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Gravity is believed to have a deep and inherent relation to thermodynamics. We study phase transitions
and critical behaviors in the extended phase space of asymptotic anti–de Sitter black holes in Einstein-
Horndeski gravity. We demonstrate that the black hole in Einstein-Horndeski gravity undergoes a phase
transition and P − V criticality mimicking the van der Waals gas-liquid system. The key approach in our
study is to introduce a more reasonable pressure instead of the previous pressure P ¼ −Λ=8π related to the
cosmological constant Λ, and this proper pressure is motivated by the asymptotical behavior of the black
hole. Moreover, we also obtain P − V criticality in the two cases with Λ ¼ 0 and Λ > 0 for the first time,
which implies that the cosmological constant Λ may not be a necessary pressure candidate for black holes
at the microscopic level. We present critical exponents for these phase transition processes.
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I. INTRODUCTION

The relation between thermodynamics and gravity
theory is an interesting and profound issue. The four
thermodynamic laws of a stationary black hole system
(in fact, spacetime thermodynamics, because the physical
quantities in black hole thermodynamics should be treated
as the quantities of the globally asymptotic flat manifold)
were developed in Ref. [1] and confirmed by Hawking
radiation [2]. After this pioneering discovery, more anal-
ogies were found between ordinary thermodynamics and
black hole thermodynamics, including several phase
transitions and critical phenomena. A well-known case is
the so-called Hawking-Page phase transition [3], where a
first-order phase transition was found to occur in the
Schwarzschild–anti de Sitter (AdS) black hole spacetime.
In addition, the phase transitions between radiation gas and
a black hole were further investigated in an isolated box
[4,5], where an equilibrium between the absorbed and
radiated particles in a black hole system can be reached.
Moreover, a phase transition similar to the Van der Waals
gas/liquid transition was found for Reissner-Nordström
AdS (RN-AdS) black holes [7]. These studies revealed
significant properties of gravitational systems that may be
helpful for solving some extremely difficult problems

beyond gravity through investigations of phase transitions
in gravitational systems. For example, the Hawking-Page
phase transition maps to the quark confinement/deconfine-
ment transition in the AdS=CFT scenario [6], which has
gained much more physical significance.
In recent years, a similar phase transition mimicking

the Van der Waals gas/liquid transition in the RN-AdS
black hole system was further investigated in Ref. [8]. No
pressure P or volume V were defined in the previous work
[7], while we use the P − V diagram to characterize the van
der Waals liquid-gas phase transition. In Ref. [8], a crucial
step was to introduce a thermodynamic pressure P, which
is related to the negative cosmological constant Λ in the
Reissner-Nordström AdS black hole system as P¼−Λ=8π.
Hence, this phase transition is also called the P − V
criticality of black holes, and is similar to the P − V
diagrams of a black hole system and the Van der Waals–
Maxwell gas/liquid system. Note that this behavior of
P − V criticality was already found in other black hole
systems with asymptotical AdS behavior [9–17]. Moreover,
in this situation where the pressure P is proportional to the
negative cosmological constant, the mass of a black hole
becomes enthalpy rather than energy, which is required by
thermodynamic laws [18]. In these laws, the term dP
appears, which implies that the cosmological “constant”
may be a variable, and there has been a large amount of
discussion about a variable vacuum energy in the context of
cosmology since the discovery of cosmic acceleration.
Theoretically, we have several motivations to invoke the
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assumption of a variable cosmological “constant.” If the
present theory is not a “fundamental theory,” the constants
in the theory may be variables. For example, the cos-
mological constant becomes a variable in gauged super-
gravity. And furthermore, the cosmological constant,
Newton’s constant, and other coupling constants may
become variables in quantum theory, whose vacuum
expectation values are the observed values [19]. Thus, it
may be reasonable to identify the cosmological constant as
the pressure in P − V criticality in gravity and allow the
pressure to be a variable. Such an identity leads to several
sensible results [8–17]. However, it requires further study,
since the P − V criticality of a gravitational system com-
pared to a gas/liquid system is fundamentally an analogy.
There is no sound statistical-mechanical mechanism behind
gravitational thermodynamics, and thus we are unable to
prove that the pressure P should be identified as the
cosmological constant Λ at the microscopic level, such
as P ¼ −Λ=8π.
Scalar-tensor gravity has a fairly long history and several

different extensions, while Horndeski scalar-tensor theory
is the most generic scalar-tensor theory. In Horndeski
scalar-tensor theory, the equations of motion consist of
terms which have at most second-order derivatives acting
on each field, though it permits higher-order derivatives in
the action [20]. This property is very similar to Lovelock
gravity. From different considerations, Horndeski theory
was rediscovered in a different form in cosmological studies
[21,22]. Black hole solutions in a special Einstein-Horndeski
gravity were derived in Refs. [23,24], while the thermody-
namics of black holes in Einstein-Horndeski gravity were
investigated in Refs. [25,26]. In this paper, we show that
there is no P − V criticality in black holes in Einstein-
Horndeski theory if one treats the cosmological constant, as
usual as the pressure. We demonstrate that the proper
pressure is different from the cosmological constant. With
this new pressure, the P − V criticality appears. Moreover,
we find P − V criticality in the two cases with Λ ¼ 0 and
Λ > 0 for the first time, which implies that the cosmological
constant Λ may not be a necessary pressure candidate for
black holes at the microscopic level.
This article is organized as follows. In the next section,

we briefly review an exact solution in the Einstein-
Horndeski theory. In Sec. III, we demonstrate that the
P − V phase transition does occur with a new definition of
the pressure that is different from the cosmological con-
stant. In Sec. IV, we conclude this paper.

II. THERMODYNAMICS OF STATIC
BLACK HOLE SOLUTIONS IN

HORNDESKI GRAVITY

The most general action of Horndeski gravity can be
seen in Ref. [22]. In this paper, we investigate a special case

in Horndeski gravity with a nonminimal kinetic coupling,
and the corresponding action is written as [24–26]

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
ðR − 2ΛÞ − 1

2
ðζgμν − ηGμνÞ∇μϕ∇νϕ

−
1

4
FμνFμν

�
; ð2:1Þ

where ζ is a coupling constant, and η stands for the
coupling strength with the dimension of length squared.
Besides the electromagnetic field Fμν, a real scalar field ϕ
also exists, which has a nonminimal kinetic coupling with
the metric and Einstein tensor. From this action, the
equations of motion are

Gμν þ Λgμν ¼
1

2
ðζTμν þ ηΞμν þ EμνÞ; ð2:2Þ

∇μ½ðζgμν − ηGμνÞ∇νϕ� ¼ 0; ð2:3Þ

∇μFμν ¼ 0; ð2:4Þ

where Tμν, Ξμν, and Eμν are defined as

Tμν ≡∇μϕ∇νϕ −
1

2
gμν∇ρϕ∇ρϕ; ð2:5Þ

Ξμν ≡ 1

2
∇μϕ∇νϕR − 2∇ρϕ∇ðμϕR

ρ
νÞ −∇ρϕ∇λϕRμρνλ

− ð∇μ∇ρϕÞð∇ν∇ρϕÞ þ ð∇μ∇νϕÞ□ϕþ 1

2
Gμνð∇ϕÞ2

− gμν

�
−
1

2
ð∇ρ∇λϕÞð∇ρ∇λϕÞ

þ 1

2
ð□ϕÞ2 −∇ρϕ∇λϕRρλ

�
; ð2:6Þ

Eμν ≡ Fρ
μFνρ −

1

4
gμνF2: ð2:7Þ

In this paper, we focus on the static black hole solutions of
Eqs. (2.2)–(2.4) with spherical symmetry, while the metric,
scalar field, and Maxwell field are simplified as

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð2:8Þ

ϕ ¼ ϕðrÞ; A ¼ ΨðrÞdt: ð2:9Þ

After this simplification, an analytical solution can be
obtained [24–26],
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fðrÞ ¼ ζr2

3η
−
2M
r

þ 3ζ þ Λη
ζ − Λη

þ
 
ζ þ Ληþ ζ2q2

4η

ζ − Λη

!2 tan−1
� ffiffi

ζ
η

q
r
�

ffiffi
ζ
η

q
r

þ ζ2q2

ðζ − ΛηÞ2r2 −
ζ2q4

48ðζ − ΛηÞ2r4 þ
ζ3q4

16ηðζ − ΛηÞ2r2 ;

gðrÞ ¼ ζ2½4ðζ − ΛηÞr4 þ 8ηr2 − ηq2�2
16r4ðζ − ΛηÞ2ðζr2 þ ηÞ2fðrÞ ;

ψ2ðrÞ ¼ −
ζ2½4ðζ þ ΛηÞr4 þ ηq2�½4ðζ − ΛηÞr4 þ 8ηr2 − ηq2�2

32ηr6ðζ − ΛηÞ2ðζr2 þ ηÞ3fðrÞ ;

ΨðrÞ ¼ Ψ0 þ
1

4

q
ffiffiffi
ζ

p

η
3
2

�
4ηðζ þ ΛηÞ þ ζ2q2

ζ − Λη

�
tan−1

 
1ffiffi
ζ
η

q
r

!
−
ζqðζq2 þ 8ηÞ
4ηrðζ − ΛηÞ þ ζq3

12r3ðζ − ΛηÞ ; ð2:10Þ

where ψðrÞ≡ ϕ0ðrÞ andΨ0 is an integration constant. Note
that the solution (2.10) is same as that in Ref. [25] after
taking the identity tan−1 x ¼ π

2
− tan−1ð1=xÞ into account,

and both ζ and η can not be zero while obtaining this
solution.1 Therefore, we cannot switch off the scalar field
within this solution family, which implies that this solution
is usually not continuously connected with the maximally
symmetric background, and hence does not contain the
Reissner-Nordström-AdS solution. Despite this, the case
with M ¼ 0 and q ¼ 0 is also a regular spacetime, which
can describe an asymptotically AdS gravitational soliton
solution [24]. In particular, if we further require ζ ¼ −Λη,
this asymptotically AdS gravitational soliton solution
becomes the pure AdS solution. Hence, in this particular
case, we can find that the Schwarzschild-AdS solution is
recovered with ζ ¼ −Λη and q ¼ 0. However, the Reiss-
ner-Nordström-AdS solution still cannot be recovered in
this particular case. In this paper, we only consider the
solution (2.10) with asymptotic AdS behavior, and hence
we further require that ζ=η > 0 and ζ ≠ Λη. The temper-
ature of this black hole in Horndeski gravity is easily
obtained as

T ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðrhÞf0ðrhÞ

p
¼ 1

4πrh

�
2ζ

ζ − Λη
þ ζr2h

η
−

ζq2

4r2hðζ − ΛηÞ
�
; ð2:11Þ

where rh is the location of the outer horizon satisfying
fðrhÞ ¼ 0, and the first law of thermodynamics of the black
hole solution (2.10) was carefully investigated in Ref. [25],

dE ¼ TdSþΦedQe þΦχdQχ ; ð2:12Þ

where the energy E, entropy S, charge potential Φe, charge
Qe, scalar charge Qχ , and its conjugate potential Φχ are
calculated as

E ¼ Mðζ − ηΛÞ
2ζ

−
π½q2ζ2 þ 4ηðζ þ ηΛÞ�2
128ζ3=2η3=2ðζ − ηΛÞ ;

S ¼ 2π2r3hðζ − ηΛÞ
ζð1þ r2h

ζ
ηÞ

T; Φe ¼ Ψ0;

Qe ¼
q
4
; Qχ ¼ 2

ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q2 þ 4r4hðζη þ ΛÞ
r2hðηþ r2hζÞ

s
;

Φχ ¼ −
r2hTη
32π

Qχ : ð2:13Þ

Interestingly, due to the scalar chargeQχ on the horizon, the
entropy in Eq. (2.13) disagrees with the Bekenstein-
Hawking entropy, where the entropy was explicitly calcu-
lated in Ref. [25] using the Wald formalism as

S ¼ ð1þ η
4
ðϕ0ðrÞ2
gðrÞ ÞjrhÞ A4, and A ¼ 4πr2h is the horizon area

of a black hole.
Note that, during investigations of the P − V criticality

of asymptotical AdS black hole systems, the cosmological
constant Λ is usually considered as a dynamical variable. In
our case, the parameters ζ and η in the Lagrangian of the
action (2.1) can be also considered as dynamical variables.
However, due to the absence of a scalar field potential in the
action, we just have one independent parameter for these
two parameters ζ and η, i.e., ζ or η can be set to unity by the
redefinition of ϕ. Therefore, for simplicity and without loss
of generality, we just consider ζ as the one independent
parameter and fix η as a constant in the following.2 In this
case, the first law of thermodynamics of the black hole
solution (2.12) can be written as

1For the equation of motion for the scalar field, one can obtain
Eq. (10) from Ref. [24] or Eq. (3.1) from Ref. [25]. From this
equation, obviously η cannot be zero. For the case ζ ≠ 0, one
obtains the solution (2.10). Reference [24] also discussed the
particular case ζ ¼ 0. However, this case cannot be contained in
the solution (2.10).

2Note that, for the case where η is the one independent
parameter with constant ζ, the volume VB will be changed.
However, changes in VB do not affect the detailed pressure
function Pðrh; TÞ [Eq. (3.4)] in the following. Hence, the P − V
criticality of these two cases is treated similarly.
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dE ¼ TdSþΦedQe þΦχdQχ þ VAdΛþ VBdPB;

ð2:14Þ
where VA is the corresponding conjugate quantity to Λ
and VB is the corresponding conjugate quantity to PB ≡
ζ=ð8πηÞ, which is explicitly shown in Appendix A.
In addition, from the formula for the temperature in

Eq. (2.11), it can be further rewritten as

4rh4Π�2 þ ð8rh2 − 4Λrh4 − 16πTrh3 − q2ÞΠ�

þ 16πTrh3Λ ¼ 0; ð2:15Þ
where a new parameter Π� ≡ ζ

η has been defined for
convenience of later investigations.

III. P−V CRITICALITY IN THE EXTENDED
PHASE SPACE OF BLACK HOLES IN

HORNDESKI GRAVITY

Many works have investigated P − V criticality in the
extended phase spaces of asymptotical AdS black holes
[8–17]. Since the black hole solution in Eq. (2.10) also
has asymptotical AdS behavior [24–26], we will investigate
the P − V criticality in its extended phase space in
Horndeski gravity.

A. No P−V criticality with the pressure
defined as P= − 1

8πΛ
In many previous investigations of P − V criticality in

extended phase spaces of black holes with asymptotical
AdS behavior [8–17], the thermodynamic pressure P of a
black hole system was usually defined as

P ¼ −
1

8π
Λ: ð3:1Þ

Therefore, as the corresponding conjugate quantity to Λ,
VA is easily seen to be proportional to the thermodynamic
volume of this black hole system from Eq. (2.14). In this
subsection, we will check the possibility of P − VA
criticality by using this definition of pressure.
Note that discussions of P − V criticality are usually

based on investigations of the pressure function Pðrh; TÞ
through the P − rh diagram [8–17]. Since VA is compli-
cated in our case, we also investigate P − V criticality using
the corresponding function Pðrh; TÞ through the P − rh
phase diagram. In Appendix B, we also give a simple proof
of the equivalence between investigations of P − V criti-
cality using either P − V or P − rh phase diagrams. For the
pressure function Pðrh; TÞ, after inserting Eq. (3.1) into
Eq. (2.15), we easily obtain

Pðrh; TÞ ¼
4rh4Π�2 þ ð8rh2 − 16πTrh3 − q2ÞΠ�

8πð16πTrh3 − 4rh4Π�Þ ; ð3:2Þ

and it is difficult to analytically investigate whether there is
P − V criticality like in the van der Waals liquid-gas

system. Therefore, we check the criticality by plotting
the P − rh phase diagram for different cases, and we find
that there is no evidence for the existence of P − V
criticality in this case, since the P − rh phase diagrams
are all similar to the following diagram in Fig. 1.3

B. P−V criticality with the more
reasonable pressure P= ζ

8πη

In the above subsection, we found that there is no P − V
criticality with a pressure defined as P ¼ − 1

8πΛ. However,
the solution in Eq. (2.10) is an asymptotical AdS solution
with an effective AdS radius leff satisfying l2eff ¼ 3η

ζ , which
is independent of the cosmological constant Λ. Therefore, a
more reasonable pressure is defined as

P ¼ −
Λeff

8π
¼ ζ

8πη
¼ Π�

8π
¼ PB; ð3:3Þ

where Λeff is an effective cosmological constant related to
leff as Λeff ¼ − 3

l2eff
¼ − ζ

η. In this subsection, we determine

the possibility of P − V criticality by using this new
reasonable pressure in Eq. (3.3). Note that the pressure
P is a dynamical variable in the P − V criticality, while
there are two parameters ζ and η in the new pressure (3.3).
For the sake of simplicity, we just consider the parameter ζ
as a dynamical variable in the following, while the
parameter η is fixed as a constant. In this case, similar
to the above subsection, VB is also easily seen to be a new
thermodynamic volume of this black hole system from
Eq. (2.14), and this new thermodynamic volume is the
conjugate quantity to this new pressure. In the following,
we will also use the pressure function Pðrh; TÞ and plot
P − rh phase diagrams to investigate the P − V criticality.
A simple proof of the equivalence between investigations
of P − V criticality using either P − VB or P − rh phase
diagrams is presented in Appendix B.

FIG. 1. The case with q ¼ 1 and Π� ¼ 0.14, for T ¼ 0.15 to
0.35 (top to bottom) with an interval of 0.05.

3Strictly speaking, here regions with positive pressure in the
diagram are physical.
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As the new pressure function Pðrh; TÞ corresponds to the newly defined pressure (3.3), it can also be solved using
Eq. (2.15), and one obtains two branches,

Pðrh; TÞ ¼
−ð8rh2 − 4Λrh4 − 16πTrh3 − q2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8rh2 − 4Λr4h − 16πTrh3 − q2Þ2 − 256πΛr7hT

p
64πr4h

: ð3:4Þ

For the case with zero cosmological constant Λ ¼ 0, one
branch is Pðrh; TÞ ¼ 0, while the other is

Pðrh; TÞ ¼ −
8rh2 − 16πTrh3 − q2

32πr4h
¼ ω1

rh
þ ω2

rh2
þ ω4

rh4
;

ð3:5Þ
where

ω1 ¼
T
2
; ω2 ¼ −

1

4π
; ω4 ¼

q2

32π
: ð3:6Þ

Note that this nonzero pressure functionPðrh; TÞ [Eq. (3.5)]
is similar to the ones in an RN-AdS black hole [8] and
massive gravity [16]. Moreover, the specific volume v of
this black hole system is related to the horizon radius
as v ¼ 2rh [8]. Therefore, an analytical investigation of
the P − V criticality of this black hole system is similar
to those in Refs. [8,16], and hence the critical point is
obtained as [16]

rhc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
6w4

w2

s
; w1c ¼ −

4

3
w2

ffiffiffiffiffiffiffiffiffiffiffiffi
−

w2

6w4

r
; Pc ¼

w2
2

12w4

;

ð3:7Þ
while the corresponding critical exponents around the
critical point are α ¼ 0, β ¼ 1

2
, γ ¼ 1, and δ ¼ 3. These

critical exponents are the same as those in Refs. [8,16].
For the case with a negative cosmological constant

Λ < 0, we should choose the þ branch of the function
Pðrh; TÞ in Eq. (3.4), since the pressure in the − branch is
negative. In this þ branch, the analytical investigation of

P − V criticality is complicated, because the pressure
function Pðrh; TÞ in Eq. (3.4) is complicated. For simplic-
ity, we just plot the function Pðrh; TÞ to find its P − V
criticality in this þ branch. Indeed, we find that there is
P − V criticality for some fixed parameters, e.g., q ¼ 0.3
and Λ ¼ −0.3 in Fig. 2. However, it should be pointed out
that P − V criticality does not occur for all cases with fixed
parameters. For example, in Fig. 3 there is no evidence that
the case with q ¼ 5 and Λ ¼ −0.3 exhibits P − V
criticality.
Now we calculate the critical exponents in the case with

fixed parameters q ¼ 0.3 and Λ ¼ −0.3. First, the critical
point is determined as the inflection point in the P − rh
diagram, i.e.,

∂P
∂rh
				
rh¼rhc;T¼Tc

¼ ∂2P
∂r2h
				
rh¼rhc;T¼Tc

¼ 0: ð3:8Þ

From these two equations, we numerically obtain the critical
point as rhc ≈ 0.2598, Tc ≈ 0.8002, and Pc ≈ 0.5775.
On the other hand, as in typical thermodynamic systems,

the critical exponents α, β, γ, and δ are defined as follows:

Cv ∼ jtj−α;
Δv ∼ vl − vs ∼ jtjβ;

KT ¼ −
1

v

�∂v
∂P
�

T
∼ jtj−γ;

P − Pc ∼ jv − vcjδ; ð3:9Þ
where t ¼ T=Tc − 1, Cv is the specific heat at constant
volume, v stands for the specific volume of a black hole

FIG. 2. The case with q ¼ 0.3 and Λ ¼ −0.3, for T ¼ 0.6 to 1.0
(bottom to top) with an interval of 0.1.

FIG. 3. The case with q ¼ 5 and Λ ¼ −0.3, for T ¼ 1.1 to 9.1
(bottom to top) with an interval of 2.0.
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with v ¼ 2rh, and κT is the isothermal compressibility. The
subscript c stands for the critical point, while l and s refer to
large and small black hole phases, similar to the gas and
liquid phases of typical thermodynamic systems.
For the critical exponent α, we need to calculate the

isopyknic heat capacity Cv at the critical point. The entropy
of the black hole (2.10) was obtained in Ref. [25] as

S ¼ πð8r2h − 4r4hðΛ − Π�Þ − q2Þ
8ðr2hΠ� þ 1Þ ; ð3:10Þ

and hence the isopyknic heat capacity Cv ¼ Tð∂S∂TÞv at the
critical point is a constant. Therefore, we have α ¼ 0.
For the critical exponent β, we first Taylor expand the

pressure function Pðrh; TÞ [Eq. (3.4)] near the critical point,
P ¼ Pc þ Rtþ BtωþDω3 þ Kt2 þ � � � ; ð3:11Þ

where

t ¼ T
Tc

− 1; ω ¼ rh
rhc

− 1; ð3:12Þ

and the expansion coefficients are numerically obtained as

R ¼ Tc

��∂P
∂T
�

rh

�
c

≈ 1.4898;

B ¼ Tcrc

�� ∂2P
∂T∂rh

��
c
≈ −1.4120;

D ¼ r3c
1

3!

��∂3P
∂rh3

�
T

�
c
≈ −0.7449;

K ¼ T2
c
1

2!

��∂2P
∂T2

�
rh

�
c
≈ 0.1230: ð3:13Þ

For constant t, one finds dP ¼ ðBtþ 3Dω2Þdω; therefore,
after using Maxwell’s area law [8,16,17], we obtain the
following equation:Z

ωs

ωl

ωðBtþ 3Dω2Þdωþ
Z

ωs

ωl

ðBtþ 3Dω2Þdω ¼ 0;

ð3:14Þ
where ωl and ωs correspond to volumes of the large and
small black hole in two different phases.We further consider
the condition Pl ¼ Ps, i.e., the end point of vapor and the
staring point of liquid during the coexistence phase have the
same pressure as in typical thermodynamic liquid-gas
systems, and hence from Eq. (3.11) this condition implies

Btðωl − ωsÞ þDðω3
l − ω3

sÞ ¼ 0; ð3:15Þ
which means that the second integral in Eq. (3.14) vanishes.
Therefore, Eq. (3.14) is further reduced as

Btðω2
l − ω2

sÞ þ
3D
2

ðω4
l − ω4

sÞ ¼ 0: ð3:16Þ

The nontrivial solutions of Eqs. (3.14) and (3.16) are ωl ¼
ð−Bt=DÞ1=2 and ωs ¼ −ð−Bt=DÞ1=2. It is easy to find that

Δv ∼ vl − vs ¼ ðωl − ωsÞvc ∼ jtj1=2; ð3:17Þ

which determines the critical exponent β ¼ 1=2.
For the critical exponent γ, the isothermal compressibil-

ity KT can be calculated using ð∂P=∂rhÞT from Eq. (3.11),
and it is given by �∂P

∂rh
�

T
≃

B
rhc

t; ð3:18Þ

where ∂ω=∂rh ¼ 1=rhc has been used. Therefore, near the
critical point, the value of KT is

KT ≃
1

Bt
∼ t−1; ð3:19Þ

which implies γ ¼ 1. Finally, when T ¼ Tc, from
Eq. (3.11) we find that

P − Pc ∼ ω3 ∼ ðrh − rhcÞ3; ð3:20Þ

which implies that the value of the critical exponent δ
is δ ¼ 3.
For the case with a positive cosmological constant Λ > 0,

both of the branches of the pressure function Pðrh; TÞ in
Eq. (3.4) can be chosen, while the constraint 8rh2 − 4Λrh4 −
16πTrh3 − q2 < 0 should be satisfied to keep the pressure
Pðrh; TÞ positive. For the þ branch, we find that there is
P − V criticality and we plot the phase diagramwith q ¼ 0.3
and Λ ¼ 0.3 in Fig. 4. There is no evidence for the existence
of P − V criticality for the − branch. In Fig. 5, we plot
some phase diagrams as an illustration. Therefore, we just
focus on the þ branch in the following, and calculate its
corresponding critical exponents. For fixed parameters q ¼
0.3 andΛ ¼ 0.3, the critical point is numerically obtained as
rhc ≈ 0.2598, Tc ≈ 0.8333, and Pc ≈ 0.6014. As in the

FIG. 4. The case with q ¼ 0.3 and Λ ¼ 0.3, for T ¼ 0.8 to 1.2
(bottom to top) with an interval of 0.1.

HU, ZENG, JIANG, and ZHANG PHYS. REV. D 100, 084004 (2019)

084004-6



above procedure, we Taylor expand the pressure function
(3.4) near the critical point, while the corresponding expan-
sion coefficients are

R ¼ Tc

��∂P
∂T
�

rh

�
c

≈ 1.6598;

B ¼ Tcrc

�� ∂2P
∂T∂rh

��
c
≈ −1.7525;

D ¼ r3c
1

3!

��∂3P
∂rh3

�
T

�
c
≈ −0.8299;

K ¼ T2
c
1

2!

��∂2P
∂T2

�
rh

�
c
≈ −0.1632: ð3:21Þ

These four coefficients are also nonzero, and it is obvious
that this case is similar to the above case with q ¼ 0.3 and
Λ ¼ −0.3. Therefore, the critical exponents are the same as
in the above case, i.e., α ¼ 0, β ¼ 1

2
, γ ¼ 1, and δ ¼ 3.

Interestingly (and obviously), all of these derived critical
exponents satisfy the following thermodynamic scaling
laws:

αþ 2β þ γ ¼ 2; αþ βð1þ δÞ ¼ 2;

γð1þ δÞ ¼ ð2 − αÞðδ − 1Þ; γ ¼ βðδ − 1Þ; ð3:22Þ
which are same as those in the van der Waals liquid-gas
system.

IV. CONCLUSION AND DISCUSSION

Einstein-Horndeski theory is the most general covariant
scalar-tensor theory. Strangely enough, it was shown that
P − V criticality mimicking the van der Waals liquid-gas
phase transition never occurs in Einstein-Horndeski theory,
while such a criticality has been widely found in many
gravity theories. In this paper, we investigated the P − V
criticality behavior in the extended phase space of a black
hole system in Einstein-Horndeski theory. Through cau-
tious analysis of the structure of this black hole system in

this theory, we demonstrated that the pressure should be
P ¼ ζ

8πη rather than the cosmological constant P ¼ − 1
8πΛ.

Physically, ζ
η uniquely corresponds to the AdS radius, and

thus works as an effective cosmological constant. With this
new definition of pressure, we have obtained that P − V
criticality indeed occurs in Einstein-Horndeski theory.
Furthermore, we also calculated the critical exponents in
this process and checked the scaling laws between these
exponents. The exponents follow those in mean field
theory, which agrees with previous studies of P − V
criticality in many gravity theories. It should be pointed
out thatΛeff is an effective cosmological constant satisfying
Λeff ¼ − 3

l2eff
¼ − ζ

η, which is a parameter that is independent

of the cosmological constant Λ. Hence, the pressure P ¼
ζ

8πη can be totally independent of the cosmological constant
Λ, which is a significant difference from previous works.
Therefore, this paper is the first to obtain P − V criticality
in the two cases with Λ ¼ 0 and Λ > 0, which implies that
the cosmological constant Λ may be not a necessary
pressure candidate for black holes at the microscopic level.
For the cases investigated in this paper, a subtlety related

to the parameter region should be clarified, since a real
scalar field ψ with ψ2ðrÞ > 0 should exist to make the
solution (2.10) represent a black hole. More precisely, the
corresponding constraint from Eq. (2.10) is

−
4ðζ þ ΛηÞr4 þ ηq2

ηðζr2 þ ηÞ ¼ −
4ðζη þ ΛÞr4 þ q2

ζr2 þ η

¼ −
4ðζη þ ΛÞr4 þ q2

ηðζη r2 þ 1Þ > 0: ð4:1Þ

In the case where the pressure is defined as P ¼ − 1
8πΛ, we

have chosen q ¼ 1 and Π� ¼ ζ
η ¼ 0.14 in Fig. 1. From this

diagram, we see that P ¼ − 1
8πΛ < 0.005, and hence

ζ
η þ Λ > 0. Therefore, the constraint (4.1) can be satisfied
by setting both ζ and η to be negative. On the other hand,
for the cases where the pressure is defined as P ¼ ζ

8πη, we

easily obtain ζ
η þ Λ > 0 in cases with Λ ¼ 0 and

Λ ¼ 0.3 > 0, while ζ
η þ Λ is also positive in our case with

Λ ¼ −0.3 < 0 since P ¼ ζ
8πη > 0.05 in Fig. 2. Therefore,

for these cases with the newly defined pressure, the
constraint (4.1) can also be satisfied by setting both ζ
and η to be negative.
Note that most of our calculations are numerical, and

whether an analytical investigation of the critical point
and exponents is possible is still an open question. On the
other hand, there is no uniqueness theorem in Einstein-
Horndeski theory, and hence further investigations of the
critical behavior and critical exponents of more solutions
in Einstein-Horndeski theory will also be an interesting
issue. In addition, the critical exponents of P − V criticality

FIG. 5. The case with q ¼ 0.3 and Λ ¼ 0.3, for T ¼ 0.8 to 1.2
(top to bottom) with an interval of 0.1.
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obtained in this paper and many cases all follow those in
mean field theory. Critical exponents beyond mean field
theory in black hole systems need to be studied further to
address the underlying question of whether critical expo-
nents beyond mean field theory depend on a special black
hole solution or special gravity theory. As we know, some
quantities like the temperature of a black hole only depend
on the black hole solution, while quantities like the relation
between the entropy of a black hole and the area of its event
horizon depend on the gravitational theory [27]. Finally,
another interesting issue involves the AdS=CFT correspon-
dence. In this scenario, gravitational theory in the bulk
spacetime corresponds to a conformal field theory dwelling
on the asymptotical AdS conformal boundary. Since inves-
tigations of P − V criticality also have an asymptotic AdS
behavior in the bulk spacetime, the corresponding physical
processes on the boundary should be studied further.
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APPENDIX A: FIRST LAW OF
THERMODYNAMICS OF BLACK HOLES

REINVESTIGATED

There are three parameters Λ, ζ, and η in the Lagrangian
of the action (2.1). In previous investigations of the P − V
criticality of asymptotical AdS black hole systems, the
cosmological constant Λ was usually considered as a
dynamical variable. In this paper, the parameter ζ is also
considered as a dynamical variable, while η is fixed as a
constant for simplicity. Therefore, the first law of thermo-
dynamics of the black hole solution in Eq. (2.12) can be
rewritten as

dE ¼ TdSþΦedQe þΦχdQχ þ VAdΛþ VBdPB; ðA1Þ

where the energy E, temperature T, entropy S, charge
potential Φe, charge Qe, scalar charge Qχ , and its conjugate
potential Φχ are explicitly shown in Eqs. (2.11) and (2.13).
In addition, VA is the corresponding conjugate quantity toΛ,
while VB is the corresponding conjugate quantity to
PB ≡ ζ=ð8πηÞ, and their complicated expressions are

VA ¼ 1

768r4h

 
−
24r5hζð−q2ηþ 8r2hηþ 4r4hðζ − ηΛÞÞ

ðr2hζ þ ηÞðζ − ηΛÞ −
24r5hζð−q2ηþ 8r2hηþ 4r4hðζ − ηΛÞÞ

ðr2hζ þ ηÞð−ζ þ ηΛÞ

þ 1

ζ3η3=2ðr2hζ þ ηÞðζ − ηΛÞ2
 
−2rhζ3=2ηðr2hζ þ ηÞð2

ffiffiffi
ζ

p ffiffiffi
η

p ð−48q2r2hζ2ηþ q4ζ2ð−3r2hζ þ ηÞ

þ 16r4hðr2hζ − 3ηÞðζ − ηΛÞ2Þ þ 3πr3hðq4ζ4 þ 16q2ζ3ηþ 16η2ð3ζ2 þ 2ζηΛ − η2Λ2ÞÞÞ

þ 12r4hζ

ffiffiffi
ζ

η

s
η3=2ðr2hζ þ ηÞðq2ζ2 þ 12ζη − 4η2ΛÞðq2ζ2 þ 4ηðζ þ ηΛÞÞArcTan

"
rh

ffiffiffi
ζ

η

s #!!
; ðA2Þ

VB ¼ πη

96r4hζ
3ðr2hζ þ ηÞ2

 
1

ζ − ηΛ
6r3hζ

4ðq2 − 4r2h þ 4r4hΛÞð−q2ηþ 8r2hηþ 4r4hðζ − ηΛÞÞ

þ 1

−ζ þ ηΛ
6r3hζ

4ðq2 − 4r2h þ 4r4hΛÞð−q2ηþ 8r2hηþ 4r4hðζ − ηΛÞÞ

þ 1

η3=2ðζ − ηΛÞ2 ðr
2
hζ þ ηÞ

 
−3πr4h

ffiffiffi
ζ

p
ðr2hζ þ ηÞðq4ζ4ð3ζ − 5ηΛÞ þ 8q2ζ2ηðζ2 − 4ζηΛ − η2Λ2Þ

− 16η2ðζ3 þ 7ζ2ηΛþ 3ζη2Λ2 − 3η3Λ3ÞÞ þ 2rhζ
ffiffiffi
η

p ðq4ζ2ð2η3Λþ 3r4hζ
2ð3ζ − 5ηΛÞ þ 2r2hζηð3ζ − 5ηΛÞÞ

þ 24q2r2hζ
2ηð−4η2Λþ r2hðζ2 − 4ζηΛ − η2Λ2ÞÞ þ 16r4hð2r4hζ3ðζ − ηΛÞ2 þ 2r2hζηðζ − 3ηΛÞðζ − ηΛÞ2

þ 3η2ðζ3 − ζ2ηΛþ 3ζη2Λ2 − 3η3Λ3ÞÞÞ þ 6r4h

ffiffiffi
ζ

η

s ffiffiffi
η

p ðr2hζ þ ηÞðq2ζ2 þ 4ηðζ þ ηΛÞÞðq2ζ2ð3ζ − 5ηΛÞ

− 4ηðζ2 þ 6ζηΛ − 3η2Λ2ÞÞArcTan
"
rh

ffiffiffi
ζ

η

s #!!
: ðA3Þ
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APPENDIX B: PROOFS OF THE EQUIVALENCE
BETWEEN INVESTIGATIONS
OF P−V CRITICALITY WITH
P−V OR P− rh DIAGRAMS

Note that discussions of P − V criticality usually involve
investigations of the pressure function Pðrh; TÞ instead of
the function PðV; TÞ [8–17]. In those previous works, the
thermodynamic volume V was usually V ¼ 4

3
πr3h, and thus

the equivalence between investigations of P − V criticality
using either PðV; TÞ or Pðrh; TÞwas easily obtained. In our
case, the functions VA and VB are complicated. Therefore,
we will give a simple proof in the following to show the
equivalence between investigations of P − V criticality
using either P − V or P − rh phase diagrams in our cases,
i.e., we obtain the same critical point and critical exponents
when using either P − V or P − rh phase diagrams. For
simplicity and consistency with the constraint from the real
scalar field in Eq. (2.10), we fix the constant parameter η
as η ¼ −1.

1. Same critical point

Besides the three parameters Λ, ζ, and η in the action,
there are in fact two other parameters M and q that come

from the black hole solution (2.10). For simplicity, η is
fixed as η ¼ −1, and therefore the only parameters are Λ, ζ,
M, and q. In this subsection, we give a simple proof that the
critical points are same when using either PðV; TÞ or
Pðrh; TÞ. Without loss of generality, we take into account
the pressure function PðVB; TÞ with the newly defined
pressure. In this case, ζ and M are dynamical variables,
while q and Λ are fixed parameters.
The critical point from the pressure function PðVB; TÞ is

� ∂P
∂VB

�
T
¼ 0;

� ∂2P
∂VB

2

�
T
¼ 0; ðB1Þ

while the critical point from the pressure function
Pðrh; TÞ is

�∂P
∂rh
�

T
¼ 0;

�∂2P
∂rh2

�
T
¼ 0: ðB2Þ

In the following, we will prove that Eqs. (B1) and (B2) give
the same critical point. A key point is that we use VB and T
as the two dynamical variables, and hence Pðrh; TÞ ¼
PðrhðVB; TÞ; TÞ ¼ PðVB; TÞ; thus, we can obtain

� ∂P
∂VB

�
T
¼
�∂P
∂rh
�

T

� ∂rh
∂VB

�
T
; ðB3Þ

� ∂2P
∂VB

2

�
T
¼
��∂2P

∂rh2
�

T

� ∂rh
∂VB

�
T
þ
�∂P
∂rh
�

T

� ∂
∂rh
�

T

� ∂rh
∂VB

�
T

�� ∂rh
∂VB

�
T
: ðB4Þ

We will prove that ð ∂rh∂VB
Þ
T
is nonzero around the critical

point in the following subsection. Therefore, Eqs. (B1) and
(B2) are easily found to be equivalent, and hence they
obtain the same critical point.

2. Same critical exponents

In this paper, P − V criticality only exists in the case with
the newly defined pressure. Therefore, we focus on this
case in the following discussions. The critical exponent α is
deduced from either

CVB
¼
�
TdS
dT

�
VB

ðB5Þ

or

Cv ¼
�
TdS
dT

�
v
; ðB6Þ

while v is the specific volume v ¼ 2rh, and the entropy S is
obtained in Eq. (3.10) as the function SðP; rhÞ. In our cases,

we can prove that the isopyknic heat capacity CVB
and Cv

at the critical point are both constant. Therefore, we
have α ¼ 0.
For the critical exponents β, γ, and δ, we need to expand

the pressure function PðVB; TÞ around the critical point like
Pðrh; TÞ in Eq. (3.11). In the case with the pressure func-
tion PðVB; TÞ, the expansion around the critical point is

PBðVB; TÞ ¼ PBc þ
��∂PB

∂T
�

VB

�
c

ðT − TcÞ

þ 1

2

��∂2PB

∂T2

�
VB

�
c

ðT − TcÞ2

þ
� ∂2PB

∂T∂VB

�
c
ðVB − VBcÞðT − TcÞ

þ 1

6

��∂3PB

∂VB
3

�
T

�
c
ðVB − VBcÞ3 þ � � � ; ðB7Þ

where B labels the pressure P corresponding to VB.
Hereafter, i.e., PBðVB; TÞ ¼ PðVB; TÞ. We can obtain
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�∂PB

∂T
�

VB

¼
�∂PB

∂rh
�

T

�∂rh
∂T
�

VB

þ
�∂PB

∂T
�

rh

; ðB8Þ

where PBðrh; TÞ ¼ PBðrhðVB; TÞ; TÞ ¼ PBðVB; TÞ has been used, while the other coefficients are as follows:� ∂
∂T
�

VB

�∂PB

∂VB

�
T
¼
� ∂
∂T
�

VB

��∂PB

∂rh
�

T

� ∂rh
∂VB

�
T

�

¼
� ∂rh
∂VB

�
T

� ∂
∂T
�

VB

�∂PB

∂rh
�

T
þ
�∂PB

∂rh
�

T

� ∂
∂T
�

VB

� ∂rh
∂VB

�
T

¼
��∂2PB

∂rh2
�

T

�∂rh
∂T
�

VB

þ ∂2PB

∂T∂rh
�� ∂rh

∂VB

�
T
þ
�∂PB

∂rh
�

T

� ∂
∂T
�

VB

� ∂rh
∂VB

�
T
; ðB9Þ

and�∂2PB

∂T2

�
VB

¼
� ∂
∂T
�

VB

��∂PB

∂rh
�

T

�∂rh
∂T
�

VB

þ
�∂PB

∂T
�

rh

�

¼
�∂rh
∂T
�

VB

� ∂
∂T
�

VB

�∂PB

∂rh
�

T
þ
�∂PB

∂rh
�

T

� ∂
∂T
�

VB

� ∂rh
∂VB

�
T
þ
� ∂
∂T
�

VB

�∂PB

∂T
�

rh

¼
��∂2PB

∂rh2
�

T

�∂rh
∂T
�

VB

þ ∂2PB

∂T∂rh
��∂rh

∂T
�

VB

þ
�∂PB

∂rh
�

T

� ∂
∂T
�

VB

� ∂rh
∂VB

�
T
þ
� ∂
∂T
�

VB

�∂PB

∂T
�

rh

;

�∂3PB

∂VB
3

�
T
¼
� ∂rh
∂VB

�
T

� ∂
∂rh
�

T

�∂2PB

∂VB
2

�
T

¼
�� ∂

∂rh
�

T

���∂2PB

∂rh2
�

T

� ∂rh
∂VB

�
T
þ
�∂PB

∂rh
�

T

� ∂
∂rh
�

T

� ∂rh
∂VB

�
T

�� ∂rh
∂VB

�
T

��� ∂rh
∂VB

�
T
: ðB10Þ

At the critical point, we can find that these coefficients are nonzero. For example, we obtain these coefficients in the case
with q ¼ 0.3 and Λ ¼ −0.3 as��∂PB

∂T
�

VB

�
c

¼
��∂PB

∂T
�

rh

�
c

¼ 1.8617;
��∂2PB

∂T2

�
VB

�
c

¼ 2

� ∂2PB

∂T∂rh
�∂rh
∂T
�

VB

�
c

þ
��∂2PB

∂T2

�
rh

�
c

¼ −9.700;

� ∂2PB

∂T∂VB

�
c
¼
� ∂2PB

∂T∂rh
� ∂rh
∂VB

�
T

�
c
¼ −17.1345;

��∂3PB

∂VB
3

�
T

�
c
¼
��∂3PB

∂rh3
�

T

� ∂rh
∂VB

�
3

T

�
c
¼ −4093.1; ðB11Þ

where several numerical values at the critical point have been used:��∂VB

∂rh
�

PB

�
c

≈ 0.3964;

��∂VB

∂PB

�
rh

�
c

≈ −0.1581;
��∂T

∂rh
�

PB

�
c

≈ 5.9369 × 10−15;

�� ∂T
∂PB

�
rh

�
c

≈ 0.5372;

�� ∂rh
∂VB

�
T

�
c
≈ 2.5230;

��∂PB

∂VB

�
T

�
c
≈ −2.7886 × 10−14;

��∂rh
∂T
�

VB

�
c

≈ 0.7424;

��∂PB

∂T
�

VB

�
c

≈ 1.8617;

��∂PB

∂T
�

rh

�
c

≈ 1.8617;
�� ∂2PB

∂T∂rh
��

c
≈ −6.7913;

��∂3PB

∂rh3
�

T

�
c
≈ −254.853;

��∂2PB

∂T2

�
rh

�
c
≈ 0.3839:

Since the coefficients in Eq. (B11) are nonzero, similar to
discussions in the main text and Refs. [8,16,17], the three
critical exponents β, γ and δ are same.
Note that the quantities in the above expressions are not

an easy work to obtain. Therefore, in the following we will
give a detailed calculation of ð ∂rh∂VB

Þ
T
as an example. The

starting point is that we have obtained the temperature and

thermodynamic volume as functions of rh and PB, i.e.,
Tðrh; PBÞ and VBðrh; PBÞ in Eqs. (2.11) and (A3). Since
there are just two dynamical variables in our cases, in
principle we can also use T and VB as the two new dyna-
mical variables. Therefore, from Tðrh; PBÞ≡ TðrhðT; VBÞ;
PBðT; VBÞÞ and VBðrh; PBÞ≡ VBðrhðT; VBÞ; PBðT; VBÞÞ,
we deduce the following key relations:
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dT ¼
�∂T
∂rh
�

PB

drh þ
� ∂T
∂PB

�
rh

dPB

¼
�∂T
∂rh
�

PB

�� ∂rh
∂VB

�
T
dVB þ

�∂rh
∂T
�

VB

dT

�
þ
� ∂T
∂PB

�
rh

��∂PB

∂VB

�
T
dVB þ

�∂PB

∂T
�

VB

dT

�

¼
��∂T

∂rh
�

PB

� ∂rh
∂VB

�
T
þ
� ∂T
∂PB

�
rh

�∂PB

∂VB

�
T

�
dVB þ

��∂T
∂rh
�

PB

�∂rh
∂T
�

VB

þ
� ∂T
∂PB

�
rh

�∂PB

∂T
�

VB

�
dT; ðB12Þ

dVB ¼
�∂VB

∂rh
�

PB

drh þ
�∂VB

∂PB

�
rh

dPB

¼
�∂VB

∂rh
�

PB

�� ∂rh
∂VB

�
T
dVB þ

�∂rh
∂T
�

VB

dT

�
þ
�∂VB

∂PB

�
rh

��∂PB

∂VB

�
T
dVB þ

�∂PB

∂T
�

VB

dT

�

¼
��∂VB

∂rh
�

PB

�∂rh
∂vB

�
T
þ
�∂VB

∂PB

�
rh

�∂PB

∂VB

�
T

�
dVB þ

��∂VB

∂rh
�

PB

�∂rh
∂T
�

VB

þ
�∂VB

∂PB

�
rh

�∂PB

∂T
�

VB

�
dT: ðB13Þ

From these relations, we obtain four equations that should be satisfied:

8<
:

ð∂VB∂rh ÞPB
ð ∂rh∂VB

Þ
T
þ ð∂VB∂PB

Þ
rh
ð∂PB∂VB

Þ
T
¼ 1;

ð∂T∂rhÞPB
ð ∂rh∂VB

Þ
T
þ ð ∂T

∂PB
Þ
rh
ð∂PB∂VB

Þ
T
¼ 0;

ðB14Þ

8<
:

ð∂VB∂rh ÞPB
ð∂rh∂T ÞVB

þ ð∂VB∂PB
Þ
rh
ð∂PB∂T ÞVB

¼ 0;

ð∂T∂rhÞPB
ð∂rh∂T ÞVB

þ ð ∂T
∂PB

Þ
rh
ð∂PB∂T ÞVB

¼ 1.
ðB15Þ

Therefore, we finally obtain

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð ∂rh∂VB
Þ
T
¼ 1

ð∂VB∂rh ÞPB−ð
∂VB∂PBÞrh

ð ∂T∂rhÞPB
ð ∂T∂PBÞrh

;

ð∂PB∂VB
Þ
T
¼ 1

ð∂VB∂PBÞrh−ð
∂VB∂rh ÞPB

ð ∂T∂PBÞrh
ð ∂T∂rhÞPB

;

ð∂rh∂T ÞVB
¼ 1

ð ∂T∂rhÞPB−ð
∂T∂PBÞrh

ð∂VB∂rh Þ
PB

ð∂VB∂PBÞ
rh

;

ð∂PB∂T ÞVB
¼ 1

ð ∂T∂PBÞrh−ð
∂T∂rhÞPB

ð∂VB∂PB Þ
rh

ð∂vB∂rh ÞPB

:

ðB16Þ

Therefore, from the known functions Tðrh; PBÞ and VBðrh; PBÞ in Eqs. (2.11) and (A3), we can easily obtain ð ∂rh∂VB
Þ
T
and

other quantities around the critical point.
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