect the time-dependence of the matter
source and to consider a stationary source, defined by

Tμν
; 0 ¼ 0; ð121Þ

that means an approximation where the stress-energy tensor
is only a function of the spatial coordinates in the harmonic
reference system. The condition (121) does not necessarily
imply that the source of matter is static. Namely, a static
source implies that there is no motion at all inside the
source of matter, while a stationary source only requires
that motions of matter (e.g., inner circulations) have to be
time independent. Stated differently, for static sources not
only Eq. (121) holds but in addition T0i ¼ 0, while for
stationary sources T0i ¼ const ≠ 0 is possible. The metric
of a stationary source is time independent,

gαβ ; 0 ¼ 0; ð122Þ
that means the metric tensor depends only on spatial
coordinates. Let us notice that for a stationary metric g0i ¼
const ≠ 0 is possible, while for a static metric g0i ¼ 0
(cf. Eq. (56.02) in [57]). In the stationary case the post-
Minkowskian expansion of the metric tensor up to terms of
the order OðG3Þ reads [cf. Eq. (5)]

gαβðxÞ¼ηαβþG1hð1PMÞ
αβ ðxÞþG2hð2PMÞ

αβ ðxÞþOðG3Þ: ð123Þ

In this section the linear term hð1PMÞ
αβ and the post-linear

term hð2PMÞ
αβ are considered.

A. The linear term of the metric tensor
for stationary sources

According to Eq. (108) the residual gauge transforma-
tion of the 1PM terms of the metric perturbation for
stationary sources reads

hð1PMÞ
αβ gen½IL; JL;WL; XL; YL; ZL�
¼ hð1PMÞ

αβ can ½ML; SL� þ ∂φð1PMÞ
αβ ðxÞ; ð124Þ

where the source multipoles IL, JL,WL, XL, YL, ZL and the
canonical multipoles ML, SL are time-independent now.
For the time-independent canonical multipoles one obtains
from Eqs. (C1) and (C2) in Appendix C (cf. Eqs. (5.33)
and (5.35) in [52]),

ML ¼
Z

d3xx̂L
T00 þ Tkk

c2
; ð125Þ
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SL ¼ STFL

Z
d3xx̂L−1ϵiljkx

j T
0k

c
: ð126Þ

For stationary sources the canonical metric perturbation
in (124) simplifies considerably. From Eqs. (109)–(111)
one obtains

hð1PMÞ
00 can ðxÞ ¼

2

c2
X∞
l¼0

ð−1Þl
l!

∂L
ML

r
; ð127Þ

hð1PMÞ
0i can ðxÞ ¼

4

c3
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiab∂aL−1

SbL−1
r

; ð128Þ

hð1PMÞ
ij can ðxÞ ¼

2

c2
δij

X∞
l¼0

ð−1Þl
l!

∂L
ML

r
: ð129Þ

This is the linear term of the canonical metric in case of a

stationarysource.Thegaugeterm∂φð1PMÞ
αβ in(124) isgivenby

∂φð1PMÞ
αβ ðxÞ ¼ φμð1PMÞ

; α ðxÞημβ þ φμð1PMÞ
; β ðxÞημα; ð130Þ

which depends on the gauge function φαð1PMÞ deter-
mined by

Δφαð1PMÞðxÞ ¼ 0; ð131Þ
which follow from (70) in the case of time-independence of
the gauge functions; Δ ¼ ∂k∂k is the flat Laplace operator

and the gauge function is time-independent: φαð1PMÞ
;0 ¼ 0.

This gauge function is formally given by

φαð1PMÞðxÞ ¼ ½WL;XL; YL; ZL�; ð132Þ
that means it depends on four STF source multipoles which
are time-independent now. An explicit expression of (132)
canbededucedfromEqs. (5.31b) in [52]by taking the limitof
vanishing time argument.

B. The post-linear term of the metric
tensor for stationary sources

According to Eq. (114) the residual gauge transforma-
tion of the 2PM terms of the metric perturbation for
stationary sources reads

hð2PMÞ
αβ gen½IL; JL;WL; XL; YL; ZL�
¼ hð2PMÞ

αβ can ½ML; SL� þ ∂φð2PMÞ
αβ ðxÞ þ Ωð2PMÞ

αβ ðxÞ; ð133Þ
where the source multipoles IL, JL,WL, XL, YL, ZL and the
canonical multipoles ML, SL are time independent now. For
stationary sources the canonical metric perturbation in (133)
simplifies considerably. From Eqs. (115)–(117) one obtains

hð2PMÞ
00 can ðxÞ ¼ −

2

c4

�X∞
l¼0

ð−1Þl
l!

∂L
ML

r

�
2

þOðc−6Þ; ð134Þ

hð2PMÞ
0i can ðxÞ ¼ Oðc−5Þ; ð135Þ

hð2PMÞ
ij can ðxÞ ¼ −

4

c4
FPB¼0Δ−1

� ∂
∂xi

X∞
l¼0

ð−1Þl
l!

∂L
ML

r

�� ∂
∂xj

X∞
l¼0

ð−1Þl
l!

∂L
ML

r

�

þ 2

c2
δij

�X∞
l¼0

ð−1Þl
l!

∂L
ML

r

�
2

þOðc−6Þ: ð136Þ

This is the post-linear term of the canonical metric in case
of a stationary source. The spatial components of the
canonical post-linear metric in (136) are associated with
an integration procedure via the Hadamard regularized
inverse Laplace operator, FPB¼0Δ−1, defined by Eq. (G2).

The gauge term ∂φð2PMÞ
αβ reads

∂φð2PMÞ
αβ ðxÞ ¼ φμð2PMÞ

; α ðxÞημβ þ φμð2PMÞ
; β ðxÞημα; ð137Þ

which is time-independent, that means φαð2PMÞ
;0 ¼ 0. The

gauge term ∂φð2PMÞ
αβ depends on the gauge function φαð2PMÞ

which is determined by the equation

Δφαð2PMÞðxÞ ¼ h̄ij genð1PMÞðxÞφαð1PMÞ
; ij ðxÞ; ð138Þ

as it follows from (71) in the limit of time independence of
the gauge functions; Δ ¼ ∂k∂k is the flat Laplace operator.
A formal solution is provided by

φαð2PMÞðxÞ ¼ FPB¼0Δ−1ðh̄ij genð1PMÞφ
αð1PMÞ
; ij ÞðxÞ; ð139Þ

where FPB¼0Δ−1 is the Hadamard regularized inverse
Laplacian defined by Eq. (G2). This gauge function is
formally given by

φαð2PMÞðxÞ ¼ ½IL; JL;WL; XL; YL; ZL�; ð140Þ

that means it depends on all the six STF source multipoles
which are time independent now. The explicit expression
for the gauge function in (140) is complicated but not
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relevant because of (119). The nonlinear gauge termΩð2PMÞ
αβ

in (133) reads

Ωð2PMÞ
αβ ðxÞ¼hð1PMÞ

μβcan ðxÞφμð1PMÞ
;α ðxÞ

þhð1PMÞ
μαcan ðxÞφμð1PMÞ

;β ðxÞþhð1PMÞ
αβcan;νðxÞφνð1PMÞðxÞ

þφμð1PMÞ
;α ðxÞφνð1PMÞ

;β ðxÞημν; ð141Þ

and depends on the gauge function φαð1PMÞðxÞ which is
formally given by Eq. (132); for an explicit expression see
text below that equation. Let us recall that the metric
perturbations and the gauge functions in (141) are time-

independent: hð1PMÞ
αβ can;0 ¼ 0 and φαð1PMÞ

;0 ¼ 0.
In summary of this section, Eq. (124) with (127)–(129)

and Eq. (133) with (134)–(136) represent the metric
perturbation in the second post-Minkowskian approxima-
tion for one body at rest as function of the time-independent
multipoles ML and SL. The mass-multipoles ML in (125)
allow to describe an arbitrary shape and inner structure of
the body, while the spin-multipoles SL in (125) allow to
account for stationary currents of matter, like circulations of
matter inside the body or stationary rotational motions of
the body as a whole.

C. Monopole and spin and quadrupole terms
of 2PM metric for stationary sources

The metric in 2PM approximation of an arbitrarily
shaped body is considered, where the monopole and spin
and quadrupole terms of the metric tensor are taken into
account. The expressions for the monopole and spin and
quadrupole follow from (125) and (126), viz.

M ¼
Z

d3x
T00 þ Tkk

c2
; ð142Þ

Si ¼
Z

d3xϵijkxj
T0k

c
; ð143Þ

Mab ¼
Z

d3xx̂ab
T00 þ Tkk

c2
; ð144Þ

where the integrals run over the three-dimensional
volume of the body, and x̂ab ¼ xaxb − 1

3
jxj2δab. The mass-

dipole terms are not considered here, because they can be
eliminated,Mi ¼ 0, by an appropriate choice of the coordinate
system[originof the spatial axes are tied to thecenter ofmassof
the source; cf. comment below Eq. (C7)].

1. The 1PM terms of canonical metric perturbation

From Eqs. (127)–(129) one immediately obtains the
1PM terms of the canonical metric perturbation:

hð1PMÞ
00 can ðxÞ ¼

2

c2
M
r
þ 3

c2
n̂abMab

r3
; ð145Þ

hð1PMÞ
0i can ðxÞ ¼

2

c3
ϵiabna

Sb
r2

; ð146Þ

hð1PMÞ
ij can ðxÞ ¼

2

c2
M
r
δij þ

3

c2
n̂abMab

r3
δij: ð147Þ

These expressions are in agreement with Eqs. (1)–(2) in
[109]. It should be noticed that n̂abMab ¼ nabMab because
of the STF structure of the multipoles.

2. The 2PM terms of canonical metric perturbation

From Eqs. (134)–(136) one obtains the 2PM terms of the
canonical metric perturbation:

hð2PMÞ
00 can ðxÞ ¼ −

2

c4
M2

r2
− 6

MMab

c4r4
n̂ab

−
MabMcd

c4r6

�
3

5
δacδbd þ

18

7
δacn̂bd þ

9

2
n̂abcd

�
þOðc−6Þ; ð148Þ

hð2PMÞ
0i can ðxÞ ¼ Oðc−5Þ; ð149Þ

hð2PMÞ
ij can ðxÞ ¼

1

c4
M2

r2

�
4

3
δij þ n̂ij

�
þMMab

c4r4

�
15

2
n̂ijab þ

32

7
δijn̂ab −

12

7
δaðin̂jÞb

�

þMabMcd

c4r6

�
75

4
n̂ijabcd −

90

11
n̂ijacδbd þ

27

11
n̂abcdδij −

25

84
n̂ijδacδbd

þ 83

42
n̂adδbcδij þ

16

35
δacδbdδij þ

18

11
n̂acdðiδjÞb −

5

21
n̂aðiδjÞcδbd

þ 10

21
δciδdjn̂ab −

23

42
δbðiδjÞcn̂ad −

6

35
δadδbðiδjÞc

�
þOðc−6Þ; ð150Þ

where the details of the calculations are relegated to Appendices H and I; for various careful checks see text below Eq. (I10)
in Appendix I.
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IX. SUMMARY

In this article four issues have been considered:
(1) A coherent exposition of the multipolar post-

Minkowskian (MPM) formalism has been presented,
where we have focused on those results of the MPM
formalism which are relevant for our investigations.
Special care has been taken about the gauge
transformation of the metric tensor and metric den-
sity. It has been emphasized that the canonical piece
of the metric tensor and metric density is gauge-
independent, hence is independent of whether one
uses the residual gauge transformation (22) or (25).
The Lorentz covariant gauge transformation and the
general-covariant gauge transformation and how they
are related to each other has been expounded in some
detail.

(2) The MPM formalism has been used in order to
obtain the metric coefficients in harmonic coordi-
nates in the post-linear approximation in the exterior
of a compact source of matter,

gαβðxÞ ¼ ηαβ þG1hð1PMÞ
αβ can ðxÞ þ G1∂φð1PMÞ

αβ ðxÞ
þG2hð2PMÞ

αβ can ðxÞ þ G2∂φð2PMÞ
αβ ðxÞ

þG2Ωð2PMÞ
αβ ðxÞ þOðG3Þ; ð151Þ

where x ¼ ðct; xÞ. The linear canonical metric per-

turbation hð1PMÞ
αβ can is given by Eqs. (109)–(111) and the

post-linear canonical metric perturbation hð2PMÞ
αβ can is

given by Eqs. (115)–(117) up to terms of the order

Oðc−6; c−5; c−6Þ. The gauge term ∂φð1PMÞ
αβ is given by

Eq. (112), while the gauge terms ∂φð2PMÞ
αβ andΩð2PMÞ

αβ

are given by Eqs. (118) and (120). The canonical
metric perturbations depend on the canonical mass
andspinmultipoles,ML andSL,whicharefunctionsof
the retarded time s ¼ t − jxj=c. These multipoles are
given by Eqs. (C1) and (C2), allowing to account for
arbitrary shape, inner structure, oscillations, and rota-
tional motions of the source of matter. The metric
tensor gαβðt; xÞ in (151) represents the most general
solution for the spatial region in the exterior of a
compact source of matter.

(3) Furthermore, the metric of a stationary source of
matter has been considered,

gαβðxÞ ¼ ηαβ þG1hð1PMÞ
αβ can ðxÞ þG1∂φð1PMÞ

αβ ðxÞ
þG2hð2PMÞ

αβ can ðxÞ þG2∂φð2PMÞ
αβ ðxÞ

þG2Ωð2PMÞ
αβ ðxÞ þOðG3Þ: ð152Þ

The canonical linear metric perturbation hð1PMÞ
αβ can is

given by Eqs. (127)–(129) and the canonical post-

linear metric perturbation hð2PMÞ
αβ can is given by

Eqs. (134)–(136) up to terms of the order

Oðc−6; c−5; c−6Þ. The gauge term ∂φð1PMÞ
αβ is given

by Eq. (130), while the gauge terms ∂φð2PMÞ
αβ and

Ωð2PMÞ
αβ are given by Eqs. (137) and (141). The

canonical metric perturbation depends on the
canonical mass and spin multipoles, ML and SL,
which are time-independent. These multipoles are
given by Eqs. (125) and (126), allowing us to
account for arbitrary shape and inner structure as
well as inner stationary currents of the source of
matter. The metric tensor gαβðxÞ in (152) represents
the most general solution for the spatial region in the
exterior of a stationary compact source of matter.

(4) The spatial components of the canonical post-
linear metric perturbation are associated with an
integration procedure: in (151) by the inverse
d’Alembertian (F1) and in (152) by the inverse
Laplacian (G1). That integration procedure has
been performed explicitly in (152), where the first
multipoles (monopole and quadrupole) are taken
into account. The linear and post-linear metric
coefficients are given by Eqs. (145)–(147) and
(148)–(150), respectively.

The investigations are motivated by the rapid progress
in astrometric science, which has recently succeeded
in making the giant step from the milliarcsecond level
[14–16] to the microarcsecond level [17–21] in angular
measurements of celestial objects, like stars and quasars.
A fundamental issue in relativistic astrometry concerns the
precise modeling of the trajectories of light signals emitted
by some celestial light source and propagating through the
curved space-time of the solar system. The light trajectories
are governed by the geodesic equation, which implies the
knowledge of the metric coefficients for solar system
bodies. Accordingly, interpreting the compact source of
matter just as some massive body of arbitrary shape and
inner structure, the post-linear metric coefficients allow us
to determine the light trajectory in the gravitational field
of such a massive solar system body in the post-linear
approximation. Thus far, the impact of higher multipoles on
the light trajectories in the post-linear approximation is
unknown. So the results of this investigation are a funda-
mental requirement in order to determine the impact of
higher multipoles on the light trajectory in the post-linear
approximation.
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APPENDIX A: NOTATION

The notation of the standard literature [52,54,56] is used:
(i) G is the Newtonian constant of gravitation.
(ii) c is the speed of light in flat space-time which

equals the speed of gravitational action.
(iii) lower case Latin indices take values 1,2,3.
(iv) lower case Greek indices take values 0,1,2,3.
(v) δij¼δij¼diagðþ1;þ1;þ1Þ is theKronecker delta.
(vi) εijk ¼ εijk with ε123 ¼ þ1 is the three-

dimensional Levi-Civita symbol.
(vii) εαβμν ¼ εαβμν with ε0123 ¼ þ1 is the four-

dimensional Levi-Civita symbol.
(viii) metric of Minkowskian space-time is ηαβ ¼

ηαβ ¼ diagð−1;þ1;þ1;þ1Þ.
(ix) covariant components of metric of Riemann

space-time are gαβ.
(x) contravariant components of metric of Riemann

space-time are gαβ.
(xi) the metric signature is ð−;þ;þ;þÞ.
(xii) g ¼ detðgαβÞ is the determinant of the covariant

components of the metric tensor.
(xiii) that means: g ¼ 1

4!
εαβγδεμνρσgαμgβνgγρgδσ .

(xiv) covariant and contravariant components of three-
vectors: ai ¼ ai ¼ ða1; a2; a3Þ.

(xv) n! ¼ nðn − 1Þðn − 2Þ…2 · 1 is the factorial for
positive integer (0! ¼ 1).

(xvi) n!! ¼ nðn − 2Þðn − 4Þ…ð2 or 1Þ is the double
factorial for positive integer (0!! ¼ 1).

(xvii) L ¼ i1i2…il and M ¼ i1i2…im are Cartesian
multi-indices of a given tensor T, that means TL ≡
Ti1i2…il and TM ≡ Ti1i2…im , respectively.

(xviii) two identical multi-indices imply summation:
ALBL ≡P

i1…ilAi1…ilBi1…il .
(xix) triplet of spatial coordinates (three-vectors) are in

boldface: e.g., a, b.
(xx) the absolute value of three-vector is determined

by jaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijaiaj

q
.

(xxi) covariant components of four-vectors: aμ ¼
ða0; a1; a2; a3Þ.

(xxii) contravariant components of four-vectors: aμ ¼
ða0; a1; a2; a3Þ.

(xxiii) ∂i ¼ ∂
∂xi is partial derivative with respect to xi.

(xxiv) f;i is partial derivative of f with respect to xi.
(xxv) ∂L ¼ ∂a1…al denotes l partial derivatives with

respect to xa1…xal.

(xxvi) f;a1…al denotes l partial derivatives of f with
respect to xa1…xal.

(xxvii) ∂α ¼ ∂
∂xα is partial derivative with respect to xα.

(xxviii) f;α is partial derivative of f with respect to xα.
(xxix) f;μ1…μn denotes n partial derivatives of f with

respect to xμ1…xμn.

(xxx) _f ¼ df
dt is total time-derivative of f.

(xxxi) f̈ ¼ d2f
dt2 is double total time-derivative of f.

(xxxii) Aα
;μ ¼ Aα

;μ þ Γα
μνAν is covariant derivative of first

rank tensor.
(xxxiii) Bαβ

;μ ¼ Bαβ
;μ þ Γα

μνBνβþ Γβ
μνBαν is covariant deri-

vative of second rank tensor.
(xxxiv) repeated indices are implicitly summed over

(Einstein’s sum convention).

APPENDIX B: SOME USEFUL RELATIONS
OF CARTESIAN TENSORS

The irreducible Cartesian tensor technique has been
developed in [110–112] and is a very useful tool of the
MPM formalism. Here we summarize some relevant
relations of the Cartesian tensor technique.
The symmetric part of a Cartesian tensor TL is,

cf. Eq. (2.1) in [56]:

TðLÞ ¼ Tði1…ilÞ ¼
1

l!

X
σ

Aiσð1Þ…iσðlÞ ; ðB1Þ

where σ is running over all permutations of ð1; 2;…; lÞ.
The symmetric tracefree part of a Cartesian tensor TL is

denoted as T̂L and given by (cf. Eq. (2.2) in [56])

ThLi ¼ Thi1…ili ¼ T̂L

¼
X½l=2�
k¼0

alkδði1i2…δi2k−1i2kSi2kþ1…ilÞa1a1…akak
; ðB2Þ

where ½l=2� means the largest integer less than or equal to
l=2, and SL ≡ TðLÞ abbreviates the symmetric part of tensor
TL. The coefficient in (B2) is given by

alk ¼ ð−1Þk l!
ðl − 2kÞ!

ð2l − 2k − 1Þ!!
ð2l − 1Þ!!ð2kÞ!! : ðB3Þ

STF tensors vanish whenever two of their indices are equal,

Thi1…a…a…ili ¼
X3
a¼1

Thi1…a…a…ili ¼ 0; ðB4Þ

because a summation of these indices is implied according
to Einstein’s sum convention; of course, the individual
components of STF tensors do not vanish, e.g.,
Thi1…2…2…ili ≠ 0. Further STF relations can be found in
[47,56,110–113]. As instructive examples of (B2) let us
consider the cases l ¼ 2, l ¼ 3, and l ¼ 4:
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Thiji ¼ TðijÞ −
1

3
δijTðaaÞ; ðB5Þ

Thijki ¼TðijkÞ−
1

5
ðδijTðkaaÞ þδikTðjaaÞ þδjkTðiaaÞÞ; ðB6Þ

Thijkli ¼ TðijklÞ −
1

7
ðδijTðklaaÞ þ δikTðjlaaÞÞ

−
1

7
ðδilTðjkaaÞ þ δjkTðilaaÞ þ δjlTðikaaÞ þ δklTðijaaÞÞ

þ 1

35
ðδijδklTðaabbÞ þ δikδjlTðaabbÞ þ δilδjkTðaabbÞÞ;

ðB7Þ
where the expressions in (B5) and (B6) were also given by
Eqs. (2.3) and (2.4) in [52]. Especially, the following
Cartesian tensor is of primary importance, which just
consists of products of unit three-vectors,

nL ¼ xi1
r

xi2
r
…

xil
r

where r ¼ jxj: ðB8Þ

The symmetric tracefree part of the Cartesian tensor (B8)
reads

n̂L ¼ xhi1
r

xi2
r
…

xili
r

: ðB9Þ

Using Eq. (A 20a) in [47], we present the explicit structure
of the following STF Cartesian tensors,

n̂ab ¼ nab −
1

3
δab; ðB10Þ

n̂abc ¼ nabc −
1

5
ðδabnc þ δacnb þ δbcnaÞ; ðB11Þ

n̂abcd ¼ nabcd −
1

7
ðδabncd þ δacnbd þ δadnbc þ δbcnad

þ δbdnac þ δcdnabÞ

þ 1

35
ðδabδcd þ δacδbd þ δadδbcÞ; ðB12Þ

which were also given by Eqs. (1.8.2) and (1.8.4) in [60].
Frequently, the following relations are needed, which
convert a non-STF tensor into a STF tensor,

nan̂L ¼ n̂aL þ l
2lþ 1

δahal n̂L−1i; ðB13Þ

nan̂aL ¼ lþ 1

2lþ 1
n̂L; ðB14Þ

where (B13) has been given by Eq. (A 22a) in [47] (see also
Eq. (2.7) in [52], Eq. (A7) in [113]), while (B14) is given
by Eq. (A 23) in [47] (see also Eq. (A.8) in [113]). Some
explicit examples of (B13) are noticed which are of
relevance for our investigations,

nan̂bc ¼ n̂abc þ
1

5
ðδacn̂b þ δabn̂cÞ −

2

15
δbcn̂a; ðB15Þ

nan̂bcd ¼ n̂abcd þ
1

7
ðδabn̂cd þ δacn̂bd þ δadn̂bcÞ

−
2

35
ðδbcn̂ad þ δcdn̂ab þ δbdn̂acÞ; ðB16Þ

nan̂bcde ¼ n̂abcde þ
1

9
ðδaen̂bcd þ δabn̂cde þ δacn̂bde þ δadn̂bceÞ

−
2

63
ðδben̂acd þ δcdn̂abe þ δcen̂abd þ δden̂abc þ δbcn̂ade þ δbdn̂aceÞ; ðB17Þ

nan̂bcdef ¼ n̂abcdef þ
1

11
ðδafn̂bcde þ δabn̂cdef þ δacn̂bdef þ δadn̂bcef þ δaen̂bcdfÞ

−
2

99
ðδbfn̂acde þ δcfn̂abde þ δdfn̂abce þ δefn̂abcd þ δbcn̂adef

þ δbdn̂acef þ δben̂acdf þ δcdn̂abef þ δcen̂abdf þ δden̂abcfÞ: ðB18Þ

We recall that n̂a ¼ na but, nevertheless, we keep the
notation in (B15) as is, in order to emphasize that, according
to themeaning of relation (B13), there are STF tensors on the
r.h.s. of each of these relations (B15)–(B18). We also need
the following relations, which are specific cases of the
general relation given by Eq. (2.13) in [52]:

nabn̂ijcd ¼ n̂ijabcd þ
4

11
ðn̂ahijcδdib þ n̂bhijcδdiaÞ

þ 12

63
n̂hijδacδbdi þ

1

11
δabn̂ijcd; ðB19Þ
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nabn̂cd ¼ n̂abcd þ
2

7
ðn̂ahcδdib þ n̂bhcδdiaÞ

þ 2

15
δahcδ

b
di þ

1

7
δabn̂cd: ðB20Þ

Finally, we notice

∂L
1

r
¼ ð−1Þlð2l − 1Þ!!

rlþ1
n̂L; ðB21Þ

which agrees with Eq. (A 34) in [47].

APPENDIX C: THE STF MASS-MULTIPOLES
AND SPIN-MULTIPOLES

In the MPM formalism the solution of the gothic metric
is given in terms of irreducible symmetric and tracefree
(STF) Cartesian tensors. It is a fundamental result of the
MPM formalism [47,49,52] that in the exterior of a source
of matter the gothic metric (41) to any order in G depends
on a set of only two kind of irreducible STF tensors
(Theorem 4.5 in [47], see also Eq. (3.1) and (3.2) in [49]),
namely mass-type multipoles ML and current-type multi-
poles SL [52,56]. The explicit expressions for these multi-
poles up to terms of the order OðG2Þ are given by
Eqs. (5.33) and (5.35) in [52] and read

ML ¼
Z

d3x
Zþ1

−1

dz

× ½δlðzÞx̂Lσþalδlþ1ðzÞx̂iL _σiþblδlþ2ðzÞx̂ijLσ̈ij�;
ðC1Þ

SL ¼
Z

d3x
Zþ1

−1

dzSTFL

× ½δlðzÞx̂L−1ϵiljkxjσkþ clδlþ1ðzÞϵiljkx̂jsL _σks�; ðC2Þ
where the integrals (C1) and (C2) run only over the finite
three-dimensional space of the compact source of matter,
and where

δlðzÞ¼
ð2lþ1Þ!!
2lþ1l!

ð1−z2Þl with
Zþ1

−1

dzδlðzÞ¼1; ðC3Þ

al ¼ −
4ð2lþ 1Þ

c2ðlþ 1Þð2lþ 3Þ ; ðC4Þ

bl ¼
2ð2lþ 1Þ

c4ðlþ 1Þðlþ 2Þð2lþ 5Þ ; ðC5Þ

cl ¼ −
ð2lþ 1Þ

c2ðlþ 2Þð2lþ 3Þ ; ðC6Þ

and where

σ ¼ T00þ Tkk

c2
; σi ¼ T0i

c
; σij ¼ Tij; ðC7Þ

with Tαβ being the energy-momentum tensor of the isolated
system taken at the time-argument t − jxj=cþ zjxj=c, and a
dot in (C1) and (C2) means partial derivative with respect
to coordinate time. The mass-type multipoles ML and the
spin-type multipoles SL are STF tensors, but we adopt the
notation as frequently used in the literature and do not write
the multipoles with a hat, say ML ≡ M̂L and SL ≡ ŜL.
It should be noticed that the multipoles are functions of

time, except the mass-monopole M, mass-dipole Mi, and
spin-dipole Si, which are strictly conserved quantities, that
means _M ¼ _Mi ¼ _Si ¼ 0. The system may emit gravita-
tional radiation which would change the mass M and the
mass-dipole Mi and the spin-dipole Si of the compact
source of matter, but these effects occur at higher order
beyond the 1PM and 2PM approximation. Furthermore,
if the origin of the spatial coordinate axes is located at
the center-of-mass of the source, then the mass-dipole
vanishes, i.e., Mi ¼ 0.
A further note is in order about the mass-type multipoles

ML and current-type SL as given by Eq. (C1) and Eq. (C2),
respectively. Usually, for practical applications their
explicit form as given by Eqs. (C1) and (C2) is not needed.
Instead, these multipoles can be related to observables of
the massive bodies of the solar system, and can be
determined by fitting astrometric observations.

APPENDIX D: RELATIONS BETWEEN METRIC
TENSOR AND GOTHIC METRIC DENSITY

The contravariant and covariant components of the
gothic metric density are defined by [54,57,58] (e.g., text
below Eq. (3.506) in [58])

ḡαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
gαβ; ðD1Þ

and

ḡαβ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðgμνÞ
p gαβ: ðD2Þ

The orthogonality relation of the metric tensor

gασgσβ ¼ δαβ; ðD3Þ
implies, subject to (D1) and (D2), the orthogonality relation
of the gothic metric density (e.g., text below Eq. (3.506)
in [58]),

ḡασḡσβ ¼ δαβ; ðD4Þ
which is sometimes called isomorphism identity. From
(D3) one gets
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detðgμνÞ ¼
1

detðgμνÞ ; ðD5Þ

while from (D4) one gets

detðḡμνÞ ¼
1

detðḡμνÞ : ðD6Þ

By calculating the determinant of (D1) one finds that the
determinant of the contravariant components of the gothic
metric equals the determinant of the covariant components
of the metric tensor [54,57,58,60] (e.g., Eqs. (D.67) and
(D.68) in [57])

detðḡμνÞ ¼ detðgμνÞ: ðD7Þ
The relations (D5)–(D7) imply that the determinant of the
covariant components of the gothic metric equals the
determinant of the contravariant components of the metric
tensor,

detðḡμνÞ ¼ detðgμνÞ; ðD8Þ

which can also be obtained by calculating the determinant
of (D2) and by means of (D5). These relations (D7) and
(D8) allow us to derive from (D1) and (D2) the following
relations between the metric tensor and gothic metric
density,

gαβ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðḡμνÞp ḡαβ; ðD9Þ

and

gαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðḡμνÞ

p
ḡαβ: ðD10Þ

APPENDIX E: DERIVATION OF
EQS. (107) AND (113)

In what follows the relation (D10) between the covariant
components of the metric tensor and the covariant compo-
nents of the gothic metric density is important,

gαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðḡμνÞ

p
ḡαβ: ðE1Þ

Let us consider the evaluation of the determinant in the
r.h.s. of (E1). By taking the Minkowskian metric tensor as
factor in front, we rewrite (3) as follows,

ḡμν ¼ ημσCν
σ ðE2Þ

where

Cν
σ ¼ δνσ − h̄ρνηρσ: ðE3Þ

The determinant in (E2) is calculated by means of the
product law of determinants and the theorem in (31),

detðḡμνÞ ¼ detðημσÞ detðCν
σÞ ¼ −eTrðlnCν

σÞ; ðE4Þ

where detðημσÞ ¼ −1 has been taken into account. Using
(E4) one obtains

detðḡμνÞ ¼ −1þ h̄þ 1

2
h̄μνημρh̄ρσησν −

1

2
h̄2þOðG3Þ;

ðE5Þ

where h̄ ¼ h̄μνημν. By inserting (E5) into (E1) one obtains
by series expansion of the square root

gαβ ¼
�
1 −

1

2
h̄ −

1

4
h̄μνημρh̄ρσησν þ

1

8
h̄2
�
ḡαβ þOðG3Þ:

ðE6Þ

For the covariant components of the metric tensor gαβ we
have [cf. Eq. (2)]

gαβ ¼ ηαβ þ G1hð1PMÞ
αβ þG2hð2PMÞ

αβ þOðG3Þ: ðE7Þ

The post-Minkowskian series expansion of the contra-
variant components of the gothic metric density, ḡαβ, is
given by Eqs. (3) and (41). What we also need is the post-
Minkowskian series expansion of the covariant compo-
nents of the gothic metric density, ḡαβ, which is defined by

ḡαβ ¼ ηαβ þ G1h̄ð1PMÞ
αβ þG2h̄ð2PMÞ

αβ þOðG3Þ: ðE8Þ

Here we emphasize that (E8) is a definition of the covariant
components of the perturbations of the gothic metric
density. That means, the relations between the contravariant
and covariant components of the perturbations of the gothic
metric density follow from the isomorphism identity (D4)
of the gothic metric density. These relations are given by
Eqs. (E11)–(E12) in 2PM approximation. Inserting (E7)
and (E8) into (E6) and equating the powers of the gravi-
tational constant yields for the terms proportional to G1:

hð1PMÞ
αβ ¼ h̄ð1PMÞ

αβ −
1

2
h̄ð1PMÞηαβ; ðE9Þ

where h̄ð1PMÞ ¼ h̄μνð1PMÞημν. Similarly, for the terms propor-

tional to G2 one obtains:

hð2PMÞ
αβ ¼ h̄ð2PMÞ

αβ −
1

2
h̄ð2PMÞηαβ −

1

2
h̄ð1PMÞh̄

ð1PMÞ
αβ

þ 1

8
h̄2ð1PMÞηαβ −

1

4
h̄μνð1PMÞημρh̄

ρσ
ð1PMÞησνηαβ; ðE10Þ

where h̄ð2PMÞ ¼ h̄μνð2PMÞημν. However, because the MPM

formalism determines the contravariant components of the
gothic metric, we have to express the relations (E9) and
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(E10) solely in terms of the contravariant components of
the gothic metric. From the above mentioned isomorphism
identity of the gothic metric density (D4) and from the
series expansion (E8) as well as the series expansion (41)
[with Eq. (3)], we obtain the following relations,

h̄ð1PMÞ
αβ ¼ h̄μνð1PMÞηαμηβν; ðE11Þ

h̄ð2PMÞ
αβ ¼ h̄μνð2PMÞηαμηβν þ h̄μνð1PMÞh̄

ρσ
ð1PMÞημαηρνησβ; ðE12Þ

which allow us to determine the covariant components of
the gothic metric from the contravariant components of the
gothic metric. Finally, by inserting (E11) into (E9) as well
as inserting (E11) and (E12) into (E10), one confirms (107)
and (113), respectively.

APPENDIX F: HADAMARD REGULARIZATION
OF THE INVERSE D’ALEMBERTIAN

The spatial components (96) of the post-linear terms of
the gothic metric density as well as the spatial components
(117) of the post-linear terms of the metric tensor are
associated with an integration procedure, which is abbre-
viated by the symbol FPB¼0□

−1
R . In this Appendix some

details of that integration procedure will be given.
The symbol□−1

R denotes the inverse d’Alembertian acting
on some function f, which is defined by [cf. Eq. (20)]

ð□−1
R fÞðt; xÞ ¼ −

1

4π

Z
d3x0

jx − x0j f
�
t −

jx − x0j
c

; x0
�
; ðF1Þ

for notational conventions see also text below Eq. (3.4) in
[47]. The inverse d’Alembert operator (F1) is standard in
the literature [47–49,51,53,73–75]. As explained in detail
in the original work of the MPM formalism [47], the
integral in (F1) is not well defined in general because,
depending of the behavior of function f, the integral might
become singular at r0 → 0, where r0 ¼ jx0j. As it has
already been described in the original work of the
MPM formalism [47], the reason for this difficulty is
caused by the fact that the gothic metric density (94)–(96)
as well as the metric tensor (115)–(117) are only valid in
the exterior of the source of matter, while the integration
of the inverse d’Alembertian extends over the entire three-
dimensional space, hence includes the inner region of
the matter source, where the multipole decomposition
becomes infinite at the origin. This issue is of course a
pure mathematical problem and not a physical one.
A way out of this problem is found by the fact that the

limit r0 → 0 is impossible because each real body is of finite
size while the gothic metric and the metric tensor are
strictly valid only in the exterior of the body. Therefore, the
inverse d’Alembert operator is replaced by the Hadamard
regularized inverse d’Alembert operator,

FPB¼0ð□−1
R fÞðt; xÞ

¼ −lim
B→0

1

4π

Z �
r0

r0

�
B d3x0

jx − x0j f
�
t −

jx − x0j
c

; x0
�
; ðF2Þ

where a factor ðr0=r0ÞB is imposed and where B ∈ C is some
complex number and r0 is an auxiliary real constant with
the dimension of a length. The abbreviation FP denotes
Hadamard’s partie finie of the integral. If the real part of B,
denoted by ℜðBÞ, is large enough, then all singularities at
r0 ¼ 0 are cancelled. So the procedure to determine the finite
part (FP) consists of three consecutive steps:

(i) computation of the integral (F2) with sufficiently
large real part of B,

(ii) inserting the limits of integration,
(iii) performing the limit B → 0.

The final results of that procedure are equivalent to
Hadamard’s technique of partie finie [114]; for mathematical
rigor of Hadamard’s procedure we refer to Sec. III in [47]
and the article [115], where the approach has been described
in specific detail.
In many subsequent investigations of the MPM formal-

ism that approach for determining the finite part has been
applied [49,51,53,99–101]. In particular, we refer to the
important relations (4.24) in [49] or Eq. (A.11) in [53],
which are very useful in order to perform that integration
procedure, where these effects occur in association with
gravitational radiation (tail effects, retardation effects,
divergencies at spatial infinity, etc.) which have been
elaborated in [47,48,51,53,56,75].
Hadamard regularization leads to consistent results in

different approaches up to 2.5PN order. Later it has been
discovered that from the 3PN order on the Hadamard
concept is not sufficient and the gauge invariant dimensional
regularization approach is introduced. This approach and its
implementation in the MPM formalism was a serious work
over a longer period of time [116–119]. In this investigation
we are interested in the metric up to terms of the order
Oðc−6; c−5; c−6Þ and will not consider that specific issue of
the MPM formalism. But it should be kept in mind that for
higher orders of the post-Minkowskian or post-Newtonian
expansion the Hadamard concept has to be replaced by the
gauge invariant dimensional regularization.

APPENDIX G: HADAMARD REGULARIZATION
OF THE INVERSE LAPLACIAN

In this section Hadamard’s concept for the case of time-
independent integrals will be considered in some more
detail. In case of stationary sources, the 2PM metric
perturbations in (134) and (136) are associated with an
inverse Laplace operator,

ðΔ−1fÞðxÞ ¼ −
1

4π

Z
d3x0

jx − x0j fðx
0Þ; ðG1Þ
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where Hadamard’s regularization of the inverse Laplacian
is given by

FPB¼0ðΔ−1fÞðxÞ

¼ −lim
B→0

1

4π

Z �
r0

r0

�
B d3x0

jx − x0j fðx
0Þ; ðG2Þ

where r0 ¼ jx0j and r0 is an auxiliary real constant with the
dimension of a length, and B ∈ C is some complex number.
Because there is no time-dependence, the integration
procedure in (G2) is considerably simpler than (F2).
According to the 2PM metric perturbations in (134)

and (136), we need to determine the following integral,

FPB¼0Δ−1 n̂L
rk

¼ −
1

4π

Z
d3x0

jx − x0j
�
r0

r0

�
B n̂0L
ðr0Þk ; ðG3Þ

where the abbreviated notation n̂0L means

n̂0L ≡ n̂0Lðφ0; ϑ0Þ ¼
x0hi1x

0
i2
…x0ili

ðr0Þl : ðG4Þ

The integral (G3) is for sufficiently large values of the real
part ℜðBÞ of the complex number B well-defined. In order
to determine that integral the following expansion of the
denominator is used (cf. Eq. (8.188) in [120])

1

jx − x0j ¼
(

1
r

P∞
m¼0 Pmðcos θÞðr0rÞm if r > r0

1
r0
P∞

m¼0 Pmðcos θÞðrr0Þm if r0 > r

)
; ðG5Þ

where Pm are the Legendre polynomials and θ is the
angle between x and x0. By inserting (G5) into (G3) one
encounters the following angular integration

I ¼
Z

2π

0

dφ0
Zπ
0

dϑ0 sin ϑ0n̂0Lðφ0; ϑ0ÞPmðcos θÞ ðG6Þ

which deserves special attention. The addition theorem for
Legendre polynomial states (cf. Eq. (8.189) in [120])

Pmðcos θÞ ¼
4π

2mþ 1

Xm
n¼−m

Ymnðφ; ϑÞY�
mnðφ0;ϑ0Þ; ðG7Þ

where Ymn and Y�
mn are the spherical harmonics and

complex conjugated spherical harmonics, respectively.
The spherical harmonics can be expanded in terms of
the STF tensor in (B9), which reads (cf. Eq. (2.11) in [56])

Ymnðφ; ϑÞ ¼ Ŷmn
M n̂Mðφ; ϑÞ; ðG8Þ

where the coefficients Ŷmn
M are independent of the angles φ

and ϑ. Their explicit expressions are given by Eq. (2.12)
in [56] or by Eq. (2.20) in [113], but they are not needed

here, because we use the following relation (cf. Eq. (2.23)
in [113]),

Xm
n¼−m

Ŷmn
M Y�

mnðφ0;ϑ0Þ ¼ ð2mþ 1Þ!!
4πm!

n̂0Mðφ0; ϑ0Þ: ðG9Þ

By inserting (G7)–(G9) into (G6) one obtains for the
angular integration

I ¼ ð2m − 1Þ!!
m!

n̂Mðφ; ϑÞ

×
Z

2π

0

dφ0
Zπ
0

dϑ0 sinϑ0n̂0Lðφ0; ϑ0Þn̂0Mðφ0; ϑ0Þ: ðG10Þ

The angular integration (G10) yields (cf. Eq. (2.5) in [56])

Z
2π

0

dφ0
Zπ
0

dϑ0 sinϑ0n̂0Lðφ0;ϑ0Þn̂0Mðφ0;ϑ0Þ¼ 4πm!

ð2mþ1Þ!!δlm:

ðG11Þ

Inserting (G11) into (G10) yields finally for the angular
integration in (G6) the following result (cf. Eq. (B.3) in
[121]),

I ¼
Z

2π

0

dφ0
Zπ
0

dϑ0 sinϑ0n̂0Lðφ0; ϑ0ÞPmðcos θ0Þ

¼ 4π

2mþ 1
n̂Lδlm; ðG12Þ

where

n̂L ≡ n̂Lðφ; ϑÞ ¼
xhi1xi2…xili

ðrÞl : ðG13Þ

It is important to realize that relation (G12) necessitates
the irreducible STF tensor n̂L as integrand. If the integrand
would not be of irreducible STF structure, then relation
(G12) would not be valid. Accordingly, by means of (G5)
and owing to relation (G12) one obtains for the integral (G3),

FPB¼0Δ−1 n̂L
rk

¼ −
n̂L

2lþ 1

1

r

Z
r

0

dr0ðr0Þ2
�
r0

r0

�
B
�
r0

r

�
l
�
1

r0

�
k

−
n̂L

2lþ 1

Z
∞

r
dr0r0

�
r0

r0

�
B
�
r
r0

�
l
�
1

r0

�
k
:

ðG14Þ

The radial integration yields
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FPB¼0Δ−1 n̂L
rk

¼ −
n̂L

2lþ 1

�
1

r0

�
B 1

rlþ1

� ðr0ÞBþl−kþ3

Bþ l − kþ 3

�
r0¼r

r0¼0

−
n̂L

2lþ 1

�
1

r0

�
B
rl
� ðr0ÞB−l−kþ2

B − l − kþ 2

�
r0¼∞

r0¼r
:

ðG15Þ

For ℜðBÞ þ l − kþ 3 > 0 > ℜðBÞ − l − kþ 2, the lower
integration constant r0 ¼ 0 in the first line and the upper
integration constant r0 ¼ ∞ in the second line do not
contribute and one arrives at

FPB¼0Δ−1 n̂L
rk

¼ n̂L
2lþ 1

�
r
r0

�
B
r2−k

×

�
1

B − l − kþ 2
−

1

Bþ l − kþ 3

�
:

ðG16Þ

The limit B → 0 yields finally

FPB¼0Δ−1 n̂L
rk

¼ 1

ðkþ l − 2Þðk − l − 3Þ
n̂L
rk−2

; ðG17Þ

which is meaningful for k ≥ 3 as well as k ≠ lþ 3; note that
always l ≥ 0. The solution of the integral in (G17) is a
specific case of the integrals given by Eqs. (A.11) and (A.16)
in [53], respectively, and has been presented within several
investigations, for instance by Eq. (3.9) in [47] and by
Eq. (3.9) in [121] and by Eq. (3.42) in [122].
One might wonder about the global sign of the solution

(G17). For instance, if one considers the case l ¼ 0 and
k ≥ 4, then (G17) is a positive-valued expression, irre-
spective of the negative-valued integral in (G3). In order
to understand the global sign in (G17), one has to realize
that the partie finie procedure in (G3) implies that the
lower integration constant r0 ¼ 0 in the first line in (G15)
does not contribute. Stated differently, in case of l ¼ 0 and
k ≥ 4 the partie finie procedure eliminates a (infinitely)
large negative term from the entire expression, so that the
final result becomes positive-valued in the case under
consideration.

APPENDIX H: THE PROOFS OF EQS. (148)

In this Appendix some details of the computation
of the matrix coefficients in Eqs. (148) are given.
Accounting for monopole and quadrupole, one gets from
Eqs. (134)

hð2PMÞ
00 can ðxÞ ¼ −

2

c4

�
M
r
þ ∂ab

2!

Mab

r

�
2

þOðc−6Þ: ðH1Þ

By means of (B21) one obtains

hð2PMÞ
00 can ðxÞ ¼ −

2

c4

�
M2

r2
þ 3MMab

n̂ab
r4

�

−
2

c4

�
9

4
MabMcd

n̂abn̂cd
r6

�
þOðc−6Þ: ðH2Þ

The last term is rewritten in the form MabMcdn̂abn̂cd ¼
MabMcdnabcd, then relations (B12) and (B10) are applied;
note Mabδab ¼ Mcdδcd ¼ 0. One arrives at

hð2PMÞ
00 can ðxÞ ¼ −

2

c4
M2

r2
−

6

c4
MMab

n̂ab
r4

−
3

5

1

c4
MabMcd

δacδbd
r6

−
18

7

1

c4
MabMcd

δacn̂bd
r6

−
9

2

1

c4
MabMcd

n̂abcd
r6

þOðc−6Þ: ðH3Þ

APPENDIX I: THE PROOF OF EQS. (150)

In this Appendix some details of the computation of the
matrix coefficients in Eqs. (150) are given. Accounting for
the monopole and quadrupole term, one obtains from
Eqs. (136)

hð2PMÞ
ij can ðxÞ ¼ þ 2

c4
δij

�
M
r
þ ∂ab

2!

Mab

r

�
2

−
4

c4
FPB¼0Δ−1

�
∂i

M
r
þ ∂iab

2!

Mab

r

�

×

�
∂j

M
r
þ ∂jab

2!

Mab

r

�
þOðc−6Þ: ðI1Þ

By means of (B21) one obtains

hð2PMÞ
ij can ðxÞ ¼ þ 2

c4
δij

�
M2

r2
þ 3MMab

n̂ab
r4

þ 9

4
MabMcd

n̂abn̂cd
r6

�

−
4

c4
FPB¼0Δ−1

�
M2

nij
r4

þ 15MMab
nðin̂jÞab

r6
þ 225

4
MabMcd

n̂iabn̂jcd
r8

�
þOðc−6Þ: ðI2Þ

Before relation (G17) can be applied, one has to express the enumerator in the second line of (I2) in terms of irreducible STF
tensors. The first term of the second line of (I2) is rewritten in terms of irreducible STF tensors by means of
relation (B10),
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nij ¼ n̂ij þ
1

3
δij; ðI3Þ

while for the second term of the second line of (I2) one obtains

Mabnðin̂jÞab ¼ Mab

�
n̂ijab þ

1

7
δijn̂ab þ

6

35
δaðin̂jÞb

�
; ðI4Þ

where relation (B16) and the STF structure of the multipole Mab has been used. The last term in the second line of (I2) is
expressed in terms of irreducible STF tensors by means of relations (B11) and (B16) as well as (B19) and (B20). After some
steps one obtains the following expression in terms of irreducible STF tensors,

MabMcdn̂iabn̂jcd ¼ MabMcd

�
n̂ijabcd þ

8

11
n̂ahijcδdib þ

12

63
n̂hijδacδbdi

�

þ 1

7
MabMcdδij

�
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4
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n̂ahcδdib þ

2

15
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b
di

�

þ 2

7
MabMcdδic

�
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4

7
n̂ahjδdib þ

2

15
δahjδ

b
di

�

−
4

35
MabMcdδjc

�
n̂abid þ

4

7
n̂ahiδdib þ

2

15
δahiδ

b
di

�

−
2

5
MabMcdδib

�
n̂jacd þ

1

7
n̂cdδaj þ

2

7
n̂jcδad −

4

35
n̂acδjd

�
: ðI5Þ

Taking account for the STF structure of the quadrupoles, one may combine the second term and the fourth term of the last
line, but here we keep these terms as given. The r.h.s. of Eq. (I5) has now been expressed in terms of irreducible STF tensors.
But the structure of these terms is presented in a rather compact notification. A more explicit form is arrived with the aid of
relations (B5) and (B7), by means of which one obtains

MabMcdn̂ahijcδdib ¼ þ 1

2
MabMcdn̂acijδbd þ

3

14
MabMcdn̂acdðiδjÞb −

1

14
MabMcdn̂abcdδij; ðI6Þ

MabMcdn̂hijδacδbdi ¼ þ 1

6
MabMcdn̂ijδacδbd þ

10

21
MabMcdn̂cðiδjÞaδbd þ

43

210
MabMcdn̂abδicδjd

−
2
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MabMcdδijδbdn̂ac −

4

21
MabMcdδicδbjn̂ad; ðI7Þ

MabMcdn̂ahiδdib ¼ þ 1

2
MabMcdn̂aiδdb þ

1

2
MabMcdn̂adδbi −

1

3
MabMcdn̂abδdi; ðI8Þ

MabMcdδ
a
hiδ

b
di ¼ þMabMcdδadδbi: ðI9Þ

By inserting (I3)–(I5) into (I2) by taking into account the relations (I6)–(I9) as well as the solution for the integrals (G17),
one finally arrives at
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þOðc−6Þ: ðI10Þ
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Several careful checks have been performed in order to be
certain about the correctness of these metric coefficients.
For instance, one may see that the terms proportional to
M2 are in agreement with the same terms of Eq. (25) in
[24]. Furthermore, it has been checked that inserting the
gothic metric coefficients (J3)–(J8) in Appendix J into
(113) yields the same metric coefficients as presented by
Eqs. (148)–(150). In addition, each metric coefficient has
been determined in different ways and assisted by the
computer algebra system Maple [123].

APPENDIX J: MONOPOLE AND SPIN AND
QUADRUPOLE TERMS OF 2PM GOTHIC
METRIC FOR STATIONARY SOURCES

In the case of stationary source the post-linear gothic
metric (4) simplifies as follows,

ḡαβðxÞ ¼ ηαβ −G1h̄αβð1PMÞðxÞ −G2h̄αβð2PMÞðxÞ þOðG3Þ:
ðJ1Þ

The gauge transformation (35) leads, up to terms of the
order OðG3Þ, to

ḡαβðxÞ ¼ ηαβ −G1h̄αβ canð1PMÞðxÞ − ∂φ̄αβ
ð1PMÞðxÞ

−G2h̄αβ canð2PMÞðxÞ − ∂φ̄αβ
ð2PMÞðxÞ − Ω̄αβ

ð2PMÞðxÞ; ðJ2Þ

where the gauge terms are time-independent and formally
given by Eqs. (90) and Eqs. (100) and (105), respectively.
Accounting for the monopole and spin and quadrupole
terms, one arrives at

h̄00 canð1PMÞ ¼ 4
M
c2r

þ 6
Mab

c2r3
n̂ab; ðJ3Þ

h̄0i canð1PMÞ ¼ −
2

c3
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Sb
r2

; ðJ4Þ

h̄ij canð1PMÞ ¼ 0; ðJ5Þ

for the linear coefficients, and
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þ 63

4
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c4r6
nabcd þOðc−6Þ; ðJ6Þ

h̄0i canð2PMÞ ¼ Oðc−5Þ; ðJ7Þ

h̄ij canð2PMÞ ¼
M2

c4
1

r2
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MMab

c4r4

�
15

2
nijab þ

1

2
δijnab − 6naðiδjÞb þ δaiδbj

�

þMabMcd
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90
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25
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42
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70
δacδbdδij þ
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11
n̂acdðiδjÞb −

5
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n̂aðiδjÞcδbd
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23

42
δbðiδjÞcn̂ad −

6

35
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�
þOðc−6Þ; ðJ8Þ

for the post-linear coefficients. These gothic metric
coefficients in (J3)–(J8) have been calculated by
the same approach as presented in the previous Appendix I;
the last term in (J6) and the first line in (J8) are not
expressed in terms of irreducible STF multipoles,
but it could be done by means of relations (B10)
and (B12).

The quadrupole-quadrupole gothic metric density for a
time-dependent compact source of matter has been deter-
mined in [53] which allows to deduce the gothic metric
coefficients (J3)–(J8). Furthermore, it should be mentioned
that these gothic metric coefficients (J3)–(J8) have also
been presented by Eq. (16) in [124]; the incorrect coef-
ficient z60 of Eq. (16) in [124] has later been corrected by
Eq. (21) in [125].
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