
 

Phenomenological reconstruction of f(T) teleparallel gravity
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We present a novel reconstruction method of fðTÞ teleparallel gravity from phenomenological
parametrizations of the deceleration parameter or other alternatives. This can be used as a toolkit to
produce viable modified gravity scenarios directly related to cosmological observations. We test two
parametrizations of the deceleration parameter considered in recent literatures in addition to one
parametrization of the effective (total) equation of state (EoS) of the universe. We use the asymptotic
behavior of the matter density parameter as an extra constraint to identify the viable range of the model
parameters. One of the tested models shows how tiny modification can produce viable cosmic scenarios
quantitatively similar to ΛCDM but qualitatively different whereas the dark energy (DE) sector becomes
dynamical and fully explained by modified gravity not by a cosmological constant.
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I. INTRODUCTION

Cosmological observations have confirmed that the
universe has speeded up its expansion rate few billion
years ago. This includes (i) the age of the universe
compared to oldest stars, (ii) supernovae observations
[1,2], (iii) cosmic microwave background (CMB) [3],
(iv) baryon acoustic oscillations (BAO) [4–8], and
(v) large-scale structure (LSS) [9]. In return, this requires
us either to introduce an exotic matter species with negative
EoS, the so-called DE, or to consider the repulsive side of
gravity by modifying the general relativity theory. DE in its
simplest version is represented by a cosmological constant
with EoS w ¼ −1, that is ΛCDM model. In general, one
needs field equations

1

κ2eff
Gμν ¼ Tμν þTDE

μν ; ð1Þ

where the effective gravitational function κ2eff → κ2ð¼ 8πGÞ
when GR is restored, the Einstein tensor Gμν and the
matter-stress tensor Tμν. However, the DE contributes via
the tensor TDE

μν . There are two main approaches to feed the
DE component TDE

μν : (i) physical DE, (ii) geometrical
DE [10]. Although the two approaches are qualitatively
different, the field equations in form (1) allows us to
quantitatively treat both of them in a similar way.
Since successful cosmological descriptions should per-

form deceleration–to–acceleration at a late phase compatible

with observations, it is reasonable to code the late accelerated
expansion phase via the deceleration parameter qðzÞ. A
kinematical approach has been adopted for that purpose by
suggesting parametrizations of the deceleration parameter in
the form of qðzÞ ¼ q0 þ q1XðzÞ, where the two model
parameters q0 and q1 are fixed by observations [10–22].
However, this approach does not provide an explanation of
the nature of the DE. The aim of this paper is to set this
kinematical approachwithin amodified gravity theorywhich
should also allow for further tests on the perturbation level of
the theory.
We organize the paper as follows. In Sec. II, we give a brief

account of the fðTÞ teleparallel gravity and the correspond-
ing modifications of Friedmann equations in cosmological
applications. In Sec. III, we show the compatibility of the
fðTÞ teleparallel gravity field equationswith the deceleration
parameter which allows for a nice reconstruction method of
fðTÞ gravity. In this method, one can obtain the fðTÞ gravity
which generates a particular parametric form of the decel-
eration parameter. In addition, we derive two reconstruction
equations of fðTÞ gravity by knowing the effective EoS
weffðzÞ or the DE EoSwDEðzÞ. In Sec. IV, we derive the fðTÞ
gravity which produces the ΛCDM model using our
reconstruction method. In addition, we examine two para-
metrizations of the deceleration parameter [16,23] within the
corresponding fðTÞ theories. Furthermore, we examine one
parametric form of the effective EoS [24]. We also discuss
the results of each of the threemodels. Finally,we summarize
the paper in Sec. V.

II. f(T) TELEPARALLEL GRAVITY
OF FLRW UNIVERSE

We begin this section by a brief introduction to the
teleparallel geometry. Let ðM; haÞ be a space, where M
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is a 4-dimensional smooth manifold equipped with
4–independent vector fields (tetrad) defined globally on M
at each point, ha (a ¼ 1;…; 4). The vectors ha satisfy
the orthonormality haμhaν ¼ δμν and haμhbμ ¼ δba, where
(μ ¼ 1;…; 4) are the coordinate components of the
vector ha. Notably, the tetrad fields satisfy the absolute
parallelism condition ∇νhaμ ≡ 0, whereas the differential
operator ∇ν is the covariant derivative associated with the
Weitzenböck connection Γα

μν ≡ haα∂νhaμ ¼ −haμ∂νhaα.
Several applications have been developed within this
geometrical framework, cf. [25–28], for more detail see
[29,30]. Interestingly, this connection has a vanishing
curvature tensor, however it defines the torsion tensor
Tα

μν ≡ Γα
νμ − Γα

μν ¼ haαð∂μhaν − ∂νhaμÞ. Consequently,
the contortion tensor can be given as Kαμν ¼ 1

2
ðTναμ þ

Tαμν − TμανÞ. It is important to remember that the tetrad
fields define a metric tensor onM via gμν ≡ ηabhaμhbν with
an induced Minkowskian metric ηab on the tangent space,
where the inverse metric is given as gμν ¼ ηabhaμhbν. In
this sense, one can reconstruct the Levi-Civita connec-
tion on M, and then the Riemannian geometry can be
performed.
In teleparallel geometry, one can define the scalar T,

which is known as the teleparallel torsion scalar. This is
given by

T ≡ Tα
μνSαμν; ð2Þ

where the superpotential tensor

Sαμν ¼
1

2
ðKμν

α þ δμαTβν
β − δναTβμ

βÞ; ð3Þ

is skew symmetric in the last pair of indices. Since the
teleparallel torsion scalar, T, differs from the Ricci scalar R
by an additive total derivative term, the resulting field
equations are just equivalent to the general relativity when
T is employed as a Lagrangian instead of R in Einstein-
Hilbert action. So it is a teleparallel equivalent version of
the general relativity (TEGR) theory of gravity.

A. FLRW spacetimes

We take the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric,

ds2 ¼ dt2 − aðtÞ2δijdxidxj; ð4Þ

where aðtÞ is the scale factor of the universe. The above
metric can be reconstructed via diagonal vierbein

hμa ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð5Þ

Interestingly, the teleparallel torsion scalar (2) of the FLRW
spacetime is related directly to Hubble parameter by

T ¼ −6H2; ð6Þ

whereH ≡ _a=a is Hubble parameter where the dot denotes
the derivative with respect to the cosmic time t.

B. Field equations

We take the action of a matter field minimally coupled to
gravity

S ¼
Z

d4xjhjðLg þ LmÞ; ð7Þ

where jhj ¼ ffiffiffiffiffiffi−gp ¼ detðhμaÞ, Lg and Lm are the
Lagrangians of gravity and matter, respectively. Inspired
by the fðRÞ-gravity which replaces R by an arbitrary func-
tion fðRÞ in the Einstein-Hilbert action, the TEGR has been
generalized by replacing T by an arbitrary function fðTÞ
[31–34]. In the natural units (c ¼ ℏ ¼ kB ¼ 1), the fðTÞ
Lagrangian is

Lg ¼
1

2κ2
fðTÞ: ð8Þ

Then, the variation of the action (7) with respect to the tetrad
fields gives rise to the set of the field equations (1). In the
framework of the fðTÞ modified gravity, we write

Tμ
ν ¼ haμ

�
−
1

h
δLm

δhaν

�
; ð9Þ

κ2eff ¼
κ2

fT
; ð10Þ

TDE
μν ¼ 1

κ2

�
1

2
gμνðTfT − fÞ − fTTSνμρ∇ρT

�
; ð11Þ

where fT ¼ df=dT and fTT ¼ d2f=dT2. By setting
fðTÞ ¼ T, the general relativistic limit is recovered, where
TDE

μν vanishes and κeff → κ. Interestingly enough, this form
allows to dealwith the torsional and the physicalDEon equal
footing.We note that the teleparallel torsion scalar is not local
Lorentz invariant, which directly leads to the conclusion that
the field equations of the nonlinear fðTÞ are not invariant
under local Lorentz transformation [35,36]. However, a later
invariant version of the fðTÞ gravity has been obtained by
considering the contribution of the spin connection to the
field equations [37], see also [38]. The fðTÞ teleparallel
gravity has been considered essentially in the recent literature
as an alternative to inflation at early universe [39–41] as well
as an alternative to dark energy at late universe [31–34,42].
Also it has been used to describe bounce cosmology [43–46].
Formore reading about fðTÞ teleparallel gravity, see [47,48].
We assume the stress-energy tensor to be for perfect

fluid as
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Tμν ¼ ρmuμuν þ pmðuμuν þ gμνÞ; ð12Þ

where uμ is the fluid 4-velocity unit vector. Inserting the
vierbein (5) into the field equations (1), and by making use
of the useful relation (6), the fðTÞ version of Friedmann
equations can be given as

ρm ¼ 1

2κ2
ðf −HfHÞ; ð13Þ

pm ¼ −
1

2κ2

�
f −HfH −

1

3
_HfH

�

¼ 1

6κ2
_HfHH − ρm; ð14Þ

where fH ¼ df=dH and fHH ¼ d2f=dH2.

C. Dynamical view of the modified
Friedmann equations

In order to close the system, one should choose an EoS
to relate ρm and pm. For the simplest barotropic case
pm ≡ pmðρmÞ ¼ wmρm, the above system produces the
useful dynamical equation

_H ¼ 3ð1þ wmÞ
�
fðHÞ −HfH

fHH

�
¼ F ðHÞ: ð15Þ

Since _H as clear from the above relation is a function of H
only, then Eq. (15) defines the phase portrait of an arbitrary
fðTÞ gravity for flat FLRW background. In the rest of the
paper, we focus our analysis on the late cosmic evolution,
thence we assume that the universe is dominated by the
baryons matter wm ¼ 0 in the last phase before transition to
DE domination.
Since the general relativity shows amazing results with

observations, modified gravity theories should be recog-
nized as corrections of it. So it is always useful to rewrite
the field equations in away showing Einstein’s gravity in
addition to the higher order fðTÞ teleparallel gravity as
correction terms. Thus, we write the modified Friedmann
equations as

H2 ¼ κ2

3
ðρm þ ρTÞ≡ κ2

3
ρeff ; ð16Þ

2 _H þ 3H2 ¼ −κ2pT ≡ −κ2peff : ð17Þ

In this case, the density and pressure of the torsional
counterpart of fðTÞ are defined by

ρTðHÞ ¼ 1

2κ2
ðHfH − fðHÞ þ 6H2Þ; ð18Þ

pTðHÞ ¼ −
1

6κ2
_Hð12þ fHHÞ − ρTðHÞ: ð19Þ

At the GR limit (fðTÞ ¼ T), we have ρT ¼ 0 and pT ¼ 0.
For nonlinear fðTÞ cases, the torsional counterpart of fðTÞ
could play the role of the DE. In the barotropic case, the
torsion will have an EoS

wDE ¼ wTðHÞ ¼ −1 −
1

3

_Hð12þ fHHÞ
6H2 − fðHÞ þHfH

: ð20Þ

Introducing the density parameters Ωi ¼ ρi=ρc, where
the label i indicates the species component and ρc is the
critical density (≡ρeff ). Thus, the dimensionless form of
Friedmann equation (16) is written as

Ωm þ ΩT ¼ 1; ð21Þ

where Ωm ¼ κ2ρm
3H2 the matter density parameter and

ΩT ¼ κ2ρT
3H2 is the torsion density parameter. To fulfill the

conservation principle, when the matter field and the
torsion are minimally coupled, we have the continuity
equations

_ρm þ 3Hρm ¼ 0; ð22Þ

_ρT þ 3HðρT þ pTÞ ¼ 0: ð23Þ

It is useful also to define the effective EoS parameter

weff ≡ peff

ρeff
¼ −1 −

2

3

_H
H2

: ð24Þ

The effective EoS parameter can be considered as an
alternative to the deceleration parameter q, since they are
related by

q≡ −1 −
_H
H2

¼ 1

2
ð1þ 3weffÞ: ð25Þ

It is confirmed by several cosmological observations
that the universe has turned its expansion from deceler-
ation to acceleration few billion years ago. Since then the
deceleration parameter q has been widely used to
describe the cosmic history at least at that phase until
now. In this sense, some used different parametric form
of q, cf. [11–17], others used nonparametric forms of q,
cf. [10,18–22]. However, these needs to be formulated
within a framework of a gravitational theory. In the next
section, we show how to reconstruct fðTÞ gravity from a
given form of qðzÞ, where z is the redshift, or other
parameters as weffðzÞ. This allows us to perform extra
tests on the free parameters of these forms using other
cosmological parameters like the matter density param-
eter Ωm or the DE EoS.
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III. RECONSTRUCTION METHOD OF f ðTÞ
TELEPARALLEL GRAVITY

In this section we are interested to reconstruct the fðTÞ
gravity upon parametric forms of the deceleration qðzÞ or
other alternatives. So it is convenient to use the redshift z as
independent variable, where z ¼ a0

a − 1 with a0 ¼ 1 at the
present time. In this case, we write

_H ¼ −ð1þ zÞHH0; ð26Þ

where the prime denotes the derivative with respect the
redshift parameter z. Using (25) and (26), we write

HðzÞ ¼ H0 exp

�Z
z

0

1þ qðz̄Þ
1þ z̄

dz̄

�
; ð27Þ

where H0 ¼ Hðz ¼ 0Þ. On the other hand, by using z as
independent variable, we have

fðHðzÞÞ¼fðzÞ; fH¼ f0

H0 ; fHH¼f00H0−f0H00

H03 : ð28Þ

By substituting from (26) and (28) in the fðTÞ phase
portrait (15), we evaluate

HðzÞ ¼ H0 exp

�Z
z

0

df=dz̄
fðz̄Þ þ f0ð1þ z̄Þ3 dz̄

�
; ð29Þ

where f0 is a constant of integration. We determine the
evolution of the density of the matter component, by
substituting from (26) and (28) in (13), we write

ρmðzÞ ¼
1

2κ2

�
fðzÞ − H

H0 f
0
�

¼ −
f0
2κ2

ð1þ zÞ3: ð30Þ

On the other, one can determine the matter density by
solving the matter continuity (22) whereas ρm ¼ ρm;0a−3 ¼
ρm;0ð1þ zÞ3 and ρm;0 is the current matter density. By
comparison with (30), we determine that f0 ¼ −2κ2ρm;0.
At the present time (i.e., z ¼ 0), we have Ωm;0 ¼
ρm;0=ρc;0 ¼ κ2ρm;0

3H2
0

, this gives

f0 ¼ −6Ωm;0H2
0: ð31Þ

It is worthwhile to mention that the Planck CMB measures
the quantity Ωm;0h2 ¼ 0.1426� 0.0020 (based on the
ΛCDM model fitted to Planck TTþ lowP likelihood),
where h ¼ H0=100 km=s=Mpc [49]. This directly fixes
the value of the constant f0 ¼ −8556.
Obviously, the deceleration parameter qðzÞ and the

modified fðTÞ gravity are both related to Hubble function
HðzÞ very similarly as indicated by Eqs. (27) and (29). So,
by comparing these, we obtain

qðzÞ ¼ −1þ ð1þ zÞf0
fðzÞ − 6Ωm;0H2

0ð1þ zÞ3 : ð32Þ

As noted before that the deceleration parameter directly
reflects the nature of the cosmic expansion rate. For this
reason, several parametrization forms of the decelerations
have been suggested in the literature, cf. [10–22], to des-
cribe the cosmic evolution. Thus, we find that Eq. (32) is a
toolkit to develop a viable cosmic scenarios within an fðTÞ
gravitational theory.
Notably, the deceleration parameter, (25), contains

only up to the first derivative of the Hubble parameter,
_H. On the other hand, we clarify that the modified version
of Friedmann equations in the case of fðTÞ teleparallel
gravity can be rewritten as a one dimensional autonomous
system, i.e., _H ¼ F ðHÞ, see Eq. (15). This feature cannot
be found in modified gravity with a curvature base, e.g., the
fðRÞ gravity, since the dependence of the higher derivative
terms, Ḧ, should violate this feature. In this sense, we find
that the Hubble parameter can be expressed as integrals of
qðzÞ and fðTðzÞÞ in similar ways, as seen from Eqs. (27)
and (29). The comparison of these two expressions allows
the reconstruction method of the fðTÞ gravity as presented
in this paper. Therefore, this approach is not expected to be
carried out for fðRÞ gravity.
Alternatively, Eq. (32) can be integrated to the con-

struction equation

fðzÞ¼−6Ωm;0H2
0e
R

z

0

1þqðz̄Þ
1þz̄ dz̄

Z
z

0

ð1þ z̄Þ2ð1þqðz̄ÞÞ
e
R

z

0

1þqðz̄Þ
1þz̄ dz̄

dz̄: ð33Þ

In the above we have omitted an additional term propor-

tional to the quantity e
R

z

0

1þqðz̄Þ
1þz̄ dz̄, since it represents a total

derivative term H ∝
ffiffiffiffiffiffiffi
−T

p
in the action (7) and does not

contribute in the field equations. Thus, for a given para-
metrization of qðzÞ, Eq. (33) enables to generate the
corresponding fðTÞ theory, and then other important
parameters can be computed and confronted with obser-
vational results to examine the validity of the fðTÞ gravity.
In the present paper, we use the reconstruction equation (33)
to evaluate the fðTÞ gravitational theory which generates a
proposed parametrization qðzÞ. Also we may interchange
qðzÞ and weffðzÞ as given by (25), and then fðTÞ gravity can
be reconstructed as well for different parametrizations
of weffðzÞ. In this case, we have another reconstruction
equation form

fðzÞ ¼ −9Ωm;0H2
0e

3
2

R
z

0

1þweff ðz̄Þ
1þz̄ dz̄

×
Z

z

0

ð1þ z̄Þ2ð1þ weffðz̄ÞÞ
e
3
2

R
z

0

1þweff ðz̄Þ
1þz̄ dz̄

dz̄: ð34Þ

In order to cover other possible reconstruction methods, we
include the case when some parametrizations are given for
the EoS of the DE sector. Inserting (26) and (28) into (20),
we write
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wTðzÞ ¼ −1þ 1

3
ð1þ zÞH 12H03 þ f00H0 − f0H00

ð6H2 − fÞH02 þHH0f0
: ð35Þ

The above equation can be used to reconstruct fðzÞ from a given parametrization of the DE EoS wTðzÞ. This can be done by
inserting (29) into (35), then we have a new reconstruction equation

wTðzÞ ¼
h
fðzÞ − 6Ωm;0H2

0ð1þ zÞ3 − 2
3
ð1þ zÞ dfdz

i
e
2
R

z

0

df=dz̄

fðz̄Þ−6Ωm;0H
2
0
ð1þz̄Þ3dz̄

½fðzÞ − 6Ωm;0H2
0ð1þ zÞ3�

�
Ωm;0ð1þ zÞ3 − e

2
R

z

0

df=dz̄

fðz̄Þ−6Ωm;0H
2
0
ð1þz̄Þ3dz̄

� : ð36Þ

Interestingly enough by inserting Eqs. (27) and (33) into
(35), we obtain a useful relation between the DE EoS and
the deceleration parameter

wTðzÞ ¼
ð1 − 2qðzÞÞe2

R
z

0

1þqðz̄Þ
1þz̄ dz̄

3ðΩm;0ð1þ zÞ3 − e2
R

z

0

1þqðz̄Þ
1þz̄ dz̄Þ

; ð37Þ

Again we may use qðzÞ and weffðzÞ interchangeably via
(25), then we also relate the DE and the total (effective) EoS
parameters as follows

wTðzÞ ¼ −
weffðzÞe3

R
z

0

1þweff ðz̄Þ
1þz̄ dz̄

Ωm;0ð1þ zÞ3 − e3
R

z

0

1þweff ðz̄Þ
1þz̄ dz̄

; ð38Þ

In order to close this section, we relate the deceleration
parameter to another fundamental cosmological parameter
which allows for testing assumed parametrization forms of
qðzÞ, that is the matter density parameter ΩmðzÞ. Using
(30), we write

ΩmðzÞ ¼
fH0 −Hf0

6H0H2
¼ Ωm;0ð1þ zÞ3e−2

R
z

0

1þqðz̄Þ
1þz̄ dz̄: ð39Þ

Also, the dark torsional counterpart is then given by

ΩT ¼ 1 − Ωm ¼ 1 −Ωm;0ð1þ zÞ3e−2
R

z

0

1þqðz̄Þ
1þz̄ dz̄: ð40Þ

We summarize this section by emphasizing on the three
reconstruction equations (33), (34) and (36) that allow to
reconstruct the fðTÞ gravity for a given parametric form
of the deceleration, the effective EoS and the DE EoS
parameters, respectively. We also provide two useful
supplementary equations, namely (37) and (38), which
relate the dark torsional EoS to the deceleration and the
effective EoS parameters, respectively. On the other hand,
the matter density parameter, Eq. (39), and its asymptotic
behavior provides one more test to examine the validity of
the suggested parametrization. In the following section, we

use these equations in order to examine some parametric
forms within fðTÞ gravity.

IV. MODELS

Motivated by the results of Sec. III, we present three
different parametrizations, two for the deceleration param-
eter qðzÞ and one for the effective EoS parameter weffðzÞ,
aiming to construct the corresponding fðTÞ gravity and test
possible viable deviations from the ΛCDM model.

A. Flat ΛCDM model

One of the approaches to describe the late accelerated
expansion phase is DE scenario. The simplest version is to
relate it to a cosmological constant, where the cosmic
expansion can transform from deceleration to acceleration
in a way very compatible with wide range of observations,
that is ΛCDM cosmology. However, the model is lacking
theoretical interpretations and justifications. In this model,
the Hubble evolution is given as

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þΩΛ;0

q
; ð41Þ

where ΩΛ;0 ¼ 1 −Ωm;0 denotes the present value of the
DE density parameter. Substituting from (41) into (25)
taking into account (26), we write the ΛCDM deceleration
parameter

qðzÞ ¼ −1þ 3

2

Ωm;0ð1þ zÞ3
ΩΛ;0 þ Ωm;0ð1þ zÞ3 : ð42Þ

As clear, at large redshifts, ð1þ zÞ3 ≫ ΩΛ;0
Ωm;0

, themodel gives a

decelerated expansion phase in agreement with Einstein-de
Sitter model, i.e., q → 1=2. However, at low redshifts, the
expansion goes to accelerated phase as qðzÞ becomes
negative, then it evolves toward pure de Sitter q → −1 as
z → −1 (t → ∞). Thus, this form gives a viable cosmologi-
cal scenario in agreement with observations. In addition, we
can find the corresponding fðTÞ gravity representation by
inserting (42) in the reconstruction equation (33),
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fðzÞ ¼ −6H2
0ðΩm;0ð1þ zÞ3 þ ΩΛ;0Þ − 6ΩΛ;0H2

0: ð43Þ

This turns out as expected to fðTÞΛCDM ¼ T − const:, i.e.,
ΛCDM model [50]. So the model has two parameters, H0

and Ωm;0, need to be constrained by observations. In
fact, the local CMB and BAO observations (preassume
ΛCDM model) favor a value of H0 ¼ 68 km=s=Mpc and
Ωm;0 ¼ 0.3, this is on contrary to the global SNIa and H0

observations (model independent) which favor a larger
H0 ¼ 73 km=s=Mpc and smaller Ωm;0 ¼ 0.26. However,
several approaches have been suggested to reconcile local
with global measurements by introducing dark neutrino
species [51], using dynamical phantom DE [52,53] or by
utilizing infrared gravity [54], see also [55,56]. In modified
gravity framework one may search for an explanation for
the accelerated expansion without assuming DE (cosmo-
logical constant), however we should not expect great
deviations from the ΛCDM scenario.

B. Model 1

Several parametrization forms of the deceleration param-
eter have been suggested in the literature, but in general,
they have the following form

qðzÞ ¼ q0 þ q1XðzÞ; ð44Þ

where q0 and q1 are real numbers can be fixed by
observational datasets, while different choices of the
function XðzÞ give different parametrizations of the decel-
eration parameter. Motivated by the Barboza and Alcaniz
parametrization of the DE EoS [57], a divergence-free
parametrization of the deceleration parameter has been
suggested as [23]

XðzÞ ¼ zð1þ zÞ
1þ z2

: ð45Þ

At large redshift z ≫ 1, the deceleration parameter
qðzÞ → q0 þ q1, which is suitable to study the radiation
era. At late universe 0 ≤ z ≪ 1, the deceleration parameter
reduces to the linear parametric form qðzÞ ¼ q0 þ q1z, so it
is suitable to study the late accelerated expansion phase.
Also, it can be shown that the deceleration parameter does
not diverges as z → −1, so it is suitable to study the fate
of the universe. Since the above parametric form is finite
for all redshift values z ∈ ½−1;∞Þ, it is valid to describe
the entire cosmic history as mentioned in [23]. Using the
parametric form (45) and (27), the Hubble-redshift relation
can be written as

HðzÞ ¼ H0ð1þ zÞ1þq0ð1þ z2Þq12 : ð46Þ

Additionally, by using the reconstruction equation (33), we
obtain the fðzÞ form which controls the gravity sector

fðzÞ ¼ −6Ωm;0H2
0ð1þ zÞ1þq0ð1þ z2Þq12

×
Z

z

0

1þ q0 þ q1
z̄ð1þz̄Þ
1þz̄2

ð1þ z̄Þq0−1ð1þ z̄2Þq12 dz̄: ð47Þ

In Fig. 1(a), we plot the obtained fðTÞ gravity verses
the redshift according to different values of q0 and q1. The
plots show that the theory has large deviations from the
ΛCDM cosmology which is not favored in practice. This
should be reflected on dynamical cosmological parameters
like the matter density parameter.
We next evaluate the total EoS parameter according to

the parametrization (45). Then Eq. (25) reads

weffðzÞ ¼ −1þ 2

3

ð1þ q0Þ þ q1zþ ð1þ q0 þ q1Þz2
1þ z2

: ð48Þ

According to the values of the parameters q0 and q1 given
in [23], the transition redshift ztr can be determined by
setting weffðztrÞ ¼ −1=3. This gives ztr⋍0.75, 0.72, 0.8 and
0.54 according to the datasets HðzÞ, SNIa, HðzÞ þ SNIa
and HðzÞ þ SNIaþ BAO=CMB, respectively. The evolu-
tion of weffðzÞ is given as in Fig. 1(b). Although the plots
show transition redshift in agreement with observations,
they are clearly incompatible with the sCDM behavior (i.e.,
weffðzÞ ¼ 0) at large redshift. This confirms the inefficiency
of the model at the earlier phases (large redshifts).
Using the parametrization (45), the matter density

parameter (39) reads

ΩmðzÞ ¼ Ωm;0ð1þ zÞ1−2q0ð1þ z2Þ−q1 : ð49Þ

In Fig. 1(c), we plot the evolution of the matter and the
torsion density parameters according to the calculated
values of the model parameters q0 and q1 as given in
Ref. [23]. As shown by the plots, the matter density
parameter crosses the unit boundary line at redshift 1≲
z≲ 2 for the datasets HðzÞ, SNIa and HðzÞ þ SNIa, while
for the combination HðzÞ þ SNIaþ BAO=CMB, the mat-
ter density parameter ΩmðzÞ crosses the unity at larger
redshift z≳ 10. As expected from the analysis of the
obtained fðTÞ gravity, namely Eq. (47), the parametriza-
tion (45) does not produce a sCDM compatible with the
thermal history.
Also we evaluate the torsional EoS parameter associated

to the parametric form (45),

wTðzÞ ¼
2ð1þ zÞ2q0 ½ðq0 − 1

2
Þ þ q1zð1þzÞ

1þz2 �
3½ð1þ zÞ2q0 − Ω0;mð1þzÞ

ð1þz2Þq1 �
: ð50Þ

According to the values of the parameters q0 and q1 given
in [23], we plot the evolution of wTðzÞ in Fig. 1(d). The
plots show that the torsional EoS parameter evolves in
phantomlike regime at low redshifts. We note that a

W. EL HANAFY and G. G. L. NASHED PHYS. REV. D 100, 083535 (2019)

083535-6



possible phase transition occurs at redshifts z ∼ 1.19,
z ∼ 1.87, z ∼ 1.47 and z ∼ 10.29 for the datasets HðzÞ,
SNIa, HðzÞ þ SNIa and HðzÞ þ SNIaþ BAO=CMB as
wT → �∞. Also the model forecasts crossing the phantom
divide line at future to quintessencelike regime. Remarkably,
the phase transitions of torsion gravity is associated to
crossing the matter density parameter, ΩmðzÞ, the unit
boundary line (or when ΩT crosses to negative region) as
clear in Figs. 1(c) and 1(d).

In the following part of this subsection, we show how the
model parameters can be constrained aiming to produce
viable cosmic evolution. This means that if the predicted
values of the model parameters agree with their measured
ones, the assumed parametrization could be a good
approximation to describe the cosmic history. As a matter
of fact, we need the matter density parameter to reach a
maximal value ΩmðzÞ ¼ 1 asymptotically, i.e., as z → ∞.
This condition is useful to add a further constraint on the

(a) (b)

(c) (d)

FIG. 1. The best fit values of Model 1 parameters (q0, q1) are taken from [23] according to the datasets combination used in that
analysis, whereas (−0.82, 0.98) using HðzÞ dataset, (−0.57, 0.70) using SN Ia dataset, (−0.59, 0.67) using SN IaþHðzÞ datasets
combination and (−0.5, 0.78) using SN IaþHðzÞ þ BAO=CMB datasets combination, respectively; (a) Evolution of fðTðzÞÞ gravity
(47) normalized to ΛCDM (43). For a viable theory, one expects it to oscillate about ΛCDM. As clear the theory is not in agreement with
ΛCDM, therefore in practice one do not expect a viable thermal history; (b) The effective (total) EoS does not match the standard cold
dark matter (sCDM), weff → 0, at redshifts z ≳ 3; (c) For HðzÞ, SN Ia and SN IaþHðzÞ datasets, The matter density parameter crosses
the unit boundary at redshifts 1≲ z≲ 2, while for SN IaþHðzÞ þ BAO=CMB it occurs at z ∼ 10.3; (d) For HðzÞ, SN Ia and SN
IaþHðzÞ datasets, the torsion (DE) EoS shows phase transition at redshifts 1≲ z≲ 2 as wT → �∞, for SN IaþHðzÞ þ BAO=CMB it
diverges at z ∼ 10.3. However, the theory shows better results when the CMB/BAO datasets are added, but it still cannot produce a
thermal history compatible with the standard cosmology.
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free parameters q0 and q1. In more detail, we write the
asymptotic expansion of the matter density parameter (49)
up to the second order of the redshift

Ω̃mðzÞ ≈Ωm;0

�
1

z

�
2ðq0þq1Þð1þ z − 2q0Þ þOð1=z2Þ:

For viable models, we need Ω̃mðzÞ ≤ 1, otherwise the
torsion density parameter should drop to negative values.
This constrains q1 to a minimum value

q1 ≥ lim
z→∞

ln ½z−2q0ð1þ z − 2q0ÞΩ0;m�
ln z2

¼ 1

2
− q0: ð51Þ

The above inequality sets a constraint on the choice of the
model parameters, that is

q0 þ q1 ≥ 0.5:

If q0 þ q1 < 0.5, thematter density parameter would exceed
the unity at some redshift at past. The closerq0 þ q1 → 0.5−,
the earlierΩmðzÞ crossing to the unit boundary, i.e., at larger
z. This can easily seen fromFig. 1(c),whereas the sumsof the
pairs q0 þ q1 are 0.16, 0.13 and 0.08 for the datasets HðzÞ,
SNIa and HðzÞ þ SNIa, respectively. For the combina-
tion HðzÞ þ SNIaþ BAO=CMB, the sum q0 þ q1 ¼ 0.28
which is closer to the critical value 0.5, and therefore the

(a) (b)

(c) (d)

FIG. 2. The best fit values of Model 1 parameters (q0, q1) are taken according to the constraint (51). The model parameter q0 is kept
fixed to its value as measured in [23], since it is compatible with the present values of other cosmological parameters. However, the
model parameter q1 is recalculated to fulfill (51) as given on the plots; (a) The fðTÞ gravity matches ΛCDM at large redshifts on the
contrary to the corresponding plots in Fig. 1(a). (b) The effective (total) EoS shows that the universe can effectively produce sCDM
dominant era at large redshifts as weff → 0; (c) The matter density parameter does not cross the uint boundary line anymore and
consequently the torsional density parameter does not have negative values; (d) The torsion (DE) EoS has finite values at all redshifts.
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matter density parameter crosses the unit boundary at larger
redshift z ∼ 10. However, we find that these patterns are not
compatible with the ΛCDM behavior as mentioned before.
In order to enhance the model predictions, we fix the

q0-value as measured in [23], since its value is compatible
with the present values of other cosmological parameters.
However, we use the matter domination condition (51) to
recalculate the corresponding q1 value for each dataset. In
this case, we enhance the evolution fðTÞ gravity as shown
in Fig. 2(a). By comparison with Fig. 1(a), we find that the
plots match the ΛCDM model at large redshifts. On the
other hand, the universe effectively can describe sCDM
matter domination era as weff → 0 at large redshifts, see
Fig. 2(b). Indeed, the matter density parameter does not
cross the unit boundary line, but the behavior still incon-
sistent with the matter domination era. This can be shown
clearly in Fig. 2(c). Finally, we note that the torsional EoS
in the enhanced version does not indicate phase transitions
anymore, whereas wT becomes finite at all redshifts, see
Fig. 2(d). In Table I, we summarize the results of model 1
according to the values of the model parameters q0 and q1
as given in Ref. [23] and by applying the matter density
constraint (51).
In conclusion, the model parameters in the enhanced

version neither match the best fit values as measured by
different datasets combinations nor produce a viable
behavior of the matter density parameter. Therefore, we
note that although the parametric form (45) of the decel-
eration parameter does not diverge in the full redshift range
z ∈ ½−1;∞Þ it cannot be considered as a viable model to
produce the whole cosmic history.

C. Model 2

In this subsection, we examine another qðzÞ-parametri-
zation [16]

XðzÞ ¼ ln ðN þ zÞ
ð1þ zÞ − lnN; N > 1: ð52Þ

Using the above parametrization, the deceleration param-
eter (44) has been confronted with observational datasets,
in particular JLA SNIa and BAO/CMB, whereas the best
fit values of the free parameters q0 and q1 have been
calculated up to 1σ [16]. For different choices of the
parameter N, it has been shown that (N ¼ 2, q0 ¼ −0.45,
q1 ¼ −2.56), (N ¼ 3, q0 ¼ −0.54, q1 ¼ −1.35), (N ¼ 4,
q0 ¼ −0.56, q1 ¼ −1.03) and (N ¼ 5, q0 ¼ −0.56, q1 ¼
−0.85). In addition, it has been shown that, at present time
z ¼ 0, the above parametrization leads the deceleration
parameter to have a value q ¼ q0, while at large redshift
one can obtain the matter dominant era, q ¼ 1

2
, by using the

constraint q1 ¼ 2q0−1
2 lnN . Using the parametric form (52) and

(27), the Hubble-redshift relation can be written as

HðzÞ ¼ H0Nrð1þ zÞsðN þ zÞ−ðNþzÞr
ð1þzÞN; ð53Þ

where r ≔ q1N
N−1 and s≔ 1þq0þ r

N−q1 lnN. Additionally,
by using the reconstruction equation (33), we obtain the
fðzÞ form which controls the gravity sector

fðzÞ ¼ −6Ωm;0H2
0

ð1þ zÞs
ðN þ zÞðNþzÞr

ð1þzÞN

×
Z

z

0

ð1þ z̄Þ2−sð1þ q0 þ q1
ln ðNþz̄Þ
ð1þz̄Þ − lnNÞ

ðN þ z̄Þ−ðNþz̄Þr
ð1þz̄ÞN

dz̄:

ð54Þ

In Fig. 3(a), we plot the obtained fðTÞ gravity verses the
redshift according to different values of q0 and q1 as

TABLE I. The main results of model 1 according to the values of (q0, q1) parameters as given in Ref. [23] and by using the matter
density parameter constraint (51). In the later, we keep the strict measured values q0 as they are, while choosing the corresponding values
of q1 to fulfill the constraint.

fðTÞ=ΛCDM ΩmðzÞ ≤ 1 Torsion
Dataset q0 q1 compatibility constraint EoS, ωT Viability

H(z) −0.82 0.98 Not Violated (z ∼ 1.24) Divergesa (z ∼ 1.24) Not
SNIa −0.57 0.70 Not Violated (z ∼ 1.84) Divergesa (z ∼ 1.84) Not
HðzÞ þ SNIa −0.59 0.67 Not Violated (z ∼ 1.45) Divergesa (z ∼ 1.45) Not
HðzÞ þ SNIaþ BAO=CMB −0.50 0.78 Not Violated (z ∼ 10.28) Divergesa (z ∼ 10.28) Not

Using constraint (51)
H(z) −0.82 1.32 Semi Fulfilled Does not diverge Notb

SNIa −0.57 1.07 Semi Fulfilled Does not diverge Notb

HðzÞ þ SNIa −0.59 1.09 Semi Fulfilled Does not diverge Notb

HðzÞ þ SNIaþ BAO=CMB −0.50 1.00 Semi Fulfilled Does not diverge Notb

aNote that the torsion EoS diverges when the matter density parameter exceeds the unit boundary line (equivalently, when the torsion
density parameter becomes negative), see Figs. 1(c) and 1(d).

bAlthough the enhanced parameters-using the matter density parameter constraint (51)- give fðTÞ gravity with better compatibility
with ΛCDM and smooth ωT , it cannot produce viable patterns of the matter density parameter as seen in Fig. 2(c).
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measured in [16]. Similar to Model 1, the plots show that
the theory has large deviations from the ΛCDM cosmology
which is not favored in practice. This should be reflected on
dynamical cosmological parameters like the matter density
parameter.
We next evaluate the total EoS parameter according to

the parametrization (52). Then Eq. (25) reads

weffðzÞ ¼ −
1

3
þ 2

3

�
q0 þ q1

�
ln ðN þ zÞ
ð1þ zÞ − lnN

��
: ð55Þ

According to the values of the parameters q0 and q1 given in
[16], the transition redshift ztr can be determined by setting
weffðztrÞ ¼ −1=3. This gives ztr⋍1.32, 0.98, 0.88 and 0.86
according to the datasets SNIaþ BAO=CMB with different
choices of N ¼ 2…5, respectively. The evolution of weffðzÞ
is given as in Fig. 3(b). Although the plots show transition
redshift in agreement with observations, they are clearly
incompatible with the sCDM behavior (i.e., weffðzÞ ¼ 0) at
large redshift. This confirms the inefficiency of the model at
the earlier phases (large redshifts).
Using the parametrization (52), the matter density

parameter (39) reads

(a) (b)

(c) (d)

FIG. 3. The best fit values of Model 2 parameters (q0, q1) are taken from [16] according to the datasets combination used in that
analysis, whereas (N ¼ 2, q0 ¼ −0.45, q1 ¼ −2.56), (N ¼ 3, q0 ¼ −0.54, q1 ¼ −1.35), (N ¼ 4, q0 ¼ −0.56, q1 ¼ −1.03) and
(N ¼ 5, q0 ¼ −0.56, q1 ¼ −0.85); (a) Evolution of fðTðzÞÞ gravity (47) normalized to ΛCDM (43), as clear the theory is not in
agreement with ΛCDM so in practice one do not expect a viable thermal history; (b) The effective (total) EoS does not match the sCDM,
weff → 0, at redshifts z ≳ 3; (c) The matter density parameter crosses the unit boundary at redshifts 1≲ z ≲ 2; (d) The torsion (DE) EoS
show phase transition at redshifts 1 ≲ z≲ 2 as wT → �∞. However, the theory shows better results when the CMB/BAO datasets are
added, but it still cannot produce a thermal history compatible with the standard cosmology.
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ΩmðzÞ ¼
Ωm;0

N2r ð1þ zÞ3−2sðN þ zÞ2ðNþzÞr
ð1þzÞN: ð56Þ

In Fig. 3(c), we plot the evolution of the matter and the
torsion density parameters according to the calculated
values of the model parameters q0 and q1 as given in
Ref. [16]. As shown by the plots, the matter density
parameter 0 < ΩmðzÞ < 1 at large redshifts, then it peaks
up at low redshifts crossing the unit boundary line at
redshifts z ∼ 15.78, 17.96, 14.89 and 16.41 for the values
N ¼ 2…5, respectively. However, the matter density
drops down once again crossing the unit boundary line
at redshifts z ∼ 1.43, 1.70, 1.88 and 1.95 for the values
N ¼ 2…5, respectively. In agreement with the analysis of
the obtained fðTÞ gravity, namely Eq. (54), the para-
metrization (52) does not produce a matter dominant era
compatible with the thermal history.
Also, we evaluate the torsional EoS parameter associated

to the parametric form (52),

wTðzÞ ¼
−1þ 2q0 þ 2q1½lnNþz

1þz − lnN�
3 − 3Ωm;0Nrð1þ zÞ3−2sðN þ zÞ2rðNþzÞ

Nð1þzÞ
: ð57Þ

According to the values of the parameters q0 and q1 given
in [16], we plot the evolution of wTðzÞ in Fig. 3(d). The
plots show that the torsional EoS parameter evolves in
phantomlike regime at low redshifts. We note that an early
phase transition occurs at redshifts z ∼ 15.78, 17.96, 14.89
and 16.41 for the values N ¼ 2…5, respectively, as
wT → �∞. Also a second phase transition can be realized
at lower redshifts z ∼ 1.43, 1.70, 1.88 and 1.95 for the
values N ¼ 2…5, respectively. The model forecasts a
smooth crossing of the phantom divide line at future to
quintessencelike regime. Remarkably, the phase transitions
of torsion gravity is associated to crossing the matter
density parameter, ΩmðzÞ, the unit boundary line as clear
in Figs. 3(c) and 3(d).
In the following part of this subsection, we show how the

model parameter can be constrained to produce viable
cosmic evolution. This means that if the predicted values of
the model parameters agree with their measured ones, the
assumed parametrization could be a good approximation
to describe the cosmic history. As a matter of fact, we need
the matter density parameter to reach a maximal value
ΩmðzÞ ¼ 1 asymptotically, i.e., as z → ∞. This condition is
useful to add a further constraint on the free parameters q0
and q1. In more detail, we write the asymptotic expansion
of the matter density parameter (56) up to the second order
of the redshift

Ω̃mðzÞ ≈
Ωm;0

N2r z1−2q0þ2q1 lnN:

For viable models, we need Ω̃mðzÞ ≤ 1, otherwise the
torsion density parameter should drop to negative values.
This constrains q1 to a minimum value

q1 ≤ lim
z→∞

−
1

2

ðln 1
Ωm;0z

þ 2q0 ln zÞðN − 1Þ
ðN − ln 1

z þ N ln 1
zÞ lnN

¼ 2q0 − 1

2 lnN
:

Indeed this constraint derives the parametrization (52) to
perform q → 1=2 as z → ∞ just as mentioned in [16].
However, in practice this will not prevent the matter density
parameter to cross the unit boundary line at smaller
redshifts, it just flattens the peaks over a very wide redshift
range. In this sense, one may rather need to control the
ΩmðzÞ-peak amplitude to not cross the unit boundary line.
In order to make this model viable at least at low redshifts
z ¼ zl, we use the constraint ΩmðzlÞ ¼ 1. Using (56), we
solve this constraint for q1,

q1 ¼
ðN − 1Þð1þ zlÞ½ln ð1þ zlÞ2q0−1 − lnΩm;0�

ln
h
ð1þzlÞ2ððN−1Þ lnN−1Þð1þzlÞðNþzlÞ2ðNþzlÞ

N2Nð1þzlÞ

i : ð58Þ

It is reasonable to keep q0 as measured in [16] assuming the
ΩmðzlÞ-peak to occur at zl ¼ 3, so we get q1 ∼ −3.366,
−1.525, −1.114 and −0.913 for the values N ¼ 2…5,
respectively. In this case, we plot the evolution fðTÞ
gravity, namely (54), as shown in Fig. 4(a). By comparison
with Fig. 3(a), we find that the plots still do not match
the ΛCDM model at large redshifts. On the other hand,
the universe effectively cannot describe sCDM matter
domination era correctly as weff > 0 at large redshifts,
see Fig. 4(b). Indeed, the matter density parameter does not
cross the unit boundary line, but the behavior is still
inconsistent with the matter domination era. This can be
shown clearly in Fig. 4(c). Finally, we note that the
torsional EoS in the enhanced version does not indicate
phase transitions anymore, whereas wT becomes finite at all
redshifts, see Fig. 4(d). In Table II, we summarize the
results of model 1 according to the values of the model
parameters q0 and q1 as given in Ref. [16] and by applying
the matter density constraint (58).
In conclusion, the model parameters in the enhanced

version neither match the best fit values as measured by
different datasets combinations nor produce a viable behav-
ior of the matter density parameter. Therefore, it cannot be
considered as a viable model to produce the whole cosmic
history.

D. Model 3

In this subsection, we reconstruct the fðTÞ gravity theory
upon the parametric form of the effective EoS assumed in
Ref. [24],

weff ¼ −
1

1þ αð1þ zÞn ; ð59Þ
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where α and n are two model parameters. At large redshifts,
the universe effectively produces sCDM as weff → 0. At far
future z → −1, the universe effectively evolves toward de
Sitter as weff → −1. This can be shown clearly in Fig. 6(a).
In principal, this pattern can produce a successful cosmic
history. Using (25), the deceleration parameter associated
with the above parametrization can be written as

qðzÞ ¼ −1þ 3αð1þ zÞn
2½1þ αð1þ zÞn� : ð60Þ

Inserting the above into (27), the Hubble parameter reads

HðzÞ ¼ H0

�
1þ αð1þ zÞn

1þ α

� 3
2n

: ð61Þ

One can see that the model produces ΛCDM model as a
particular case when n ¼ 3, then we obtain that Ωm;0 ¼ α

1þα

or equivalently α ¼ Ωm;0

1−Ωm;0
. We take the value Ωm;0 ¼ 0.297

as measured in Ref. [24]. In viable dynamical DE models,
one may expect that the value of n to be close to n ¼ 3. On
the other hand, we use the second reconstruction equa-
tion (34) to evaluate the fðTÞ gravity which generates the
parametric form (59). We obtain

(a) (b)

(c) (d)

FIG. 4. The best fit values of Model 2 parameters (q0, q1) are taken according to the constraint (58). The model parameter q0 is kept
fixed to it value as measured in [16], since it is compatible with the present values of other cosmological parameters. However, the model
parameter q1 is recalculated to fulfill (58) as given on the plots; (a) The fðTÞ gravity matches ΛCDM at large redshifts on the contrary to
the corresponding plots in Fig. 3(a). (b) The effective (total) EoS shows that the universe can effectively produce sCDM dominant era at
large redshifts as weff → 0; (c) The matter density parameter does not cross the unit boundary line anymore and consequently the
torsional density parameter does not have negative values; (d) The torsion (DE) EoS has finite values at all redshifts.
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fðzÞ ¼ −9αΩm;0H2
0½1þ αð1þ zÞn� 32n

×
Z

z

0

ð1þ z̄Þnþ2

½1þ αð1þ z̄Þn�1þ 3
2n

dz̄: ð62Þ

In Fig. 5, we plot the evolution of the fðTÞ gravity at hand
versus ΛCDM for different values of the model parameters
α and n according to the dataset used [24]. The plots
show systematic deviation of the fðTÞ theory from ΛCDM
when the dataset combination SNþ observed Hubble data

(OHD) is used, since it does not oscillate about ΛCDM.
Otherwise, the theory is compatible with ΛCDM. We will
give the reasons for these results later in this subsection.
Using the deceleration (60), the matter density parameter

(39) reads

ΩmðzÞ ¼ Ωm;0ð1þ zÞ3
�

1þ α

1þ αð1þ zÞn
�3

n

: ð63Þ

In Fig. 6(b), we plot the evolution of the matter density
parameter using different values of the model parameters.
As seen, the density matter exceeds the unity at redshift
z ∼ 2 when the parameters are fitted with the dataset
SNþ OHD, on the other hand the density matter has a
slight but not trivial deviation form ΛCDM at large z when
the parameters are fitted with the dataset SNþ OHDþ
BAO. However, it evolves very similar to ΛCDMwhen the
CMB (shift parameter) is added. In fact, these results are in
agreement with the plots of Fig. 5.
Substituting from (61) and (62) in (35), we evaluate the

torsion (DE) EoS

wT ¼ −
½1þ αð1þ zÞn�3n − αð1þ zÞn½1þ αð1þ zÞn�3n−1

½1þ αð1þ zÞn�3n −Ωm;0ð1þ zÞ3ð1þ αÞ3n :

ð64Þ

As seen from Fig. 6(c) that the torsional EoS diverges
at redshift z ∼ 2 when the dataset SNþ OHD is used. We
note that the torsional phase transition is associated with
the crossing of the matter density parameter of the unit
boundary line as seen in Fig 6(b).
In order to constrain the model parameters, we follow the

treatment of Sec. IVA by requiring the matter density
parameter (63) to reach a maximal value Ωm;0 ¼ 1 asymp-
totically, i.e., as z → ∞. This condition is useful to put a

FIG. 5. Evolution of fðTðzÞÞ gravity, (62), vsΛCDM, (43): The
model parameters (α, n) are taken from [24] according to the
datasets combinations: SNþ OHD (0.445, 2.8), SNþ OHDþ
BAO (0.409, 3.13) and SNþ OHDþ BAO þ CMB (0.444,
2.907), while the αmin is taken for the value n ¼ 3 with the
constraint (65).

TABLE II. The main results of model 2 according to the values of (q0, q1) parameters as given in Ref. [16] and by using the matter
density parameter constraint (58). In the later, we keep the strict measured values q0 as they are, while choosing the corresponding values
of q1 to fulfill the constraint.

fðTÞ=ΛCDM ΩmðzÞ ≤ 1 Torsion
Dataset N q0 q1 compatibility constraint EoS, ωT Viability

JLA SNIaþ BAO=CMB 2 −0.45 −2.56 Not Violated Divergesa Not
JLA SNIaþ BAO=CMB 3 −0.54 −1.35 Not Violated Divergesa Not
JLA SNIaþ BAO=CMB 4 −0.56 −1.03 Not Violated Divergesa Not
JLA SNIaþ BAO=CMB 5 −0.56 −0.85 Not Violated Divergesa Not
Using constraint (58)
JLA SNIaþ BAO=CMB 2 −0.45 −3.366 Not Fulfilled Does not diverge Notb

JLA SNIaþ BAO=CMB 3 −0.54 −1.525 Not Fulfilled Does not diverge Notb

JLA SNIaþ BAO=CMB 4 −0.56 −1.114 Not Fulfilled Does not diverge Notb

JLA SNIaþ BAO=CMB 5 −0.56 −0.913 Not Fulfilled Does not diverge Notb

aNote that the torsion EoS diverges twice as the matter density parameter crosses the unit boundary line twice, see Figs. 3(c) and 3(d).
bAlthough the enhanced parameters-using the matter density parameter constraint (58)- give smooth ωT patterns (see Fig. 4(d)), it

cannot produce fðTÞ gravity with better compatibility with ΛCDM as seen in Fig. 4(a).
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lower bound on the parameter α. In more detail, we write
the leading term of the asymptotic expansion of the matter
density parameter

Ω̃mðzÞ ≈Ωm;0

�
1þ 1

α

�3
n

:

For viable models, we need Ω̃mðzÞ ≤ 1, otherwise the
torsion density parameter would drop below zero. This
constrains α to a minimum value

αmin ¼
Ω

n
3

m;0

1 −Ω
n
3

m;0

: ð65Þ

If α goes below the above minimum, the matter density
parameter would exceed the unity at some redshift at past,
and subsequently the torsion density parameter becomes

negative. For example, the measured value of the parameter
α ¼ 0.445 according to the dataset SNþ OHD [24] is less
than the allowed minimum value αmin ¼ 0.4728 according
to the density matter constraint1 (65). Therefore, we
understand the incompatibility of the model results [see
Fig. 6(b)] whenever the dataset SNþ OHD is used. On the
contrary, we find that the measured values α ¼ 0.409 >
αmin ¼ 0.3904 (using SNþ OHDþ BAO dataset) and
α ¼ 0.444 > αmin ¼ 0.4438 (using SNþ OHDþ BAO
dataset) are compatible and give viable cosmic scenarios.
Notably, for the ΛCDM case (n ¼ 3), the mini-

mum value αmin ¼ Ωm;0

ΩΛ;0
represents the ratio between the

matter and the torsion density parameters at present. In
Figs 6(d)–(f), we plot ΛCDM as n ¼ 3 and α ¼ αmin, at

(a) (b) (c)

(d) (e) (f)

FIG. 6. In subfigs. (a)–(c), the best fit values of the model parameters (α, n) are taken according to the dataset combination as measured
in [24]; (0.445, 2.8) for SNþ OHD, (0.409, 3.13) for SNþ OHDþ BAO, (0.444, 2.907) for SNþ OHDþ BAO þ CMB and
(α ¼ Ωm;0

1−Ωm;0
, n ¼ 3) for ΛCDM with Planck parameters. In subfigs. (d)–(f), we use the constraint (65) to determine αmin for different

choices of n, while the additive constant is taken as δα ¼ 10−3.

1Note that we take Ωm;0 ¼ 0.297 as derived in [24] and
n ¼ 2.8 as measured by using the dataset SNþ OHD.
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those values we obtain a fixed torsional EoS wT ¼ −1. If α
slightly exceeds αmin, we list three possible viable cases:
(i) For n ≲ 3, we find that wT evolves in quintessence with
wT ≳ −1 at present. (ii) For n≳ 3, the torsional EoS has a
quintom behaviour, since wT crosses the phantom divide
line at z ∼ 4 from quintessence to phantom with wT ≲ −1 at
present. (iii) For n ¼ 3, the torsional EoS evolves in a
quintessence regime with wT ∼ −1 at present. In all cases,
wT → 0 at large redshifts, which explains the late accel-
erating expansion, and evolves toward a cosmological
constant (pure de Sitter) at future. We summarize the
model results in Table III.
In conclusion, we find that the effective EoS para-

metrization (59) produces a viable fðTÞ gravity model.
However, the model parameters n and α can be better
constrained by the upcoming DE surveys to determine the
nature of the DE precisely. On the other hand, the fðTÞ
theory presented in this subsection is capable to produce a
dynamical torsional DE, then—in principal—it could be
useful to reconcile the local measurement of the Hubble
constant with its global measured value. More interestingly
the fðTÞ theory at hand is ready to be tested on the
perturbation level too.

V. SUMMARY

Recent attempts to describe the late accelerating expan-
sion of the universe, via kinematic approach by considering
some parametric forms of the deceleration parameter, have
been discussed. Although some of these parametric forms
could be useful to encode the deceleration-to-acceleration
transition, those need to be treated within a dynamical
framework or modified gravity. This allows not only for
more tests of other cosmological parameters on the back-
ground level but also for further tests on the perturbation

level of the theory. In this paper, we have set a
reconstruction method of fðTÞ gravity which generates
any particular qðzÞ–parametrization. This has been
achieved by recognizing the compatibility of the deceler-
ation parameter (27) and fðTÞ gravity (29). In addition, we
have derived two more reconstruction equations by know-
ing the effective EoS weffðzÞ or the DE EoS wDEðzÞ.
We have examined three models in this paper: For

model 1, the qðzÞ parametrization (45) has been adopted.
We compare the corresponding fðTÞ gravity with ΛCDM
model showing the inviability of the model even by
enhancing its model parameters. For model 2, the qðzÞ
parametrization (52) has been adopted. Similar to model 1,
it cannot produce a viable cosmological scenario. For
model 3, the weffðzÞ parametrization (59) has been adopted.
The corresponding fðTÞ gravity shows a good compati-
bility with ΛCDM results as well as the current observa-
tions. Since the model is flexible to produce a dynamical
DE model with quintessence or quintom behavior, we
expect the corresponding fðTÞ gravity to explain the nature
of the DE beyond ΛCDM.
In these three models, the torsional EoS diverges if the

matter density parameter crosses the unit boundary line
(alternatively the torsion density parameter becomes neg-
ative). This feature can be verified by the upcoming DE
surveys.
In this paper, we have examined the reconstruction

method on the background level of the obtained theories.
However, it is more interesting to examine the theory on the
perturbation level as well. We leave this task for future work.
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TABLE III. The main results of model 3 according to the values of (α, n) parameters as given in Ref. [24] and by using the matter
density parameter constraint (65), where α ¼ αmin þ δαð¼ 10−3Þ. In all treatments we take Ωm;0 ¼ 0.297 as derived in [24].

fðTÞ=ΛCDM ΩmðzÞ ≤ 1 Torsion
Dataset α n compatibility constraint EoS, ωT Viability

SNþ OHD 0.445a 2.8 Not Violated Diverges Not
SNþ OHDþ BAO 0.409 3.13 Semi Fulfilled Does not diverge Yes
SNþ OHDþ BAOþ CMB 0.444 2.907 Semi Fulfilled Does not diverge Yes

Using constraint (65)
Case (i) 0.503 2.7 ≲ 3 Semi Fulfilled Does not diverge (quintessence) Yes
Case (ii) 0.356 3.3 ≳ 3 Semi Fulfilled Does not diverge (quintom) Yes
Case (iii) 0.421 3 Semi Fulfilled Does not diverge (quintessence) Yes
ΛCDM αmin 3 Yes Fulfilled −1 Yes

aNote that this dataset provides α < αmin, which explains the violation of the matter density constraint.
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