PHYSICAL REVIEW D 100, 084005 (2019)

Post-linear metric of a compact source of matter

Sven Zschocke

Institute of Planetary Geodesy—Lohrmann Observatory, Dresden Technical University,
Helmholtzstrasse 10, D-01069 Dresden, Germany

® (Received 17 May 2019; published 4 October 2019; corrected 1 November 2019)

The multipolar post-Minkowskian (MPM) formalism represents an approach for determining the metric
density in the exterior of a compact source of matter. In the MPM formalism the metric density is given in
harmonic coordinates and in terms of symmetric tracefree (STF) multipoles. In this investigation, the post-
linear metric density of this formalism is used in order to determine the post-linear metric tensor in the
exterior of a compact source of matter. The metric tensor is given in harmonic coordinates and in terms
of STF multipoles. The post-linear metric coefficients are associated with an integration procedure. The
integration of these post-linear metric coefficients is performed explicitly for the case of a stationary source,
where the first multipoles (monopole and quadrupole) of the source are taken into account. These studies
are a requirement for further investigations in the theory of light propagation aiming at highly precise
astrometric measurements in the solar system, where the post-linear coefficients of the metric tensor of

solar system bodies become relevant.
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I. INTRODUCTION

The field equations of gravity [1,2] represent a set of ten
coupled nonlinear partial differential equations for the ten
components of the metric tensor g,s which governs the
geometry of space-time. Despite of their complicated
mathematical structure, exact solutions of the field equa-
tions have been obtained for gravitational systems which
have a symmetry, for instance [3]: the Schwarzschild
solution for a spherically symmetric body [4], the Kerr
solution for a spherically symmetric body in uniform
rotational motion [5], the Weyl-Levi-Civita-Erez-Rosen
solution for an axially symmetric body [6-10], the
Reissner-Nordstrom solution for an electrically charged
spherically symmetric body [11,12], and the Kerr-Newman
solution for an electrically charged spherically symmetric
body in uniform rotational motion [13]. However, for a
body of arbitrary shape and inner structure and which can
also be in arbitrary rotational motions and oscillations, the
field equations of gravity can only be solved within some
approximation scheme.

For an asymptotically flat space-time it is convenient
to decompose the metric tensor into the flat Minkowski
metric 77,5 and a metric perturbation /g,

gaﬂ(t’x) = 'Iaﬁ + haﬁ(t’x)' (1)

The post-Minkowskian scheme is certainly one of the most
important approximations in the theory of gravity, which
states that for weak gravitational fields, |h,4| < 1, the
metric perturbation can be series expanded in powers of the
gravitational constant,
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hag(1,%) = Glhg‘;’w (rx)+ G (%) +O(G?).  (2)

(2PM)

(;ij) is the linear term and £

where h,,

is the post-linear

term of the metric tensor, and Gﬂh%m) | <G! \h{(l}f M) |« 1.

Our motivation to consider the post-linear term in the
metric perturbation (2) is triggered by the rapid progress in
astrometric science, which has recently made the impres-
sive advancement from the milliarcsecond level [14—16] to
the microarcsecond level [17-21] in angular measurements
of celestial objects like stars and quasars. A prerequisite of
astrometric measurements is the precise modeling of the
trajectory of a light signal which propagates from the
celestial object through the curved space-time of the solar
system towards the observer. And because the trajectory of
a light signal depends on the geometry of space-time, it
becomes obvious why the metric perturbation (2) is of
fundamental importance in the theory of light propagation
and astrometry. Already at the microarcsecond level in
positional measurements of celestial objects, the linear term
of the metric perturbation (2) is not sufficient for modeling
the positional observations performed within the solar
system [22-34]. Meanwhile, there are several mission
proposals aiming at the submicroarcsecond and even the
nanoarcsecond scale of accuracy [35-39]. That is why post-
linear effects of the metric perturbation (2) are coming more
and more into focus of astronomers and in the theory of
light propagation [40—46].

The post-Minkowskian approach and the multipolar
post-Minkowskian formalism are based on the Landau-
Lifschitz formulation of Einstein’s theory. In this approach,
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instead of determining directly the metric tensor, one
operates with the gothic metric density, §% = ,/=gg*
where ¢ is the determinant of the metric tensor. Like in case
of the metric tensor, for an asymptotically flat space-time
it is appropriate to decompose the gothic metric density
into the flat Minkowskian metric 7% and a gothic metric
perturbation 2% (¢,x),

g7 (t.x) = n? = h(1.x). (3)

For weak gravitational fields, |2*/| < 1, the corresponding
post-Minkowskian series expansion of the perturbation of
the gothic metric density reads as follows,

h (t.x) =G'nf)

(ipw) (1:%) +G2E?§PM)(t’x) +0(G%), 4

af

where 2% is the linear term and / is the post-linear

(1PM) (2PM)
term of the gothic metric, and Gz|l_z‘<’2ﬁPM) |<G! |fl‘(’lﬁPM) |« 1.

The knowledge of the contravariant components of the
gothic metric perturbation (4) allows us to determine the
covariant components of the metric perturbation (2);
relations between the gothic metric and the metric tensor
are given in Appendix D.

The multipolar post-Minkowskian (MPM) formalism
has been developed within a series of articles [47-52]
and provides a robust framework in order to determine the
gothic metric perturbation (4) of compact sources of matter.
In the MPM formalism, the gothic metric density is
expressed in terms of so-called symmetric and trace-free
(STF) multipoles, allowing for arbitrary shape, inner
structure, oscillations and rotational motions of the source.
The MPM approach was mainly intended for theoretical
understanding of the generation of gravitational waves by
some isolated source of matter, like inspiralling binary stars
which consist of compact objects like black holes or
neutron stars. The compact source of matter can of course
also be interpreted as some massive solar system body,
being of arbitrary shape and inner structure, and which can
be in arbitrarily rotational motions and oscillations.

Within the MPM approach the linear term and the post-
linear term of the gothic metric perturbation (4) have been
determined long time ago for the case of a compact source
of matter. Accordingly, the aim of this investigation is to
give the linear and the post-linear term of the metric
perturbation (2) for a compact source of matter.

The determination of post-linear metric coefficients
involves quite ambitious computations and the results of
the MPM approach become rather cumbersome already for
the very first few multipoles beyond the simple monopole
term [53]. However, for many applications, for instance in
the theory of light propagation, it is sufficient to consider
the stationary case, where the gravitational fields generated
by the body become time-independent, hence the post-
Minkowskian expansion (2) simplifies as follows,

hap(x) = G R ™ (x) + G2 (x) + O(G?). (5)

In the stationary case the computations of the MPM
formalism are considerably simpler than in the case of
time-dependent gravitational fields. In the theory of light
propagation in the solar system, the impact of post-linear
terms of the metric tensor on the light propagation is only
known for the monopole term, but not for higher multipoles.
It is, therefore, a further aim of this investigation to
determine, in a transparent manner, the post-linear metric
including the quadrupole structure of a compact source,
which can be considered as some massive solar system body.

The manuscript is organized as follows: In Sec. II the
exact field equations of gravity in harmonic gauge are
given. The residual harmonic gauge freedom is considered
in Sec. III. The post-Minkowskian expansion and some
fundamental results of the MPM formalism which are
relevant for our considerations are summarized in Sec. IV
and Sec. V. The gothic metric density in the linear and post-
linear approximation for time-dependent sources is given in
Sec. VI. The metric tensor in the linear and post-linear
approximation for time-dependent sources is given in
Sec. VII. Finally, in Sec. VIII the metric tensor in the
linear and post-linear approximation is given explicitly for
the case of a source with time-independent monopole and
spin and quadrupole structure. A summary can be found in
Sec. IX. The notations as well as details of the calculations
are relegated to several Appendices.

II. THE EXACT FIELD EQUATIONS OF GRAVITY

The field equations of gravity [1,2] relate the metric
tensor g,; of the physical space-time M to the stress-
energy tensor of matter 7,5, which can be written in the
following form (Sec. 17.1 in [54]),

1 87G
Rop — Ega/iR =4 T op, (6)

where R,; =TI Z/jﬁ - Ffmﬁ + F‘,’;,,Fgﬁ - Fﬁ/jfgp is the Ricci
tensor (cf. Eq. (8.47) in [54]),

1
qu :Egaﬂ(gﬂﬂ,u"i_g/)’u.ﬂ _g;w.ﬁ)’ (7)

are the Christoffel symbols, and R = R}, is the Ricci scalar.

The field equations (6) represent a set of ten coupled
nonlinear partial differential equations for the ten compo-
nents of the metric tensor. Because of the contracted
Bianchi identities (cf. Eq. (13.52) in [54]) there are only
six field equations which are independent of each other
[55]. These six field equations determine the ten compo-
nents of the metric tensor up to a coordinate transformation
which involves four arbitrary functions x* = x’#(x*). This
freedom in choosing the coordinate system is called general
covariance of the field equations of gravity.
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For practical calculations in celestial mechanics and in
the theory of light propagation it is very convenient to
chose concrete reference systems instead of keeping the
covariance of the field equations. A powerful tool is to use
harmonic coordinates x* = (ct, x), which are introduced by
the harmonic gauge condition [54,56-61] (cf. Eq. (67.02)
in [57], Eq. (5.2a) in [56])

(v=9g") 5 = 0. (8)

where

7 = \/=g9”. )

is the gothic metric density [54,56—61], with g being the
determinant of the covariant components of the metric
tensor. It is very useful to operate with the gothic metric
density g* rather than the metric tensor Jap» because the
field equations in harmonic coordinates become consid-
erably simpler in terms of the gothic metric density.

It should not be surprising that (8) is not a general-
covariant relation, because this condition just selects a
specific type of reference system, namely the (class of)
harmonic reference systems. Although the harmonic coor-
dinate condition (8) is not general-covariant, it is Lorentz-
covariant in the slightly generalized meaning of linear
orthogonal transformations in curvilinear harmonic coor-
dinates [57]. The choice of harmonic reference systems is
in line with the philosophy of general relativity that one
may adopt concrete reference systems, while observables
(coordinate-independent scalars) are determined as the final
step in the calculations. The harmonic gauge condition (8)
is called de Donder gauge in honor of its inventor for the
exact field equations [62]. The harmonic reference system
for the exact field equations has also been introduced
independently by Lanczos [63], while the harmonic gauge
condition to first order (linearized gravity) was originally
introduced by Einstein [64,65] (cf. Eq. (4) in [64], Eq. (5)
in [65]).

An alternative form for the definition of harmonic
coordinates via the gauge condition (8) is given by the
condition (cf. Eq. (93.03) in [57], Eq. (3.270) in [58])

Ox# =0, (10)
where
1
O, =——0,(v—- ah) o 11
=5 00, (1)
= gaﬂaaa/} (12)

is the covariant d’Alembert operator, in (11) given in
arbitrary curvilinear four-coordinates, while in (12) given
in terms of harmonic curvilinear four-coordinates. It is
crucial to realize that the four functions x* in (10) are just

functions, not components of a vector. A function which
obeys the homogeneous d’ Alembert equation, L f = 0, is
called harmonic function. That evident similarity is the
reason of why coordinates x* are called harmonic coor-
dinates. The harmonic four-coordinates (cz,x) provide the
closest approximation to rectilinear four-coordinates that
one can have in curved space-time and that is why they are
often called Cartesian-like coordinates.

Besides of the harmonic gauge (8) also the decompo-
sition (3) is used, which implies that the gothic metric
perturbation, h®(t,x ), propagates as dynamical field
on the flat background space-time M. Then, the exact
field equations of gravity (6) read [54,56,58,60,61]
(cf. Eq. (5.2b) in [56], Eq. (1.6.1) in [60], Egs. (2.4)-
(2.6) in [61])

078 () (), (13)

Oh% (x) =

where x = (ct,x ) are curvilinear harmonic coordinates of
the flat background space-time and [ = #*¥0,0, is the flat
d’Alembert operator given in terms of these curvilinear
harmonic coordinates [66]. The field equations (13) are
called Landau-Lifschitz formulation of Einstein’s theory of
gravity. The exact field equations of gravity (6) are general-
covariant, while the exact field equations in harmonic
coordinate systems (13) are only Lorentz-covariant. The
terms on the r.h.s. in (13) are given by

(x) = (=g(x))T*(x), (14)

1 (x) = (=g(x))11 (x)

+ 162G

(ilay.z/(x)}_lﬂy,u(x) - ilaﬁ,yu(x)]jlﬂy(x))’
(15)

where T% is the stress-energy tensor of matter, while % is
the stress-energy pseudotensor of the gravitational field,

and tﬁ’{ is the Landau-Lifschitz pseudotensor of gravita-
tional field, in explicit form given by Eq. (20.22) in [54]
and by Eq. (101.7) in [69].

It has already been emphasized that the usage of the
harmonic gauge condition, either in the form (8) or in the
form (10), implies the loss of the general covariance. That is
why the expressions 7% and 1% are not general-covariant
tensors, but they are Lorentz-covariant tensors. The vanish-
ing of the covariant derivative of stress-energy tensor of
matter, 7% B = 0, implies [54,56,58,60,61,69] (cf. Eq. (5.4)
in [56], Eq. (2.8) in [61])

(Ta[)’ + ta[)’)./} =0= [(—g)(TlIﬁ + tﬁi)],ﬁ =0 (16)

which represents a local conservation law and admits
the formulation of a global conservation law for the
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four-momentum of the entire gravitational system;
cf. Egs. (20.232)—(20.23c) in [54] or Egs. (1.1.7) and
(1.2.1) in [60].

The gravitational system is assumed to be spatially
compact, meaning that there exists a three-dimensional
sphere of finite radius R which completely contains the
source of matter, so that the stress-energy tensor of matter
T%(t,x) = 0 when |x| > R. Furthermore, the gravitational
system is assumed to be isolated, that means flatness of the
metric at spatial infinity and the constraint of no-incoming
gravitational radiation are imposed [23,57,58,70-72],

lim 7#(1,x) = 0, (17)

I,
1+g=const

lim (g rh(t,x) —i—airﬁ/‘”(t,x)) =0, (18)

r ct

t+L=const

where r = |x|. These conditions are called Fock-
Sommerfeld boundary conditions. The formal solution of
the exact field equations (13) for an isolated system is given
by [54,58,60,61] (e.g., Eq. (36.38) in [54]),

167G

C4

h(1,x) = (BR' (@ + 1) (t.x),  (19)

where the inverse d’Alembert operator reads [47-49,51,
53,73-75]

L

T

1
x — x|

flu,x’). (20)

The time of retardation between the source point x’, for
instance located inside the source of matter, and the field
point x, for instance located outside of matter, is

x — x'
M:l’—%, (21)

where the natural constant ¢ is the speed of gravitational
action which equals the speed of light in vacuum [54,57].

The spatial integral in (19) runs over the entire three-
dimensional space, that means it gets support inside and
outside of the matter source, because the integrand depends
on the metric perturbation which extends to the entire
three-dimensional spatial space. It should be emphasized
that (13) are the exact field equations of gravity and (19)
represents an exact solution of the field equations, because
the only requirements to get these equations have been the
harmonic gauge and the Fock-Sommerfeld boundary con-
ditions. However, the exact solution (19) is an implicit
integrodifferential equation, because the metric perturba-
tion appears on both sides of Eq. (19).

III. THE RESIDUAL GAUGE FREEDOM

In order to solve the field equations of gravity (6) so-
called harmonic coordinates have been imposed by (10)
which have simplified the field equations in the form
given by (13). This coordinate condition (10) does not
uniquely determine the coordinate system but selects a
class of infinitely many harmonic reference systems, and
permits a coordinate transformation from the old harmonic
chart {x*} to a new harmonic chart {x*} (cf. Box 18.2 in
[54] or Eq. (11.5) in [56] or Eq. (3.521) in [58]) [76],

X = x4 ¢*(x), (22)

where ¢*(x) is a vector field; see Figure 1.

The four-coordinates in both systems refer to one and the
same point P of the physical manifold M, that means x' =
x'(P) and x = x(P) denote the four-coordinates in both
systems but of one and the same point P of the physical
manifold, which is arbitrary: VP € M. It is implicitly
assumed that the coordinate transformation (22) is infini-
tesimal in the sense that the derivatives of the functions ¢“
with respect to space and time are of the same order as the
metric perturbation, ¢ , = O(h{) hence |¢” ,| < 1.

For later purposes we note the Jacobian matrix of the
coordinate transformation (22),

a0 = (Gor) =oi+ o0 @)

The coordinate transformation (22) preserves the harmonic
coordinate condition (10) if the functions ¢ obey the
homogeneous Laplace-Beltrami equation in the old coor-
dinate system {x*} (cf. Eq. (3.522) in [58]),

glw(x)wa,/w(x) =0, (24)

where ¢*(x) is the old metric tensor in the old coordinate
system. The exact field equations of gravity in harmonic
gauge (13) are invariant under a gauge transformation (22)
if the functions obey the homogeneous Laplace-Beltrami
equation (24). The functions ¢“ in (22) are nothing more
than a change of coordinates and, therefore, they contain no
physical information about the gravitational system. They
are called gauge vector and the coordinate transformation
(22) with (24) is called residual gauge transformation.
These gauge functions ¢® are obtained by solving the
differential equation (24).

The coordinate transformation (22) is a passively
constructed diffeomorphism, that means there is a
differentiable inverse transformation from the new harmonic
system {x'*} to the old harmonic system {x*}, which reads

xa — x/(l +)((z(xl)’ (25)

where y*(x’) is a vector field; see Fig. 1. The four-
coordinates in both systems refer to one and the same point
P of the physical manifold M, that means x = x(P) and
x" = x'(P) denote the four-coordinates in both systems but
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FIG. 1. A geometrical representation of the Lorentz-covariant
gauge transformation (22) and its inverse (25). The physical
manifold M is covered by coordinates {y} and is endowed with
the metric tensor g,4(y) which is a solution of the exact field
equations (6). The flat background manifold M, is covered by
Minkowskian coordinates {x} and is endowed with the metric
tensor 7,5 The diffeomorphism ®: M, — M maps the flat
background manifold to the physical manifold, e.g. a point ¢ €
M, to a point P € M. Its inverse diffeomorphism ®~': M —
M, maps the physical manifold to the flat background manifold,
e.g. a point P € M to a point g € M. The metric tensor g;(y)
of the physical manifold M is pulled back on the flat background
manifold M, (active coordinate transformation as given by
Eq. (A.9) in [59]). The pulled back metric is denoted by
®*g,5 and is defined by g,45(x) = 17,5 -+ hyp(x). The pulled back
metric g,z(x) on M is physically equivalent to the metric g,z(y)
on M, that means: if the metric g,4(y) is a solution of the exact
field equations (6) on the physical manifold M, then h,; =
@ g3 — N4p Will be a solution of the exact field equations (13) in
the flat background manifold M. The background manifold can
also be covered by another harmonic coordinate system {x'},
which is related to the Minkowskian coordinate system {x} by
(22) with its inverse (25). The pulled back metric in coordinate
system {x'} is defined by g, 5(x") = n4p + his(x'). The relation
between these pulled back metric tensors, gqs(x) and g5(x'), in
M, is given by (29) where a series expansion of the argument of
,5(x') around x has been performed.

of one and the same point P of the curved manifold, which is
arbitrary: VP € M.

The Jacobian matrix of the inverse coordinate trans-
formation (25) is given by

Bi(x) = <8i> = 554 () (26)
u Ok TV ANTIC IR

The gauge functions y* obey the homogeneous Laplace-
Beltrami equation in the new harmonic coordinate
system {x"*}

g ()" () =0, (27)

where ¢’ (x) is the new metric tensor in the new harmonic
coordinate system. The inverse coordinate transformation
(25) is frequently used in the literature. Here it is emphasized
that the gauge functions ¢*(x) in the old harmonic system
{x%} have to be distinguished from the gauge functions
x%(x') in the new harmonic system {x"*}. However, the
gauge-independent terms of the metric tensor remain unaf-
fected by a coordinate transformation, that means one is free
in choosing either (22) or (25), albeit one has to state clearly
which of them is used. Here, throughout this investigation,
the coordinate transformation (22) is used and the inverse
coordinate transformation (25) will not be applied.

Let us now consider how the metric tensor and the gothic
metric density transform under an infinitesimal gauge
transformation (22).

A. The residual gauge transformation
of the metric tensor

The covariant components of the metric tensor transform
as follows [54,56-58,60] (e.g., Eq. (11.10) in [56])

ox"ox® , |

gaﬁ(x) - WWQ/AU(X ) (28)
The arguments on the left-hand side (1.h.s.) and right-hand
side (r.h.s.) in Eq. (28) refer to one and the same point P of
the physical manifold M, that means x' = x/(P) and x =
x('P) denote the four-coordinates in both systems but of one
and the same point P of the physical manifold, which is
arbitrary: VP € M. By inserting (22) into (28) and
performing a series expansion (recall that the residual
gauge transformation is infinitesimal) of the metric tensor
on the rh.s. around the old coordinates {x} of the same
point P of the physical manifold, one obtains (cf. Egs.
(11.11a)~(11.11c) in [56])

Jop = Gop + V"« Gp + O 5 Goa + O a®’ p G
©
B 0" D+ )Y G 8
n=1""

(29)

where all expressions are functions of one and the same
argument x = (ct,x). It should be noticed that this relation
is not general-covariant but Lorentz-covariant, in line with
the fact that the general-covariance of the field equations (6)
is lost when they are expressed in harmonic reference
systems: the exact field equations (13) are only Lorentz-
covariant. For some reflections about the general-covariant
gauge transformation of the metric tensor see Sec. III C.
The harmonic coordinates x’* on the Lh.s. in (22) are
curvilinear harmonic coordinates in the flat background
space-time, while the harmonic coordinates x* on the r.h.s.
in (22) are chosen as Minkowskian coordinates in the flat
background space-time , hence the partial derivatives in
(29) are just flat-space partial derivatives of Minkowskian
coordinates. The partial derivatives in (29) would have to
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be replaced by flat-space covariant derivatives if one would
use curvilinear coordinates in the flat background space-
time; cf. text above Eq. (1.1) in [56], text above Eq. (1.13a)
in [56] as well as text below Egs. (11.11a)—(11.11c) in [56]
and see also Box 18.2 D in [54]. Further mathematical
insights can be found in Section 7.1 in [59].

The gauge dependent degrees of freedom in (29), i.e., all
those terms which depend on the gauge functions, are
redundant in the sense that they have no impact on physical
observables. That means, the two different metric tensors
Gup(x) and gop(x) in (29) describe one and the same
gravitational system. Accordingly, the residual gauge
freedom (22) permits to identify and to isolate nonphysical
degrees of freedom hidden in the old metric tensor g,4(x)
which allows to arrive at considerably simpler form for the
new metric tensor g,s(x).

B. The residual gauge transformation
of the metric density

The gothic metric (9) is a tensor density of weight
w = —1 and transforms as follows [54,56-58,60,77,78]
(e.g., Eq. (4.4.4) in [77]),

_/a/}(x/) 1 Ox'* Ox'P
g ~ )] ox ox*

7" (x), (30)
where J(x) is the determinant of the Jacobi matrix (23),
J = det(A%) = eTrn A, (31)

where the second relation in (31) is a theorem which allows
to compute the determinant [79] and which can be proven
by Schur’s matrix decomposition. One obtains

1

1 1
m =1- gog,o' +_§06,a) (/J(U,O' +_§06,6(pw.w + O((p3)’

2 2
(32)

which is sufficient for our investigations in the post-linear
approximation. The arguments on the Lh.s. and r.h.s. in
Eq. (30) refer to one and the same point P of the physical
manifold M, that means x' = x'(P) and x = x(P) denote
the four-coordinates in both systems but of one and the
same point P of the physical manifold, which is arbitrary:
VP € M. By substituting (22) into (30) and performing a
series expansion (recall that the residual gauge transforma-
tion is infinitesimal) of the gothic metric on the 1.h.s. around
the old coordinates {x}, one obtains

1

g = i (W AR S T S A cDﬁ,v?"”)

00 1_
=D i w0 (33)

n=1

where all expressions are functions of one and the same
argument x = (ct,x). It should be noticed that this relation
is not general-covariant but Lorentz-covariant, in line with
the fact that the exact field equations in harmonic coor-
dinates (13) are only Lorentz-covariant; some comments
about the general-covariant gauge transformation of the
metric density are given in Sec. III C. The reason of why
there are flat-space partial derivatives of Minkowskian
coordinates in (33) is the same as described in the text
below Eq. (29).

Like in case of the metric tensors, the old gothic metric
g (x) and the new gothic metric 7*(x) in (33) describe
one and the same gravitational system; cf. text below
Eq. (7.14) in [59] and Theorem 4.5 in [47]. The gauge
dependent degrees of freedom are redundant in the sense
that the gauge terms in (33) have no impact on physical
observables. Nevertheless, the gauge-dependent terms have
to be treated carefully because they allow to transform the
old gothic metric density into a considerably simpler form.

C. Some comments on the general-covariant
gauge transformation

The gauge transformation considered above in
Secs. III A and III B is Lorentz-covariant and can therefore
be expressed in terms of partial derivatives. A general-
covariant gauge transformation must necessarily be given
in terms of Lie derivatives £; acting on the metric tensor
along a vector field & which is a general-covariant differ-
ential operation [80]. Such a general-covariant gauge
transformation has been developed during the last two
decades [81-94]. It might be constructive to make some
comments about the general-covariant gauge transforma-
tion and its relation to the Lorentz-covariant residual gauge
transformation considered in the Secs. IIT A and III B.

In the investigations [81-94] the metric tensor is separated
in the form g,; = ggﬂ + hgp, which generalizes (1) because
the background metric gg/, of the curved background
manifold M, is not simply the flat Minkowskian metric,
but can be the Schwarzschild metric or the Kerr metric or the
Friedmann-Lemaitre-Robertson-Walker metric or some
other curved space-time. The dynamical degrees of freedom,
hqg, are governed by field equations which are obtained by
inserting the decomposition g,; = ggﬁ + h,4 into Einstein’s
equations (6) describe a tensorial field 4,3 which propagates
in the curved background space-time M, endowed with the
background metric g),.

The general-covariant formalism distinguishes between
the physical manifold M covered by four-coordinates y*
and endowed with metric g,4, the background manifold
M, covered by four-coordinates x* and endowed with
background metric gg/,, and a diffeomorphism and

inverse diffeomorphism between these manifolds, namely
¢:My— Mand ¢y~ : M — M,, respectively; see Fig. 2.
The diffeomorphism ¢ maps each point p € M, to another
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" 24 = ap () + hyg®)
($ow) 8 = ggﬁ(x) + 5 ®

FIG. 2. A geometrical representation of the general-covariant
gauge transformation. The physical manifold M is covered by
coordinates {y} and endowed with the metric g,4(y) which is a
solution of the exact field equations (6). The curved background
manifold M, is covered by coordinates {x} and endowed with
the metric ggﬂ (x). The diffeomorphism ¢ : M, — M (not shown
in the diagram) maps the curved background manifold to the
physical manifold, e.g. a point p € M, to a point u € M. The
inverse diffeomorphism ¢! : M — M, maps the physical mani-
fold to the curved background manifold, e.g. a point u € M to a
point p € M. The metric g,z(y) of the physical manifold M is
pulled back on the curved background manifold M, (active
coordinate transformation as given by Eq. (A.9) in [59]). The
pulled back metric is denoted by ¢*g,s and defined by
9ap(X) = gos(x) + hgp(x). The pulled back metric g,z(x) on
M, is physically equivalent to the metric g,4(y) on M, that
means: if the metric g,;(y) is a solution of the exact field
equations (6) on the physical manifold M, then h,3 = ¢*gop —
ggﬁ will be a solution of the exact field equations in the curved

background manifold M. The set of diffeomorphisms ®;! =
(¢pow,)~" maps the same point u € M of the physical space-
time M to a set of points g, € M, of the curved background
space-time M, where y,. represents a family of diffeomorphisms
which are distinguished by the parameter € and which are acting
on the curved background manifold and generated by a gauge
vector field £. The composition of the diffeomorphisms v, with ¢
implies a family of pulled back metric tensors @;g,; =
(¢ ow.)* gup Which reads gifﬂ) (x) = gos(x) + hffl; (x) in the same
chart {x}. The pulled back metric tensors g,;(x) and gg;) (x) in

M, are related by a gauge transformation which can be expressed
in terms of multiple Lie derivatives of g,4(x) in the direction of
the vector field &, that means gff/) = 3 05 LE Gup-

point u € M and, vice versa, the inverse diffeomorphism
¢! maps each point u € M to another point p € M,
(cf. Figure 7.1 in [59]). The diffeomorphism allows to pull
back the metric tensor g,4 from M to M, which is given
by an active coordinate transformation: ¢*g,s(x) =

DO g, (y) (cf. Eq. (A.9) in [59]). The metric g, in

0x% 9xP

M and the pulled back metric ¢*g,s3 in M, are physically
equivalent (cf. Section 7.1. in [59] and Section 7.1
in [95]) and the metric perturbation is defined in the
background manifold as follows: h,(x) = ¢*gys(x) —
ggﬂ(x) (cf. Eq. (7.10) in [59]).

Furthermore, the general-covariant approach of gauge
transformations considers a family of actively constructed
diffeomorphisms acting on the background manifold,
v, My — My, which maps each point p € M, to
another point g € M, (cf. Figure 7.2 in [59]). These
diffeomorphisms are distinguished from each other by
some parameter ¢ and they are generated by a vector field
&(x) acting on the background manifold; for explicit
expressions cf. Eq. (2.18) in [88] or Eq. (2.56) in [93].
The combination of the family of diffeomorphisms y, with
the diffeomorphism ¢, thatis ®, = ¢ oy, leads to a family
of diffeomorphisms ®,: My, —- M and its inverse
®;!': M — M,. This family of diffeomorphisms allows
to pull back the metric tensor from the physical manifold
to the background manifold which implies a family of
metric perturbations defined on the background mani-

fold, h5) (x) = ®rgs(x) — g)s(x) (cf. Eq. (7.11) in [59]).
The dependence of the metric perturbation on the parameter

g, that reflects the dependence of the metric perturbation
on the vector field &(x), is called gauge freedom: each

member of the family of metric perturbations hf;}) is

physically isometric (physically equivalent) to each other
and any of them describes the same physical system (i.e. all
observables are unchanged).

This geometrical approach leads in a natural way to the
gauge transformation of the metric tensor in terms of
multiple Lie derivatives acting on the metric tensor along
the gauge vector [81-94]. The active coordinate trans-
formation can be rewritten in terms of a passive coordinate
transformation which relates the four-coordinates of one
and the same point ¢ € M, of the background manifold,
x*(g) and x"(q), in two different charts the background
manifold M; explicit calculations and expressions up to
the third-order of the perturbation theory are given, for
instance, in [93]. In this way one arrives at a general-
covariant gauge transformation of the metric tensor in
terms of Lie derivatives by means of a passive coordinate
transformation.

In order to make a bridge between the general-covariant
approach in [81-94] and the Lorentz-covariant approach
described in Secs. III A and III B, one would have to
assume a flat background metric, ggﬂ = 14, and one would
have to use harmonic reference systems as well as to
impose the Laplace-Beltrami condition (24) for the gauge
vector. In this way one would finally arrive at a Lorentz-
covariant residual gauge transformation in terms of Lie
derivatives and based on passive coordinate transforma-
tions. But it should be emphasized that the results of such
an approach would not differ from the Lorentz-covariant
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residual gauge transformation considered above, because
the physical content of the gravitational system is com-
prised in the gauge-independent metric perturbation and,
therefore, is independent of whether the Lorentz-covariant
gauge transformation in terms of partial derivatives or in
terms of Lie derivatives is applied. Here, the Lorentz-
covariant residual gauge transformation in terms of Lie
derivatives will not further be exposed, because the
multipolar post-Minkowskian (MPM) formalism actually
uses relation (29) and the series expansion (35) which,
subject to the Laplace-Beltrami equation (24) yields finally
the sequence of differential equations (54)—(56) for the
gauge functions, which will be used in what follows.

IV. THE POST-MINKOWSKIAN EXPANSION
AND GAUGE TRANSFORMATION

A. The post-Minkowskian expansion
of the metric tensor

In the weak-field regime the old metric tensor g, in the
old harmonic system {x*} can be expanded in powers of
the gravitational constant,

PM
ga/} - na/i + Z G" ar;j ’ (34)

which is called post-Minkowskian (PM) expansion. Each

individual term hg;}PM) is invariant under Lorentz trans-

formations; cf. text below Eq. (3.527) in [58]. The residual
gauge transformation (22) from the old harmonic coordi-
nate system {x®} to a new harmonic coordinate system
{x'*} is assumed to admit a series expansion in powers of
the gravitational constant (cf. Eq. (4.23) in [47]),

X = x Z Gn(pa(nPM) (x)’ (35)

n=1

where @M ; — O(hZ(HPM)) and each individual term

»*™M) s a Lorentz four-vector. In what follows the total
sum @* is called gauge vector, while the individual terms
™) are called gauge functions. These gauge functions
»“™M) o any order of the perturbation theory are governed
by a sequence of equations which are given below by
Egs. (54)—(56).

The coordinate transformation (35) transforms the old
metric tensor (34) in the old harmonic system {x“} to the
new (primed) metric tensor in the new harmonic system
{x'*}, and its post-Minkowskian expansion reads

ga/j ’7(1/)’ + Z G"h nPM / . (36)

By inserting the post-Minkowskian expansions (34)—(36)
into (28) and performing a series expansion of (36)

around the four-coordinates x“, one arrives at the post-
Minkowskian expansion of the gauge transformation of the
metric perturbation,

an (nPM) ZGn( (nPM) +8 ar;PM _’_Q(nPM)’ (37)

where all terms are given in the harmonic system {x}. The
equation (37) is nothing else than equation (29) expressed
in terms of a series expansion in powers of the gravitational
constant.

The gauge terms B(paﬁ have the following structure,

a0 = o ™+ 0 e (38)

which are called linear gauge terms since they are linear

in the gauge functions. The gauge terms Q((II;,P M)

nonlinear gauge terms since they contain either products of
gauge functions or products of gauge functions and metric

perturbations. One may obtain a closed expression for

QU™ from Eq. (29) and using Egs. (34) and (35). Here it

is sufficient to consider only the first two orders, given by

are called

1PM)

o™ =o, (39)
ngPM) _ h lPM) ( M) B! /(IPM) 4 y(ﬂlPM)
1 1 (1

4 hgf/jpll\jl) v(1PM) + ¢ (aPM)(p ,(ﬁPM>’1ﬂw (40)

while the higher orders n > 3 are not relevant for our

investigations. The linear 1PM term &pggM) is in agree-

ment with Eq. (21) in [82], while the linear 2PM term

7 i,P ™) and the nonlinear 2PM term Q(;P ™ are in agree-

ment with Eq. (22) in [82] (to verify that agreement one has
to adopt a flat background metric in [82]).

B. The post-Minkowskian expansion
of the gothic metric density

The weak-field regime admits a series expansion of the
gothic metric in powers of the gravitational constant
[47,51,56,58,60] (cf. Eq. (1.1) in [47], Eq. (9.5) in [56]),

7 (x) = ¥ - ZG" (41)

which is called the post-Minkowskian expansion of the
gothic metric. The post-Minkowskian expansion (41)
implies a corresponding post-Minkowskian expansion of
the expressions (14) and (15),

% =T 4 Z G"T’(Xf PM)* (42)
n=1
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T Z G"z?fPM). (43)
n=1

Taking account of (3), inserting of (41)—(43) into (13)
yields a hierarchy of field equations,

167
7ap o
Doy = =~ T%. (44)
167r
af ap ap
Oh e, A ( Taem) T t(lPM))’ (45)

. 167z
af _ af ap
DAy = = o (T((n—l)PM) + t((n—l)PM))' (46)

The sequence of field equations (44)—(46) is invariant under
Lorentz-transformations. The post-Minkowskian expan-
sion (41) of the gothic metric inherits that the harmonic
gauge (8) must be satisfied order by order for the metric
perturbation (cf. Eq. (4.6b) in [47]),

(Riypay () ;=0 forn=123....  (47)
As discussed above, the harmonic gauge condition (47) still
allows for a residual gauge transformation (35). The post-

Minkowskian expansion of the new gothic metric in the
new harmonic coordinate system {x"*} reads

[5e]

P = =D GG (). (@)

n=1

By inserting the post-Minkowskian expansions (41) and
(48) as well as (35) into (30) and performing a series
expansion of (48) around the four-coordinates x“*, one
arrives at the post-Minkowskian expansion of the gauge
transformation of the gothic metric perturbation,

ZG" o ZG"( o+ 0oy + )+ (49)

where all terms are given in the harmonic system {x} on the
flat background space-time by Minkowskian coordinates
x = (ct,x ). The Eq. (49) is nothing else than Eq. (33)
expressed in terms of a series expansion in powers of the
gravitational constant.

The gauge terms 6(,0 My Tead

” PM PM PM
0G gy = "5 +¢ﬂ,54“ e — g™ (50)
which are called gothic linear gauge terms since they are
linear in the gauge functions. The gauge functions ¢®""M)
are governed by a sequence of equations, which will be
considered below; cf. Egs. (54)—(56). The gauge terms

Q?f pM) re called gothic nonlinear gauge terms since they

contain either products of gauge functions or products of
gauge functions and gothic metric perturbations. One may

obtain a closed expression for Q'(’ﬂ M) from Eq. (33) and

using Eqgs. (41) and (35). Here it is sufficient to consider the
first and second order, given by

Q¥

(1PM) = =0, (51)

Q?fPM) to (”IPM) I (¢u(1PM) }_’,(%M)),y
- % (co”,(y]PM) o UM — MS:PM)(pD,(JPM))”aﬁ
- (Pof(ﬂlPM ( /I;ﬂPM + a(pylPM )
=" (W) + 00l )- (52

while the higher orders n >3 are not relevant for our
investigations.

C. The equations for the gauge functions

The gauge functions are governed by Eq. (24) which can
also be written in the form (cf. Eq. (4.25) in [47])

7"(x) 9" u(x) = 0. (53)

By inserting the post-Minkowskian expansion of the
gothic metric (41) and of the gauge function ¢*(x) =

| G"p“™™)(x) into the Laplace-Beltrami equation
(53) one obtains a sequence of equations for the gauge

functions ¢*™M) given by
D(pa(lPM) =0, (54)
v 1PM
OgPM) — h}(thM)(p af )’ (55)
n—1 _ ( PM)
D) = Z Mm@ (30)

where 71’{” w)(x) are the terms of the post-Minkowskian

expansion (41) of the old gothic metric g (x) in the old
harmonic system {x*}. This sequence of equations allows
us to determine the gauge functions to any order in the post-
Minkowskian expansion.

V. THE MULTIPOLAR POST-MINKOWSKIAN
(MPM) FORMALISM

The multipolar post-Minkowskian (MPM) formalism
represents a powerful approach in order to determine the
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gothic metric g% external to the compact source of matter
in harmonic coordinates. The MPM formalism is a con-
siderable extension of previous investigations in [96-98]
and of the pioneering work [56]. The formalism has been
developed within a series of articles [47-52], where the
approach has thoroughly been described in detail; see also
the descriptions of the MPM formalism in subsequent
developments [99—-101].

The fundamental concept of the MPM approach is to solve
iteratively the hierarchy of field equations (44) ... (46) for the
gothic metric density in a sequence of three steps:

(i) solving the field equations in the internal near-zone
D; of the source in the post-Newtonian (weak-field
slow-motion) scheme; see Eq. (1) in [101] for a
concrete definition of what a post-Newtonian source
is. The internal near-zone is defined by D; = {(¢,x)
with |x| < r;} where R < r; < A, where R is the
radius of a sphere which encloses the source and 4 is
the wavelength of the gravitational radiation emitted
by the source. So the internal near-zone is a spatial
region which contains the interior of the source and a
region in the exterior of the source but much smaller
than the wavelength of the gravitational radiation
emitted by the source.

(ii) solving the field equations in the external zone D, of
the source in the post-Minkowskian (weak field)
scheme. The external zone is defined by D, =
{(t,x) with |x| > r,} where R <r, <r;. So the
external zone contains the entire spatial region in the
exterior of the source.

(iii) performing a matching procedure of both these
solutions for the metric tensor in the intermediate
near-zone D; N D, of the source, where both the post-
Newtonian expansion and the post-Minkowskian
expansion are simultaneously valid. The intermediate
near-zone is defined by D, nD, = {(t,x) with
r. < |x| < r;}. The definitions of the internal near-
zone D; and external zone D, are adjusted such
that the intermediate near-zone D; N D, is not empty.
The intermediate near-zone is a spatial region in the
exterior of the source but much smaller than the
wavelength A of the gravitational radiation emitted by
the source.

In what follows only those fundamental results of the
elaborated MPM formalism are considered which are of
relevance for our analysis. In particular, we will not consider
the specific issue related to the far-wave zone, where
so-called radiative coordinates and radiative moments V.
and U, are introduced, which are uniquely related to the
mass-multipoles M; and spin-multipoles S; via nonlinear
equations; cf. Egs. (6.4a)—(6.4b) in [99]. In the far-wave zone
only the transverse traceless projection of the metric pertur-
bation, hzg, is relevant because it contains the physical

degrees of freedom of the gravitational radiation field;
cf. Eq. (64) in [71]. That transverse traceless projection of

the metric perturbation has been given in several investiga-
tions in the 1PM approximation [71,101,102] (e.g., Eq. (64)
in [71], Eq. (66) in [101], Eq. (2.1) in [102]); note that

thPM) haﬂ 1y (of- Eq. (7.119) in [59]). Here, we will

not consider the transverse-traceless gauge but emphasize
that all the subsequent statements about the gothic metric
perturbation and about the metric perturbation are valid in the
entire region in the exterior of the source of matter.

A. The general solution of the gothic metric

In the MPM formalism the most general solution of the
gothic metric is called general gothic metric and denoted
by g2 (xy,) given in the general harmonic reference
System {Xgen} = (Clgen»Xgen)- According to Eq. (3) it is
decomposed in the flat Minkowskian metric and a general
gothic metric perturbation,

xgen) = 'Iaﬂ -

An important result of the MPM approach consists in a
theorem (Theorem 4.2 in [47]) which states that outside
the matter source the most general solution of the post-
Minkowskian hierarchy (44) ... (46) depends on a set of
altogether six STF multipoles [47,100-102] (cf. Eq. (62) in
[100], Eq. (50) in [101], Eq. (4.1) in [102])

gaﬂ gen( ]flaﬂ gen (xgen)‘ (57)

hPEN (X gen) chh‘i’,’f;“ UL WX Y0 Z,). (58)

where the square brackets denote a functional dependence
on these six STF multipoles. The MPM solution (58) is
the most general solution of Einsteins vacuum equations
outside an isolated source of matter. The STF multipoles
in (58) depend on the retarded time s, defined by

[Xgen|
Sgen = Igen — g:n ) (59)

which is the time of retardation between some field point
Xgen and the origin of the spatial axes of the general
harmonic coordinate system {xy,} [103]. As stated above
by Eq. (47), the harmonic gauge (8) is satisfied order by

order for the metric perturbation, which in terms of the
MPM solution is given by (cf. Eq. (4.6b) in [47]),

a Qj en
Wh<fpg1v[)[1LvJL’WLvXLvYL9ZL] =0. (60
gen

The MPM formalism is augmented by a matching
procedure described in detail in [99,101] which allows
us to determine these six multipoles as integrals over the
stress-energy tensor of the source of matter. For that
reason these multipoles 1;, J;, W, X;, Y;, Z; are
collectively named as the source multipole moments [99].
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In fact, such an explicit closed-form expression for the
set of these six STF multipoles has been derived by
Eqgs. (5.15)-(5.20) in [99]; see also Egs. (85)—(90) in
[100], Egs. (123a)—(125d) in [101].

B. Residual gauge transformation
of the general gothic metric

A further result of utmost importance of the MPM
formalism (Theorem 4.5 in [47]) is that there exists a
residual gauge transformation [cf. Eq. (35)],

X = X + > G "M (x,e,), (61)
n=I

which preserves the harmonic gauge (47) and which allows
us to write the general metric perturbation in (58) in the
following form,

a}
ZGn IIIPgI\(j[n I, Ty, Wi X, Y, 2]

- Z Gn( achl\iln ML’ SL] + 8(p (nPM) + Q?fPM)) (62)

where all terms depend on the four-coordinates xg.,, and the
STF multipoles depend on the retarded time sge, in (59).
The relation (62) is nothing else than relation (49)
expressed in terms of STF multiples of the MPM formalism
[104]. The relation (62) states that the general gothic metric
perturbation (58) in terms of six source multipoles is
physically isometric to the canonical gothic metric pertur-
bation (63) in terms of two canonical multipoles. That
means that the general gothic metric perturbation (58)
contains the same physical information as the canonical
gothic metric perturbation (63); see also text below Eq. (45)
in [100], text below Eq. (52) in [101], text above below
Eq. (4.26) in [102].
The term

B () ZG" DML (63)

on the r.h.s. in Eq. (62) is called canonical gothic metric
perturbation and
ga/ican (xgen) = 'I“’B - lflaﬁcan (xgen) (64)

is the canonical gothic metric. The multipoles M; and S;
are called canonical multipoles and they are related
to the source multipoles via two nonlinear equations
(cf. Egs. (6.1a)—(6.1b) in [99] and text below Eq. (45) in [99]),

ML:ML[ILvJL7WLvXL’YL7ZL]’ (65)

SL :SL[IL’JL’WL9XL’YL’ZL]’ (66)

which are of complicated structure; cf. Egs. (97) and (98) in
[101] for the case of L = i i, and L = i;i,i3. In view of the
highly involved structure of the relations (65)—(66) it seems
impossible to achieve an explicit closed-form expression for
the canonical multipoles M;, S; to any order of the
post-Minkowskian series expansion [99-101]. The gauge
terms on the r.h.s. in (62) depend, in the general case, on the
full set of all six STF source multipoles (cf. text below
Eq. (4.23) in [47]),

07 ongy (xgen) = OG- T W X1 Y1, Z1]. (67)

Q?fpm) (xgen) = Q(HPM) [1L7 J. Wi, X, Y, ZL] (68)

The explicit structure of these gauge terms will be consid-
ered below in the linear and post-linear approximation.
These gauge terms are functions of the gauge functions

goa(nPM) ('ngn) = §0a<an) [IL ’ JLv WL ’ XL? YL’ ZL} 4 (69)
governed by Egs. (54)-(56), which in terms of the STF

multipoles of the MPM formalism read (cf. Eqgs. (4.26)—
(4.27) in [47])

D(pa(IPM) =0, (70)
e = g g, )
n—1 (mPM)

D(pa(nPM) = Z h’({fi:)PMyptf wo s (72)

m=1

which are given in the harmonic system {xy, } and where
the general solution of the metric perturbations is given by
Eq. (58). The sequence of differential equations for the
gauge functions in (70)—(72) is nothing but the sequence of
differential equations for the gauge functions in (54)—(56)
expressed in terms of STF source multipoles.

C. The general solution of the metric tensor

The most general solution of the metric tensor in the
exterior of a compact source of matter is uniquely deter-
mined by the relation (cf. Eq. (D10) in Appendix D)

/= Aet (7 E) G gen- (73)

The terms on the r.h.s. of (73) are given by (57)—(58) and by
the isometry relation of the gothic metric [54,57,58]
(cf. Eq. (D4) in Appendix D)

Gapgen =

gadgengaﬁgen = 5;- (74)
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According to Eq. (1), the general metric tensor in (73) is
separated into the flat Minkowskian metric and the general
metric perturbation,

gaﬁ gen (xgen) = naﬁ + ha/i gen (xgen) . (75)

From (73) follows that the general metric perturbation
formally reads

np PM
a/)’gen gen ZG " IL’JvaL’XL’YL’ZL]' (76)

afgen

The square brackets denote a functional dependence on the
six STF source multipoles which depend on the retarded
time g, in Eq. (59). The Egs. (75) and (76) represent the
most general solution of Einsteins vacuum equations out-
side an isolated source of matter.

D. Residual gauge transformation
of the general metric tensor

The residual gauge transformation (61) allows us to
transform the general metric perturbation in the following
form,

N G RN, W XY 2]

n=1

— Z Gn( anﬂpczln ML’ SL] + 8(p;5PM + Q(nPM)> (77)

where all terms depend on the four-coordinates xg., and
the STF multipoles depend on the retarded time sge,
in (59). The relation (77) is nothing else than relation
(37) expressed in terms of STF multiples of the MPM
formalism [104]. The relation (77) states that if the source
multipoles and the canonical multipoles are related to each
other via Egs. (65)—-(66), then the general metric pertur-
bation on the Lh.s. of (77) and the canonical metric
perturbation on the r.h.s. of (77) are related by the residual
coordinate transformation (61). They are physically iso-
metric to each other and either of them contains the entire
physical information in the exterior of the gravitational
source of matter. The term

Z G" ar/lil:’(:?n ML’ SL] (78)

aﬁ can gen

on the rhs. in Eq. (77) is called canonical metric
perturbation and

YGap can (xgen) = Nop + ha/)’ca.n (xgen) (79)

is the canonical metric. The canonical multipoles M; and
S; are related to the source multipoles via Egs. (65)
and (66). The gauge terms on the r.h.s. in (77) depend,
in the general case, on the full set of all six STF source
multipoles,

8¢€1pr) (xgen) (9(0 (nPM) [ILa JL? WL! XLs YL? ZL]a (80)

Qa/}

”
Q (nPM)

(an)< en) = Up Jp. Wi, X1, Y1, Z ). (81)
The explicit structure of these gauge terms will be con-
sidered below in the linear and post-linear approximation.
They are functionals of the gauge functions (69) which are
determined by means of Eqgs. (70)—(72).

To simplify the notations, in all of the subsequent
sections, the four-coordinates of the general harmonic
System Xge, = (Clyen-Xgen) Will be denoted by x*=(ct.x).
This implies that the retarded time s4, in (59) is now
denoted by s =7 — |x|/c.

VI. THE GOTHIC METRIC DENSITY
IN POST-LINEAR APPROXIMATION

The post-Minkowskian expansion of the gothic metric
density in the second post-Minkowskian approximation is
given by [cf. Eq. (4)]

77 (1,x) =0 = G Wy (1) = GPhy (1,%) + O(GP).

(82)

In this section the linear term 7%

(1PM) and the post-linear

term h(2PM) are considered.

A. The linear term of the gothic metric density

The solution of the field equations in the first
iteration (44) reads

167

heP — (OR'T%)(1.x), (83)

(ipn) (15%) = =

where T% is the stress-energy tensor of matter and (! is
the inverse d’Alembert operator defined by Eq. (20). The
integration runs only over the finite three-dimensional
volume of the compact source of matter [47,48]. The
integral (83) is finite and has been determined in [48]
and has later been reconsidered in specific detail in [72].

According to the fundamental theorem (58) of the MPM
formalism, the most general solution for the 1PM term of
the gothic metric perturbation (83) in the exterior of a
compact source of matter depends on six STF source
multipoles and is denoted by h‘{{jpg&'; The residual gauge
transformation (61) in 1PM approximation transforms the

linear gothic metric perturbation ﬁ?fpgl\?;

form [47,48,56,99,101,102],

in the following

]jlt(z‘lﬂpgl\?[[;[lLv‘]Lv WL’XL’ YL7ZL]

- h?{}l’CISII; [ML’ SL] + 8@?115131\/[)(2‘, x)- (84)
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The canonical gothic metric in 1PM approximation for one
body at rest with full multipole structure is given by

A4S (-1 . M
hf(’?;;gl)(tx)=+—22( Vg, ML) g5

i (1.%) =

8 <= (-1)1 €ab(iSj)bL—2(S)
+?;(l+1)!a‘l“2 r - (87

The nonlinear relations (65) and (66) simplify in the 1PM
approximation as follows (cf. Egs. (6.2a)—(6.2b) in [99],
Egs. (4.25a)—(4.25b) in [102]),

M, =1, + O(G), (88)
S, =J. +O(G). (89)

The explicit expressions for the canonical multipoles M
and §; are given by Egs. (5.33) and (5.35) in [52] as
integrals over the stress-energy tensor of the matter source,
and they are represented by Egs. (Cl) and (C2) in
Appendix C. The linear gauge term in (84) is given by
[cf. Eq. (50)]

~a a(1PM 1PM a
o lﬁPM (t.x) =¢ (ﬂ )(t,x)ﬂ"ﬂ +g0ﬂ(,4 )(t,x)n”

— 'SP (1, x). (90)

The gauge function ™) is determined by Eq. (70). The
gauge function depends on four source moments,
PP (1,x) = " PMW X1, Y1, 7], (91)

and is given by Eqs. (5.31b) in [52]; see also Eqgs. (4.13a)—
(4.13b) in [99] or Egs. (3.560)—(3.561) in [58].

fz’(fzgi‘,}) (t,x) =—

B. The post-linear term of the gothic metric density

The solution of the field equations in the second
iteration (45) reads

167z

o) (1.%) = — 1 (FPp—lly W + 1) (x),  (92)

where 7% and 17 denote the first iteration of (14) and (15),
respectively, and FP_o[Jg! is the Hadamard regularized
inverse d’ Alembert operator defined by Eq. (F2); details of
the Hadamard regularization are given in Appendix F. The

expression of T“/ follows from (14) by series expansion of

the determinant. The expression of ¢ follows from (15) by
using the 1PM approximation of the gothic metric pertur-
bation; cf. Eq. (3.3) in [102].

According to the fundamental theorem (58) of the MPM
formalism, the most general solution for the 2PM term of
the gothic metric perturbation (92) in the exterior of a
compact source of matter depends on six STF source
multipoles and is denoted by h‘(lzp‘ﬁ; The residual gauge
transformation (61) in 2PM approximation transforms the

post-linear gothic metric perturbation ﬁ‘(fpgl\ir; in the follow-

ing form [47,52,99,102] (cf. Eq. (4.26) in [102])

E%jP%\?II;[IL? J. Wi, X, YL,ZL]

- h?é}]:](a/; My, S.) + 09, (pm) (1) + Q(sz)(”x)- (93)

The canonical gothic metric for a source of matter with
full multipole structure has not rigorously been determined
in the second post-Minkowskian (2PM) scheme thus far,
but in the following approximation (cf. Eqs. (2.28a)-
(2.28c) and Eq. (2.29) together with Eqgs. (2.18a) and
(2.5) in [51])

h9sen (1,x) = 14 <IZO: _ M.(s )>2 +0(c™),
(94)
i (1,x) = O(c), (95)
M (s) . (=1 M (s)
oL r )(aj; Al oL r )
)2 + O(c7). (96)
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These expressions are also in agreement with Eqgs. (3.5a)—
(3.5¢) in [61]; the agreement of the MPM formalism and
the Will-Wiseman approach has been explained in Sec-
tion 4.3 in [101]. In the second line of (96) we have used the
following relation [106]

2 (=1 M(s)\?
FPB=OD1;1<akZ( l,)aL Lr( )>

=0

© 1)\l s
:%<§flPaﬁm‘§2+0@4» (97)

=0 r

On the other side, the integral in the first line of (96) is
complicated because of the retarded time argument. Thus,
while the time-time components (94) are already given in
terms of multipoles, the spatial components (96) of the
gothic metric are associated with a complicated integration
procedure, FP_o[Jz!, consisting of the inverse d’ Alembert
operator and Hadamard’s regularization, which is explained
in more detail in Appendix F.

The spin-multipoles S; do not occur in (94)—(96)
because they are of the order O(c™®). A further comment
should be in order. In the solution of Eqgs. (94)—(96) terms
of the order O(c™, ¢, ¢~°) are neglected [107] while the
perturbations are presented in terms of the retarded time
argument, which is not further expanded in powers of the
inverse of the speed of gravity. So the solution in (94)—(96)
is a hybrid representation in the sense that it is mixing the
post-Minkowskian expansion (series in powers of G) and
the post-Newtonian expansion (series in inverse powers
of ¢). A good reason of such a representation is that the
expressions (94)—(96) adopt their most simple form. But
the main reason for the hybrid representation is that it
permits to avoid problems regarding the convergence of the
post-Newtonian expansion of the metric for noncompact
support; cf. text below Eq. (2.5) in [51]. In this respect we
recall that the source of matter is assumed to be compact,
but one has to keep in mind that the integral (92) gets
support inside and outside the matter source, that means it
acquires a non-compact support; cf. text below Eq. (21).

The nonlinear relations (65) and (66) simplify in the
corresponding approximation as follows (cf. Eq. (6.3) in
[99], Egs. (992)—(99b) in [101], Egs. (5.11a) and (5.11b)
in [102]),

M; =1, +O(c™), (98)

S, =J, +O(c). (99)

The explicit expressions for the canonical multipoles M
and §; are given by Egs. (5.33) and (5.35) in [52] as
integrals over the stress-energy tensor of the matter source,
and they are represented by Egs. (Cl) and (C2) in
Appendix C. The linear gauge term in (93) is given by
[cf. Eq. (50)]

x) = " (1) 4 S (1, x )

2PM
— T (1,2

0P (2PM) (1,
(100)

The gauge function ¢*?") is determined by Eq. (71). Its
solution reads formally (cf. Eq. (4.28) in [47])

") (1,x) (e ™ ™) (1, x)

= FPy_ o' (1PM)

(101)
where FPz_o[Jz! is the Hadamard regularized inverse
d’Alembertian (F2). The formal solution (101) leads to

(ﬂa(2PM) (l,x) = ¢(1(2PM) [IL’]L’ WL,XL, YL! ZL]’ (102)

that means the gauge function ") depends on the full

set of the STF source moments. The explicit expression for
the gauge function in (102) is complicated, but we will not
pursue it here because one may show that
5 6 -5 -
0P (1) = O(c ™8, 7%, ¢70), (103)
which is of the same order of the neglected terms in the
canonical gothic metric perturbation in (94)-(96). The
nonlinear gauge term of the coordinate transformation
reads [cf. Eq. (52)]

~aff

oy (1:%) = 0, (104)
A 1PM 1PM v
Oy (1.%) = 0™ (1.20) V™ (1.2

+ (@M (1 x) R (1.%) |

a(1PM) can —
— g™ (1) (R (1) + 0oy (£.))
1 @ can —ua
— 3 (1,3) (R (1,3) + 03y ()
1 v
+ 5™ (1) ™ (1
1
(IPM)( ’x)(pl/’(l}PM) (t, x)]’]aﬁ,

2(1’ H
The gauge function ¢*("™) on the rh.s. in (105) depends
on four source multipoles [cf. Eq. (91)] and is explicitly
given by Eqgs. (5.31b) in [52]; see also Egs. (4.13a)—(4.13b)
in [99] Or Egs. (3.560)—(3.561) in [58]. The gauge
term ago 1PM) is given by Eq. (90), while the 1PM canonical

(105)

gothic metric perturbation fz?lﬂlfh‘zr; has been given by

Eqgs. (85)—(87). It has been checked that one would obtain

the same non-linear gauge term Q( as given by

2PM)
Eq. (4.7a) in [102] if one would use the residual gauge
transformation (25) instead of (22) and if one would series-
expand the gothic metric in the system {x'} which then
would have to be endowed by Minkowskian coordinates.
Here it should be emphasized again that the canonical piece
of the gothic metric density (and of the metric tensor) is

gauge-independent, hence is independent of whether one
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uses the residual gauge transformation (22) or (25) (cf. text
below Eq. (27)).

VII. THE METRIC TENSOR IN POST-LINEAR
APPROXIMATION

The post-Minkowskian expansion of the metric tensor up
to terms of the order O(G?) is given by [cf. Egs. (1) and (2)]

Nap + G'hy " (2.%) + G2h™ (1,3) + O(GP).
(106)

gaﬁ(t?x)

In this section the linear term hfl},P M)

hszM) of the metric tensor are considered.

and the post-linear term

A. The linear term of the metric tensor

In order to determine the linear term hflf M)

the following relation between

of the metric,

h(lPM) _ h;w

1-
ap (1w = 5 ey Mg (107)

where fz(lpM) = nﬂyﬁf‘pr). The relation (107) allows to
determine the covariant components of the metric tensor
from the contravariant components of the gothic metric in
1PM approximation. By inserting Eq. (84) into Eq. (107)
with the expressions in (85)—(87) and (90), one obtains the
general solution for the metric perturbation in the 1PM
approximation,

1PM
h!(lﬁgerz[ll‘",ln WL’XLa YvaL]
1PM (1PM)
= hgzﬁcan) M.S.]+ a%/; (t,x). (108)

The linear term of the canonical metric perturbation for
one body at rest with full multipole structure is given by

2 (-1 .M
) =+ 250 0, M) 10

(111)

In order to get (109)—(111) we made use of the property that
M;; = 0 since the multipoles are tracefree, as well as of the
identity eab(,Sl)bL_z = 0 due to antisymmetry of the Levi-
Civita symbol and the symmetry of multipoles. One may
verify that Egs. (109)—-(111) agree with Eq. (2) in [108]; just
use the decomposition of the metric tensor as given by
Eq. (A.1) in [108] and apply the orthogonality relation of
the metric tensor in 1PM approximation. The gauge term in
(108) reads [cf. Eq. (38)]

Opg " (1.2) = @™ (0.2 + 05 (X (112)
where the gauge function ™) on the r.h.s. in (112) is
governed by Eq. (70). The gauge function depends on four
source multipoles [cf. Eq. (91)] and its explicit form is
given by Egs. (5.31b) in [52]; see also Eqgs. (4.13a)—(4.13b)
in [99] or Egs. (3.560)—(3.561) in [58].

B. The post-linear term of the metric tensor

In order to determine the post-linear term h(ZPND of the
metric, the following relation between the metric and
gothic metric is used, which is shown in Appendix E
(cf. Eq. (1.6.3) in [60]),

(2PM) _ 7uv 1- 1.
h(l/" h/;ZPM)nrlﬂn/iu - 5 h(ZPM)ﬂa/i + g h%] pM)naﬁ
s MY 7pU TUC
) h(IPM)h;(lIPM)ﬂaﬂn/ﬁ/ + h/(IPM)hI(lIPM)”MD’//a/)n/}(;
1 -
= 2 e Tenn T oM (113)

where /opy) = ”ﬂvﬁlgpm)' The relation (113) allows to
determine the covariant components of the metric tensor
from the contravariant components of the gothic metric in
2PM approximation. By inserting Eqgs. (84) and (93) into
(113) with the expressions in (85)—(87) and (90) as well
as (94)-(96) and (100) and (105), one obtains the
general solution for the metric perturbation in the 2PM
approximation,

2PM
hfxﬁgeg [ILv‘]L’WLaXLaYL’ZL]

2PM 2PM
= ht M, S,] + 09l ™ (1.x) + Q™ (rx). (114)
The post-linear term of the canonical metric perturbation

for one body at rest with full multipole structure reads

00 _1\/ s
Mo (1:%) = —%(Z( z}) aL—MLr( ))2+0(c-6),
=0 .
(115)
hiyow (1) = O(c™), (116)
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(2PM) 4 _ = =
Ryjcan (tvx)——?FPB:ODRI <&Z N ) (812

=0

1=

The spatial components (117) of the metric tensor are
associated with an integration procedure, FPp_o(J3!,
consisting of the inverse d’Alembert operator and Hada-
mard’s regularization, which is explained in Appendix F.
The canonical mass-multipoles M; are given by
Eq. (5.33) in [52] as integrals over the stress-energy
tensor of the matter source; note that there are no spin-
multipoles in (115)—(117) because they are of the order
O(c™®). The linear gauge term in (114) is given by
[cf. Eq. (38)]

(2PM)

‘9fl’aﬁ 4(2PM)

)(t .X')?’]ﬂﬂ + (ﬂ B ( ’x)r]/m’

(118)

(1, x) = T

where the gauge function p*?"™) on the r.h.s. in (118) is
governed by Eq. (71). Its explicit form is formally given
by Eq. (101) and depends on all six STF source multi-
poles; cf. Eq. (102). That explicit expression for the
gauge function in (118) is complicated and we will not
pursue it here because one may show that

D™ (1.x) = O(c6, 73, ¢7), (119)
which is of the same order of the neglected terms in the
canonical metric perturbation in (115)-(117). The non-
linear gauge term in (114) reads [cf. Eq. (40)]

. = M (1,0) 0 G™ (1,x)

uff can
+ hiten (1.3)¢" ST (2.x)

+ R (1,3) P (1, x)

aﬁcanlz
1PM L(1PM
+ ™ 2™ (. (120)
The gauge function @*'™) on the rh.s. in (120) is

formally given by Eq. (91) and explicitly given by
Egs. (5.31b) in [52]; see also Egs. (4.13a)—(4.13b) in
[99] or Egs. (3.560)—(3.561) in [59]. The linear gauge

is given by Eq. (112), while the cano-

(1PM)
aff can

term Ggat(xlﬂPM)

nical linear metric perturbation #h
Eqgs. (109)-(111).

is given by

VIII. STATIONARY SOURCES

In many applications of general theory of relativity it is
possible to neglect the time-dependence of the matter
source and to consider a stationary source, defined by

> L(s)\? _
0 )+ 51,@0: T > +0(c™®).
(117)
™ o =0, (121)

that means an approximation where the stress-energy tensor
is only a function of the spatial coordinates in the harmonic
reference system. The condition (121) does not necessarily
imply that the source of matter is static. Namely, a static
source implies that there is no motion at all inside the
source of matter, while a stationary source only requires
that motions of matter (e.g., inner circulations) have to be
time independent. Stated differently, for static sources not
only Eq. (121) holds but in addition 7% = 0, while for
stationary sources 7% = const # 0 is possible. The metric
of a stationary source is time independent,

g(l/},O = 07 (122)

that means the metric tensor depends only on spatial
coordinates. Let us notice that for a stationary metric gg; =
const # 0 is possible, while for a static metric gyp; = 0
(cf. Eq. (56.02) in [57]). In the stationary case the post-
Minkowskian expansion of the metric tensor up to terms of
the order O(G?) reads [cf. Eq. (5)]

ap () =1+ G RN () + G () +O(GP). (123)

In this section the linear term hl},P M)

term hflﬂ M)

and the post-linear

are considered.

A. The linear term of the metric tensor
for stationary sources

According to Eq. (108) the residual gauge transforma-
tion of the 1PM terms of the metric perturbation for
stationary sources reads

1PM
hgl[igerz [IL“]Lv WL’XL’ YL’ ZL]

= h(IPM)[ML7SL] + 8()0(1}}1)1\4 (X),

af can

(124)

where the source multipoles 1;,J;, W, X;, Y, Z; and the
canonical multipoles M;, S; are time-independent now.
For the time-independent canonical multipoles one obtains
from Egs. (C1) and (C2) in Appendix C (cf. Egs. (5.33)
and (5.35) in [52]),

(125)
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T

SL = STFL / d3x56L_1€iljkx/—. (126)
c

For stationary sources the canonical metric perturbation
in (124) simplifies considerably. From Egs. (109)—(111)
one obtains

h(()Ocan( ) c T B (127)
=0
(1PM) 4 (=D Spr-1
hOzcan (x) ;ZZZ] (l + 1),€mb8aL—1 s (128)
(1PM) 2 (-1, M,
hzjcan ( ) _zéi.iz [T aLT (129)

This is the linear term of the canonical metric in case of a
stationary source. The gauge term OqofxlﬁpM) in(124)isgivenby

Oy () = @™ )+ 95" @ (130)
which depends on the gauge function @™ deter-
mined by

Ag®PM) (x) = 0, (131)

which follow from (70) in the case of time-independence of
the gauge functions; A = 0,0, is the flat Laplace operator

epm), 4 40N
hijcan (X) - _?FPB:OA ((’9)6,»12:0:

This is the post-linear term of the canonical metric in case
of a stationary source. The spatial components of the
canonical post-linear metric in (136) are associated with
an integration procedure via the Hadamard regularized
inverse Laplace operator, FP;_,A~!, defined by Eq. (G2).

The gauge term 8go£¥2ﬂPM> reads

1(2PM)

2PM 2PM
o™ () = ¢ O + 5 e (137)
ich is time-i a(2PM) _
which is time-independent, that means ¢, =0. The

gauge term 8go((ijM) depends on the gauge function ¢®?"M)
which is determined by the equation

A(pa(ZPM) (x) = Jplgen (x) a(1PM) (x).

(1PM) Lij

(138)

a(1PM)

and the gauge function is time-independent: ¢ =0.
This gauge function is formally given by
(pa(lpM)<x) = [WL’XLv YL7ZL]’ (132)

that means it depends on four STF source multipoles which
are time-independent now. An explicit expression of (132)
canbededuced fromEqgs. (5.31b)in [52] by taking the limit of
vanishing time argument.

B. The post-linear term of the metric
tensor for stationary sources

According to Eq. (114) the residual gauge transforma-
tion of the 2PM terms of the metric perturbation for
stationary sources reads

2PM
hgz/)’gerz[IL’JL’ Wi, X, Y, ZL]

_ p2PM)

M. 8]+ 09 () + Q5 (x),  (133)

where the source multipoles I;, J;, W, X;, Y, Z; and the
canonical multipoles M, S; are time independent now. For
stationary sources the canonical metric perturbation in (133)
simplifies considerably. From Eqgs. (115)—(117) one obtains

iy (%) = —34 <§: (_;)l oL @)2 +0(c™),  (134)

hiyo (x) = O(c™), (135)
(=1 M\ [0 (-1) M,
o) (e )

>2 + O(c79) (136)

as it follows from (71) in the limit of time independence of
the gauge functions; A = 0,0, is the flat Laplace operator.
A formal solution is provided by

. —1/7ijgen a(lPM
@™ ™) (x) = FP,_oA ‘(h<’1§§4)6p_,~<j @),

(139)
where FPz_oA~! is the Hadamard regularized inverse
Laplacian defined by Eq. (G2). This gauge function is
formally given by

(pa(ZPM)(x) =, I, Wi, X, Y1, Z; ], (140)

that means it depends on all the six STF source multipoles
which are time independent now. The explicit expression
for the gauge function in (140) is complicated but not
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relevant because of (119). The nonlinear gauge term Qi@PM)

in (133) reads

puffcan
+ hﬂtlll;/{l (x) fP

1PM 1PM
ol )(X)¢,,§ )

2PM
sz/i ) (x)

) () 1PV (x)

(141)

()5

and depends on the gauge function ¢*'™)(x) which is
formally given by Eq. (132); for an explicit expression see
text below that equation. Let us recall that the metric

perturbations and the gauge functions in (141) are time-

independent: hsﬁihfn o =0 and (pO“’M) 0.

In summary of this section, Eq. (124) with (127)-(129)
and Eq. (133) with (134)—(136) represent the metric
perturbation in the second post-Minkowskian approxima-
tion for one body at rest as function of the time-independent
multipoles M; and S;. The mass-multipoles M; in (125)
allow to describe an arbitrary shape and inner structure of
the body, while the spin-multipoles S; in (125) allow to
account for stationary currents of matter, like circulations of
matter inside the body or stationary rotational motions of
the body as a whole.

C. Monopole and spin and quadrupole terms
of 2PM metric for stationary sources

The metric in 2PM approximation of an arbitrarily
shaped body is considered, where the monopole and spin
and quadrupole terms of the metric tensor are taken into

account. The expressions for the monopole and spin and
quadrupole follow from (125) and (126), viz.
TOO Tkk
M_/d3x+, (142)
¢
\ 0k
Si= | dxejjx! —, 143
i / XEijrX c ( )
2
(ZPM) o 1 M 4 A~ MMab
hiiean (X) = pray (gfsij + 1y +W
MM (75 . 90
+ 46 \ g MMiabed T 7

16

TOO Tkk
Mab = / d3x£ab+»
C

where the integrals run over the three-dimensional
volume of the body, and %, = x,X, — % |x[*5,,. The mass-
dipole terms are not considered here, because they can be
eliminated, M; = 0, by an appropriate choice of the coordinate
system [origin of the spatial axes are tied to the center of mass of
the source; cf. comment below Eq. (C7)].

(144)

1. The 1PM terms of canonical metric perturbation

From Egs. (127)—(129) one immediately obtains the
IPM terms of the canonical metric perturbation:

IPM 2M 3 a,My,
h(()Ocan)<x) = ?74—? P (145)
1PM 2 Sb
h(()ican)< ) = ?eiabna?a (146)
2 M 3 n,M
PPy = 2 sy 2 TabPab s 147
ijcan (x) 02 r 3] +C2 r3 t ( )

These expressions are in agreement with Egs. (1)-(2) in
[109]. It should be noticed that 71,,M ,, = n,,M ,;, because
of the STF structure of the multipoles.

2. The 2PM terms of canonical metric perturbation

From Egs. (134)—(136) one obtains the 2PM terms of the
canonical metric perturbation:

83 .
+ Enadébcéij + 5= 35 0acOpadij + — 1 Racd(i0j)p — 51 Mali 167)cOpa

10 23

+ ﬁéciédjﬁab - E‘sh(iéj)cnud 35

A

M), 2M* MM,
hOOCan( ) - _?7 - C47‘4 ngp
MM, (3 8. . 9,
T A6 <g 84cOpa + 75ac"bd + Enabcd>
+ O(c™), (148)
Han (%) = O(c™5), (149)
15, 32 . 12,
(7 Nijap + 75ij”ab - 75a(i”j)b)
27 25 |
RjijacOpa + 75 1 Aapeadij 8—4nij5ac5bd
18 5.
6
7z aadp(i0; ) + O(c™ ) (150)

where the details of the calculations are relegated to Appendices H and I; for various careful checks see text below Eq. (I110)

in Appendix L.
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IX. SUMMARY

In this article four issues have been considered:

€]

(@)

3

A coherent exposition of the multipolar post-
Minkowskian (MPM) formalism has been presented,
where we have focused on those results of the MPM
formalism which are relevant for our investigations.
Special care has been taken about the gauge
transformation of the metric tensor and metric den-
sity. It has been emphasized that the canonical piece
of the metric tensor and metric density is gauge-
independent, hence is independent of whether one
uses the residual gauge transformation (22) or (25).
The Lorentz covariant gauge transformation and the
general-covariant gauge transformation and how they
are related to each other has been expounded in some
detail.

The MPM formalism has been used in order to
obtain the metric coefficients in harmonic coordi-
nates in the post-linear approximation in the exterior
of a compact source of matter,

Jop(X) =11 ﬂ+Glha;P3£n< >+Gla 0 (x)

+ 6295,3;’““ (x) + 0<G3>,

ap can

(151)

where x = (ct,x). The linear canonical metric per-

turbation 1™ is given by Eqgs. (109)—(111) and the

aff can
post-linear canonical metric perturbation hfﬂpxxf

given by Eqgs. (115)—(117) up to terms of the order
O(c™®, ¢,
Eq. (112), while the gauge terms 5‘(p ﬂ

is

c~%). The gauge term 8goaﬁ is given by

and Q(2PM>

are given by Egs. (118) and (120). The canonlcal
metric perturbations depend on the canonical mass
and spinmultipoles, M; and S} , which are functions of
the retarded time s = 7 — |x|/c. These multipoles are
given by Egs. (C1) and (C2), allowing to account for
arbitrary shape, inner structure, oscillations, and rota-
tional motions of the source of matter. The metric
tensor g,4(7,x) in (151) represents the most general
solution for the spatial region in the exterior of a
compact source of matter.

Furthermore, the metric of a stationary source of
matter has been considered,

Gap(X) = g + Gy (x) + G 0oLy (x)
+ G2 hi (x) + G2y ™ (x)
+G2QM (x) + O(GY). (152)
(1PM)

The canonical linear metric perturbation ., is
given by Egs. (127)—(129) and the canonical post-

linear metric perturbation hflﬁcan) is given by

Egs. (134)-(136) up to terms of the order
O(c™®, ¢, ¢™). The gauge term 8¢(1/3PM> is given
by Eq. (130), while the gauge terms &pazﬁPM
Q&PM) are given by Egs. (137) and (141). The
canonical metric perturbation depends on the
canonical mass and spin multipoles, M; and §;,
which are time-independent. These multipoles are
given by Egs. (125) and (126), allowing us to
account for arbitrary shape and inner structure as
well as inner stationary currents of the source of
matter. The metric tensor g,4(x) in (152) represents
the most general solution for the spatial region in the
exterior of a stationary compact source of matter.

(4) The spatial components of the canonical post-

linear metric perturbation are associated with an
integration procedure: in (151) by the inverse
d’Alembertian (F1) and in (152) by the inverse
Laplacian (Gl). That integration procedure has
been performed explicitly in (152), where the first
multipoles (monopole and quadrupole) are taken
into account. The linear and post-linear metric
coefficients are given by Egs. (145)-(147) and
(148)—(150), respectively.

The investigations are motivated by the rapid progress
in astrometric science, which has recently succeeded
in making the giant step from the milliarcsecond level
[14-16] to the microarcsecond level [17-21] in angular
measurements of celestial objects, like stars and quasars.
A fundamental issue in relativistic astrometry concerns the
precise modeling of the trajectories of light signals emitted
by some celestial light source and propagating through the
curved space-time of the solar system. The light trajectories
are governed by the geodesic equation, which implies the
knowledge of the metric coefficients for solar system
bodies. Accordingly, interpreting the compact source of
matter just as some massive body of arbitrary shape and
inner structure, the post-linear metric coefficients allow us
to determine the light trajectory in the gravitational field
of such a massive solar system body in the post-linear
approximation. Thus far, the impact of higher multipoles on
the light trajectories in the post-linear approximation is
unknown. So the results of this investigation are a funda-
mental requirement in order to determine the impact of
higher multipoles on the light trajectory in the post-linear
approximation.
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APPENDIX A: NOTATION

The notation of the standard literature [52,54,56] is used:
(i) G is the Newtonian constant of gravitation.
(ii) c is the speed of light in flat space-time which
equals the speed of gravitational action.
(ii1) lower case Latin indices take values 1,2,3.
(iv) lower case Greek indices take values 0,1,2,3.
V) 6= ="/ =diag(+1,+1,+1) is the Kronecker delta.

(vi) & ]k = ¢k with &3 =+1 is the three-
dimensional Levi-Civita symbol.
(Vi) &5, = P with €pp3 =+1 is the four-

dimensional Levi-Civita symbol.
(viii) metric of Minkowskian space-time i 7,5 =
n = diag(—1, +1,+1,+1).
(ix) covariant components of metric of Riemann
space-time are g,z
(x) contravariant components of metric of Riemann
space-time are g%.
(xi) the metric signature is (—, +, +, +).
(xii) g = det(g,p) is the determinant of the covariant
components of the metric tensor.
(xiii) that means: g = 3;e¥"°%"P°g,, 95,0, 950
(xiv) covariant and contravanant components of three-
vectors: a; = a' = (a', a® a®).
(xv) n!=n(n—-1)(n—-2)...2-1 is the factorial for
positive integer (0! = 1).
(xvi) n!!=n(n-2)(n—4)...(2or1) is the double
factorial for positive integer (0!! = 1).
(xvil) L =iiy...i; and M =i,i,...i,, are Cartesian
multi-indices of a given tensor 7, that means 7; =
Tii, . iand Ty =T;,;, ; , respectively.
(xviii) two identical multi-indices imply summation:

ABp = Zil...i,Ail...i,Bil...i,-

(xix) triplet of spatial coordinates (three-vectors) are in
boldface: e.g., a, b.

(xx) the absolute value of three-vector is determined

by |a| = \/6;;a'a’,

(xxi) covariant components of four-vectors: a, =
(ag.ay.ay, a3).
(xxii) contravariant components of four-vectors: a* =
(a", al a’ a’).
(xxiii) 0; = -2, is partial derivative with respect to x'.
(xxiv) f;1is pamal derivative of f with respect to x'.
(xxv) 0 = 0,, , denotes I partial derivatives with

respect to x“...x%.

(xxvi) f 4, .4 denotes [ partial derivatives of f with
respect to x“1...x%.
(xxvii) 0, = =+ is partial derivative with respect to x*
(xxviii) f, is pamal derivative of f with respect to x*
(xxix) f , ., denotes n partial derivatives of f with
respect to xt. . xtn,

(xx) f =

(xxxi) f = 41 is double total time-derivative of f.
(xxxii) Af, = Af’ + I, A" is covariant derivative of first
rank tensor.
(xxxiil) BY = B%Y + 1'% B +17,B™ is covariant deri-
vative of second rank tensor.
(xxxiv) repeated indices are implicitly summed over
(Einstein’s sum convention).

1s total time-derivative of f.

APPENDIX B: SOME USEFUL RELATIONS
OF CARTESIAN TENSORS

The irreducible Cartesian tensor technique has been
developed in [110-112] and is a very useful tool of the
MPM formalism. Here we summarize some relevant
relations of the Cartesian tensor technique.

The symmetric part of a Cartesian tensor 7 is,
cf. Eq. (2.1) in [56]:

Z.Z lo(1)+lo(1)’

where ¢ is running over all permutations of (1,2, ...,1).
The symmetric tracefree part of a Cartesian tensor 77 is
denoted as TL and given by (cf. Eq. (2.2) in [56])

A

Ty =T ..y =Te

(/2]

= 2 : alk(S(ili2~<-5i2k—liZkSi2k+]...il)alu] agay?
k=0

Ty =T, iy (B1)

(B2)

where [//2] means the largest integer less than or equal to
[/2,and S; = T ;) abbreviates the symmetric part of tensor
T;. The coefficient in (B2) is given by

I (20 =2k— 1)
(1= 2K)! (21 = )N 2K

A = (—1)k (B3)

STF tensors vanish whenever two of their indices are equal,

T(il...a.e.a.e.i,) = Z T(il...a...a...i,> =0, (B4)

because a summation of these indices is implied according
to Einstein’s sum convention; of course, the individual
components of STF tensors do not vanish, e.g.,
T 2.5y #0. Further STF relations can be found in
[47,56,110-113]. As instructive examples of (B2) let us
consider the cases [ =2,/ =3, and [ = 4:
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1
Tiijy = Tij) = 58T (aa): (B5)
1
Ty =Tijw— 5 (05T (kaa) +0iT (jaa) T 0k T (iaa))»  (BO)

1
Tijky =T ijxy — 7 (65T (k1aa) + OikT (jiaa))
1
~7 (0aT (kaa) T 03T (itaa) + 01T (ikaa) + kT (ijaa))

1
t35 (6:0T (aabb) + 0ikSiiT (aabb) + 010k T (aabb))»

(B7)

where the expressions in (B5) and (B6) were also given by
Egs. (2.3) and (2.4) in [52]. Especially, the following
Cartesian tensor is of primary importance, which just
consists of products of unit three-vectors,

Xi Xi, X,

np=——=>...—
ror r

where r = |x|. (B8)

The symmetric tracefree part of the Cartesian tensor (B8)
reads
K Xy Xip)

=tk T

r r r (Bg)

Using Eq. (A 20a) in [47], we present the explicit structure
of the following STF Cartesian tensors,

Ngp = Nap — _5abv

: (B10)

. 1
Nabe = Nabe — = (5abnc =+ 5acnb =+ 5hcna)’ (Bl 1)

5
|

NgNpeqe

9

Y <6benacd + 5cdnabe + 6cenabd + 5denabc + 5bcnade + 5bdnace)’

63

. 1
Nabed = Mabed — 7 (5abncd + 5acnbd + 5adnbc + 6bcnad
+ abdnac + 5cdnab)

1
+ g (6uh50d + 6a56hd + 6ad6bc)’

(B12)
which were also given by Eqgs. (1.8.2) and (1.8.4) in [60].
Frequently, the following relations are needed, which
convert a non-STF tensor into a STF tensor,

. . l .
gl = Ny, + m5a(alnL—1>v (B13)
[+1
N, = T iy, (B14)

where (B13) has been given by Eq. (A 22a) in [47] (see also
Eq. (2.7) in [52], Eq. (A7) in [113]), while (B14) is given
by Eq. (A 23) in [47] (see also Eq. (A.8) in [113]). Some
explicit examples of (B13) are noticed which are of
relevance for our investigations,

1
= Napcde +3 (5aenbcd + 5abncde + 6acnbde + 5adnbce)

naﬁbcdef = ﬁabcdef + H (5afﬁbcde + 5abﬁcdef + 5acﬁbdef + 5adﬁbcef + 5aeﬁbcdf>

2 . . . . .
- @ (5bfnacde + 5cfnabde + 6dfnabce =+ 5efnabcd + 6bcnadef

+ 5bdﬁacef + 6beﬁacdf + 5cdﬁabef + 5ceﬁabdf + 5deﬁabcf>-

We recall that 71, = n, but, nevertheless, we keep the
notation in (B15) as is, in order to emphasize that, according
to the meaning of relation (B 13), there are STF tensors on the
r.h.s. of each of these relations (B15)-(B18). We also need
the following relations, which are specific cases of the
general relation given by Eq. (2.13) in [52]:

R R 1 R R 2 .,
NgNpe = Ngpe + g (5acnb + 5abnc> - B(Sbcnav (BIS)
R . 1 R R R
Nalpeq = Ngpeq + 7 (Bupfica + Sacltpg + Saalipe)
2 R R R
~ 35 (8beltaa + Bealtap + Opatlac) (B16)
(B17)
(B18)
I
R R 4 R
Nabfijed = Rijabea + 17 (aijeOayp + p(ijedara)
12 1
+ 3 n(ij5?5§> + Héabnijcdv (B19)
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. . 2 .
Napleq = Naped + 7 (nu(05d>b + nh<05d>a)
2 .
Eé? 5b> + éabncd' (BZO)
Finally, we notice
1 20— 1)1
0= (—1)1%% (B21)

which agrees with Eq. (A 34) in [47].

APPENDIX C: THE STF MASS-MULTIPOLES
AND SPIN-MULTIPOLES

In the MPM formalism the solution of the gothic metric
is given in terms of irreducible symmetric and tracefree
(STF) Cartesian tensors. It is a fundamental result of the
MPM formalism [47,49,52] that in the exterior of a source
of matter the gothic metric (41) to any order in G depends
on a set of only two kind of irreducible STF tensors
(Theorem 4.5 in [47], see also Eq. (3.1) and (3.2) in [49]),
namely mass-type multipoles M; and current-type multi-
poles S; [52,56]. The explicit expressions for these multi-
poles up to terms of the order O(G?) are given by
Egs. (5.33) and (5.35) in [52] and read

+1

ML:/d3x/dZ

~1
X [6/(2)2,0+ a16;11(2)3i,6'+ b;6145(2) X;5.6M],

(C1)
+1
S, = /d3x/d2STFL
Z1
X [6;(2) k1€ xX0" + ¢18141 (2)€s j R j51.6%],  (C2)

where the integrals (C1) and (C2) run only over the finite
three-dimensional space of the compact source of matter,
and where

30 =R =2 i [zt =1, (©
~1
RS

AT AU )2+ 3) ()
B 2020+ 1)

b=z A+ 1)(1+2)(20+5) (©5)

- (21+1) (C6)

2(1+ 2)(21+3)°

and where

700 4 Tkk T
c=—+— ol=— ol =T
9 9 9
= 2 == =

(C7)
with 7% being the energy-momentum tensor of the isolated
system taken at the time-argument 7 — |x|/c + z|x|/c, and a
dot in (C1) and (C2) means partial derivative with respect
to coordinate time. The mass-type multipoles M; and the
spin-type multipoles S; are STF tensors, but we adopt the
notation as frequently used in the literature and do not write
the multipoles with a hat, say M; = M; and S, = S L

It should be noticed that the multipoles are functions of
time, except the mass-monopole M, mass-dipole M;, and
spin- dlpole S; i> which are strictly conserved quantities, that
means M = M, = S = 0. The system may emit gravita-
tional radiation which would change the mass M and the
mass-dipole M; and the spin-dipole S; of the compact
source of matter, but these effects occur at higher order
beyond the 1PM and 2PM approximation. Furthermore,
if the origin of the spatial coordinate axes is located at
the center-of-mass of the source, then the mass-dipole
vanishes, i.e., M; = 0.

A further note is in order about the mass-type multipoles
M and current-type S; as given by Eq. (C1) and Eq. (C2),
respectively. Usually, for practical applications their
explicit form as given by Egs. (C1) and (C2) is not needed.
Instead, these multipoles can be related to observables of
the massive bodies of the solar system, and can be
determined by fitting astrometric observations.

APPENDIX D: RELATIONS BETWEEN METRIC
TENSOR AND GOTHIC METRIC DENSITY

The contravariant and covariant components of the
gothic metric density are defined by [54,57,58] (e.g., text
below Eq. (3.506) in [58])

g7 =/ —det(g,)g". (D1)
and
_ 1
Gap = T(g’w)gaﬂ- (D2)
The orthogonality relation of the metric tensor
9 Gop = S (D3)

implies, subject to (D1) and (D2), the orthogonality relation
of the gothic metric density (e.g., text below Eq. (3.506)
in [58]),

gm’gaﬂ - 52’ (D4)
which is sometimes called isomorphism identity. From
(D3) one gets

084005-22



POST-LINEAR METRIC OF A COMPACT SOURCE OF MATTER

PHYS. REV. D 100, 084005 (2019)

det(g,,) = det(g™)’ (D5)
while from (D4) one gets
1
det(g,,) = det(7) (D6)

By calculating the determinant of (D1) one finds that the
determinant of the contravariant components of the gothic
metric equals the determinant of the covariant components
of the metric tensor [54,57,58,60] (e.g., Egs. (D.67) and
(D.68) in [57])

det(g") = det(g;w) .

The relations (D5)—(D7) imply that the determinant of the
covariant components of the gothic metric equals the
determinant of the contravariant components of the metric
tensor,

(D7)

det(gﬂu) = det(gm/)7 (D8)
which can also be obtained by calculating the determinant
of (D2) and by means of (D5). These relations (D7) and
(D8) allow us to derive from (D1) and (D2) the following
relations between the metric tensor and gothic metric
density,

1

9 = ——===1". D9
\/—det(3") (D9)

and
Gap = V _det(yw)gaﬂ' (DIO)

APPENDIX E: DERIVATION OF
EQS. (107) AND (113)

In what follows the relation (D10) between the covariant
components of the metric tensor and the covariant compo-
nents of the gothic metric density is important,

Gop = V _det<§w/)§a/)" (El)

Let us consider the evaluation of the determinant in the
r.h.s. of (E1). By taking the Minkowskian metric tensor as
factor in front, we rewrite (3) as follows,

g =n"Cy (E2)
where
CY = &4 — h"n,. (E3)

The determinant in (E2) is calculated by means of the
product law of determinants and the theorem in (31),

det(7*) = det(i*%) det(Cy) = —eTInC2) (E4)

where det(##°) = —1 has been taken into account. Using
(E4) one obtains

S 1.
det(g*) = =1+ h + S B0, 10, = 5 12+ O(GP).
(ES)

where h = /_z””nﬂ,,. By inserting (ES) into (E1) one obtains
by series expansion of the square root

1. 1],
gaﬂ = I—Eh—zhllv]’]ﬂphpg o‘y+§h2 gaﬂ+O(G3)
(E6)

For the covariant components of the metric tensor g,; we
have [cf. Eq. (2)]

(1PM)

Gop = tlap + G ™ + GG + O(GY). (ET)

ap

The post-Minkowskian series expansion of the contra-
variant components of the gothic metric density, g%, is
given by Egs. (3) and (41). What we also need is the post-
Minkowskian series expansion of the covariant compo-
nents of the gothic metric density, g,4, which is defined by

— = (1PM T (2PM
Tup = tlap + G'1 ™ + GG + O(GY).  (ES)

Here we emphasize that (E8) is a definition of the covariant
components of the perturbations of the gothic metric
density. That means, the relations between the contravariant
and covariant components of the perturbations of the gothic
metric density follow from the isomorphism identity (D4)
of the gothic metric density. These relations are given by
Egs. (E11)-(E12) in 2PM approximation. Inserting (E7)
and (E8) into (E6) and equating the powers of the gravi-
tational constant yields for the terms proportional to G':

_ 1-
hf.'ﬂpw = hf.,lﬂpw - 5 h(lPM)”]aﬁ7 (E9)

where il(]pM) = ITZIZTPM)

tional to G? one obtains:

M- Similarly, for the terms propor-

_ 1 1
p(2PM) (2PM)

_ 7 = = (1PM)
ap =N~ Eh(ZPM)rla[)’ - Eh(lPM)h

aff

1~ v 7 po
T3 h%l pw)flap = 4 I iew) Mo Tpsny leMlaps - (E10)

where hopy) = l_z’gpM)

formalism determines the contravariant components of the
gothic metric, we have to express the relations (E9) and

Nuw- However, because the MPM
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(E10) solely in terms of the contravariant components of
the gothic metric. From the above mentioned isomorphism
identity of the gothic metric density (D4) and from the
series expansion (E8) as well as the series expansion (41)
[with Eq. (3)], we obtain the following relations,

=(IPM) 7w

hog = hl(llpM)”aM”ﬁw (E11)
7(2PM) 7w LMY ppo
ha/j - hlZQPM)naynﬂU + hl(llPM) hl()lPM)nﬂarlP”r]"/j’ (Elz)

which allow us to determine the covariant components of
the gothic metric from the contravariant components of the
gothic metric. Finally, by inserting (E11) into (E9) as well
as inserting (E11) and (E12) into (E10), one confirms (107)
and (113), respectively.

APPENDIX F: HADAMARD REGULARIZATION
OF THE INVERSE D’ALEMBERTIAN

The spatial components (96) of the post-linear terms of
the gothic metric density as well as the spatial components
(117) of the post-linear terms of the metric tensor are
associated with an integration procedure, which is abbre-
viated by the symbol FPy_o[Jz!. In this Appendix some
details of that integration procedure will be given.

The symbol (3! denotes the inverse d’ Alembertian acting
on some function f, which is defined by [cf. Eq. (20)]

3./ —
d’x |f<t—|x x|’x,>’ (F1)
C

lx —x'

GNex) = [

for notational conventions see also text below Eq. (3.4) in
[47]. The inverse d’ Alembert operator (F1) is standard in
the literature [47-49,51,53,73-75]. As explained in detail
in the original work of the MPM formalism [47], the
integral in (F1) is not well defined in general because,
depending of the behavior of function f, the integral might
become singular at r' — 0, where ' = |x/|. As it has
already been described in the original work of the
MPM formalism [47], the reason for this difficulty is
caused by the fact that the gothic metric density (94)-(96)
as well as the metric tensor (115)—(117) are only valid in
the exterior of the source of matter, while the integration
of the inverse d’ Alembertian extends over the entire three-
dimensional space, hence includes the inner region of
the matter source, where the multipole decomposition
becomes infinite at the origin. This issue is of course a
pure mathematical problem and not a physical one.

A way out of this problem is found by the fact that the
limit # — 0 is impossible because each real body is of finite
size while the gothic metric and the metric tensor are
strictly valid only in the exterior of the body. Therefore, the
inverse d’Alembert operator is replaced by the Hadamard
regularized inverse d’Alembert operator,

FPy_o(Og'f)(t.x)

1 P\B & lx — x|
=—lim— [ (—) —— =" ), F2
£n4,,/<> |x—x’|f< : ") (F2)

where a factor ('/ry)® is imposed and where B € C is some
complex number and r( is an auxiliary real constant with
the dimension of a length. The abbreviation FP denotes
Hadamard’s partie finie of the integral. If the real part of B,
denoted by N (B), is large enough, then all singularities at
¥ = 0 are cancelled. So the procedure to determine the finite
part (FP) consists of three consecutive steps:

(i) computation of the integral (F2) with sufficiently

large real part of B,

(ii) inserting the limits of integration,

(iii) performing the limit B — 0.
The final results of that procedure are equivalent to
Hadamard’s technique of partie finie [114]; for mathematical
rigor of Hadamard’s procedure we refer to Sec. III in [47]
and the article [115], where the approach has been described
in specific detail.

In many subsequent investigations of the MPM formal-
ism that approach for determining the finite part has been
applied [49,51,53,99-101]. In particular, we refer to the
important relations (4.24) in [49] or Eq. (A.11) in [53],
which are very useful in order to perform that integration
procedure, where these effects occur in association with
gravitational radiation (tail effects, retardation effects,
divergencies at spatial infinity, etc.) which have been
elaborated in [47,48,51,53,56,75].

Hadamard regularization leads to consistent results in
different approaches up to 2.5PN order. Later it has been
discovered that from the 3PN order on the Hadamard
concept is not sufficient and the gauge invariant dimensional
regularization approach is introduced. This approach and its
implementation in the MPM formalism was a serious work
over a longer period of time [116—119]. In this investigation
we are interested in the metric up to terms of the order
O(c™, ¢, ¢%) and will not consider that specific issue of
the MPM formalism. But it should be kept in mind that for
higher orders of the post-Minkowskian or post-Newtonian
expansion the Hadamard concept has to be replaced by the
gauge invariant dimensional regularization.

APPENDIX G: HADAMARD REGULARIZATION
OF THE INVERSE LAPLACIAN

In this section Hadamard’s concept for the case of time-
independent integrals will be considered in some more
detail. In case of stationary sources, the 2PM metric
perturbations in (134) and (136) are associated with an
inverse Laplace operator,

e = [

pl e TGO N
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where Hadamard’s regularization of the inverse Laplacian
is given by

FPp_o(A7'f)(x)

1 ’\B &y
= —1 —_ — _— /
B0 47 <r0> lx —x/| &),

where ' = |x'| and r is an auxiliary real constant with the
dimension of a length, and B € C is some complex number.
Because there is no time-dependence, the integration
procedure in (G2) is considerably simpler than (F2).
According to the 2PM metric perturbations in (134)
and (136), we need to determine the following integral,

(G2)

nn 1 X B
FPy oA~ & = —— —) —&. (G3
s = [ () o @
where the abbreviated notation 72, means
x’<A L f>
ﬁ/L = ﬁ/L ((p/’ 19/) = ] (;/)l [ (G4)

The integral (G3) is for sufficiently large values of the real
part 9t (B) of the complex number B well-defined. In order
to determine that integral the following expansion of the
denominator is used (cf. Eq. (8.188) in [120])

| { = Py (cos0)(2)" i“ﬂ/}’ (G5)

e—x| %ZmZOPm(cose)(ﬁ)m it >

where P, are the Legendre polynomials and 6 is the
angle between x and x’. By inserting (G5) into (G3) one
encounters the following angular integration

I_/ dy’ /d&’sm&’ (¢, )P, (cosB)  (GO)

which deserves special attention. The addition theorem for
Legendre polynomial states (cf. Eq. (8.189) in [120])

dr
Yy (0.9
2m+12 wn (0, 9)

n—=——m

P, (cos@) =

V(@' 9),  (G7)

where Y,,, and Y}, are the spherical harmonics and
complex conjugated spherical harmonics, respectively.
The spherical harmonics can be expanded in terms of
the STF tensor in (B9), which reads (cf. Eq. (2.11) in [56])

You(9.9) = Vif'hu (9. 9). (G8)
where the coefficients ¥77" are independent of the angles ¢

and 9. Their explicit expressions are given by Eq. (2.12)
in [56] or by Eq. (2.20) in [113], but they are not needed

here, because we use the following relation (cf. Eq. (2.23)
in [113]),

Z Ym”Y* . 19/) _ (2m + 1) ( 19/) (G9)

dzm!

n=—m

By inserting (G7)-(G9) into (G6) one obtains for the
angular integration

(Zm— nH!

I = iy (@, 9)

/ do/ / 49 sin i, (¢, 9 (¢, 9).  (G10)

The angular integration (G10) yields (cf. Eq. (2.5) in [56])

4m!
/ 2 / A
/ d(p/d881n19 ¢8)M(¢’8)_(2 +1)'lm
(G11)

Inserting (G11) into (G10) yields finally for the angular
integration in (G6) the following result (cf. Eq. (B.3) in
[121]),

I—/ d(p/d&’SlH&’ (¢, 9)P,,(cosb)

= . (G12)

2m—|—1

where
(G13)

It is important to realize that relation (G12) necessitates
the irreducible STF tensor 7; as integrand. If the integrand
would not be of irreducible STF structure, then relation
(G12) would not be valid. Accordingly, by means of (G5)
and owing to relation (G12) one obtains for the integral (G3),

i a1 [r P\B P\ /1\k
FPp_ Al —=__"L = TOA%1 L A b
B=0 rk 21+1r/0 ar'(r) <r0> (r) (r')
iy 0 P\XB/r\!/1\k
_ d S o _ .
2l—|—1[ nr (ro) (ﬂ) <r’

(G14)

The radial integration yields
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P A—lﬁLf ﬁL 1\B 1 (r B+l k+3
BRSO T 2041 \ry) AT [BHI-k+3),

~ B B—I-k+2 /=00
_ l /A () )
2+ 1\ry) "B=i=k+2|,_

(G15)

For W(B)+1—k+3>0>N(B)—1—k+2, the lower
integration constant ' = 0 in the first line and the upper
integration constant 7 = co in the second line do not
contribute and one arrives at

()

1
< —l—k+2 B+l—k+3>
(G16)

Ry
FPy_oA~! =& =
BEOT Ok +

The limit B — 0 yields finally

n 1 n
FP,_ A~ —L — L
BT R T (ke 1=2)(k—1=3) rF2°

(G17)
which is meaningful for k > 3 as well as k # [ + 3; note that
always [ > 0. The solution of the integral in (G17) is a
specific case of the integrals given by Egs. (A.11) and (A.16)
in [53], respectively, and has been presented within several
investigations, for instance by Eq. (3.9) in [47] and by
Eq. (3.9) in [121] and by Eq. (3.42) in [122].

One might wonder about the global sign of the solution
(G17). For instance, if one considers the case / = 0 and
k>4, then (G17) is a positive-valued expression, irre-
spective of the negative-valued integral in (G3). In order
to understand the global sign in (G17), one has to realize
that the partie finie procedure in (G3) implies that the
lower integration constant ' = 0 in the first line in (G15)
does not contribute. Stated differently, in case of [ = 0 and
k > 4 the partie finie procedure eliminates a (infinitely)
large negative term from the entire expression, so that the
final result becomes positive-valued in the case under
consideration.

9
4

2 M?
hi o (x) = +F‘5’7( +3MMab 4 by 2

4
C4

FP,_ A~} <M2@ + 15MM
B=0 }"4 ab

APPENDIX H: THE PROOFS OF EQS. (148)

In this Appendix some details of the computation
of the matrix coefficients in Eqs. (148) are given.
Accounting for monopole and quadrupole, one gets from
Egs. (134)

a2y 2 (ﬂ Oap Moy \?
C

B == (Y + ) o,

By means of (B21) one obtains

2 (M?
hé%it?(x):—;( +3MM,, 4)

2 /(9 g,
_?(4Machd b d)‘f'o( 5). (H2)

The last term is rewritten in the form M, ,M . i p7.q0 =
M ,M g1 4pcq> then relations (B12) and (B10) are applied;
note M ,,0,, = M ;6.4 = 0. One arrives at

o) A
(2PM) - 2 M 6 ng,p
hOOcan (X) - _FV_FMMM)F_Z
31 5,0py 18 1 8ling
_§C4MabMd a;6 _7?Machd 06’_6
91
54 MMy ‘Irbﬁm+o(€_6)- (H3)

APPENDIX I: THE PROOF OF EQS. (150)

In this Appendix some details of the computation of the
matrix coefficients in Eqs. (150) are given. Accounting for
the monopole and quadrupole term, one obtains from
Eqgs. (136)

(2PM) 2 M 0y My\?
z]can( )_+C 51]( +

20 r

4 — M atab Mab
—?FPBZOA 1(6 Y )
« (0,4} Qo May +0O(c™) (11)
T 2! r '
By means of (B21) one obtains
MM,y ah?cd)
ninjg 225 ia c
s e ) RYC T M)

Before relation (G17) can be applied, one has to express the enumerator in the second line of (12) in terms of irreducible STF
tensors. The first term of the second line of (I2) is rewritten in terms of irreducible STF tensors by means of

relation (B10),
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n;; = ; + 36, (13)
while for the second term of the second line of (I2) one obtains
. . 1. 6 .
M pniitjypy = Moy | ijap + §5ij”ab + g‘sa(inj)b , (14)

where relation (B16) and the STF structure of the multipole M ;, has been used. The last term in the second line of (I12) is
expressed in terms of irreducible STF tensors by means of relations (B11) and (B16) as well as (B19) and (B20). After some
steps one obtains the following expression in terms of irreducible STF tensors,

8
Machdniabnjcd = Machd[ Nijabed + =

11 a<lj65d> 541517 :|

1 4
+7Machd5 { ahcd+7n a(cOayb +—5“ 5[’]
2 4
+7Machd5u Rgbja +7na< Oa)b T 515
4 4 2
_ = sagbh
~ 35 MarMcadje [ Aabia + 7 Raia)p + 1580 J
2 . 1, 2. 4
- gMachd5ib |:njacd + 7 Neabuj + 7 NjeOaq — 35 nacéjd:| . (I5)

Taking account for the STF structure of the quadrupoles, one may combine the second term and the fourth term of the last
line, but here we keep these terms as given. The r.h.s. of Eq. (I5) has now been expressed in terms of irreducible STF tensors.
But the structure of these terms is presented in a rather compact notification. A more explicit form is arrived with the aid of
relations (B5) and (B7), by means of which one obtains

. 1 R 3 R 1

Machdna(ij05d>b = +§Machdnacij5bd + ﬁMachdnacd( i )b — ﬁMachdnahcd5l]1 (16)

o cach 1 . 10 . 43 .

My Mt ;6004 = + gMachd”ij5ac5bd + iMachdnc(i6j)a5hd + mMachdnahéic5jd
2 . 4 .
- iMachd5ij5bdnac - iMachd(Sic5bjnadv <I7)
. 1 . 1 . 1 .

M ,M gigibap = + EMachdnaiédb + EMachdnadabi - gMachdnab(sdiv (I8)
Machdé?iéfb = +Machd5ad5bi' (19)

By inserting (I3)—(I5) into (I2) by taking into account the relations (16)—(I9) as well as the solution for the integrals (G17),
one finally arrives at

1 4 151 i 326 12 Ou(ill;
Hyan (€)= —_—<%+ )* S, " 20 gy et 2y,

{can i (3 > 2 -
et (T s = 31 P+ 1 sy = g
+%ﬁad5bca,-, + ; < Oacbuadiy + ﬁ ey — 251 .
b 3B~ B8 d — s Buabid) ) + O(c). (110)
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Several careful checks have been performed in order to be
certain about the correctness of these metric coefficients.
For instance, one may see that the terms proportional to
M? are in agreement with the same terms of Eq. (25) in
[24]. Furthermore, it has been checked that inserting the
gothic metric coefficients (J3)-(J8) in Appendix J into
(113) yields the same metric coefficients as presented by
Egs. (148)—(150). In addition, each metric coefficient has
been determined in different ways and assisted by the
computer algebra system Maple [123].

APPENDIX J: MONOPOLE AND SPIN AND
QUADRUPOLE TERMS OF 2PM GOTHIC
METRIC FOR STATIONARY SOURCES

In the case of stationary source the post-linear gothic
metric (4) simplifies as follows,

FOw) = 1 = G il () = G2y, (6) + O(GP).
()

The gauge transformation (35) leads, up to terms of the
order O(G?), to

g (x) = 1 = G (¥) = 0wy (%)

Gzhﬁ’flf&“ (x) -9 2PM( x) - Q?fPM)<x)’ (J2)
|

7ijcan MZ] MMah 15

R =+ (5

MM, (75 . 90
> 4 (Znijabcd 11 z;acabd + = 44 abcdéij - @nijéacébd

C4 ’,6

29

Nijab + §5ijnab

where the gauge terms are time-independent and formally
given by Egs. (90) and Eqgs. (100) and (105), respectively.
Accounting for the monopole and spin and quadrupole
terms, one arrives at

M Mab A

h?lo;ﬁl) _4z+6ﬁnab, (J3)

jcan Sp
h?lﬁi/[) = C3 €iabNg 7 s (J4)
Rl = O (33)

for the linear coefficients, and

M2 MM ,,
Mgy =735+ 2= A
63 Machd —
I 64}’6 Nabed + O(C 6)’ (J6)
g = (™), )

1
6na (i + 5a15bj>

9 25,

18 5,

1
+ Enadébc(sij + == 70 5aC5bd5lj + = 11 acd(i5j)b 21 ( i0; J)e 5bd

10 . 23

+ ﬁ‘sczﬁdjnab - E‘sb(i&j)cnad ~35 =< 0adlp(i0;

for the post-linear coefficients. These gothic metric
coefficients in (J3)—(J8) have been calculated by
the same approach as presented in the previous Appendix [;
the last term in (J6) and the first line in (J8) are not
expressed in terms of irreducible STF multipoles,
but it could be done by means of relations (B10)
and (B12).

) L O, (18)

|

The quadrupole-quadrupole gothic metric density for a
time-dependent compact source of matter has been deter-
mined in [53] which allows to deduce the gothic metric
coefficients (J3)—(J8). Furthermore, it should be mentioned
that these gothic metric coefficients (J3)-(J8) have also
been presented by Eq. (16) in [124]; the incorrect coef-
ficient 18 of Eq. (16) in [124] has later been corrected by
Eq. (21) in [125].
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