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We present a detailed analysis of a quantum model for loop quantum cosmology based on strict
application of the Thiemann regularization algorithm for the Hamiltonian in loop quantum gravity,
extending the results presented previously in our brief report. This construction leads to a qualitative
modification of the bounce paradigm. Quantum gravity effects still lead to a quantum bounce connecting
deterministically large classical universes. However, the evolution features a large epoch of de Sitter
Universe, with emergent cosmological constant of Planckian order, smoothly transiting into a spatially flat
expanding universe. Moreover, we present an effective Hamiltonian describing the quantum evolution to
high accuracy and for which the dynamics can be solved analytically.
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I. INTRODUCTION

Modern experiments and precise cosmological observa-
tions constantly expand the frontiers of our knowledge of the
Universe and its evolution at largest scales. The influx on
high precision cosmic microwave background (CMB)
measurements and the birth of gravitational wave astronomy
[1,2] give hope for making the models describing the very
earlyUniverse dynamics—where the quantumnature of gra-
vity is expected to play an important role—experimentally
testable. It is therefore particularly important to bring the
available models/theories of the interaction between geom-
etry and matter at highest energy scales to the level where
concrete physical predictions can be made in an unambigu-
ous manner. One of the most popular initiatives to bring
relativity and quantum theory to a common footing is loop
quantum gravity (LQG) [3–5]. LQG exploits the fact that
general relativity (GR) in its background-independent
Hamiltonian formulation is equivalent to a Yang-Mills
gauge theory [6–8] and it is therefore possible to proceed
with its quantization in a well-known and mathematically
rigorous manner. Despite LQG reaching the level of matu-
rity, where the physical Hilbert space and the analog of the
Schrödinger evolution equation generating the dynamics
could be constructed [9–12], attempts to apply it in its full

form to study the implications for cosmology have not been
successful so far. Yet, in the last two decades the subfield
of loop quantum cosmology (LQC) emerged. Here, one
imports regularization techniques from LQG directly to
symmetry reduced (usually cosmological) spacetimes
[13–18]. Due to this symmetry reduction, the phase space
of the theory becomes coordinatized by quasiglobal degrees
of freedom (in the case of inhomogeneous spacetimes, for
example, by Fourier modes of the inhomogeneities) becom-
ing finite dimensional for homogeneous cosmologymodels.
This allows us to proceed by investigating effects of
quantum geometry in the Planck regime [19]. In particular,
the LQC model of a Friedman-Lemaître-Robertson-Walker
(FLRW) universe led to the replacement of the big bang
initial singularity by a bounce, connecting two (semi-)
classical FLRW spacetimes [20–24]. This was achieved
by dynamically evolving semiclassical states (in the sense of
small relative uncertainties) starting from a chosen moment
of time corresponding to large expanding Universe. In most
cases, for that purpose one selects Gaussian states in the
“energy” representation—the canonical momentum of a
matter field serving as the internal clock that parametrizes
the quantum evolution. Subsequently, the studies of the full
quantum dynamics of isotropic spacetimes were generalized
to nonisotropic ones [25–27], including in particular the
Kantowski-Sachs chart of the interior of the Schwarzschild
black hole [28,29]. Interestingly, the genuine quantum
trajectories defined by the time evolution of the expectation
values of certain observables (volume, its momentum,
energy density, Hubble rate, etc.) for these states are
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reproduced to accuracy well below quantum variances by
the so-called effective Hamiltonian, which is constructed by
replacing a set of “elementary” operators [volume andUð1Þ
components of holonomies] forming the Hamiltonian con-
straint operator with their expectation values [30].1

In its present form, however, the construction of the
framework of LQC used by the majority of the community
(later referred to as the mainstream LQC or standard LQC)
involves making particular choices between nonequivalent
alternatives in certain key steps of the construction. One of
such steps is known as “regularization process”, and
consists of reexpressing the Hamiltonian constraint in
terms of the extended operators (i.e., holonomies and
fluxes). In the pioneering works [13,14,20–22] part of
the gravitational Hamiltonian constraint involving the
extrinsic curvature (the so-called “Lorentzian part”) has
been regularized by reexpressing it in terms of the spatial
Ricci curvature. While it is possible to implement it in full
LQG [33–35], it differs significantly from the regulariza-
tion algorithm originally proposed by Thiemann. Unlike in
standard quantum mechanics, in LQG it is not known
whether different regularization algorithms lead to similar
dynamical predictions. Indeed, the quasiphenomenological
analysis of the full LQG scalar constraint in its isotropic
sector [36–38]—performed via evaluating the expectation
values on coherent states peaked on isotropic cosmological
spacetimes—has revealed that, in the leading order in ℏ, the
effective Hamiltonian generating the dynamics differs
significantly from the Hamiltonian of effective LQC. An
alternative approach—known as the quantum reduced loop
gravity and based on the quantization of those spacetimes
which, upon a suitable gauge fixing, take diagonal form—
is claimed to yield yet different corrections [39]. On the
other hand, if one implements in the context of studies of
[36] the construction of the Lorentzian part of the
Hamiltonian constraint proposed in [35], one is left with
the mainstream LQC effective constraint as the leading
order approximation. In order to track down the nature of
this discrepancy, it is then important to reexamine the
implementation of the original Thiemann algorithm in full
(that is, including the Lorentzian part of the Hamiltonian
constraint) in the LQC framework. The LQC reduction to
this regularization algorithm has already been considered in
the literature [40]; however in those works the analysis was
not developed to the level allowing for verification of the

dynamical predictions. Our work [41] and the detailed
analysis presented in this article close this gap.
With the ever-extending reach of LQC, the dynamical

consequences of different regularizations must be under-
stood before further studies can be conducted. These
studies include the several extensions beyond flat FLRW,
like positive and negative curvature [42–45], inclusion of
cosmological constant [23,46,47] or extension to noniso-
tropic cosmologies [48–50]. Also, it is critical to extend the
new construction to the context of perturbative LQC by
studies similar to those of [19,51,52] or in the context of
nonperturbative inhomogeneous LQC like the studies of
Gowdy cosmologies [53–55]. In the former case, some
results have already been obtained [56]. To pave the way
for all these constructions, we present here a detailed
analysis of the quantum model as well as its effective
dynamics for the Thiemann regularization in the LQC
framework.
In Sec. II we present how the Thiemann regularization

(denoted by TR) can be implemented as an operator on the
physical Hilbert space of LQC. For this purpose, we work
in the μ̄-scheme, also called improved dynamics. Since the
Euclidean term can be treated as in mainstream LQC, we
pay special attention to the Lorentzian part due to which
nontrivial modifications arise. When coupled to a massless
scalar field, the scalar constraint can be promoted to an
evolution operator. In Sec. III we investigate certain
properties of this evolution operator and its self-adjoint
extensions. In Sec. IV we discuss how the implementation
of the scalar constraint leads to the physical Hilbert space
with a suitable set of physical observables. All of this is in
analogy to mainstream LQC and the numerical investiga-
tions can therefore be executed in the same way as in
[20–22]. In Sec. V the effective dynamics of this model is
carefully investigated, and the solution to the equations of
motion is found analytically. The simulations of the
quantum dynamics are presented in Sec. VI and are shown
to be well approximated by the effective dynamics. This
justifies the terminology. In Sec. VII we summarize our
results and finish with a prospect on further research.

II. FLAT FRW WITH SCALAR FIELD

In this section we recall the framework behind isotropic
LQC. For more details we refer to Appendix A or the
several reviews in the literature (see e.g., [15–17]). We pay
special attention to different regularizations of the
Hamiltonian operator and derive in detail the regularization
from [40], which is inspired by the Thiemann regulariza-
tion of the Lorentzian part.

A. Review of LQC kinematics

The starting point of LQC is the Hamiltonian formu-
lation of GR in terms of Ashtekar-Barbero variables
[57–61]. The phase space of GR is coordinatized by the

1The validity of this heuristic procedure is supported by a
series of works where the attempt to evaluate the correct
expectation value of the Hamiltonian constraint was made.
In particular, the effective Hamiltonian was confirmed to repro-
duce the latter in the limit of low energy and low relative
dispersion [31]. Also, the modified Friedmann equation—one
of the equations of motion generated by the Hamiltonian
constraint—has been derived explicitly on the genuine quantum
level in context of isotropic cosmology with dust field as the
internal clock [32].
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Ashtekar connection Ai
aðxÞ and the inverse densitized triad

Eb
i ðxÞ which, for isotropic flat FLRW spacetime, read

[a; b;… ¼ 1; 2; 3 are spatial indices and i; j;… ¼; 1; 2; 4
are internal SUð2Þ indices]

Ai
aðxÞ ¼ V−1=3

o cδia; Ea
i ðxÞ ¼ V−2=3

o pδia; ð1Þ

where V0 is the coordinate volume of a chosen spatial cell.
Upon reducing to the symmetric sector, their Poisson
bracket on the reduced phase space becomes

fAi
aðxÞ; Eb

j ðyÞg ¼ 8πGγδijδ
b
aδ

ð3Þðx; yÞ

⇒ fc; pg ¼ 8πGγ
3

; ð2Þ

where G is the gravitational coupling constant and γ ∈
R − f0g is a free choice and called the Barbero-Immirzi
parameter [62]. Mimicking the quantization procedure in
the full theory, one wants to regularize the classical
constraints via holonomies of the connection.
As outlined in Appendix A, we work throughout this

article with a different choice of variables. These are a
rescaled connection and the physical volume of the chosen
cell,

b ≔ cμ̄; V ≔ p3=2; fb; Vg ¼ 2α

ℏ
; ð3Þ

with α ¼ 2πGℏγ
ffiffiffiffi
Δ

p
and μ̄ being the regularization param-

eter, used in what is known as the μ̄-scheme or improved
dynamics [22]

μ̄ ≔
ffiffiffiffi
Δ

pffiffiffiffiffiffijpjp ; Δ ≔ 2π
ffiffiffi
3

p
γGℏ ≈ 2.61l2

Pl; ð4Þ

where lPl is the Planck length and Δ is the smallest
nonvanishing area eigenvalue from the full theory.
The volume is promoted to a multiplication operator V̂

on the kinematical Hilbert spaceHgr, which is the subspace
of symmetric states of L2ðR̄; dμBohrðvÞÞ. And the expo-
nential N ≔ eib=2 is represented by a shift operator,

V̂jvi ¼ αjvjjvi; N̂ jvi ¼ jvþ 1i; ð5Þ

where volume eigenstates jvi are normalized with respect
to the Kronecker delta

hvjv0i ¼ δvv0 : ð6Þ

This finishes the kinematical set up of LQC. Now, one has
to turn towards quantization of the scalar constraint, which
in terms of Ashtekar-Barbero variables reads

C ¼ CE þ CL; ð7Þ

where Euclidean and Lorentzian parts are respectively
(details in Appendix A)

CE ¼ 1

16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp Fi
ab; ð8aÞ

CL ¼ −ð1þ γ2Þ 1

16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ϵimnKm
a Kn

b: ð8bÞ

This is the focus of the next subsection.

B. Scalar constraint with the new (Thiemann)
regularization

The regularization of the Euclidean part CE is explained
in Appendix A, and its quantization reads

Ĉμ̄
E½N�jvi ¼ 3Nα

4ð16πGÞΔ ðFðvþ 2ÞN̂ 4þ

− F0ðvÞidþ Fðv − 2ÞN̂ −4Þjvi; ð9Þ

where the functions F0 and F are given in (A35). The
regularization of CL used in mainstream LQC is based on
relations which are only true in cosmology,

γKi
ajcos ¼ Ai

ajcos; 2γ2Ki
½aK

j
b�jcos ¼ ϵijkFk

abjcos: ð10Þ

Using these relations, one finds that in classical cosmol-
ogy the Lorentzian part is proportional to the Euclidean
part. It can therefore be regularized in the same way. Hence,
we can say that the philosophy of mainstream LQC is “first
reduce, then regularize.” On the other hand, one can
propose a new regularization scheme for CL, which follows
the opposite philosophy: “first regularize, then reduce.”
In other words, we first consider a regularization of CL
which is valid in full GR—incidentally, the one due to
Thiemann [11,12] and currently used in LQG—and where
the Lorentzian part is not proportional to the Euclidean part.
Afterwards, we reduce to the sector of flat cosmology and
promote the resulting expression to a quantum operator
in LQC.2

Let us start by pointing out the second Thiemann
identity, which is true in full GR, and can be regularized
using a regularization parameter ϵ > 0 independent of the
phase space variables,

2The philosophy behind this procedure is the same which led
to the quantum operators for the Euclidean part, which was based
on cosmological expressions after implementing the regulariza-
tion (A30).
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τjK
j
a ¼ 1

8πGγ3
fτjAj

a; fCE½1�; Vgg

¼ −
1

8πGγ3ϵ
hafh†a; fCϵ

E½1�; Vgg þOðϵÞ; ð11Þ

where ha is the holonomy of a path oriented along
coordinate direction a and of coordinate length ϵ. τj ≔
−iσj=2 are the generators of the Lie algebra suð2Þ, with σj
being the Pauli matrices. However, one has to be careful in
passing from ϵ to μ̄, which is phase space dependent.
Indeed, Thiemann identity (11) is only correct if ϵ is
independent of the phase space point. Thus, instead of
performing the replacement ϵ → μ̄ in (11), we make use of
the following observation from [40], which is true only in
cosmology:

τjK
j
a ¼ −

4hafh†a; fCμ̄
E½1�; Vgg

3μ̄ð16πGÞγ3 þOðΔÞ; ð12Þ

where μ̄ is given in (4). With this identity one finds (see
Appendix A)

Cμ̄
L½N� ¼ −

ð1þ γ2ÞN
γ7ð4πGÞ4

ϵabc

9Δ3=2 Trðhafh†a; fC
μ̄
E½1�; Vgg∘ffiffiffiffi

V
p

hbfh†b; Vg
ffiffiffiffi
V

p
hcfh†c; fCμ̄

E½1�; VggÞ: ð13Þ

The quantization of (13) on the Hilbert space of LQC can
now be done in the standard way: promoting h and V to

operators and recalling that df:; :g ¼ ½:; :�=ðiℏÞ, we find

Ĉμ̄
L½N� ¼ ð1þ γ2ÞN

γ7ð4πGÞ4
iϵabc

9Δ3=2ℏ5
Trðĥa½ĥ†a; ½Ĉϵ

E½1�; V̂��∘ffiffiffiffi
V̂

p
ĥb½ĥ†b; V̂�

ffiffiffiffi
V̂

p
ĥc½ĥ†c; ½Ĉϵ

E½1�; V̂��Þ: ð14Þ

Its action on jvi reads (details in Appendix A)

Ĉμ̄
L½N�jvi ¼ 3Nα

16πGΔ210
1þ γ2

4γ2
ðGðv − 4ÞN̂ −8

−G0ðvÞI þGðvþ 4ÞN̂ 8Þjvi; ð15Þ

where the functions GðvÞ and G0ðvÞ are given in (A50).
This is the new quantum operator for the Lorentzian

part of the scalar constraint. The sum of the Euclidean
part (A34) and this Lorentzian part (15) completes the
alternative quantization of the scalar constraint for flat
cosmology,

Ĉμ̄½N� ≔ Ĉμ̄
E½N� þ Ĉμ̄

L½N�: ð16Þ

So far we discussed the gravitation degrees of freedom.
In this work, we consider the matter content to be a
massless, free scalar field ϕ that is minimally coupled to

gravity. The field serves as a physical clock with respect to
which we deparametrize the system. The action of matter is

Sϕ ¼ −
1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p
gμνð∂μϕÞð∂νϕÞ: ð17Þ

Upon a Legendre transformation and in the presence of an
isotropic, spatially flat metric, the above equation leads to
the total scalar constraint,

Ctot½N� ¼ CE½N� þ CL½N� þ Cϕ½N�; ð18aÞ

Cϕ½N� ¼ Njpj−3
2p2

ϕ=2; ð18bÞ

where pϕ is the canonical conjugate momentum to ϕ.
We follow the strategy of [63], where the lapse function is
chosen to be N ¼ 2V. This convenient choice makes
Cϕ½2V� independent of the geometric variables. Then,
using Schröndinger representation for ϕ, the matter part
of the constraint can be promoted to an operator

Ĉϕ ¼ IHgr
⊗ ðiℏ∂ϕÞ2 ð19Þ

on the direct product Hilbert space Hkin ¼ Hgr ⊗ Hϕ,
with Hϕ ¼ L2ðR; dϕÞ.
To express the full quantum constraint equation in Hkin

one chooses a symmetric ordering for gravitational part of
the scalar constraint with respect to the volume operator in
the lapse function, i.e.,

−ℏ2∂2
ϕ ¼ −2

ffiffiffiffi
V̂

p
ðĈμ̄

E½1� þ Ĉμ̄
L½1�Þ

ffiffiffiffi
V̂

p
≕ℏ2ΘTR: ð20Þ

For the physical time evolution, one has to take the square
root of (20) and hence we investigate

ffiffiffiffiffiffiffiffiffiffiffijΘTRj
p

in the next
chapter.
For the remainder of this paper we proceed in a “large v

approximation,” where the operator is defined only in the
region v > 8 such that the absolute values in the functions
F and G may be dropped. In this case the expressions
simplify to

Ĉμ̄
E½N�jvi¼−

3Nα

2ð16πGÞΔððvþ2ÞN̂ 4−2vIþðv−2ÞN̂ −4Þjvi

ð21aÞ

Ĉμ̄
L½N�jvi ¼ 3Nα

2ð16πGÞΔ
1þ γ2

4γ2

× ððvþ 4ÞN̂ 8 − 2vIþ ðv− 4ÞN̂ −8Þjvi: ð21bÞ

Plugging this into (20) we find finally

ASSANIOUSSI, DAPOR, LIEGENER, and PAWŁOWSKI PHYS. REV. D 100, 084003 (2019)

084003-4



ΘTR¼
3

ð16πGÞℏ2Δ

ffiffiffiffi
V̂

p
ð−sN̂ 4V̂N̂ 4þN̂ 2V̂N̂ 2þ2ðs−1ÞV̂

þN̂ −2V̂N̂ −2−sN̂ −4V̂N̂ −4Þ
ffiffiffiffi
V̂

p
; ð22Þ

where s ≔ ð1þ γ2Þ=ð4γ2Þ.
Unlike the standard LQC, where the evolution operator

is a difference operator of the second order, in this caseΘTR
is a difference operator of the fourth order.

III. PROPERTIES OF THE EVOLUTION
OPERATOR

Unlike the full LQG, the models of LQC (including the
one investigated here) are usually sufficiently simple to
allow determining explicitly the spectrum of the quantum
Hamiltonian constraint and its components, as well as
evaluating explicitly the physical Hilbert space basis
elements defined by the spectral decomposition of these
operators. Having that at one’s disposal, it is then relatively
straightforward to solve the Hamiltonian constraint using
group averaging methods [64–67]. These techniques (stan-
dard for LQC, [21]) are employed here directly. A central
step in this application is the systematic spectral analysis of
the evolution operator ΘTR.
The operator itself is well defined on the domain of finite

sums of the volume eigenstates jvi being dense in Hgr.
However, the problem is that Hgr itself is nonseparable.
Fortunately, the method of splittingHgr into superselection
sectors, used in mainstream LQC [21,68], can still be
applied here: the sets (the lattices) Lϵ ¼ ϵþ 4Z, ϵ ∈ ð0; 4�
are preserved by action of ΘTR and the set of observables
used to describe the dynamics (which is the case here, as in
the mainstream LQC). Hence, one can divide Hgr into
separable subspaces of square summable functions sup-
ported on a given lattice. The structure of this division
allows one to select just one superselection sector and work
with it without loss of generality of the results. We then
focus our attention on the sector corresponding to ϵ ¼ 4.3

Furthermore, we use the fact that the matter field present
in the model is parity invariant (that is, it is invariant
with respect to the change of sign of v encoding the
triad orientation), to conclude that the parity reflection is a
large gauge transformation. In such a situation we can
further divide the Hilbert space into the superselection
sectors of symmetric and antisymmetric states, of which
we choose the former.4 As a consequence, we end up with
the sector of square summable functions supported on the
semilattice 4Zþ.

Having selected the separable superselection sector,
we can now probe the spectrum of (the self-adjoint
extensions of) ΘTR and construct the basis of the physical
Hilbert space composed of the energy eigenvectors. For
that we need to analyze the generalized eigenvalue problem
for this operator.

A. The eigenvalue problem and representations

Given the choice of superselection sectors discussed
above, we restrict the domain of definiteness of ΘTR to the
space D of finite sums,

D≔
�
jψi∈Hgr∶jψi¼

XN
n¼1

cnj4ni;cn∈C;N∈N

�
: ð23Þ

Consider now the generalized eigenvalue problem

ðΨλjΘ†
TR − λ⋆Ijψi ¼ 0; ∀ jψi ∈ D: ð24Þ

The direct inspection of the form ofΘTR (22) shows that the
above equation can be solved recursively as follows:

(i) The value of ΨλðvÞ ≔ ðΨλjvi⋆ at v ¼ 12 is deter-
mined by the pair Ψλðv ¼ 4Þ, Ψλðv ¼ 8Þ (v ¼ 0
decouples, while for v ¼ −4 we use the symmetry
of Ψ).

(ii) ThevalueofΨλðvÞ ≔ ðΨλjvi⋆ atv ¼ 16 isdetermined
by the triple Ψλðv ¼ 12Þ, Ψλðv ¼ 8Þ, Ψλðv ¼ 4Þ
(v ¼ 0 again decouples).

(iii) For each n ∈ Zþ, the value Ψλðv ¼ 4ðnþ 4ÞÞ
is determined by a quadruple Ψλðv ¼ 4ðnþ 3ÞÞ,
Ψλðv ¼ 4ðnþ 2ÞÞ, Ψλðv ¼ 4ðnþ 1ÞÞ, Ψλðv ¼ 4nÞ.

In consequence the whole eigenvector is uniquely deter-
mined by the first two values Ψλðv ¼ 4Þ, Ψλðv ¼ 8Þ; thus
the space of solutions has dimension 2.
A particularly interesting subset of solutions is the

eigenvectors corresponding to λ ∈ R as all the physical
Hilbert space elements necessarily belong to this subset.
Under this restriction the real and imaginary part of ΨλðvÞ
decouple due to the reality of operator ΘTR. Thus, without
loss of generality one can assume the reality of ΨλðvÞ.
Unfortunately, even with this simplification the eigen-

value problem can only be solved numerically (see Fig. 1).
What we can infer from the numerical solutions is the
qualitative behavior of the eigenfunctions. Since the dyna-
mics is generated by the operator

ffiffiffiffiffiffiffiffiffiffiffijΘTRj
p

we are interested
in positive eigenvalues λ ¼ ω2. For a given eigenfunction
Ψλ¼ω2 , we observe two ω-dependent regions for v ∈ 4Zþ:
the exponential suppression region (for small v) and the
(quasi-) oscillatory region for v above a certain critical
(ω-dependent) value. This picture is quite characteristic to
the cosmic bounce; however the oscillatory pattern is much
more complicated than in the mainstream LQC, indicating
much richer large volume (or more precisely low energy)
structure. To determine it, we employ the analytic studies of

3The sector of states jv ¼ 0i decouples from the rest of the
lattice, and thus evolves independently.

4Choosing the antisymmetric sector in LQC models without
fermions affects only the details of the discrete spectra, and thus
does not produce significant differences in the dynamical
predictions. See for example [24].
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the eigenvector asymptotics, using the technique originally
specified in [47]. In order to not break the reasoning flow,
the details of the derivation are presented in Appendix B.
Here we just present the result,

Ψλ¼ω2ðvÞ ¼ 1ffiffiffi
v

p NFðωÞ cosðk lnðvÞ þ σFðωÞÞ

þ 1

jvjNSðωÞ cosðΩSv

þ κðωÞ=vþ σSðωÞÞ þOðv−2Þ; ð25Þ

where NF, NS are normalization constants, k, ΩS and κ are
related in the following way,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
k; cosð4ΩSÞ ¼

1 − 2s
2s

;

κðωÞ ¼ 2s − 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s − 1

p þ 4sk2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s − 1

p ; ð26Þ

and σF, σS are phase shifts.
The comparison with the asymptotic form of evolution

operator eigenfunctions in mainstream LQC [21,23] shows
that, for large v, the eigenfunctions Ψλ¼ω2 converge to a
linear combination of two terms: one coincides with the
eigenfunction obtained in mainstream LQC; the other
agrees with the eigenfunction of mainstream LQC with
positive cosmological constant. Comparing the expressions
forΩS and κ (the latter up to an additive constant) with their
analogs in mainstream LQC listed in Eq. (4.2) of [69]
allows one to cast the new model as mainstream LQC with
cosmological constant given by

Λ ¼ 8πGρLQC;Λ¼0
c

1þ γ2
; ð27Þ

where ρLQC;Λ¼0
c ¼ 3=ð8πGγ2ΔÞ is the critical energy den-

sity of matter as obtained in mainstream LQC without
cosmological constant. In the following, we denote this
quantity simply by ρc.
As is well known [46], mainstream LQC admits a

classical limit in which the cosmological constant is
renormalized. The effective cosmological constant is
related to the “bare” one, Λ, by

Λeff ¼ Λ
�
1 −

Λ
8πGρc

�
; ð28Þ

which, given (27), in the new model reads

Λeff ¼
3

Δð1þ γ2Þ2 : ð29Þ

Given the similarity between the new model and main-
stream LQC with cosmological constant, it is convenient to
use the methods already applied in the literature [23].
The crucial first step is the transformation to the

momentum b,

ψ̃ðbÞ ¼ ½Fψ �ðbÞ ¼
X
v∈L4

jvj−1=2ψðvÞeði=2Þvb; ð30Þ

where for the selected superselection sector, the domain of
b is a circle of radius 1=2 and the parity reflection
symmetry transforms into the symmetry

ψ̃ðbÞ ¼ ψ̃ðπ − bÞ: ð31Þ

In this coordinate the evolution operator takes the form

ΘTR ¼ 12πGγ2½ðsinðbÞ∂bÞ2 − sðsinð2bÞ∂bÞ2�: ð32Þ

Plugging it into the Klein-Gordon form (20) of the
Hamiltonian constraint, we observe that in the coordinates
ðϕ; bÞ it becomes a partial differential equation of mixed
signature with the boundary defined by

cosðboÞ ¼ 1=
ffiffiffiffiffi
4s

p
: ð33Þ

For b such that jcosðbÞj < cosðboÞ the constraint is hyper-
bolic, whereas for jcosðbÞj > cosðboÞ it becomes elliptic,
which indicates that the latter is a classically forbidden
region. It is then sensible to introduce a coordinate xðbÞ
such that

ΘTR ¼ −12πGsgnðjxj − xoÞ∂2
x; xo ¼ −xðboÞ: ð34Þ

Unlike in [23] the relation x ↔ b can be expressed
analytically and is given by

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  200  400  600  800  1000

Ψλ

v

eigenfunction
envelope

FIG. 1. An example of the eigenfunction Ψλ to the evolution
operator ΘTR corresponding to the eigenvalue λ ¼ 12πGk2

(where k ¼ 10). One can observe (i) the reflected wave pattern
and (ii) the asymptotic approach to a combination of two
asymptotic waveforms given by Eq. (25). For better visualization
of the behavior an envelope (green line) compensating for rapid
oscillations due to Ωs > π has been added.
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xðbÞ

¼

8>>>>>>>><>>>>>>>>:

1
2
ln

�
1− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þγ2Þsin2ðbÞ

p
cosðbÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þγ2Þsin2ðbÞ

p
�
− π

2
; b∈ ð0;boÞ;

−arctan

�
cosðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þγ2Þsin2ðbÞ−1
p

�
; b∈ ðbo;π−boÞ;

1
2
ln

�
1− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þγ2Þsin2ðbÞ

p
cosðbÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þγ2Þsin2ðbÞ

p
�
þ π

2
; b∈ ðπ−bo;πÞ:

ð35Þ

The new coordinate spans the entire real line, with

lim
b→0

xðbÞ ¼ −∞; xðboÞ ¼ −π=2; xðπ=2Þ ¼ 0;

xðπ − boÞ ¼ π=2; lim
b→π

xðbÞ ¼ þ∞; ð36Þ

and is globally continuous, but not differentiable at the
points x ¼ �π=2. The parity reflection symmetry trans-
forms into the symmetry with respect to the reflection about
x ¼ 0, namely, ψðxÞ ¼ ψð−xÞ [this follows from the
fact that ψðvÞ ¼ ψð−vÞ implies ψ̃ðbÞ ¼ ψ̃ðπ − bÞ and that,
by direct observation of (35), xðπ − bÞ ¼ −xðbÞ]. Due
to the nondifferentiability at �π=2, an application of the
form (34) to the eigenvalue problem (24) will generate
nontrivial boundary terms at x ¼ �π=2. The derivation,
being a straightforward application of the solution from
Sec. IIIA of [23], is briefly outlined in the Appendix D. Its
result is that at x ¼ �π=2 the eigenfunctionΨλðxÞ ≔ Ψ̃λðbÞ
corresponding to an arbitrary complex eigenvalue λ needs
to be continuous but not necessarily differentiable, thus
satisfying

ΨλðxÞ ¼ ζ

8>>><>>>:
cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ=ð12πGÞp jxj þ φÞ; jxj > π=2;

cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð12πGÞ

p
ðπ=2ÞþφÞ

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð12πGÞ

p
ðπ=2ÞÞ ×

coshð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð12πGÞp

xÞ; jxj ≤ π=2;
ð37Þ

where ζ is a free complex constant and φ is a free phase
shift. The nondifferentiability at �π=2 is a crucial deter-
minant of the structure of self-adjoint extensions of ΘTR.

B. Self-adjointness, extensions

A crucial initial step in probing the unitary time
evolution of physical states generated by ΘTR (more
precisely

ffiffiffiffiffiffiffiffiffiffiffijΘTRj
p

) is determining whether it admits any
self-adjoint extension and whether such extension is
unique. Within the mainstream LQC framework the evo-
lution operator of the model of flat isotropic universe with
scalar field admits a unique self-adjoint extension, whereas
the analogous operator in presence of positive cosmological
constant admits an entire family. Since the large v asymp-
totics of eigenvectors features the properties of the eigen-
vectors of both these models (see Sec. III A), the answer to

the above question is nontrivial. To answer it, we again
employ the techniques from [47,69].
The direct inspection of (22) shows that it is symmetric.

Also, the elements ψ of the domain D satisfy [due to
smoothness in b, as they are the finite sums defined in (23)
transformed via (30)] the conditions

lim
x→�∞

∂xψðxÞ ¼ lim
x→�∞

ð∂xbÞ∂bψðxðbÞÞ ¼ 0;

½∂xψ �ð�π=2Þ ¼ 0; ð38Þ

due to ∂xb being 0 at those points.
In order to determine the structure of self-adjoint

extensions of ΘTR we need to investigate its deficiency
spaces [70]. They can be defined as the spaces of normal-
izable solutions to the eigenvalue problem (24) for the
eigenvalues �24πGi,5

K� ¼ fψ ∈Hgr∶ ∀ χ ∈ Hgrhψ jΘ†
TR ∓ 24πGiIjχi ¼ 0g:

ð39Þ
The form of all Ψ� ∈ K� can be determined by solving

the eigenvalue equation of ΘTR [as given in (34)] for
λ� ¼ �24πGi. Neglecting the nondecaying solutions,
demanding continuity at x ¼ �π=2, and using the sym-
metry x → −x, we find

Ψ�ðxÞ ¼ ζ

� ðeπ − 1Þeð�i−1Þjxj; jxj > π=2;

eð1�iÞx þ e−ð1�iÞx; jxj ≤ π=2;
ð40Þ

where the phase φ has been absorbed in the free complex
constant ζ. Therefore, both deficiency spaces are of
dimension 1. In such a case, the operator admits a family
of self-adjoint extensions, each associated with a unitary
transformation Uσ∶ Kþ → K−. For dimðK�Þ ¼ 1 all the
unitary transformations are just phase rotations, that is, for
chosen normalized deficiency functions Ψ�

o , Uσ acts as

UσΨþ
o ¼ eiσΨ−

o : ð41Þ

The extensions of the domain are by theorem X.2 of [70] of
the form

Dσ ¼ fψ þ cðΨþ
o þ UσΨþ

o Þ;ψ ∈ D;Ψþ
o ∈ Kþ; c ∈ Cg:

ð42Þ
A convenient property of the extension elements is that the
ratios of their left and right derivatives at the boundary
x ¼ �π=2 depends on the extension only. Indeed, the
elements of D do not contribute to the derivatives, which
leaves only the relatively easy to evaluate contribution of
the deficiency functions: for all ψσ ∈ Dσ one has

5Precisely, the deficiency functions are defined as normal-
izable solutions to the eigenvalue problem for λ ¼ �i; however
one can safely rescale the eigenvalues by any real factor.
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limx→þ π=2∂xψσ

limx→− π=2∂xψσ
¼ limx→− −π=2∂xψσ

limx→þ −π=2∂xψσ

¼ limx→þ π=2∂xðe−iσ=2Ψþ
o þ eiσ=2Ψ−

o Þ
limx→− π=2∂xðe−iσ=2Ψþ

o þ eiσ=2Ψ−
o Þ

¼ tanhðπ=2Þ cosðσ=2Þ þ sinðσ=2Þ
cosðσ=2Þ − sinðσ=2Þ ≕ − tanðβÞ; ð43Þ

where in the second step we used (38).
By direct inspection one can check that the relation

between β ∈ ½0; πÞ and Uσ is bijective, thus β can replace σ
as the extension label. This in turn allows one to associate
to a choice of a self-adjoint extension a physical meaning:
each extension corresponds to particular boundary con-
ditions at x ¼ �π=2.
Each extension (now denoted as Dβ) of the origi-

nal domain D is dense in Hgr. Furthermore, by self-
adjointness, the spectrum of each extension Θβ of ΘTR is
real. Since in the considered physical system only the
positive part of ΘTR is relevant [due to the solution of the
constraint (20)], its spectral decomposition distinguishes a
proper6 subspace Hβ of Hgr. Each subspace Hβ is spanned
by a basis composed of normalized eigenvectors (37)
corresponding to eigenvalues λ > 0 and satisfying the
condition (43) (reducing the originally two-dimensional
eigenspace to a one-dimensional one)

Ψβ;kðxÞ ¼ ζ

(
cosðkjxj þ φðβ; kÞÞ; jxj > π=2;
cosðkπ=2þφðβ;kÞÞ

coshðkπ=2Þ coshðkxÞ; jxj ≤ π=2;
ð44Þ

where λ ¼ ω2 ¼ 12πGk2 and φðβ; kÞ is fixed by (43) to

tanðkπ=2þ φðβ; kÞÞ ¼ tanðβÞ tanhðkπ=2Þ: ð45Þ

Thus, the eigenspaces are nondegenerate.
Recalling the asymptotic behavior of eigenfunctions for

large v (25), we observe that the considered eigenfunctions
are Dirac delta normalizable [i.e., their norm is proportional
to δð0Þ]; thus the spectrum of jΘβj is continuous (due to
nondegeneracy). Furthermore, the convergence (modulo
the shift in v) of the eigenfunctions Ψβ;k to the analogous
eigenfunctions of the mainstream LQC evolution operator7

allows one to conclude that
(i) the spectrum of jΘβj is the entire positive real

line, SpðjΘβjÞ ¼ Rþ;
(ii) following the reasoning of Appendix D, we find the

normalization constant

ζ ¼ 4ffiffiffiffiffijkjp : ð46Þ

From now on, we denote the normalized eigenfunctions
by eβ;k.
To summarize, throughout this section we have

established the existence of self-adjoint extensions of the
evolution operator ΘTR; we characterized the family of
these extensions and explicitly constructed an orthonormal
(in the sense of distributions) basis of a subspaceHβ ⊂ Hgr

relevant for the physical model considered. Hβ is spanned
by the eigenstates of the corresponding extension jΘβj of
jΘTRj. These structures are used in the next section to
construct the physical Hilbert space and probe the dynami-
cal behavior of the model.

IV. THE DYNAMICAL SECTOR

In order to complete the Dirac quantization program we
need to
(1) construct the physical Hilbert space,
(2) construct a sufficiently large family of observables

encoding physically relevant properties of the
system,

(3) probe the dynamical behavior of a class of semi-
classical states sufficiently rich to provide robust
insights.

These steps are performed in the next two subsections,
following the methods already introduced in [21–23].

A. Physical Hilbert space

While the construction of a physical Hilbert space for
constrained systems is a nontrivial task, systematic meth-
ods exist. One of the most convenient is the so-called
“group averaging” [64] (which has been applied to main-
stream LQC in [21]). Its main component is the construc-
tion of a rigging map which “averages” the kinematical
states over a group of transformations generated by con-
straints. In the case at hand this map takes the form
(Dkin ≔ D ⊗ SðRÞ ⊂ Hkin)

η∶ Dkin → D⋆
kin; ηðψÞ ¼

�Z
R
dNeiNCβψ

�†

Cβ ¼ −ðI ⊗ ∂2
ϕ þ Θβ ⊗ IÞ: ð47Þ

The physical Hilbert space is then defined asHphy ≔ Im½η�,
with an induced physical inner product (cf. [64])

ðηðψÞjηðψ 0ÞÞphy ≔ ½ηðψÞ�ðψ 0Þ ¼
Z
R
dNðψ je−iNCβψ 0Þkin:

ð48Þ

The space of physical states is a union of the positive and
negative frequency superselection sectors (corresponding,

6By choosing for example a smooth function supported on a
compact interval within jxj < π=2, one can show explicitly
that ΘTR is not positive definite.

7This follows directly from the observation that both families
of eigenfunctions share the same leading order asymptotics
(modulo phase shifts); see (25).

ASSANIOUSSI, DAPOR, LIEGENER, and PAWŁOWSKI PHYS. REV. D 100, 084003 (2019)

084003-8



respectively, to the positive and negative part of the
spectrum of i∂ϕ). The restriction to the positive frequency
sector (per analogy with Klein-Gordon equation) can be
safely performed by just replacing Cβ in the expressions
above with Cþ

β ≔ I ⊗ i∂ϕ þ
ffiffiffiffiffiffiffiffiffijΘβj

p
⊗ I. To characterize

the physical states, let us start by expanding ψðx;ϕÞ ∈ Dkin

on the basis ðeβ;k ⊗ φσÞðx;ϕÞ ¼ eβ;kðxÞeiσϕ of eigenstates
of

ffiffiffiffiffiffiffiffiffijΘβj
p

⊗ I and I ⊗ i∂ϕ,

ψðx;ϕÞ ¼
Z

dkdσcðk; σÞeβ;kðxÞeiσϕ: ð49Þ

Using this, one finds for the physical state

½ηðψÞ�ðx;ϕÞ ¼
�Z

dkdσcðk; σÞ
Z
R
dNeiNðωðkÞ−σÞeβ;kðxÞeiσϕ

�⋆
¼ 2π

�Z
dkdσcðk; σÞδðωðkÞ − σÞeβ;kðxÞeiσϕ

�⋆
¼ 2π

Z
dkc⋆ðk;ωðkÞÞe⋆β;kðxÞe−iωðkÞϕ; ð50Þ

where in the first step we observed that eβ;kðxÞeiσϕ is the eigenstate of Cþ
β with eigenvalue ωðkÞ − σ, and in the second we

performed the integral overN to obtain 2πδðωðkÞ − σÞ. Equation (50) makes it apparent that we can identify a physical state
with a one-parameter family Ψϕ of elements of the gravitational Hilbert spaceHβ, their components on the basis eβ;k being
fϕðkÞ ≔ 2πcðk;ωðkÞÞeiωðkÞϕ, so we have

ηðψÞ → ΨϕðxÞ ≔ 2π

Z
dkcðk;ωðkÞÞeβ;kðxÞeiωðkÞϕ; ð51Þ

with cðk;ωðkÞÞ ≔ ðeβ;k ⊗ φωðkÞjψÞkin. This identification Hphy → Hβ preserves the scalar product. Indeed,

ðηðψÞjηðψ 0ÞÞphy ¼ ½ηðψÞ�ðψ 0Þ ¼
Z

dxdϕdNψ⋆ðx;ϕÞ
Z

dk0dσ0c0ðk0; σ0Þe−iNðωðk0Þ−σ0Þeβ;k0 ðxÞeiσ0ϕ

¼ 2π

Z
dkdk0dσdσ0c⋆ðk; σÞc0ðk0; σ0Þδðωðk0Þ − σ0Þ

Z
dϕeiϕðσ0−σÞ

Z
dxe⋆β;kðxÞeβ;k0 ðxÞ

¼ 2π

Z
dkdk0dσdϕc⋆ðk; σÞc0ðk0;ωðk0ÞÞeiϕðωðk0Þ−σÞδðk − k0Þ

¼ ð2πÞ2
Z

dkdσc⋆ðk; σÞc0ðk;ωðkÞÞδðωðkÞ − σÞ

¼ ð2πÞ2
Z

dkc⋆ðk;ωðkÞÞc0ðk;ωðkÞÞ ð52Þ

which coincides with ðΨϕjΨ0
ϕÞβ ¼

R
dxΨ⋆

ϕðxÞΨ0
ϕðxÞ ¼P

v∈L4
Ψ⋆

ϕðvÞΨ0
ϕðvÞ.

Relation (51) allows one to interpret the structure
resulting from group averaging as the deparametrization
“on the quantum level” of the system with respect to the
scalar field, now attaining the role of an internal clock (or a
matter time). Under this interpretation, the system is the
vacuum one; i.e., only gravitational degrees of freedom are
physical: hence, the role of the physical Hilbert space is
played by the subspace Hβ ⊂ Hgr, and time evolution (in
terms of the scalar field) is generated by a true HamiltonianffiffiffiffiffiffiffiffiffijΘβj
p

. The unitary time-evolution operators are then

Uβ;ϕ;ϕ0∶ Hβ → Hβ; Uβ;ϕ;ϕ0 ≔ ei
ffiffiffiffiffiffi
jΘβ j

p
ðϕ0−ϕÞ

Ψϕ0 ðxÞ ¼ Uβ;ϕ;ϕ0ΨϕðxÞ: ð53Þ

This interpretation is used in the next subsection to provide
an intuitive construction of physically useful observables.

B. Observables

The last component needed to describe the dynamical
sector of the theory is a sufficiently rich set of physical
observables. Mathematically, these should be Dirac observ-
ables, that is, operators Ô on Dkin such that ½Ô; Cþ

β � ¼ 0.
Indeed, if we are given such an operator, its action can be
lifted to the physical Hilbert space Hphy by the formula

ÔηðψÞ ≔ ηðÔ†ψÞ: ð54Þ
Then, calling ψ 0 ≔ Ô†ψ , we can find the corresponding
Ψ0

ϕðxÞ according to Eq. (51), and therefore obtain the action
of Dirac observable Ô on Hβ.

EMERGENT DE SITTER EPOCH OF THE LOOP QUANTUM … PHYS. REV. D 100, 084003 (2019)

084003-9



The simplest example of such an operator is the scalar
field momentum P̂ϕ ≔ I ⊗ p̂ϕ∶Dkin → Dkin which, as we
now see, plays the role of energy and is a constant of
motion. Clearly, it commutes with the constraint, so it is a
Dirac observable. Then, its action on physical state ηðψÞ
passes to the action on ψ , and so we find

ψ 0ðx;ϕÞ ¼ ðP̂†
ϕψÞðx;ϕÞ

¼
Z

dkdσcðk; σÞeβ;kðxÞiℏ∂ϕeiσϕ

¼
Z

dkdσ½−ℏσcðk; σÞ�eβ;kðxÞeiσϕ: ð55Þ

Comparing this with the form (49), we read off
c0ðk; σÞ ¼ −ℏσcðk; σÞ. Hence, following (51), we conclude
that the physical state P̂ϕηðψÞ is represented on Hβ by

Ψ0
ϕðxÞ ¼ −2πℏ

Z
dkωðkÞcðk;ωðkÞÞeβ;kðxÞeiωðkÞϕ: ð56Þ

In other words, the action of Dirac observable P̂ϕ is defined
on Hβ as

P̂ϕΨϕ ¼ −ℏ
ffiffiffiffiffiffiffiffiffi
jΘβj

q
Ψϕ: ð57Þ

Since, in light of the discussion above,
ffiffiffiffiffiffiffiffiffijΘβj

p
can be

thought of as the true Hamiltonian of the system, we see

that P̂ϕ is in fact the energy operator. Moreover, in the k-
representation of Hβ, the operator P̂ϕ acts by multiplica-
tion. This in particular means that, for the energy Gaussians
cGaussðk;ωðkÞÞ that we consider for explicit computations
later [see Eq. (112), the expectation value and variance of
P̂ϕ equal

hP̂ϕi ¼ ℏω⋆; ΔPϕ ¼ ℏσ=
ffiffiffi
2

p
: ð58Þ

The scalar field momentum P̂ϕ is not the only
Dirac observable. In fact, given any self-adjoint operator
L̂∶ Hgr → Hgr, the rigging map (47) defines a one-
parameter family of Dirac observables L̂ϕ0∶ Dkin → Dkin.
These are known as partial observables [71–74], and are
given as follows (see for example [75]):

L̂ϕ0 ¼
Z
R
dNe−iNCþ

β ½L̂ ⊗ δ̂ϕ0 �eiNCþ
β ; ð59Þ

where ðδ̂ϕ0gÞðϕÞ ¼ δðϕ − ϕ0ÞgðϕÞ in the scalar field rep-
resentation. Again, the action of operator L̂ϕ0 lifts to the
physical Hilbert space by (54), and hence it can be defined
on Hβ by the same procedure. First, we identify the
kinematical state ψ 0 that results from the action of L̂ϕ0

on ψ ,

ψ 0ðx;ϕÞ ¼ ðL̂†
ϕ0ψÞðx;ϕÞ

¼
Z

dNðe−iNCþ
β ½L̂ ⊗ δ̂ϕ0 �eiNCþ

β ψÞðx;ϕÞ

¼
Z

dN
Z

dkdσ½e−iNCþ
β eβ;k ⊗ φσ�ðx;ϕÞðeβ;k ⊗ φσj½L̂ ⊗ δ̂ϕ0 �eiNCþ

β ψÞkin

¼
Z

dN
Z

dkdσ
Z

dk0dσ0cðk0; σ0Þe−iNðωðkÞ−σ−ωðk0Þþσ0Þeβ;kðxÞeiσϕðeβ;k; L̂eβ;k0 Þgrðφσjδ̂ϕ0φσ0 Þϕ

¼ 2π

Z
dkdσ

Z
dk0cðk0;ωðk0Þ þ σ − ωðkÞÞeβ;kðxÞeiσϕðeβ;k; L̂eβ;k0 Þβeiϕ0ðωðk0Þ−ωðkÞÞ; ð60Þ

where in the third step we introduced a resolution of identity in terms of eβ;k ⊗ φσ; in the fourth step we expanded ψ on the

same basis, and evaluated the operators eiNCþ
β using the fact that eβ;k ⊗ φσ is the eigenstate of C

þ
β with eigenvalue ωðkÞ − σ;

in the fifth step we observed that ðφσjδ̂ϕ0φσ0 Þϕ ¼ R
dϕφ⋆

σðϕÞ½δ̂ϕ0φσ0 �ðϕÞ ¼
R
dϕδðϕ − ϕ0Þeiϕðσ0−σÞ ¼ eiϕ

0ðσ0−σÞ and then
performed the integral over N obtaining δðωðkÞ − σ − ωðk0Þ þ σ0Þ, which we used to consume the integral over σ0.
Comparing this form of ψ 0 with (49), we read off

c0ðk; σÞ ¼
Z

dk0cðk0;ωðk0Þ þ σ − ωðkÞÞðeβ;k; L̂eβ;k0 Þβeiϕ0ðωðk0Þ−ωðkÞÞ: ð61Þ

Thus, the action of L̂ϕ0 is defined on Hβ,
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½L̂ϕ0Ψϕ�ðxÞ ¼ 2π

Z
dkc0ðk;ωðkÞÞeβ;kðxÞeiωðkÞϕ

¼ 2π

Z
dkdk0cðk0;ωðk0ÞÞðeβ;k; L̂eβ;k0 Þβeiϕ0ωðk0Þeiðϕ−ϕ0ÞωðkÞeβ;kðxÞ

¼
Z

dkðeβ;k; L̂Ψϕ0 Þβeiðϕ−ϕ0ÞωðkÞeβ;kðxÞ

¼
Z

dkðe−iðϕ−ϕ0Þ
ffiffiffiffiffiffi
jΘβ j

p
eβ;k; L̂Ψϕ0 Þβeβ;kðxÞ

¼ ½eiðϕ−ϕ0Þ
ffiffiffiffiffiffi
jΘβj

p
L̂Ψϕ0 �ðxÞ: ð62Þ

Taking the scalar product with a different state Ψ0
ϕ, we find the matrix elements of L̂ϕ0 on Hβ,

ðΨ0
ϕjL̂ϕ0ΨϕÞβ ¼ ðe−iðϕ−ϕ0Þ

ffiffiffiffiffiffi
jΘβ j

p
Ψ0

ϕjL̂Ψϕ0 Þβ ¼ ðΨ0
ϕ0 jL̂Ψϕ0 Þβ ¼

Z
dxΨ0⋆

ϕ0 ðxÞ½L̂Ψϕ0 �ðxÞ: ð63Þ

These matrix elements coincide with the matrix element of L̂ϕ0 on physical Hphy,

ðηðψ 0ÞjL̂ϕ0ηðψÞÞphy
¼ ðηðψ 0ÞjηðL̂†

ϕ0ψÞÞphy
¼

Z
R
dNðψ 0je−iNCþ

β L̂†
ϕ0ψÞkin

¼
Z

dNdMðψ 0je−iðN−MÞCþ
β ½L̂ ⊗ δ̂ϕ0 �e−iMCþ

β jψÞkin

¼
Z

dNdM
Z

dkdσ
Z

dk0dσ0c0⋆ðk; σÞcðk0; σ0Þ
Z

dxdϕδðϕ − ϕ0Þ½eiðN−MÞCþ
β eβ;kðxÞeiσϕ�⋆½L̂ ⊗ I�e−iMCþ

β eβ;k0 ðxÞeiσ0ϕ

¼
Z

dNdM
Z

dkdσ
Z

dk0dσ0c0⋆ðk; σÞcðk0; σ0Þe−iðN−MÞðωðkÞ−σÞe−iMðωðk0Þ−σ0Þe−iðσ−σ0Þϕ0
Z

dxe⋆β;kðxÞL̂eβ;k0 ðxÞ

¼ ð2πÞ2
Z

dk
Z

dk0c0⋆ðk;ωðkÞÞe−iωðkÞϕ0
cðk0;ωðk0ÞÞeiωðk0Þϕ0

Z
dxe⋆β;kðxÞ½L̂eβ;k0 �ðxÞ

¼
Z

dxΨ0⋆
ϕ0 ðxÞ½L̂Ψϕ0 �ðxÞ: ð64Þ

In the fourth step we represented the kinematical scalar
product in ðx;ϕÞ variables and expanded ψðx;ϕÞ and
ψ 0ðx;ϕÞ on the basis eβ;kðxÞeiσϕ; in the fifth step we used
the fact that eβ;kðxÞeiσϕ is an eigenstate of Cþ

β with
eigenvalue ωðkÞ − σ, and we consumed the integral over
ϕ; in the sixth step we observed that the integrals over N
and M produce 2πδðωðkÞ − σÞ and 2πδðωðkÞ − σ −
ωðk0Þ þ σ0Þ respectively, and we used them to consume
the integrals over σ and σ0; finally, in the last step, we
resummed the integrals over k and k0, noting that the
resulting object is the matrix element of Ô on wave
functions of the form (51).
The particular (one-parameter families of) operators we

are interested in are constructed out of the following
gravitational kinematical observables:

(i) The compactified volume

θ̂K ≔ arctanðV̂=ðαKÞÞ; ð65Þ

where K is a positive real dimensionless constant
chosen arbitrarily. The compactification is neces-
sary, since the partial observables constructed out of
V̂ would lead outside of the physical Hilbert space,
as it happens in the LQC model with positive
cosmological constant [23].

(ii) The matter energy density (which, by the constraint,
is equal to the gravitational energy density),

ρ̂ϕ ¼ 1

2
V̂−1ΘβV̂

−1: ð66Þ

(iii) The Hubble rate

Ĥr ¼
i
6
½V̂; V̂−1ΘβV̂

−1�: ð67Þ

These observables together form a sufficiently large set to
verify the correctness of the low energy limit of the model,
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as well as to identify novel properties characteristic of the
chosen regularization scheme. The quantum evolution of
these observables is analyzed in the semiclassical regime
and the results are presented and discussed in Sec. VI.
However, before moving to that, we expose the construc-
tion and analysis of an effective description of the quantum
model, as it is quite useful to evaluate the phenomeno-
logical aspects of the quantum theory through an effective
model. Indeed, a very interesting feature of the mainstream
LQC is that, for all the models whose genuine quantum
dynamics was tested, the evolution of the Universe was
very accurately mimicked by certain classical effective
models known under the name of classical effective LQC.
Since a lot of interesting results of LQC came from classical
effective models (as the extrapolation of genuine quantum
approach), it would be extremely useful to recover such an
effective approach for the regularization scheme investi-
gated in this paper. This is the subject of the next section,
while the comparison between the quantum and effective
models is featured in Sec. VI.

V. EFFECTIVE DYNAMICS

As we have seen, the asymptotic analysis of the
eigenstates of the evolution operator leads to the conclusion
that contributions appear that are due to the dynamics
driven by an effective cosmological constant. This is quite
surprising (since the bare theory we started from does not
have any cosmological constant), and in stark contrast with
standard LQC—where, if one studies flat FLRW universe
without bare cosmological constant, no “emergent” cos-
mological constant appears.
In this section we construct a function Heff on the phase

space of cosmology which plays the role of “effective
Hamiltonian” for the regularization presented in this paper.
The name is justified since, as we see in Sec. VI, the
dynamics it generates well approximates the quantum
evolution of semiclassical states.
Given this function, it is easy to derive the Hamilton’s

equations of motion which, surprisingly, can be integrated
analytically. Once the full solution is known, we study the
asymptotic limit of vanishing energy density of matter, and
find that, in the far past (with respect to cosmic time), the
Universe is essentially a contracting de Sitter solution with
emergent cosmological constant [whose value agrees with
(29)]. Moreover, higher order corrections amount to a
rescaling of Newton constant.
At this point, we bring to the readers’ attention to that,

already after publication of the letter [41], summarizing our
results, the effective dynamics of the system studied here
(and its extension by inclusion of the massive inflaton
scalar field) has been investigated independently in [76].
In particular its authors have found the Friedmann and
Raychaudhuri equations, whose solutions were analyzed
numerically, and studied their asymptotic low matter
energy density regimes, identifying the classical limit near

the conformal infinity transition point as corresponding to a
classical de Sitter spacetimewith an emergent cosmological
constant as well as a rescaled Newton constant.
Before delving in this analysis, however, it is instructive

to consider the case of standard LQC. In this case, if we do
not include a bare cosmological constant from the start,
then the Universe in the far past is a contracting solution of
classical Friedmann equations without cosmological con-
stant. The situation changes if a cosmological constant is
present from the start.

A. Effective dynamics of LQC
with cosmological constant

The (genuine quantum dynamics) of the flat FRW
universe with a positive cosmological constant Λ and a
massless scalar field ϕ has been investigated in detail in
[23]. It appears that the quantum dynamics of this model is
with high accuracy mimicked by the phase space dynamics
generated by the effective Hamiltonian constraint of the
form

CLQC;Λ
eff ¼ Cϕ;eff þ CLQC;Λ

gr;eff

¼ p2
ϕ

2V
−

3

8πGΔγ2
Vsin2ðbÞ þ Λ

8πG
V; ð68Þ

where pϕ is the momentum conjugated to ϕ. Evaluating _V
via Hamilton equation and eliminating the functions of b
via the constraint CLQC;Λ

eff ¼ 0, one arrives at the modified
Friedmann equation

H2
r ≔

�
_a
a

�
2

¼ 8πG
3

�
Λ

8πG

�
1−

Λ
8πGρc

�
þ ρϕ

�
1−

Λ
4πGρc

�
−
ρ2ϕ
ρc

�
;

ð69Þ

where ρϕ ≔ p2
ϕ=ð2V2Þ is the energy density of the scalar

field and we recall that ρc ¼ 3=ð8πGΔγ2Þ is the critical
energy density in mainstream LQC when Λ ¼ 0. In the
limit of low energy density of matter, we can neglect the
quadratic term in ρϕ, thus arriving at the effective classical
Friedman equation

H2
r ¼

8πḠ
3

ρϕ þ
Λ̄
3
; ð70Þ

with the effective cosmological constant Λ̄ and gravita-
tional constant Ḡ given by

Λ̄ ¼ Λ
�
1 −

Λ
8πGρc

�
; Ḡ ¼ G

�
1 −

Λ
4πGρc

�
: ð71Þ
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In other words, we can say that the asymptotic behavior of
the spacetime obeys the classical Friedmann equations
provided that we replace the bare Newton constant and the
cosmological constant with dressed ones. Note that, in
particular, if the bare Λ is 0, then Ḡ ¼ G. More generally,
solving Λ for Λ̄ and using the fact that the observed
cosmological constant (i.e., Λ̄) is extremely small, we find
two possibilities:

Λ1 ≈ Λ̄ or Λ2 ≈
3

Δγ2
− Λ̄: ð72Þ

Plugging these in the second equation, we find respectively

Ḡ1 ¼
�
1 − 2

Δγ2

3
Λ̄
�
G ≈ G

or

Ḡ2 ¼ −
�
1 − 2

Δγ2

3
Λ̄
�
G ≈ −G: ð73Þ

We thus conclude that, while in the first case the bare
quantities differ from the measured ones by a negligible
quantity, in the second case this is not true, and in particular
the bare Newton’s constant has opposite sign than the
measured one.

B. Effective dynamics of the new model
(without cosmological constant)

Let us now go back to the new model, and consider the
effective dynamics associated with it. Recall that the
Hamiltonian constraint operator reads [from (18) and (20)]

Ĉtot ≔ Ĉϕ þ Ĉμ̄
E½1� þ Ĉμ̄

L½1�

¼ 1

2
p̂2
ϕV̂

−1 −
ℏ2

2
V̂−1

2ΘTRV̂
−1
2

¼ 1

2
p̂2
ϕV̂

−1 −
3

32πGΔ
ð−sN̂ 4V̂N̂ 4 þ N̂ 2V̂N̂ 2

þ2ðs − 1ÞV̂ þ N̂ −2V̂N̂ −2 − sN̂ −4V̂N̂ −4Þ: ð74Þ

Given this quantum Hamiltonian, it is possible to extract an
effective one CTR

eff , such that Ĉtot → CTR
eff , by the replace-

ments of p̂ϕ → pϕ, N̂ → N ¼ eib=2 and V̂ → V. Using the
fact that the classical quantities commute, we find

CTR
eff ¼

p2
ϕ

2V
þ 3

16πGΔ
V½s cosð4bÞ − cosð2bÞ − ðs − 1Þ�

¼ p2
ϕ

2V
þ 3

8πGΔ
Vsin2ðbÞð1 − 4sÞ

�
1þ 4s

1 − 4s
sin2ðbÞ

�
:

ð75Þ

Now, recalling that s ¼ ð1þ γ2Þ=ð4γ2Þ, we obtain
1 − 4s ¼ −1=γ2, and so

CTR
eff ¼ Cϕ;eff þ CTR

gr;eff

¼ Cϕ;eff þ CLQC;Λ¼0
gr;eff ½1 − ð1þ γ2Þsin2ðbÞ�; ð76Þ

where Cϕ;eff ¼ p2
ϕ=ð2VÞ and CLQC;Λ¼0

gr;eff is given by

CLQC;Λ¼0
gr;eff ¼ −

3

8πGΔγ2
V sin2ðbÞ: ð77Þ

The new regularization of the Lorentzian part—more in line
with the full theory—has produced a correction with
respect to standard LQC) in the gravitational part of the
effective constraint proportional to CLQC;Λ¼0

gr;eff sin2ðbÞ. It is
worth noting that the same function, CTR

gr;eff , can be obtained
as the expectation value of the LQG Hamiltonian on
complexifier coherent states peaked on cosmological data.
For details, see [36,37].

1. Energy density of matter

Recall that the energy density of the scalar field is
ρϕ ¼ p2

ϕ=ð2VÞ. So we can write

CTR
eff ¼VρϕþCTR

gr;eff

¼Vρϕ−
3

8πGΔγ2
V sin2ðbÞ½1−ð1þγ2Þsin2ðbÞ�: ð78Þ

Now, solving the constraint CTR
eff ¼ 0 for the energy density

ρϕ, we get

ρϕ ¼ 3

8πGΔγ2
sin2ðbÞ½1 − ð1þ γ2Þsin2ðbÞ�: ð79Þ

This shows that ρϕ is bounded. To find the maximum value,
let us use the notation x ≔ sinðbÞ2. Then ρϕ is a polynomial
quadratic in x, whose maximum is obtained for x ¼ 1=
ð2ð1þ γ2ÞÞ. The corresponding value is the critical energy
density of the new model,

ρTRc ¼ 3

32πGΔγ2ð1þ γ2Þ : ð80Þ

The boundedness of ρϕ is an indication that the big
bang singularity is resolved.8 Also, we observe that the
critical energy density of this model is different than
the one of standard LQC. Indeed, it is

ρTRc ¼ 1

4ð1þ γ2Þ ρc; ð81Þ

which is smaller than ρc.

8While we are here working with a massless scalar field, we
notice that (78) is true for any other form of perfect fluid, so the
boundedness result is general.
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2. Equations of motion

The equations of motion of the model can be derived by
Hamilton’s equation of the effective constraint, which in
terms of phase space conjugated variables ðV; bÞ and
ðϕ; pϕÞ reads

CTR
eff ¼

p2
ϕ

2V
−

3

8πGΔγ2
Vsin2ðbÞ½1 − ð1þ γ2Þsin2ðbÞ�: ð82Þ

From fϕ; pϕg ¼ 1 we find (denoting by the dot the
derivative with respect to cosmic time t)

_ϕ ¼ fϕ; CTR
eff g ¼ pϕ

V
; _pϕ ¼ fpϕ; CTR

eff g ¼ 0: ð83Þ

The second equation, in particular, shows that pϕ is a

constant of motion. Similarly, from fb; Vg ¼ 4πGγ
ffiffiffiffi
Δ

p
we

find

_V ¼ fV;CTR
eff g ¼ 3

2γ
ffiffiffiffi
Δ

p V sinð2bÞ½1 − 2ð1þ γ2Þsin2ðbÞ�

ð84Þ

and

_b ¼ fb; CTR
eff g

¼ −2πGγ
ffiffiffiffi
Δ

p p2
ϕ

V2
−

3

2γ
ffiffiffiffi
Δ

p sin2ðbÞ½1 − ð1þ γ2Þ sin2ðbÞ�:

ð85Þ

Recall that the maximum of ρϕ corresponds to
sinðbÞ2 ¼ 1=ð2ð1þ γ2ÞÞ. Replacing this in (84), we see
that _V ¼ 0. This condition identifies a bounce, for which
we thus have

bB ¼ � arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ γ2Þ
p �

; ρϕ;B ¼ ρTRc : ð86Þ

The first relation can be used to fix b at the bounce (up to a
sign), while the second—recalling that ρϕ ¼ p2

ϕ=ð2V2Þ and
that pϕ is a constant of motion—fixes V,

VB ¼ jpϕjffiffiffiffiffiffiffiffiffiffi
2ρTRc

p ¼ jpϕj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGΔγ2ð1þ γ2Þ

3

r
: ð87Þ

These values can be used as initial conditions (at the
bounce) and so Hamilton’s equations (84) and (85) can be
numerically integrated. The only free parameters (that label
the specific solution) are pϕ and the sign of bB.
Remark on physical time, Here we expressed everything

with respect to cosmic time t. However, the natural choice
of physical time in this model is ϕ. Indeed, from (83) it

follows that _ϕ has definite sign. For example, if we choose
the constant pϕ positive, then _ϕ > 0, and so ϕ grows
monotonically in t. It is therefore a good clock for the
whole evolution.9 The equations of motion with respect to
ϕ are

dV
dϕ

¼ 3V2 sinðbÞ
pϕγ

ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ðbÞ

q
½1 − 2ð1þ γ2Þ sin2ðbÞ�

db
dϕ

¼ −2πGγ
ffiffiffiffi
Δ

p pϕ

V
−
3V sin2ðbÞ
2pϕγ

ffiffiffiffi
Δ

p ½1 − ð1þ γ2Þ sin2ðbÞ�:

ð88Þ
3. Exact solution of the effective dynamics

While, as said above, we now have everything we need
to solve numerically the dynamics, it is actually possible to
find the general solution of this model analytically. For this,
using the definition

x ≔ sin2ðbÞ ð89Þ

in Eq. (79), we write

ρϕ ¼ 3

8πGΔγ2
x½1 − ð1þ γ2Þx�: ð90Þ

This can be inverted, to find

x ¼
1þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρϕ=ρTRc

q
2ð1þ γ2Þ ; ð91Þ

with s being an unspecified sign. We are now going to
derive a differential equation for x.
Consider fðxÞ ≔ ðx0Þ2, where prime denotes derivative

with respect to ϕ. From (89) it follows that

fðxÞ ¼ ½2 sinðbÞ cosðbÞb0�2 ¼ 4xð1 − xÞb02; ð92Þ

where, from (88), we have

b0 ¼ −2πGγ
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffi
2ρϕ

p
−

3

2
ffiffiffiffiffiffiffiffi
2ρϕ

p
γ

ffiffiffiffi
Δ

p x½1 − ð1þ γ2Þx�

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πGx½1 − ð1þ γ2Þx�

q
ð93Þ

having used (90) in the second step. Hence, we find the
equation

9At the technical level, once V ¼ VðtÞ is computed, equation
_ϕ ¼ pϕ=V is immediately integrated, giving ϕ ¼ ϕðtÞ up to
initial condition which corresponds to the value ϕB. Due to
monotonicity, this equation can be inverted, so we have t ¼ tðϕÞ.
The functions VðtÞ and bðtÞ can now be expressed in terms of ϕ.
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x02 ¼ 48πGx2ð1 − xÞ½1 − ð1þ γ2Þx�: ð94Þ

This equation admits a unique10 solution of the form

xTRðϕÞ ¼
1

1þ γ2 cosh2ð ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ðϕ − ϕoÞ
; ð95Þ

where the free constant ϕo reflects the invariance of the
equations of motion with respect to the shift in the (matter)
time (the freedom of choice of the point of origin of time
measurement). Once xTRðϕÞ is known, all other interesting
quantities can be easily computed: ρϕ by (90) reads

ρϕðϕÞ ¼
3

8πGΔ

�
sinhð ffiffiffiffiffiffiffiffiffiffiffi

12πG
p ðϕ − ϕoÞÞ

1þ γ2cosh2ð ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ðϕ − ϕoÞÞ

�2
; ð96Þ

so the volume is

VðϕÞ ¼ jpϕjffiffiffiffiffiffiffiffi
2ρϕ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGΔp2

ϕ

3

s
1þ γ2cosh2ð ffiffiffiffiffiffiffiffiffiffiffi

12πG
p ðϕ − ϕoÞÞ

jsinhð ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ðϕ − ϕoÞÞj
; ð97Þ

from which we also find the Hubble rate

Hr ¼
_V
3V

¼ pϕ
V 0

3V2
¼ −

ρ0

3
ffiffiffiffiffiffiffiffi
2ρϕ

p
¼ 1þ γ2½1 − sinh2ð ffiffiffiffiffiffiffiffiffiffiffi

12πG
p ðϕ − ϕoÞÞ�ffiffiffiffi

Δ
p ½1þ γ2 cosh2ð ffiffiffiffiffiffiffiffiffiffiffi

12πG
p ðϕ − ϕoÞÞ�2

× coshð
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ðϕ − ϕoÞÞ: ð98Þ

The derivatives ρ0 andH0
r can also be computed analytically

(though their explicit form is rather involved, and will
therefore be omitted), and we can also compute dHr=dt
by using the fact that, for any function F, we have
_F ¼ F0 _ϕ ¼ F0 ffiffiffiffiffiffiffiffi

2ρϕ
p

.

4. Discussion: Coordinate vs physical time

All our analysis until now was based on the physical time
given by the scalar field ϕ. For completeness, we discuss
here the cosmic time t. From the equation of motion
_ϕ ¼ pϕ=V, and using the explicit form (97), we can
integrate this equation. Due to the singularity at ϕ ¼ ϕo
the integration has to be performed independently on two
domains ϕ > ϕo and ϕ < ϕo. The result yields

tðϕÞ ¼ to þ
γ2sgnðpϕðϕ − ϕoÞÞffiffiffiffiffiffiffiffiffiffiffi

12πG
p ½cosh ð

ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ðϕ − ϕoÞÞ

−ð1þ γ2Þ log jcoth ð
ffiffiffiffiffiffiffiffiffi
3πG

p
ðϕ − ϕoÞÞj�: ð99Þ

This function is plotted in 2, where we can see that tðϕÞ is
not invertible. On each of the two domains (ϕ > ϕo and
ϕ < ϕo) separated by the singularity of the equation at ϕ ¼
ϕo the image of tðϕÞ covers the whole real line. As a
consequence, the cosmic time chart can cover only one of
two domains indicated above (later referred to as aeons).
Due to time reflection symmetry of the equations of
motion, we can focus our attention on the aeon ϕ > ϕo
(our observations translate to ϕ < ϕo via time reflection
t → −t). In this chart, from the point of view of a comoving
observer (whose proper time is t), the infinite past corre-
sponds to ϕ→þ ϕo, while the infinite future corresponds to
ϕ → ∞. So, for such an observer, the far past consists of a
quantum region in which the Universe is undergoing a de
Sitter contracting phase dominated by an emergent

–1.0 –0.5

–1

1

2
t

–2

0.5 1.0
f

FIG. 2. Cosmic time t as a function of ϕ in the new model (blue)
and GR (red). The red dashed line corresponds to the classical
solution obtained by time reversal (ϕ → −ϕ), whereas the blue
dashed one represents tðϕÞ for ϕ < ϕo (with ϕo set to 0 for the
convenience of the presentation). In the new model, t only covers
half the ϕ chart. This means that, when parametrizing the
dynamics with t, there exist two solutions (aeons): one covering
the ϕ > ϕo region, the other covering the ϕ < ϕo region.

10To check that this solution is unique, we observe that Eq. (94)
can be written as a second order differential equation: if the
solution is nontrivial (x ¼ const), we can divide by x0, obtaining

x00 ¼ 24πGx½2 − 3xð2þ γ2Þ þ 4x2ð1þ γ2Þ�:
Now, this equation can be written as a first order differential
equation for vector X ≔ ðxx0Þ,

X0 ¼
�
x0

x00

�
¼

�
X2

24πGX1½2 − 3X1ð2þ γ2Þ þ 4X2
1ð1þ γ2Þ�

�
:

The vector on the rhs of this equation admits continuous partial
derivatives in X1 and X2, so the equation satisfies the Lipschitz
criterion, which in turn means that it admits unique solution.

EMERGENT DE SITTER EPOCH OF THE LOOP QUANTUM … PHYS. REV. D 100, 084003 (2019)

084003-15



cosmological constant, while the far future consists of a
classically expanding phase dominated by the matter
(scalar field). Unfortunately, expression (99) cannot be
inverted analytically, so we do not have an explicit form for
the quantities of interest (such as volume) as functions of
cosmic time t. Nevertheless, these can still be plotted
numerically. As an example, in Fig. 3 we plot the curvature
R ¼ 2½V̈=V − _V2=ð3V2Þ� and the volume, comparing them
with the results of standard LQC. Note, in particular, that in
the far past the curvature of the current model reaches a

nonzero constant: since this value is still Planckian, it
justifies why in the far past the quantum gravity effects are
still important (despite the energy density of matter being
negligible), and it explains the existence of an emergent
cosmological constant.
Finally, as mentioned, earlier the above results translate

to the aeon ϕ < ϕo via time reversal transformation.
In there, the far past (ϕ → −∞) consists of a classically
contracting universe, while the far future (ϕ→− ϕo) con-
sists of a quantum region in which the Universe is under-
going a de Sitter expanding phase dominated by emergent
cosmological constant. It is interesting to note that, while
with respect to ϕ these two solutions are bridged in a finite
time (passing through a region of infinite volume at
ϕ ¼ ϕo), with respect to the cosmic time they are distinct,
physically disconnected regions. It is only the use of a
matter clock which brings these two aeons together.

VI. COMPARATIVE ANALYSIS OF THE
EFFECTIVE AND QUANTUM MODELS

In this section we present the details of the methodology
and the results of the analysis of the evolution in the models
described in the previous sections. Since the genuine
quantum analysis (based on numerical methods) could
be performed only for a finite population of examples,
whereas the simplicity of the effective dynamics allows for
a systematic probing of the space of solutions, the results
regarding quantum trajectories themselves are discussed
using the effective dynamics, with the (purely quantum)
numerical studies serving as the verification of the accuracy
of the effective results. The genuine quantum analysis,
however, has to be used for probing the higher order
quantum properties, i.e., the behavior of variances. For
that reason, we first present the results coming from
the effective dynamics in both standard LQC and in the
model we derived with the new Lorentzian term in the
Hamiltonian. The results of the analysis are compared
together with classical GR from the perspective of the
observables of interest in the context of FLRW cosmology,
namely the volume, the matter energy density and the
Hubble rate. The genuine quantum analysis of the evolution
in the new model [characterized by the new ΘTR operator
defined in (22) and whose properties were discussed in
Sec. III] is discussed in the second subsection. We then
conclude with a comparison between the semiclassical
evolution obtained in the quantum model of the considered
observables, and the effective evolution of their classical
counterparts in the aforementioned effective models.

A. Asymptotic analysis of the effective models

Given any quantum theory/model built on the non-
perturbative level, the first question one needs to ask is
whether in an appropriate regime it reproduces the obser-
vationally confirmed classical theory (in our case the

(a)

(b)

FIG. 3. The evolution of the curvature R and the volume V
during the aeon ϕ ≥ ϕo (as functions of cosmological time t) for
the studied model (blue) is compared against that of mainstream
LQC (green). The bounce occurs at t ¼ 0. Notice that in the new
model R reaches 0 in the future classical FLRW phase, but a finite
nonvanishing value in the past de Sitter phase (a), consistent with
the nonsymmetric bounce shown in (b).

ASSANIOUSSI, DAPOR, LIEGENER, and PAWŁOWSKI PHYS. REV. D 100, 084003 (2019)

084003-16



cosmological sector of GR) in the low energy limit.
Provided that the quantum trajectories can be predicted
with a sufficient level of accuracy by the effective classical
dynamics, which is indeed the case here as we show in
Sec. VI B, one can address this question by studying the
behavior of the solutions to the equations of motion
analyzed in Sec. V B 3 in the limit ρϕ ≪ ρTRc , which is
the condition we would expect to determine the semi-
classical region.
From (96), we see that the above conditionwill be satisfied

in two regimes: either (i) coshð ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ðϕ − ϕoÞÞ → �∞, or
(ii) sinhð ffiffiffiffiffiffiffiffiffiffiffi

12πG
p ðϕ − ϕoÞÞ → 0. These situations translate

respectively into the following conditions on ϕ:
(i) ϕ → �∞, corresponding to

xTRðϕÞ ∼
4

γ2
e∓2

ffiffiffiffiffiffiffiffi
12πG

p ðϕ−ϕoÞ; ð100Þ

(ii) ϕ→� ϕo, corresponding to

xTRðϕÞ ∼
1

1þ γ2

�
1 −

γ2

1þ γ2
6πGðϕ − ϕoÞ2

�
:

ð101Þ

Interestingly, (100) is the same asymptotic behavior found in
classical GR. Indeed, in classical cosmology the exact
solution for b is11

bclassðϕÞ ¼ boe∓
ffiffiffiffiffiffiffiffi
12πG

p ðϕ−ϕoÞ; ð102Þ

which implies

xclassðϕÞ ¼ sin2ðbclassðϕÞÞ
¼ sin2ðboe∓

ffiffiffiffiffiffiffiffi
12πG

p ðϕ−ϕoÞÞ ⟶
ϕ→�∞

b2oe∓2
ffiffiffiffiffiffiffiffi
12πG

p ðϕ−ϕoÞ:

ð103Þ

So, we conclude the following:
(i) In the limit ϕ → þ∞, the TR model coincides with a

classically expanding universe (with integration
constant bo such that b2o ¼ 4=γ2).

(ii) In the limit ϕ → −∞, the TR model coincides with a
classically contracting universe (with integration
constant bo such that b2o ¼ 4=γ2).

We can repeat the sameprocedure (done for thenewmodel) in
the context of standard LQC, the only difference being the
relation between x and ρϕ, as well as the form of b0: in LQC
we have

x ¼ 8πGγ2Δ
3

ρϕ; b0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πGx

p
: ð104Þ

Hence, after analogous manipulations, we find the equation

x02 ¼ 48πGx2ð1 − xÞ ð105Þ

whose solutions with initial conditions xLQCð0Þ ¼ xo are12

xLQCðϕÞ ¼ 1 − tanh2½arctanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xo

p
Þ

∓ ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ðϕ − ϕoÞ�: ð106Þ

Again, it is easy to check that the asymptotic behavior of
xLQCðϕÞ in the limit ϕ → �∞ coincides with the classical
one, and can be made exact by appropriately choosing the
integration constant xo,

xLQCðϕÞ ¼ 1 − tanh2½
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ðϕ − ϕoÞ þ lnðγÞ�: ð107Þ

This confirms that the three models—the TRmodel, standard
LQC and classical GR—coincide in the limit ϕ → �∞. But,
contrary to LQC, the TR model presents another “semi-
classical limit,” namely the case ϕ→� ϕo. In this limit, xTR
presents the behavior (101), which can be seen to coincide
with the asymptotic behavior of classical GR in the presence
of a cosmological constantΛ and amodifiedNewton constant
Ḡ. Indeed, in this case Friedmann equations are

(
H2

r ¼ 8πḠ
3
ðρþ ρΛÞ

ä
a ¼ − 16πḠ

3

	
ρ − ρΛ

2


 with ρΛ ≔
Λ

8πḠ
ð108Þ

whose exact solution for the volume V ¼ a3 is

VdSðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πḠp2

ϕ

Λ

s
1

jsinhð
ffiffiffiffiffiffiffiffiffiffiffi
12πḠ

p
ðϕ − ϕoÞÞj

: ð109Þ

This can be seen to coincide with (97) in the ϕ → ϕo limit
under the identification13

Ḡ ¼ 1 − 5γ2

1þ γ2
G; Λ ¼ 8πḠρΛ ¼ 3

Δð1þ γ2Þ2 ð110Þ

and so

11The negative (respectively positive) sign corresponds to a
classically expanding (respectively contracting) universe.

12This can be rewritten as xLQCðϕÞ ¼ 1 − tanh2½ ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ðϕ−
ϕoÞ ∓ arctanhð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xo
p Þ�, so it is clear that the sign of ϕ is not

important: both positive and negative signs correspond to the
same one, but shifted by a constant. In particular, if we set xo ¼ 1,
we see that both solutions coincide.

13For certain values of γ, Ḡ becomes negative, so in light of the
first equation of (108) it would seem that such values are
forbidden. This is however not true, since that equation only
holds for ρ ≪ ρTRc , which means that ρΛ dominates; but ρΛ also
contains Ḡ, so the overall sign of the right-hand side of the first
equation in (108) remains positive even if Ḡ is not.
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ρΛ ¼ 3

8πḠΔð1þ γ2Þ2 : ð111Þ

The above models are compared in Fig. 4, where we plot the
volume V and energy density ρ for the respective solutions,
and in Fig. 5 where we display the _HrðHrÞ portrait.

B. Numerical analysis of the quantum evolution

In order to investigate the evolution in the new quantum
model with the ΘTR operator defined in (22), we use
the families of partial observables defined in Sec. IV B
which allow us to provide a notion of (parametrized by ϕ)
quantum trajectories, defined as the expectation values of
the observables (as functions of ϕ) in suitable states. The
steps to obtain these trajectories are detailed in the
following.
First we observe that the physical states in the new

quantum model have a very simple form in x representa-
tion; however in v representation the form of the wave
function can be found only numerically. Thus, in probing
the dynamics we are forced to focus on particular classes of
states, which can be probed in a robust way by a finite set of
examples. Among those, the ones of particular interest are
the states semiclassical in the low energy sector—the ones
reproducing (in some epoch) the semiclassical universe
following the predictions of GR. In mainstream LQC this
requirement was satisfied in particular by the (sufficiently
sharply peaked) energy14 Gaussians, which were the class
of states used for the majority of numerical studies there.
Following the previous works we too pick for the inves-
tigation the states of spectral profiles [see (51)]

cðk;ωðkÞÞ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p e−
ðωðkÞ−ω⋆Þ2

2σ2 e−iωðkÞϕo ≕ cgaussðk;ωðkÞÞ;

ð112Þ

where σ ≪ ω⋆ are positive constants and have unit G1=2

and ϕo has unit G−1=2.
Second, since (i) ΘTR has a relatively simple form in b

representation, (32), and (ii) thanks to (35) the physical
states (44) can be expressed in b representation as integrals,
one can be tempted to evaluate quantum trajectories
analytically. The problem is, however, that the operator
V̂ ∝ jv̂j cannot be expressed in this representation easily.
While it takes a simple form in the auxiliary spaces defined
in Appendix D (thus one could in principle try to perform
the calculations following those of [63]) one then needs
to (i) represent the action of operators directly in the k
representation and (ii) perform the projections of the
physical states onto those auxiliary spaces. For that reason
we decided to evaluate the needed expectation values
directly in v representation by numerical means, especially
because the methods involved are a straightforward adap-
tation of those already built for the model of FLRW
universe with positive cosmological constant in LQC [23].
Now, the actual evaluations were performed as follows:
(1) The form of the wave function in v representation

has been evaluated by performing the inverse of the
transform (30)

ψgaussðv;ϕÞ ¼
1

π
jvj1=2

Z
π

0

dbΨgauss
ϕ ðxðbÞÞe−ði=2Þvb;

ð113Þ

where xðbÞ is given by (35) and

Ψgauss
ϕ ðxÞ ¼ 2π

Z
dkcgaussðk;ωðkÞÞeβ;kðxÞeiωðkÞϕ;

ð114Þ

with eβ;kðxÞ being the normalized versions of (44).
The integral has been evaluated via an adaptive
Romberg method, of which error tolerances have
been set in actual simulations to 10−6. The domain of

(a) (b)

FIG. 4. Volume and energy density in the new model (blue), LQC (green), GR (red) and GR with effective Ḡ and Λ (black). For
presentation convenience ϕo is set to 0. The dashed lines correspond to the solutions obtained by time reversal (ϕ → −ϕ).

14The name follows from the interpretation of
ffiffiffiffiffiffiffiffiffijΘβj

p
as

vacuum Hamiltonian of the deparametrized system.

ASSANIOUSSI, DAPOR, LIEGENER, and PAWŁOWSKI PHYS. REV. D 100, 084003 (2019)

084003-18



b has been probed in the uniform grid of 219 ≈ 5 ×
105 intervals.

(2) The expectation values and dispersions (variances)
of the observables defined in Sec. IV B are evaluated
directly by (63), where we use a standard definition
for dispersion

Δ2Ô ¼ hÔ2i − hÔi2: ð115Þ

The actions of θ̂K , ρ̂, Ĥr are given by (65), (66)
and (67) respectively, and thus straightforward
to evaluate. Whereas for p̂ϕ ¼ iℏ∂ϕ, the needed

(a)

(c) (d)

(b)

FIG. 5. Two-dimensional and three-dimensional plots ofHr and _Hr in the new model (blue) and in comparison with LQC (green) and
GR [classical (red) and with effective Ḡ and Λ (black)]. The dashed lines correspond to the solutions obtained by time reversal
(ϕ → −ϕ). The far past (ϕ → −∞) corresponds to the point ðHr; _HrÞ ¼ ð0; 0Þ, where both the new model and LQCmatch the far past of
the classical contracting solution. Then, as ϕ increases, Hr < 0 and _Hr < 0, which denotes a decelerating contraction; here, all models
depart, and while the classical universe continues to the big crunch (at negative infinity), the new model and LQC cross the _Hr ¼ 0 line
and enter a phase where gravity becomes “repulsive” ( _Hr > 0). This phase ends at Hr ¼ 0, where the bounce occurs. After that, the
repulsivity of gravity drives a phase of accelerated expansion (Hr > 0), which continues until the _Hr ¼ 0 line is crossed again. At this
point, the behavior of LQC and the new model are very different: the former approaches again (0,0), which now corresponds to the far
future of the classically expanding solution; the latter approaches _Hr →− 0 at a finite value ofHr, which corresponds to the far future of a
de Sitter expanding solution. As the three-dimensional plot shows, this superexpansion phase is reached at finite values of ϕ. In fact, at
ϕ ¼ 0 a discontinuity takes place, the trajectory being mapped to Hr → −Hr. In other words, the Universe follows now a de Sitter
contracting solution. This solution is soon departed, and a symmetric behavior takes place, ending at (0,0), where the classically
expanding solution is reached.
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derivative ∂ϕψgaussðv;ϕÞ is evaluated analogously
to ψgaussðv;ϕÞ through the transform (113)

½∂ϕΨgauss�ðxðbÞ;ϕÞ ¼ 2πi
Z

dkωðkÞcgaussðk;ωðkÞÞ

× eβ;kðxðbÞÞeiωðkÞϕ: ð116Þ

In the actual simulations the quantum trajectories have
been evaluated for ω⋆ ranging from 500

ffiffiffiffi
G

p
to 5000

ffiffiffiffi
G

p
with relative dispersion in pϕ ranging from 0.02 to 0.1.
The results of these numerical simulations are displayed

in Fig. 6, and are compared with the results in mainstream
LQC, and the new effective model discussed earlier.

The asymptotic behavior obtained in the new effective
model confirms the results found in the quantum theory,
namely that in the far past the Universe is essentially a
contracting de Sitter with an effective cosmological con-
stant, and the effective trajectories mimic to high accuracy
the evolution trajectories obtained in the quantum theory.
The emerging picture that we observe, in backward
evolution, is the following: first an expanding phase
following the predictions of GR, beginning with a bounce
(resolving the classical singularity) and the transition to a
contracting de Sitter phase. This phase is followed by a
transition through past scri at ϕ ¼ 0 to an expanding de
Sitter phase, which is connected, through another bounce,
to a contracting phase approaching the classical solution in

(a)

(c) (d)

(b)

FIG. 6. The map of the physical state (a) on a v − ϕ plane [where the volume V ≈ 2.41jvjl3
Pl], and quantum trajectories of the

observables: compactified volume θK¼5×103 (b), matter energy density ρϕ (c) and Hubble rate Hr (d) of the Gaussian state peaked on
pϕ ¼ 5.05 × 103G1=2 with relative spread in Δpϕ of about 0.05. The genuine quantum trajectories of the investigated model (purple
error bars) are compared against the predictions of the effective dynamics generated by Hamiltonian (76) (blue lines) and against
the classical GR (green lines) and mainstream LQC effective trajectories (yellow lines), to which the quantum one converges in the
asymptotic past/future. While both mainstream LQC trajectories feature a single bounce (each) at (respectively) ϕ ≈�0.25G−1=2, for the
trajectories obtained with the Hamiltonian we investigate (22) we observe two bounces at ϕ ≈�0.35G−1=2 separated by a a transition
point from future to past conformal infinity at ϕ ¼ 0, where the matter energy density reaches 0 and the volume V reaches infinity. The
Planck units ρPl and lPl are defined respectively as ðG2ℏÞ−1 and ðGℏÞ1=2. The departure from mainstream LQC lasts only about
1.2G−1=2 in relational time ϕ, but from each bounce it takes infinite cosmic time to reach the transition at ϕ ¼ 0.
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the far past. What is remarkable is that the semiclassical
states remain sharply peaked throughout the entire evolu-
tion. The asymptotic analysis of the eigenstates of the
evolution operator leads to the conclusion that in the period
between the two bounces the dynamics is driven by an
effective cosmological constant. The presence of a cosmo-
logical constant is unexpected and quite surprising, since
the bare theory we started from does not have any
cosmological constant. This is in stark contrast with
standard LQC, where if one studies the flat FLRWuniverse
without cosmological constant, there is a single symmetric
bounce and no effective cosmological constant. Note that
the effective cosmological constant we obtain (110) is of
quantum gravity origin. It might be surprising that quantum
gravity effects are present for large volume and low energy
density; however the analysis of the effective dynamics
shows that the Ricci scalar curvature remains constant in
the region t → −∞ (Fig. 3), therefore justifying the
presence of quantum corrections.
Finally, an interesting aspect of our results in the quantum

theory is the existence of a transition from expanding to
contracting de Sitter epoch, which in Fig. 6 happens atϕ ¼ 0.
This issue has already been discussed in [47]. On one hand,
since the de Sitter expanding/contracting Universe with a
scalar field is future/past complete, the two sectorsϕ < 0 and
ϕ > 0 are geodesically complete; thus from the classical
spacetime perspective they constitute separate universes. On
the other hand, the trajectories of locally observable quantities
(for example matter energy density) as functions of ϕ have a
unique analytic extension through that point. Therefore, from
the quantum theory perspective (where the time problem
forced us to use the matter as a clock) the extension of
spacetime past the transition point is natural.

VII. CONCLUSIONS AND OUTLOOK

In this article we studied the physical effects of an
alternative to the standard regularization of the Hamiltonian
constraint in the framework of loop quantum cosmology.
We did so on the example of a flat isotropic FRLWuniverse
with massless scalar field as the matter content, focusing
the attention on the original proposal of Thiemann intro-
duced for full LQG. The difference with respect to the one
used originally [13,14,20–22] manifests itself in the so-
called Lorentzian part of the constraint (depending on the
extrinsic curvature) and leads to a modified evolution
operator ΘTR taking the form as expressed in (22).
Unlike standard LQC, where in the volume representation
the evolution operator is a difference operator of the second
order, in our case ΘTR is a difference operator of the fourth
order. Nonetheless, in the representation of the volume
canonical momentum (denoted as b and classically related
to the Hubble rate), both operators are of second order.
Also, the structure of the superselection sectors on the
(kinematical) Hilbert space induced by the new operator is
the same as in the mainstream LQC: (i) division of the wave

function supports onto the set of discrete uniform lattices,
and (ii) a symmetry with respect to triad orientation change
allowing one to work with either symmetric or antisym-
metric states. In consequence the superselected spaces are
separable despite the full kinematical Hilbert space being
nonseparable.
Unlike the old form of the operator, which was essen-

tially self-adjoint, ΘTR admits an entire family of self-
adjoint extensions parametrized by Uð1Þ group elements, a
structure which is very similar to the one featured by the
model of isotropic universe with massless scalar field and
positive cosmological constant in standard LQC. As in
there, while the choice of each of the extensions leads to
inequivalent unitary evolutions, all of them lead to very
similar dynamical predictions. The decomposition of unity
for each extension (that is, the eigenbases of extensions of
ΘTR) was evaluated numerically in v representation (while
having in b representation relatively simple analytic form)
and their large v asymptotic behavior was determined
analytically (25).
The construction of the physical Hilbert space for the

new model was achieved systematically using the group
averaging method as in standard LQC in [64]. The precise
identification of the space and the extended domains ofΘTR
allowed in turn to determine the quantum trajectories
corresponding to the physical states defined through
expectation values of families of Dirac observables para-
metrized by the value of the scalar field (which plays the
role of the internal clock, as in standard LQC). These
observables are the compactified volume (65), the matter
energy density (66) and the Hubble rate (67). For technical
reasons, these quantum trajectories could be evaluated only
numerically, thus forcing us to focus on specific classes of
states. In particular, in order to compare the predicted
dynamics with standard classical cosmology and predic-
tions of mainstream LQC, we have chosen for our studies
the states which were semiclassical at some point in (scalar
field) time, that is, sharply peaked in the selected observ-
ables and corresponded to a large expanding universe.
The calculation of the quantum trajectories consisted then
in evolving such states backwards in time. We focused our
attention on the “energy Gaussian” states of spectral
profiles specified in (112). A population of such states,
peaked about different values of the scalar field momentum
and with various variances, has been probed this way.
In addition to the fully quantum analysis, we constructed

an effective description of the model by introducing an
effective Hamiltonian (82) (as a function of classical phase
space variables), which generates a dynamics approximat-
ing very well the genuine quantum evolution. This effective
Hamiltonian was constructed in a heuristic way (standard
for LQC), i.e., by replacing its component elementary
operators by their expectation values. Its form was simple
enough that the equations of motion it generates could be
solved analytically. It is worth noting that this effective
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Hamiltonian is in agreement with the one obtained by
taking the expectation value of the full LQG Hamiltonian
on coherent states peaked about isotropic cosmological
spacetimes [36,37].
It is worth mentioning that the studies of the effective

dynamics of this model have been independently performed
in [76]. The main difference of (the effective dynamics part
of) our approach with respect to that work is that, instead of
using the standard Raychaudhuri and Friedmann equations,
we reformulated the system of equations of motion
generated by the effective Hamiltonian (using locally
measurable quantities and matter time) so that it became
nonsingular. This allowed us to find global unique dynami-
cal trajectories analytically. We then examined the asymp-
totics of these analytic solutions, recovering the behavior
reported in [76]. Further analysis of the effectivemodel, with
emphasis on stability as well as inflationary scenarios, was
carried out in [77–79].
Both these approaches gave a consistent dynamical

picture of the evolution of a Universe which is semiclassical
at late time. That evolution starts with a large contracting
Universe following the predictions of GR, until energy
density of the matter content reaches the Planckian order.
Then, as in standard LQC, the (loop) quantum geometry
effects generate an effective repulsive gravity force which
modifies the dynamics, leading to a bounce at roughly 1=4
of LQC critical energy density. After the bounce the
Universe quickly expands, although now (unlike in the
old LQC picture), instead of following the classical
trajectory, it follows one corresponding to a classical
Universe with large (meaning of Planckian order) positive
cosmological constant and a modified Newton constant.15

In this phase, the volume (as measured by the compactified
volume observable) reaches infinity for finite value of the
(scalar) clock field. At that point, we observe a transition of
de Sitter conformal future to conformal past into a
contracting de Sitter universe, similar to that observed in
LQC models of the Universe with positive cosmological
constant. The fine details of the transition depend on the
choice of superselection sector. Thus, in order to have a
fully deterministic evolution, a specific extension (or,
equivalently, the boundary data at conformal infinity)
has to be chosen. However, all the extensions provide
the same (up to numerically undetectable discrepancies)
quantum trajectory. The now contracting Universe follows
an effective trajectory again well agreeing with that of the
de Sitter Universe with the same effective Λ and G as in the
expanding epoch. Once the Universe contracts sufficiently
and the matter energy density reaches again Planckian
order, we observe the second bounce, after which the
Universe enters a classical trajectory describing a large
expanding Universe.

Despite the observed consistency with each other, the
fully quantum (numerical) approach and the effective
approach are not sufficient to establish the complete
robustness of the results presented above. This happens
because, due to limitations of the numerics (finite computa-
tional time), we were able to investigate only a population
with a finite number of examples of quantum states. The
results provided by the effective dynamics (having analytic
form) are general; however the method itself relies on the
heuristic construction of the effective Hamiltonian and its
accuracy has been verified just for a finite number of
examples. Fortunately, the key features of the dynamics
discussed above can be verified by asymptotic analysis of
the physical Hilbert space bases corresponding to each
extension. All of them share the following properties:

(i) all the asymptotic waveforms have a form of a
reflected/standing wave. This implies symmetry of
the qualitative picture of the state evolution. In other
words, to each contracting phase there is an ex-
panding counterpart, with possibly different details
in the features of the Universe. Also, an immediate
consequence of this fact is the presence of at least
one bounce.

(ii) The asymptotic waveforms are combinations of two
types of waveforms: the ones appearing in the
geometrodynamical quantum description of an iso-
tropic Universe with massless scalar field (see for
example [22]) and the ones of the isotropic Universe
with massless scalar field and positive cosmological
constant (see [69]). This implies the presence of
(both expanding and contracting) phases of classical
evolution as well as the effective de Sitter epochs.

The properties listed above are features of all the energy
(momentum conjugate to the scalar field used as a clock)
eigenstates; thus any physical state of sufficiently good
semiclassical nature must feature the properties indicated
above. It is worth mentioning that the form of the
asymptotics allows one to identify the value of the effective
cosmological constant (although not of the modified
Newton constant, for which we would need to determine
higher order corrections) in the de Sitter phase; see (29).
In the determination of the global evolution picture

above, an essential role was played by the choice of
parametrization of the evolution by the matter field. It is
worth noting that the expanding and contracting de Sitter
epochs featured in this picture are, respectively, future and
past geodesically complete, which means that the transition
point at conformal infinity corresponds to the infinite
future/past in standard cosmic time. Therefore, from the
point of view of time parametrization natural in classical
theory (GR), the epochs before and after the transition
can be considered as “independent,” i.e., separate distinct
Universes each of which is geodesically complete.
Following this perspective, one could restrict the attention
to the evolution of the after-transition branch, and treat the

15The values of modified cosmological and Newton constants
for this model has been found independently in [76].
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transition point as the “true” origin of the Universe, lying in
the infinite past. This particular observation is relevant for
present and future attempts to study perturbations in this
model and its extensions: indeed, in the proper (cosmic)
time chart (the one containing the “present” large classical
expanding Universe epoch), the point of origin of the
Universe is a contracting de Sitter region, which allows one
to select a unique initial state for matter and geometry
quantum perturbations (inhomogeneities) known as a
Bunch-Davies vacuum [56].
While the use of proper time is more natural from the

perspective of classical GR, we have to remember that in
the quantum description no such notion of time is present.
This was the feature that forced us to select the matter clock
as the evolution parameter. Thus, from the perspective of
the quantum theory, the whole evolution picture where the
two geodesically complete universes are just epochs of
evolution of the same Universe (known as aeons) connected
by the de Sitter transition point is the correct one. In this
sense, the global evolution resembles the proposal of cyclic
conformal cosmology (CCC) [80]. In comparison to that
proposal, however, the picture emerging here differs in a
key point: instead of gluing the conformal future infinity of
one aeon to the big bang singularity of the next one, here
we end up with gluing16 the future conformal infinity of one
aeon with the past conformal infinity of the other aeon.
Such transition allows for much better understanding of
transfer of information from one aeon to the next, since the
mathematical results used in CCC were originally devel-
oped for future infinity to past infinity transition [81].
Therefore, the model studied here comes equipped with
interesting features of CCC, while not being weighted
down by the restrictions imposed by conformal infinity to
singularity transition needed there.
It is worth mentioning that the transition between the

expanding and contracting de Sitter epochs occurring at
the finite (matter) time is not just a result of choosing the
massless scalar field as the internal clock. This feature
would be present also if other nonexotic forms of matter
(with the exception of dust)—for example the radiation
[82]—were used as a clock. Such “universality” becomes
important once we start trying to answer the question of
which choice of time (proper versus matter)—and in
consequence which evolution picture—we should adopt.
This question, while appearing to border on philosophy,
can be approached in an operational way: what we perceive
as the passage of time are dynamical changes of the
configurations of matter fields (the clock’s pointer,
the electrochemical potentials in neurons); that, as well
as the necessity to use matter clocks in the quantum
description of the geometry, suggests that the bigger picture

containing both proper time charts might be the more
natural one. Such a choice will have nontrivial conse-
quences once the inhomogeneities (i.e., perturbations) are
included in the model, as now the previously initial
perturbations will be generated by the (possibly very rich)
history of the Universe before the transition. In principle,
this may lead to possible imprints of the existence of the
previous aeon, for example through the gravitational wave
emissions of black hole mergers as it is hoped for the model
of CCC [83].
The results and techniques presented here were provided

in the context of the particular model—flat FRLW universe
with massless scalar field—the simplest one commonly
used for testing new ideas in LQC. The inclusion of the
studied regularization can however also be performed for
more advanced models: with more complicated matter
content and extended to the homogeneous anisotropic
cosmology with use of more recently available techniques.
However, investigating the possible physical significance
of all these models would require inclusion of the inho-
mogeneities, either in terms of perturbations or at the
nonperturbative level. For that, the existing techniques need
to be better understood and possibly improved. For
example the issue of instabilities for some treatments of
inhomogeneities and the discrepancies of predictions
between different treatments (see for example [84]) need
to be addressed.
From a more fundamental point of view, an important

consequence of our result is that in LQC different regu-
larizations lead to different physical predictions. Since in
the standard quantization schemes the choice of regulari-
zation is considered a minor technical detail and the results
are often required to not depend on it, our result poses a
challenge for the predictive power of the theory. The
dependence found here leads to the major task to find a
way to single out a physically preferred regularization. This
could be achieved by introducing new consistency criteria
into the theory: a possible example comes in the form of
demanding cylindrical consistency, which has been studied
in various contexts for applications to LQG [85–87].
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APPENDIX A: REVIEW OF LQC

In this appendix we review the derivation of the
evolution operator in standard LQC, with a focus on
the regularization choice. We also introduce the new

16In the new model the data are not actually glued, but they
evolve through the transition point in a deterministic manner,
once a particular self-adjoint extension is selected.
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regularization used in this article which is more in line with
full LQG.

1. Hamiltonian formulation of cosmology

Let us start by recalling the Hamiltonian formulation of
GR in terms of the Ashtekar-Barbero variables. In this
context, one recasts GR as a gauge theory with internal
group SUð2Þ, and identifies the phase space of GR as the
one coordinatized by the Ashtekar connection Ai

a and the
inverse densitized triad Eb

j [i, j ¼ 1, 2, 3 are SUð2Þ algebra
indices, while a, b ¼ 1, 2, 3 are spatial ones]. Explicitly,
these are given by

Ai
a ¼ Γi

a þ γKi
a; Ea

i ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
eai ; ðA1Þ

where γ ∈ R − f0g is a free quantity called the Immirzi
parameter, eai is the (inverse) triad of the metric, and Γi

a and
Ki

a are related respectively to the spin-connection Γi
ja and

the extrinsic curvature Kab by (we employ the summation
convention on repeated indices, and raise/lower i; j;…with
the Euclidean metric)

Γi
a ¼ −

1

2
ϵijkΓj

ka ¼ −
1

2
ϵijkebkð2∂ ½be

j
a� þ ecje

m
a ∂bemc Þ; ðA2Þ

Ki
a ¼ Kabebi ; ðA3Þ

with ðA; EÞ being canonical coordinates, the symplectic
form reads

Ω ¼ 1

8πGγ

Z
σM

d3xdAi
aðxÞ ∧ dEa

i ðxÞ; ðA4Þ

where σM is some compact cell. Ω defines the Poisson
bracket

fAi
aðxÞ; Eb

j ðx0Þg ¼ 8πGγδijδ
b
aδ

ð3Þðx; x0Þ: ðA5Þ

Due to the symmetries of the theory, one finds that not all
the degrees of freedom in ðA;EÞ are physical. This fact is
encoded in the following constraints:

(i) the Gauss constraint, which generates internal
SUð2Þ transformations,

Gi ¼
1

16πGγ
½∂aEa

i þ ϵijkA
j
aEa

k �: ðA6Þ

(ii) the Vector constraint, which generates spatial diffeo-
morphisms,

Ca ¼
1

8πGγ
Fi
abE

b
i : ðA7Þ

(iii) the Scalar constraint, which generates timelike
diffeomorphisms,

C ¼ CE þ CL; ðA8Þ

where

CE ¼ 1

16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffi

det q
p Fi

ab;

CL ¼ −ð1þ γ2Þ 1

16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffi

det q
p ϵimnKm

a Kn
b: ðA9Þ

In these equations, Fi
ab is the gauge curvature of connection

Ai
a, explicitly given by

Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b: ðA10Þ

We now apply this framework to the case of flat isotropic
cosmology, i.e., the symmetry-reduced metric

g ¼ −dt2 þ q; q ¼ a2ðtÞη; ðA11Þ

where aðtÞ is the scale factor and η is the Euclidean
3-metric.
It is immediate to compute the triads: imposing qab ¼

eiae
j
bδij, we find eia ¼ aδia, from which it follows that

Ea
i ¼ a2δai . On the other hand, since the metric is inde-

pendent of spatial coordinates, we have Γi
ja ¼ 0, and so

Ai
a ¼ γKi

a. Finally, using the fact that the extrinsic curva-
ture reduces to Kab ¼ _qab=ð2NÞ ¼ δaba _a=N, we find
Ai
a ¼ δai γ _a=N. We can therefore summarize this by saying

that, for flat isotropic cosmology, Ashtekar variables are

Ai
a ¼ cδia; Ea

i ¼ pδai ; ðA12Þ

with c ¼ γ _a=N and p ¼ a2. We can think of ðc; pÞ as
coordinatizing the subspace of GR phase space represent-
ing flat isotropic cosmology. Plugging (A12) in (A4), we
find the reduced symplectic structure,

Ω ¼ 3

8πGγ
dc ∧ dp

Z
σM

d3x ¼ 3Vo

8πGγ
dc ∧ dp;

Vo ≔
Z
σM

d3x; ðA13Þ

from which it follows that the Poisson bracket on the
reduced phase space is

fc; pg ¼ 8πGγ
3Vo

: ðA14Þ

Finally, plugging (A12) in the expression for the gauge
curvature, we find Fi

ab ¼ c2ϵiab. Using this in the con-
straints, one sees that the Gauss constraint and the vector
constraint vanish identically, while the scalar constraint
reduces to
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C ¼ −
3

8πGγ2
ffiffiffiffi
p

p
c2: ðA15Þ

This concludes the review of the Hamiltonian formulation
of classical cosmology.

2. Kinematical Hilbert space of LQC

We only give a brief overview of how the kinematical
Hilbert space is defined. For further details, we refer to
[15–17].
The canonical quantization of full general relativity in

terms of its Ashtekar connection leads to the approach
called LQG [5]. As it transpires in LQG, constructing an
operator corresponding to the connection Ai

aðxÞ does not
lead to a successful quantization. Instead, the fundamental
algebra which is promoted to quantum operators is the
classical holonomy-flux algebra. The holonomies of the
connection Ai

a are constructed as the path-ordered expo-
nentials of Ai

a smeared with respect to some piecewise
analytic curves, whose real analytic segments are called
edges, e,

hðeÞ ≔ P exp

�Z
e
A

�
; A ¼ Ai

adxaτi; ðA16Þ

where τi are the generators of the algebra suð2Þ, and are
chosen to be related to the Pauli matrices by τi ¼ −iσi=2,
such that ½τi; τj� ¼ ϵijkτk. While in LQG one quantizes the
holonomies on every edge, for the purposes of LQC it
suffices to restrict to certain special edges. The form Ai

a ¼
cδia naturally suggests choosing edges oriented along the
three axes of coordinates of the fiducial metric ηab. Since
their global position does not matter, we only consider three
families of edges parametrized by their coordinate length
ϵ > 0 and whose tangents are respectively _e�x;ϵ ¼ �x̂,
_e�y;ϵ ¼ �ŷ and _e�z;ϵ ¼ �ẑ. Hence the holonomies take the
explicit form

hðe�x;ϵÞ ¼ e�cϵτ1 ; hðe�y;ϵÞ ¼ e�cϵτ2 ;

hðe�z;ϵÞ ¼ e�cϵτ3 : ðA17Þ

In LQC, we restrict the algebra further, and only consider
edges of one finite length ϵ ¼ μ. The choice of μ is a crucial
part of the construction in LQC. Currently, the most widely
accepted choice is the so-called μ̄-scheme (also known as
improved dynamics [22]), which prescribes to keep μ finite
(as opposed to sending it to 0, as one would do in lattice
quantum field theory). The reasoning behind this choice is
based on the regularization of gauge curvature Fi

ab: as we
later see, Fi

ab can be approximated in terms of holonomies
along a small closed curve; in this case, μ2 can be thought
of as the coordinate area of the surface enclosed by the
loop; however, in LQG the area is an operator with discrete
spectrum [88], and so one fixes μ (which in this scheme is

denoted by μ̄) so that the physical area pμ̄2 of the loop
coincides with the smallest nonvanishing area eigenvalue,
Δ. In other words, we set

μ̄ ≔
ffiffiffiffi
Δ

pffiffiffiffiffiffijpjp ; Δ ≔ 2π
ffiffiffi
3

p
γGℏ ≈ 2.61l2

Pl; ðA18Þ

with lPl being the Planck length.
With μ̄ being a small quantity which we want to use as a

regularization parameter for the physical quantities of
interest, it is useful to rescale the connection c by μ̄.
Its canonical momentum is nothing but the spatial volume,

b ≔ cμ̄; V ≔ p3=2: ðA19Þ

The Poisson algebra between the two reads

fb; Vg ¼ 2α

ℏ
; with α ¼ 2πGℏγ

ffiffiffiffi
Δ

p
: ðA20Þ

The gravitational Hilbert spaceHgr is constructed using the
canonical pair V, b. Being a real observable, we implement
thevolume as amultiplication operator onL2ðR̄; dμBohrðvÞÞ,
which is the space of square integrable functions on the Bohr
compactification of the real line [21,89],

V̂jvi ¼ αjvjjvi; hvjv0i ¼ δv;v0 ; ðA21Þ

where jvi form an orthonormal basis of eigenstates on
L2ðR̄; dμBohrðvÞÞ. Given that V̂ acts bymultiplication, (A20)
would suggest to implement b as a derivative with respect to
v. However, mimicking LQG—in which the connection Ai

a
is not promoted to operator, but h is—we do not promote b
to operator, but rather its exponentiated version,N ≔ eib=2.
The corresponding quantum operator is therefore acting as
a shift,

N̂ jvi ¼ jvþ 1i: ðA22Þ

Note that L2ðR̄; dμBohrðvÞÞ includes square integrable func-
tions with negative v. We thus define as kinematical Hilbert
space the subspace of symmetric states,

Hgr≔fψðvÞ∈L2ðR̄;dμBohrðvÞÞ∶ψðvÞ¼ψð−vÞg; ðA23Þ

by which we encode the fact that v → −v is a large gauge
transformation which does not change the physics of the
model [21].
We now proceed by promoting all classical quantities of

interest to operators on Hgr. Let us start with holonomies
(A17): using a known property of SUð2Þ matrices, we can
write
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ha ≔ hðea;μ̄Þ ¼ expðbτaÞ
¼ cosðb=2ÞI þ 2 sinðb=2Þτa
¼

�
I
2
− iτa

�
eib=2 þ

�
I
2
þ iτa

�
e−ib=2

¼
�
I
2
− iτa

�
N þ

�
I
2
þ iτa

�
N −1; ðA24Þ

where I is the 2 × 2 identity matrix. Hence, the quantum
version is simply

ĥa ¼
�
I
2
− iτa

�
N̂ þ

�
I
2
þ iτa

�
N̂ −1: ðA25Þ

To extract the physical sector of the Hilbert space, one
follows the Dirac program, which consists in promoting the
constraints to operators, and then imposing that physical
states lie in their kernel. As said, in homogeneous isotropic
cosmology the only nontrivial constraint is the scalar one.
The matter part of it needs to be treated separately (as it
requires quantization of the matter degrees of freedom);
now we focus on the geometric part.

3. Scalar constraint in LQC

The implementation of the scalar constraint C as an
operator requires a regularization. As already discussed, the
need for regularization in full LQG originates from the fact
that no quantum operator for the connection Ai

aðxÞ exists,
while its corresponding holonomies naturally lead to the
representation theory of the group SUð2Þ. But as the
classical scalar constraint C is given in terms of Ai

aðxÞ,
it must be rewritten in terms of holonomies before this
quantization procedure can be applied. However, it is not
possible to expressC exactly as a function of holonomies of
finite length. Hence, one must necessarily construct a
regularization Cϵ of C such that, in the limit ϵ → 0, the
continuum result is restored. The same holds true in the
context of cosmology, where C is classically a function
of b and v,

C ¼ −
3

8πGγ2Δ
Vb2: ðA26Þ

Since there is no operator in LQC corresponding to b, we
must consider a regularization of C in terms of N and v.
Here, we recall the regularization commonly used in LQC,
and then compare it with a new proposal which is closer to
the regularization of the scalar constraint in full LQG.
Let us start by regularizing the Euclidean part of the

scalar constraint [CE in (A9)]. Consider first the gauge
curvature Fi

ab, Eq. (A10). We define

ðFϵÞiabðxÞ ≔ −
1

4ϵ2
X

sa;sb¼�1

sasbTr½τiðhð□ϵ
saa;sbb

Þ

−hð□ϵ
saa;sbb

Þ†Þ�; ðA27Þ

where □
ϵ
�a;�b is a small plaquette starting at point x with

tangent�xa and ending at the same point with tangent�xb.
It is not hard to show that

lim
ϵ→0

ðFϵÞiab ¼ Fi
ab: ðA28Þ

Now, using the fact that hð□ϵ
saa;sbb

Þ ¼ hsaahsbbh
†
saah

†
sbb

and
the explicit expressions (A17), one computes ðFϵÞiabðxÞ ¼
ϵiab sinðcϵÞ2=ϵ2, which clearly reduces to the classical
cosmological Fi

ab in the limit ϵ → 0. As already discussed,
in LQC one makes the choice ϵ ¼ μ̄, from which one finds

ϵabcðFμ̄Þiab ¼ 2δic
sinðbÞ2
μ̄2

; ðA29Þ

which can be easily written in terms of N and hence
promoted to an operator in LQC. The other term appearing
in CE besides Fi

ab is the nonpolynomial expression
sgnðdetðeÞÞEb

kE
c
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðEÞjp
. This can be regularized via

the first Thiemann identity [11]

sgnðdetðeÞÞ ϵ
jklϵabcEb

kE
c
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðEÞjp ¼ 1

πGγμ̄
Trðτjhafh†a; V½σM�gÞ

þOðμ̄Þ: ðA30Þ

It is immediate to promote the right-hand side to an
operator in LQC: its action on volume eigenvalue jvi reads

Trðτjĥa½ĥ†a; V̂�Þjvi ¼ −
iα
2
δjaðjv − 1j − jvþ 1jÞjvi: ðA31Þ

Using (A29) and (A30) in CE, one finds

CE½N� ¼ N
16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðEÞjp Fi

ab

¼ N
16πG

ϵijkEc
jE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðEÞjp �

δacδ
b
d − δbcδ

a
d

2

�
Fi
ab

¼ N
16πG

ϵcdfϵijkEc
jE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðEÞjp ϵabfFi

ab

2
ðA32Þ

⇒ Cμ̄
E½N� ¼ 24N

ð16πGÞ2γΔ3=2 sinðbÞ
ffiffiffiffi
V

p

×

�X
a

Trðτahafh†a; VgÞ
� ffiffiffiffi

V
p

sinðbÞ; ðA33Þ

where we considered a symmetric ordering on Hgr. The
action of the corresponding quantum operator is therefore
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ĈE½N�jvi ¼ 3 × 2Nα2

ð16πGÞ2ℏγΔ3=2 ðN̂
2 − N̂ −2Þððjvþ 1j

− jvþ 3jÞjvþ 2jN̂ 2 − ðjv − 3j − jv − 1jÞjv
− 2jN̂ −2Þjvi

¼ 3Nα

4ð16πGÞΔ ðFðvþ 2ÞN̂ 4 − F0ðvÞid

þ Fðv − 2ÞN̂ −4Þjvi; ðA34Þ

where the lapse function has been chosen to be independent
of b and V and

F0ðvÞ ≔ Fðvþ 2Þ þ Fðv − 2Þ;
FðvÞ ≔ −jvjðjvþ 1j − jv − 1jÞ: ðA35Þ

This is the LQC quantization of the Euclidean part of the
scalar constraint.
Let us now turn to the Lorentzian part, CL in (A9). The

standard procedure in LQC is based on the observation
that, on the flat cosmological sector, the following relations
hold:

γKi
ajcos ¼ Ai

ajcos; 2γ2Ki
½aK

j
b�jcos ¼ ϵijkFk

abjcos: ðA36Þ

Using these relations, one finds that in classical cosmology
the Lorentzian part is proportional to the Euclidean part,
CLjcos ¼ −CEjcosð1þ γ2Þ=γ2. It can therefore be regular-
ized in the same way. Following this route, one ends up
with

Ĉ½N�LQCjvi ¼
−3Nα

4γ2ð16πGÞΔ ðFðvþ 2ÞN̂ 4 − F0ðvÞid

þFðv − 2ÞÞN̂ −4Þjvi; ðA37Þ

which is the quantum operator describing the dynamics in
standard LQC [20–23].

4. Scalar constraint with the new
(Thiemann) regularization

As explained in the main text, we now follow the
philosophy “first regularize, then reduce.” This leads us
to a regularization which is more in contact with the full
theory, where the Lorentzian part is not proportional to the
Euclidean part.
We recall the second Thiemann identity, which is true in

full GR if the regularization parameter ϵ > 0 is independent
of the phase space,

τjK
j
a ¼ 1

8πGγ3
fτjAj

a; fCE½1�; Vgg

¼ −
1

8πGγ3ϵ
hðea;ϵÞfh†ðea;ϵÞ; fCϵ

E½1�; Vgg þOðϵÞ:

ðA38Þ

This allows one to find the new regularization of the
Lorentzian part of the scalar constraint,

CL½N�¼−ð1þγ2Þ N
16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffiffiffiffijdetEjp ϵimnKm

a Kn
b

¼4ð1þγ2Þ N
16πG

ϵijkEa
jE

b
kffiffiffiffiffiffiffiffiffiffiffiffiffijdetEjp TrðτiτmτnÞKm

a Kn
b ðA39Þ

⇒ Cϵ
L½N� ¼ −

1þ γ2

γ7ð16πGÞ4
43N
ϵ3

ϵabc

× Trðhafh†a; fCϵ
E½1�; Vgghb

× fh†b; fCϵ
E½1�; Vgghcfh†c; VgÞ; ðA40Þ

where in (A41) we used (A38) and

τjϵ
jkl Eb

kE
c
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðEÞjp ¼ −

1

4πGγϵ
ϵabchafh†a; V½σM�g þOðϵÞ;

ðA41Þ

which is related to (A30).
The expression in (A41) can be evaluated on the

cosmological sector by first reducing each argument of
the Poisson brackets to the cosmological sector, and then
using the Poisson bracket between c and p. This yields (we
set V0 ¼ 1 to ease the notation)

Cϵ
L½N�jcos ¼

1þ γ2

γ7ð16πGÞ4
43N
ϵ2

�
6

16πGϵ2

�
2

ϵabc

× Tr

�
eϵcτafe−ϵcτa ; ffiffiffiffi

p
p fsinðcϵÞ2; p3=2ggeϵcτb

× fe−ϵcτb ; ffiffiffiffi
p

p fsinðcϵÞ2; p3=2gg ffiffiffiffi
p

p
τc
16πGγ

4

�
¼ 1þ γ2

γ216πG
N
ϵ2
ϵabcTrðτaτbτcÞ sinð2cϵÞ2

ffiffiffiffi
p

p

¼ −
6N

16πG
1þ γ2

γ2
ffiffiffiffi
p

p sinð2ϵcÞ2
4ϵ2

; ðA42Þ

which agrees with the continuum expression for CLjcos in
the continuum limit ϵ → 0, yet is not proportional to Cϵ

E.
This realization motivates us to consider a new quantization
for the Lorentzian part of the scalar constraint in LQC,
based on (A41). However, before continuing, one has to
take care of how one passes from ϵ to μ̄, which is phase
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space dependent. Indeed, Thiemann identity (A38) is only
correct for ϵ independent of the phase space point. Thus,
instead of performing the replacement ϵ → μ̄ in (A41), we
make use of the following observation from [40], which is
true only in cosmology:

τjK
j
a¼−

4

3μ̄ð16πGÞγ3hafh
†
a;fCμ̄

E½1�;VggþOðΔÞ: ðA43Þ

With this identity, following the same steps as in (A41), one
finds

Cμ̄
L½N� ¼ −

1þ γ2

γ7ð4πGÞ4
Nϵabc

9Δ3=2 Trðhafh†a; fCϵ
E½1�; Vgg

×
ffiffiffiffi
V

p
hbfh†b; Vg

ffiffiffiffi
V

p
hcfh†c; fCϵ

E½1�; VggÞ; ðA44Þ

where, as for Cμ̄
E. Reducing this expression to the cosmo-

logical case [as we did in (A42)], one finds

Cμ̄
L½N�jcos ¼ −

3N
8πG

1þ γ2

γ2
V
sinð2bÞ2

4Δ
; ðA45Þ

which correctly coincides with (A42) under the replace-
ment ϵ → μ̄. This confirms that (A44) is the correct
regularization to use if we want to implement Thiemann
identity in the μ̄-scheme.
The quantization of (A44) on the Hilbert space of LQC

can now be done in the standard way: putting the hats and

recalling that df:; :g ¼ ½:; :�=ðiℏÞ, we find

Ĉμ̄
L½N� ¼ −

ð1þ γ2ÞN
γ7ð4πGÞ4

ϵabc

9Δ3=2

1

ðiℏÞ5 Trðĥa½ĥ
†
a; ½Ĉϵ

E½1�; V̂��

×
ffiffiffiffi
V̂

p
ĥb½ĥ†b; V̂�

ffiffiffiffi
V̂

p
ĥc½ĥ†c; ½Ĉϵ

E½1�; V̂��Þ: ðA46Þ

To write its action on jvi explicitly, recall the form of ĥa in

terms of N̂ : using (A34), we get (no sum over a)

Trðτbĥa½ĥ†a½ĈE½1�; V̂��Þjvi

¼ −i
δab
2

ðN̂ ½ĈE½1�; V̂�N̂ −1 − N̂ −1½ĈE½1�; V̂�N̂ Þjvi

¼ i
3α2

8ð16πGÞΔ δab½−ðgðvþ 1Þ − gðvþ 3ÞÞN̂ 4

þðgðv − 3Þ − gðv − 1ÞÞN̂ −4�jvi; ðA47Þ

with gðvÞ ≔ FðvÞðjv − 2j − jvþ 2jÞ. It follows that

ĥa½ĥ†a½ĈE½1�; V̂��jvi ¼
−i3α2

4ð16πGÞΔ τa½−ðgðvþ 1Þ

− gðvþ 3ÞÞN̂ 4 þ ðgðv − 3Þ
− gðv − 1ÞÞN̂ −4�jvi: ðA48Þ

From this and (A31), after some manipulations, we find

Ĉμ̄
L½N�jvi ¼ 3Nα

16πGΔ210
1þ γ2

4γ2
ðGðv − 4ÞN̂ −8 − G0ðvÞid

þGðvþ 4ÞN̂ 8Þjvi; ðA49Þ

where

GðvÞ≔−FðvÞðgðv−3Þ−gðv−1ÞÞðgðvþ1Þ−gðvþ3ÞÞ;
G0ðvÞ≔−Fðv−4Þðgðv−3Þ−gðv−1ÞÞ2

−Fðvþ4Þðgðvþ1Þ−gðvþ3ÞÞ2: ðA50Þ

APPENDIX B: ASYMPTOTIC ANALYSIS

In order to study the semiclassical limit of the model at
hand, we need to establish the asymptotic limit of the
eigenfunctions of the ΘTR operator. The eigenvalue equa-
tion is

ΘTRΨðvÞ ¼ ω2ΨðvÞ; ðB1Þ

where ω2 are the corresponding eigenvalues. The fourth-
order system (B1) can be expressed in a first-order form as
follows. First one introduces the vector(s)

Ψ⃗ðvÞ ≔

0BBB@
Ψðvþ 4Þ
ΨðvÞ
Ψðv − 4Þ
Ψðv − 8Þ

1CCCA; ðB2Þ

so that Eq. (B1) takes the form

Ψ⃗ðvþ 4Þ ¼ AðvÞΨ⃗ðvÞ; ðB3Þ

where the matrix A is defined as

AðvÞ ¼

0BBBBB@
f4ðvÞ
sf8ðvÞ

2ðs−1Þf0ðvÞ− 4

3πGγ2
ω2

sf8ðvÞ
f−4ðvÞ
sf8ðvÞ − f−8ðvÞ

f8ðvÞ
1 0 0 0

0 1 0 0

0 0 1 0

1CCCCCA;

ðB4Þ

where faðvÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijvðvþ aÞjp jvþ a=2j.

The next step is to express the functions Ψ as linear
combinations of appropriately selected asymptotic func-
tions. We denote these functions by ψ̃�

i , where i≡ F stands
for the FLRW phase and i≡ S stands for the de Sitter
phase. We then rewrite (B3) as an equation for the coeffi-
cients in the linear combination.
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Using the results of the asymptotic analysis of LQC with
a scalar field [63,90] and LQC with a cosmological
constant [47,69], we select the asymptotic functions ψ̃�

i
as follows:

ψ̃�
F ðvÞ ≔

expð�ik logðvÞÞffiffiffi
v

p ;

ψ̃�
S ðvÞ ≔

expð�iðΩSvþ κ=vÞÞ
v

; ðB5Þ

where k, ΩS and κ are functions of the parameter s and
the eigenvalues ω, to be determined. The vector χ⃗�

of coefficients in the linear combination for ψ� can be
defined as

Ψ⃗ðvÞ≕Bðv − 4Þχ⃗ðvÞ; ðB6Þ
where the matrix B is

BðvÞ≔

0BBB@
ψ̃þ
S ðvþ8Þ ψ̃−

S ðvþ8Þ ψ̃þ
F ðvþ8Þ ψ̃−

Fðvþ8Þ
ψ̃þ
S ðvþ4Þ ψ̃−

S ðvþ4Þ ψ̃þ
F ðvþ4Þ ψ̃−

Fðvþ4Þ
ψ̃þ
S ðvÞ ψ̃−

S ðvÞ ψ̃þ
F ðvÞ ψ̃−

FðvÞ
ψ̃þ
S ðv−4Þ ψ̃−

S ðv−4Þ ψ̃þ
F ðv−4Þ ψ̃−

Fðv−4Þ

1CCCA:

ðB7Þ

At this point, Eq. (B3) becomes

χ⃗ðvþ 4Þ ¼ B−1ðvÞAðvÞBðv − 4Þχ⃗ðvÞ≕MðvÞχ⃗ðvÞ: ðB8Þ

The matrix M can be computed explicitly. In order to
guarantee the existence of the limit limv→∞χ⃗ðvÞ≕ χ⃗∞ [such
that χ⃗ðvÞ ¼ χ⃗∞ þ O⃗ðv−1Þ], the matrix M must asymptoti-
cally satisfy

MðvÞ ¼ 1þ Oðv−2Þ; ðB9Þ

where Oðv−2Þ denotes a matrix whose coefficients asymp-
totically behave as Oðv−2Þ.
The asymptotic condition (B9) determines the expres-

sion of the functions k, ΩS and κ,

k ¼ ωffiffiffiffiffiffiffiffiffiffiffi
12πG

p ; ΩS ¼
1

4
arccos

�
1 − 2s
2s

�
;

κ ¼ 4sk2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s − 1

p þ 2s − 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s − 1

p : ðB10Þ

In consequence, we can write

ΨðvÞ ¼ ðψ̃þ
S ðvÞ; ψ̃−

S ðvÞ; ψ̃þ
F ðvÞ; ψ̃−

FðvÞÞ · χ⃗∞ þOðv−2Þ:
ðB11Þ

Plugging in the explicit expression (B5), we can rewrite the
result as

ΨðvÞ ¼ 1ffiffiffi
v

p NFðωÞ cosðk lnðvÞ þ σFðωÞÞ

þ 1

v
NSðωÞ cosðΩSvþ κðωÞ=vþ σSðωÞÞ þOðv−2Þ;

ðB12Þ

where Ni and σi are for the moment unknown quantities.

APPENDIX C: THE WHEELER-DEWITT
ANALOG

The polymer quantization is of course not the only
accessible technique of realizing the program of quantiza-
tion of geometry. The much older program of geometro-
dynamics employs in particular the standard Schrödinger
quantum representation. The application of this program to
the cosmological models is known as the Wheeler-DeWitt
quantization (see for example [91]). For the model con-
sidered here the comparison of the traditional LQC quan-
tization with its Wheeler-DeWitt (WDW) analog has been
performed already in [22]. The structure of this analog is
critically important for the LQC models themselves as for
example the normalization of the Hilbert space basis relies
on it extensively. In specific contexts, one can even
consider the LQC dynamics as the process of scattering
of geometrodynamical (WDW) quantum universe [92].
This analog is also a necessary component for defining
the Hilbert space structures also in our studies. For that
reason we briefly outline its main properties.

1. The structure of the model

Our point of departure is the classical models of FRW
isotropic universe with massless scalar field already speci-
fied in Sec. II. Its Wheeler-deWitt quantization is discussed
in detail (with use of slightly different variables) in [21,22].
With the family of holonomies ha being continuous, there
is no need for Thiemann regularization and one can start
with the original connection and triad variables. The
gravitational part of the Hamiltonian constraint reduces
then to just a function of the coefficients v ≔ V=α and b as
defined in (3) and the whole constraint, weighted by lapse
N ¼ 2V, takes the form

Ctot½N� ¼ p2
ϕ − 3πGℏ2v2b2: ðC1Þ

The standard Schrödinger quantization while ignoring the
constraints (the kinematical level) yields the Hilbert space

H kin ¼ H gr ⊗ Hϕ ¼ L2ðR; dvÞ ⊗ L2ðR; dϕÞ ðC2Þ

and the standard set of canonical operators ðv̂; b̂Þ, ðϕ̂; p̂ϕÞ
such that

½b̂; v̂� ¼ 2i; ½ϕ̂; p̂ϕ� ¼ iℏ; ðC3Þ
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defined on the domains of Schwartz spaces withinH gr and
Hϕ, respectively.
Performing the second stage of the Dirac program is

straightforward and gives the (essentially self-adjoint)
quantum constraint taking (in convenient symmetric factor
ordering) the form

dCtot½N� ¼ IH gr
⊗ p2

ϕ − 3πGℏ2ð
ffiffiffiffiffiffi
jv̂j

p
b̂

ffiffiffiffiffiffi
jv̂j

p
Þ2 ⊗ IHϕ

:

ðC4Þ
In the v representation the constraint has the Klein-

Gordon form

ℏ−2 dNCtot ¼ −IH gr
⊗ ∂2

ϕ þ 12πGð
ffiffiffiffiffiffi
jv̂j

p ∂v

ffiffiffiffiffiffi
jv̂j

p
Þ2 ⊗ IHϕ

:

ðC5Þ
A restriction to the positive frequency solutions of the

constraint, in addition to the symmetry reduction with
respect to the parity symmetry v ↦ −v, then the applica-
tion of the group averaging procedure via a rigging map
defined analogously to (47), gives us the physical Hilbert
space

H phy ∋ jΨi∶ΨϕðvÞ ¼
Z
R
dkΨ̃ðkÞekðvÞeiωðkÞϕ; ðC6Þ

where ωðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
12πG

p jkj and the functions e k are the
Dirac delta normalized eigenfunctions of the WDW evo-
lution operator

Θ ≔ −12πGð
ffiffiffiffiffiffi
jv̂j

p ∂v

ffiffiffiffiffiffi
jv̂j

p
Þ2; ðC7Þ

known to be positive definite and essentially self-adjoint.
Its entire spectrum is continuous and consists of positive real
line (SpðΘÞ ¼ Rþ). The eigenfunctions e k are of the form

e kðvÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πjvjp eik ln jvj; ½Θ e k�ðvÞ ¼ ωðkÞ2e kðvÞ;

ðe kje k0 Þ ¼ δðk − k0Þ; ðC8Þ
and they form an orthonormal basis of H gr.

2. Physical states in b representation

Per analogy with (30), we can introduce for the elements
of H gr the transform between the v and b coordinates,

ψðbÞ ¼ ½Fψ �ðbÞ ¼ 1

2
ffiffiffi
π

p
Z
R

dvffiffiffiffiffiffijvjp ψðvÞeivb
2 ; ðC9aÞ

ψðvÞ ¼ ½F−1ψ �ðvÞ ¼
ffiffiffiffiffiffijvjp

2
ffiffiffi
π

p
Z
R
dbψðbÞe−ivb

2 ; ðC9bÞ

which maps between the real symmetric functions in v
and the real symmetric functions in b. Applying this
transformation to the expression of the scalar product on
H gr allows one to express it as

hψ jχi ¼ 1

4π

Z
R
jvjdv

Z
π

0

dbdb0ψ⋆ðbÞχðb0Þeiv2ðb−b0Þ: ðC10Þ

Unfortunately, due to the presence of absolute value, the
inner product cannot be converted to a local form, that is a
single integral over b. We sidestep this problem following
the analogous treatment in [23] (and in part earlier in [63])
by introducing the transformations to auxiliary Hilbert
space H� defined by the projections P�,

P�∶ H gr → H gr; ½P�ðψÞ�ðvÞ ¼ ψðvÞθð�vÞ;
H� ≔ ImðP�Þ; ðC11Þ

where θ is the Heaviside step function.17 The projection
induces scalar products on H� given by the restriction of
the scalar product on H gr to positive/negative v, respec-
tively. In turn, upon transformation to the b coordinate,
these induced scalar products can be written similarly to
(C10), but now they have a local form

hψ jχi� ¼ 1

4π

Z
R�
ð�vÞdv

Z
R
dbdb0ψ⋆ðbÞχðb0Þeiv2ðb−b0Þ

¼ ∓2i
Z
R
dbψ⋆ðbÞ∂bχðbÞ: ðC12Þ

Since the spaces H� are orthogonal, the scalar product of
H gr can be rewritten as

hψ jχi ¼ hPþψ jPþχiþ þ hP−ψ jP−χi−; ðC13Þ
thus it becomes quite simple to evaluate, provided that the
projections of the arguments are known. Unfortunately the
form of the operators P� in the b representation is not
simple. In order to properly control the inner product we
need to find the explicit form of F ðP�e kÞ. In the integral
form it is a simple restriction of (C9),

F ðP�e kÞðbÞ ¼
1

2π

Z
R�

dv
jvj e

ik ln jvjeivb
2 : ðC14Þ

By extending the integrand function to the complex plane
and choosing the integration contours as in Fig. 7, these
integrals can be converted to (well-defined) ones over
imaginary semiaxes, which in turn can be expressed in
terms of the gamma special functions

F ðP�ekÞðbÞ ¼ � 1

2π
e�sgnðbÞπk

2 ΓðikÞe−ik ln jb=2j: ðC15Þ

This in turn allows one to write the full transform of e k as

F ðe kÞðbÞ ¼
1

π
ΓðikÞ sinh

�
sgnðbÞ πk

2

�
e−ik ln jb=2j; ðC16Þ

17Here we apply the convention where θð0Þ ¼ 0.
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Using the asymptotic relation jΓðikÞj sinhðπk=2Þ ffiffiffiffiffijkjp ¼ffiffiffiffiffiffiffiffi
π=2

p þOðe−kÞ, we can further approximate the above
transform for large k as

F ðe kÞðbÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πjkjp e−iðk ln jbjþσÞ þOðe−jkjÞ; ðC17Þ

where σ is a k-dependent phase shift.
This evaluation is used in the next subsection to

determine the explicit normalization of the Hilbert space
basis elements in LQC framework in b representation.

APPENDIX D: GRAVITATIONAL HILBERT
SPACE IN B REPRESENTATION

The b representation is particularly convenient in iden-
tifying the spectrum of the evolution operator ΘTR and the
resolution of identity in terms of its eigenstates. However,
certain ingredients of the Hilbert space structure are not
straightforwardly obtained. An example is the scalar
product of Hgr. This appendix is dedicated to studying
the mathematical properties of Hgr and of ΘTR, which are
necessary for the construction of a basis of the physical
Hilbert space. We focus on the eigenvalue problem for ΘTR
and the normalization of its eigenstates.
Let us start with the scalar product of Hgr.

1. The scalar product

Expressing the scalar product of Hgr in the b represen-
tation can be achieved by the inverse of transformation
of (30)

ψðvÞ ¼
ffiffiffiffiffiffijvjp
π

Z
π

0

dbψ̃ðbÞe−i
2
vb: ðD1Þ

This leads to the formula

hψ jχi ¼ 1

π2
X
L4

jvj
Z

π

o
dbdb0ψ⋆ðbÞχðb0Þeiv2ðb−b0Þ: ðD2Þ

Like in WDW, due to the presence of the absolute value, the
scalar product cannot be converted to a local form, that is, a
single integral over b. We introduce the projections P� on
Hgr analogously to (C11),

P�∶ Hgr → Hgr; ½P�ðψÞ�ðvÞ ¼ ψðvÞθð�vÞ;
H� ≔ ImðP�Þ: ðD3Þ

As in Appendix C, the scalar products onH� can be written
in a form similar to (D2),

hψ jχi� ¼ 1

π2
X
L4

� v
Z

π

o
dbdb0ψ⋆ðbÞχðb0Þeiv2ðb−b0Þ

¼ ∓ 4i
π

Z
π

0

dbψ⋆ðbÞ∂bχðbÞ:

Since the spaces H� are orthogonal, the scalar product of
Hgr can be rewritten as

hψ jχi ¼ hPþψ jPþχiþ þ hP−ψ jP−χi−; ðD4Þ
thus it becomes quite simple to evaluate, provided that the
projections of the arguments are known. Unfortunately, the
form of operators P� in b representation is not simple; thus
evaluating the scalar product this way is not convenient. On
the other hand the relations (D4) and (D4) are useful in
probing various properties of elements of the physical
Hilbert space (being a subspace of Hgr). In particular we
apply them to analyze the weak solutions to the eigenvalue
problem (24).
We conclude this section by expressing the auxiliary

scalar products in terms of the coordinate x,

hψ jχi� ¼ ∓ 4i
π

Z
R
dxψ⋆ðxÞ∂xχðxÞ: ðD5Þ

2. The eigenvalue problem for the
evolution operator

For given ψ ∈ Hgr we denote its components with res-
pect to the projections defined above as ψ� ≔ P�ðψÞ.
Furthermore, in order to express the weak eigenvalue
problem, we switch to the coordinate x defined in (35).
Noting that the action ofΘTR preserves the subspacesH�,18

we can rewrite the eigenvalue equation (for the eigenvector
Ψλ with corresponding eigenvalue λ) as

FIG. 7. Integration contours for the transform (C14).

18While ΘTR involves shifts both in the positive and negative
directions, by explicit computation one can check that shifts
across v ¼ 0 are multiplied by 0. Hence, a function with support
on the positive sublattice will remain on the positive sublattice
upon repeated action of ΘTR.
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∀ χ ∈ D;

0 ¼ ðΨλjΘ†
TR − λ⋆Ijχi

¼ ðΨþ
λ jΘ†

TR − λ⋆Ijχþiþ þ ðΨ−
λ jΘ†

TR − λ⋆Ijχ−i− ðD6Þ

[where D is the domain already defined in (23), of which
elements are necessarily smooth in b]. This equation

requires that both the components on the right-hand side
vanish independently (since it must hold for all χ, it holds in
particular for χ such that χ− ¼ 0). For each of these
components we split the domain of x into three intervals
where xðbÞ is regular, I i ∈ fð−∞;−π=2Þ; ð−π=2; π=2Þ;
ðπ=2;∞Þg, so that ΘTR can be easily expressed in terms
of x: for all χ ∈ D ∩ H�, we have

ðΨ�
λ jΘ†

TR − λ⋆Ijχ�i� ¼∓ 4i
π

�Z
−π=2

−∞
dxþ

Z
π=2

−π=2
dxþ

Z
∞

π=2
dx

�
½Ψ�

λ �⋆ðxÞ∂x½ðΘ†
TR − λ⋆IÞχ��ðxÞ

¼∓ 4i
π

Z
−π=2

−∞
dx½Ψ�

λ �⋆ðxÞð−12πG∂2
x − λ⋆IÞ∂xχ

�ðxÞ ∓ 4i
π

Z
π=2

−π=2
dx½Ψ�

λ �⋆ðxÞð12πG∂2
x − λ⋆IÞ∂xχ

�ðxÞ

∓ 4i
π

Z
∞

π=2
dx½Ψ�

λ �⋆ðxÞð−12πG∂2
x − λ⋆IÞ∂xχ

�ðxÞ

¼∓ 4i
π

Z
−π=2

−∞
ð−12πG½Ψ�

λ �00⋆ − λ⋆½Ψ�
λ �⋆Þ½χ��0 � 48iG lim

x→− −π=2
½½Ψ�

λ �⋆½χ��00 − ½Ψ�
λ �0⋆½χ��0�ðxÞ

∓ 4i
π

Z
π=2

−π=2
ð12πG½Ψ�

λ �00⋆ − λ⋆½Ψ�
λ �⋆Þ½χ��0 � 48iGð lim

x→þ −π=2
− lim

x→− π=2
Þ½½Ψ�

λ �⋆½χ��00 − ½Ψ�
λ �0⋆½χ��0�ðxÞ

∓ 4i
π

Z
∞

π=2
ð−12πG½Ψ�

λ �00⋆ − λ⋆½Ψ�
λ �⋆Þ½χ��0 ∓ 48iG lim

x→þ π=2
½½Ψ�

λ �⋆½χ��00 − ½Ψ�
λ �0⋆½χ��0�ðxÞ

¼∓ 4i
π

Z
∞

−∞
dxð½ΘTRΨ�

λ �⋆ðxÞ − λ⋆½Ψ�
λ �⋆ðxÞÞ∂xχ

�ðxÞ

∓ 48iG½ lim
x→þ π=2

þ lim
x→− π=2

− lim
x→þ −π=2

− lim
x→− −π=2

�½Ψ�
λ �⋆ðxÞ½χ��00ðxÞ

¼∓ 4i
π

Z
∞

−∞
dxð½ΘTRΨ�

λ �ðxÞ − λ½Ψ�
λ �ðxÞÞ⋆∂xχ

�ðxÞ

� 4i
π
½ lim
x→þ π=2

− lim
x→− π=2

þ lim
x→þ −π=2

− lim
x→− −π=2

�½Ψ�
λ �⋆ðxÞ½ΘTRχ

��ðxÞ; ðD7Þ

where in the third step we integrated by parts twice
using fg00 ¼ f00gþ ðfg0 − f0gÞ0 and disregarded the boun-
dary contributions at infinity, while in the fourth step we
observed that ∂xχ

�ð�π=2Þ ¼ 0 [due to smoothness of χ�

in b, since ∂xχ
� ¼ ð∂b=∂xÞ∂bχ

� and ð∂b=∂xÞx¼�π=2 ¼ 0].

From this equation, we see that ðΨ�
λ jΘ†

TR − λ⋆Ijχ�i� ¼ 0

for every χ ∈ D ∩ H� if and only if Ψ�
λ satisfies

ΘTRΨ�
λ ¼ −12πGsgnðjxj − π=2Þ∂2

xΨ�
λ ¼ λΨ�

λ ; ðD8Þ

and it is continuous (but not necessarily differentiable) at
x ¼ �π=2. It is then easy to see [recalling that
Ψλð−xÞ ¼ ΨλðxÞ] that the general solution is given by

Ψβ;kðxÞ ¼ ζ

� cosðkjxj þ φðβ; kÞÞ; jxj > π=2;
cosðkπ=2þφðβ;kÞÞ

coshðkπ=2Þ coshðkxÞ; jxj ≤ π=2;
ðD9Þ

where ζ and φ are free constants.
Having this form at our disposal, we can systematically

find the eigenstates of ΘTR relevant for the construction of

physical states. This has been done in Sec. III B of the
paper. What remains is fixing the normalization constant
jζj. The asymptotic form of the eigenfunctions (25) implies
that they are not explicitly normalizable; thus jζj cannot be
determined in a straightforward way or by purely numerical
means. We focus on this problem in the next subsection.

3. Normalization of the eigenstates

Consider the set of generalized eigenstates Ψk of ΘTR

corresponding to the eigenvalue ω2 ¼ 12πGk2. Applying
the asymptotic decomposition (25) to these states, we can
write the inner product between two such states as a
distribution

ðΨk;Ψk0 Þ ¼
X
v∈L4

NFðkÞNFðk0Þ½jvj−1 cosðk ln jvj

þσFðkÞÞ cosðk0 ln jvj þ σFðk0ÞÞ þ Ōðjvj−3=2Þ�;
ðD10Þ
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where Ōð·Þ denotes the bounded remnant of the rate of
decay specified in the argument. The trigonometric com-
ponents are combinations of the basis elements of the
Wheeler-DeWitt analog of the model under study (see
Appendix C) and define the so-calledWheeler-DeWitt limit
of LQC (see [22,92] for details). Introducing an auxiliary
variable η ≔ ln jvj, we can further approximate the above
sum by an integral. Indeed, as the consecutive steps lengths
in η between points of the summation decay exponentially,
and due to the boundedness of cosðkηþ σFðkÞÞ and its
derivatives, we have an estimate

ðΨk;Ψk0 Þ ¼
1

2
NFðkÞNFðk0Þ

Z
∞

0

dη cosðkηþ σFðkÞÞ

× cosðk0ηþ σFðk0ÞÞ þ Ōðη−2Þ: ðD11Þ

By expressing the cosines in terms of exponentials, using
the identity Z

∞

0

dxeikx ¼ πδðkÞ þ i
k
; ðD12Þ

and taking into account that k; k0 > 0, we arrive at the
following form of the scalar product,

ðΨk;Ψk0 Þ ¼ NFðkÞNFðk0Þ
π

8
δðk − k0Þ þ fðk; k0Þ; ðD13Þ

where f is possibly singular at k ¼ k0. This function,
however, must vanish due to the orthogonality of the
eigenspaces for k ≠ k0; thus, the orthonormality condition
allows us to determine the asymptotic normalization con-
stant NFðkÞ as19

NF ¼ 4ffiffiffiffiffiffi
2π

p : ðD14Þ

In order to determine the constant jζj in the expression of
the eigenstates Ψk given in (D9), we employ the following
observations:
(1) In the limit b → 0; π, the function xðbÞ approaches

(up to a constant) the logarithmic function, that is,

lim
b→0þ

½xðbÞ − ln jbj� ¼ ln

�
1þ γ2

2

�
−
π

2
;

lim
b→π−

½xðbÞ þ ln jπ − bj� ¼ − ln

�
1þ γ2

2

�
þ π

2
:

ðD15Þ

The function ln jbj is in Wheeler-DeWitt model the
analog of xðbÞ in the model we are studying.

(2) As a weak solution to the eigenvalue problem, for
jxj > π=2 each of the projections F ðP�ekÞ need to
be linear combinations of e�ikxðbÞ.

These two observations allow to relate jζj to the norms of the
WDW limits specified in (D10) and expressed in the b
representation using (C16) as follows. Defining the quantity

f k ≔ NFjvj−1=2 cosðk ln jvj þ σFðkÞÞ; ðD16Þ

we have

½F ðf kÞ�ðbÞ ¼ ½F ðPþf k þ P−f kÞ�ðbÞ

¼ 8iffiffiffiffiffiffi
2π

p sgnðbÞjΓðikÞj sinh
�
π

2
k

�
× sinðk ln jbj þ σ̃ðkÞÞ; ðD17Þ

where σ̃ is some k-dependent phase shift. Having the
convergence of F ðΨkÞ to F ðf kÞ in the limit b → 0 we
can determine the absolute value of the multiplicative
constant ζ in (D9). Thus we have

jζj ¼ 4
ffiffiffi
2

pffiffiffi
π

p jΓðikÞj sinh
�
π

2
k

�
¼ 4ffiffiffiffiffijkjp þOðe−jkjÞ: ðD18Þ
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