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We investigate a particular type of classical nonsingular bouncing cosmology, which results from general
relativity if we allow for degenerate metrics. The simplest model has a matter content with a constant
equation-of-state parameter and we get the modified Hubble diagrams for both the luminosity distance and
the angular diameter distance. Based on these results, we present a Gedankenexperiment to determine the
length scale of the spacetime defect which has replaced the big bang singularity. A possibly more realistic
model has an equation-of-state parameter which is different before and after the bounce. This last model
also provides an upper bound on the defect length scale.
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I. INTRODUCTION

There have been discussions from various physics per-
spectives of the possible existence of a pre-big-bang phase,
with or without a bounce-type behavior of the cosmic scale
factor. See, e.g., Refs. [1–3] and references therein.
Recently, we have obtained a surprising hint for the actual

existence of a pre-big-bang phase [4], where weworked with
the established theory of general relativity in four spacetime
dimensions but allowed for degenerate metrics. (See the last
two paragraphs of Sec. I in Ref. [4] for a brief comparison of
this extended version of general relativity and the standard
version, which considers only nondegenerate metrics.) With
an appropriate differential structure and trivial spacetime
topology, a nonsingular spatially flat Friedmann-type sol-
ution of the Einstein gravitational field equation has been
obtained, where the curvature and the matter energy density
remain finite (these quantities diverge for the standard
Friedmann solution). Most interestingly, this nonsingular
Friedmann-type solution suggests the existence of a “pre-
big-bang” phase (in standard terminology) with a bounce-
type behavior of the cosmic scale factor.
The aim of the present article is to review this non-

singular bounce, which remains within the realm of general
relativity, and to obtain a better understanding of the
nonsingular bouncing cosmology by performing explor-
atory calculations of certain cosmological observables.
Even though, at this moment, these cosmological observ-
ables are only accessible through Gedankenexperiments, it
is instructive to discuss them. In the Appendix, we also
give an explicit realization of a particular classical non-
singular bouncing cosmology that was discussed in Ref. [3]
(this cosmology has a different matter content before and

after the bounce). The model of the Appendix allows us to
obtain a qualitative upper bound on the length scale of the
spacetime defect which has replaced the big bang
singularity.

II. NONSINGULAR BOUNCE WITH A
CONSTANT EQUATION OF STATE

We start from the classical spacetime manifold of
Ref. [4], but use a simplified version of the cosmic time
coordinate T and consider only the T-even solution for
the cosmic scale factor aðTÞ. In this way, we obtain a
modified spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with a bounce-type behavior of
aðTÞ. We can be relatively brief in this section, as further
details can be found in Refs. [4–7]. Throughout, we use
natural units with c ¼ 1 and ℏ ¼ 1.
With a cosmic time coordinate T and comoving spatial

Cartesian coordinates fx1; x2; x3g, an appropriate Ansatz
for the metric is given by [4]

ds2jmod:FLRW≡gμνðxÞdxμdxνjmod:FLRW

¼−
T2

b2þT2
dT2þa2ðTÞδkldxkdxl; ð2:1aÞ

b > 0; ð2:1bÞ

T ∈ ð−∞;∞Þ; ð2:1cÞ

xk ∈ ð−∞;∞Þ; ð2:1dÞ

where the function aðTÞ in (2.1a) is, strictly speaking, not
the same as the function aðτÞ in (3.6) of Ref [4]. The
parameter b in the metric (2.1a) corresponds to the
characteristic length scale of the spacetime defect localized
at T ¼ 0 (see Refs. [4–7] and references therein). For the
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moment, b is simply a model parameter and we remain
agnostic as to its physical origin. It may be that b is
related to the Planck length, but it is also possible that b is
related to a new fundamental length scale of quantum
spacetime [8].
We observe that the metric (2.1a) is degenerate, with

det gμν ¼ 0 at T ¼ 0. The corresponding T ¼ 0 spacetime
slice may be interpreted as a 3-dimensional “defect” of
spacetime with topology R3. The standard elementary-
flatness condition does not hold at the location of this
spacetime defect; see Appendix D in Ref. [5] and Sec. 2 D
in Ref. [6] for further discussion. As will be seen shortly,
the metric (2.1a) removes the big bang curvature singu-
larity, but does so at the price of introducing a spacetime
defect. We also remark that a degenerate metric evades
certain singularity theorems; cf. Sec. 3. 1. 5 in Ref. [7].
Later on, we will simplify the calculations away from the

spacetime defect by use of the auxiliary coordinate τ
instead of T. These two coordinates are related as follows
(Fig. 1):

TðτÞ ¼
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
; for τ ≥ b;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − b2

p
; for τ ≤ −b;

ð2:2aÞ

τ ∈ ð−∞;−b� ∪ ½b;∞Þ: ð2:2bÞ

The inverted relation reads

τðTÞ ¼
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≥ 0;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≤ 0;

ð2:3Þ

which is multivalued at T ¼ 0. The advantage of using
the auxiliary coordinate τ is that the metric (2.1a) takes the
standard spatially flat FLRW form, ds2 ¼ −dτ2 þ
a2ðτÞδkldxkdxl, and that the reduced field equations are
nonsingular. But it is important to realize that the coor-
dinate transformation from T to τ is not a diffeomorphism
(an invertible C∞ function by definition): the function (2.3)

is discontinuous between T ¼ 0− and T ¼ 0þ, as is the
(suitably defined) second derivative. In short, the differ-
ential structure of the metric (2.1a) in terms of T is different
from the one of the standard spatially flat FLRW metric in
terms of τ; see Ref. [6] for a related discussion.
Taking the metric (2.1a) with spacetime coordinates

fT; x1; x2; x3g and the energy-momentum tensor of a
homogeneous perfect fluid, the Einstein equation gives
the following modified spatially flat Friedmann equation
and energy-conservation equation, together with an
assumed equation-of-state parameter WðTÞ:

�
1þ b2

T2

��
1

aðTÞ
daðTÞ
dT

�
2

¼ 8πGN

3
ρðTÞ; ð2:4aÞ

d
da

½a3ρðaÞ� þ 3a2PðaÞ ¼ 0; ð2:4bÞ

WðTÞ≡ PðTÞ
ρðTÞ ¼ w ¼ 1; ð2:4cÞ

where the last equation corresponds to a particular choice
for the constant equation-of-state parameter w. The actual
value w ¼ 1 in (2.4c) matches the one used in Ref. [3] and
the reason for this choice will be discussed further in
Sec. IV. As mentioned in Ref. [4], the only new ingredient
in (2.4) is the singular factor ð1þ b2=T2Þ on the left-hand
side of the modified Friedmann equation (2.4a).
The T-even bounce-type solution aðTÞ from (2.4) with

normalization aðT0Þ ¼ 1 at T0 > 0 is given by

aðTÞ
���ðw¼1; T-even sol:Þ
mod: FLRW

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 þ T2Þ=ðb2 þ T2

0Þ6

q
; ð2:5Þ

which is perfectly smooth at T ¼ 0 as long as b ≠ 0
(see Fig. 2 for a comparison with the singular solution).
The corresponding Kretschmann curvature scalar K ≡
RμνρσRμνρσ and matter energy density ρ are then finite at
T ¼ 0, provided b ≠ 0,

3b 2b b b 2b 3b

T 2 b2T 2 b2

FIG. 1. Surgery on the real line with coordinate τ ∈ R gives the
cosmic time axis τ ∈ ð−∞;−b� ∪ ½b;∞Þ, where the points
τ ¼ −b and τ ¼ b are identified (as indicated by the dots). A
suitable cosmic time coordinate is given by T ∈ R from (2.2a).
Each point of the cosmic time axis corresponds to a unique value
of the coordinate T.

6 4 2 0 2 4 6
T0

0.2

0.4

0.6

0.8

1
a

FIG. 2. Cosmic scale factor (full curve) of the modified
spatially flat FLRW universe with w ¼ 1 matter, as given by
(2.5) with b ¼ 1 and T0 ¼ 4

ffiffiffi
5

p
. Also shown is the cosmic scale

factor (dashed curve) of the standard FLRW universe with an
extended cosmic time coordinate T, as given by (2.5) with b ¼ 0
and T0 ¼ 4

ffiffiffi
5

p
.
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KðTÞ ∝ ðb2 þ T2Þ−2; ð2:6aÞ

ρðTÞ ∝ ðb2 þ T2Þ−1: ð2:6bÞ

In terms of the auxiliary coordinate τ from (2.3), the
bounce solution reads

aðτÞ
���ðw¼1; τ-even sol:Þ
mod: FLRW

¼
ffiffiffiffiffiffiffiffiffiffiffi
τ2=τ20

6

q
; ð2:7Þ

with τ20 ≡ b2 þ T2
0.

We emphasize that the new input for this particular
nonsingular bouncing cosmology is the metric Ansatz
(2.1a). The other two inputs are standard [9], the Einstein
equation and the energy-momentum tensor of the matter
(here, matter withw ¼ 1). The resultingmodified Friedmann
equation (2.4a), together with the standard equations (2.4b)
and (2.4c), then gives the bounce-type scale factor (2.5).
In the next section, we calculate some cosmological observ-
ables for this bounce-type FLRW universe.

III. COSMOLOGICAL OBSERVABLES

A. Null geodesics

The background metric is given by (2.1a). Particles travel
on straight lines in the coordinate system fT; x1; x2; x3g.
So, we can consider geodesics of light that start at T ¼
T1 < 0 and end at T ¼ T0 > 0, while moving in the x1 ≡ X
direction. Then, the reduced metric is

0 ¼ ds2
���ðlightÞ
mod:FLRW

¼ −
T2

b2 þ T2
dT2 þ a2ðTÞdX2; ð3:1Þ

where c has been set to unity. For matter with equation-of-
state parameter w ¼ 1, the cosmic scale factor aðTÞ is given
by (2.5).
With boundary condition Xð0Þ ¼ 0, we now have the

following geodesic solution X ¼ XðTÞ from the reduced
metric (3.1) and the cosmic scale factor (2.5):

XðTÞ ¼
8<
:þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

0
6
p ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ b23

p
−

ffiffiffiffiffi
b23

p
�; for T > 0;

− 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

0
6
p ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ b23

p
−

ffiffiffiffiffi
b23

p
�; for T ≤ 0:

ð3:2Þ

A plot of this null geodesic is given in Fig. 3.
The conclusion is that particles, in particular photons and

gravitons, can travel from the prebounce phase to the
postbounce phase without hindrance whatsoever.

B. Past particle horizon

At cosmic time T0 > 0, the past particle horizon is
infinite, as the universe extends back in time indefinitely.
Explicitly, the particle horizon at T0 > 0 reads

dhorðT0Þ ¼ aðT0Þ lim
τ1→−∞

�Z
−b

τ1

dτ00

aðτ00Þ þ
Z

τðT0Þ

b

dτ0

aðτ0Þ
�
;

ð3:3Þ

where τðT0Þ≡ τ0 is given by (2.3) and aðτÞ by (2.7). For
positive and finite values of b and τ0, we get

dhorðT0Þ ¼
3

2
aðT0Þ lim

τ1→−∞

� ffiffiffiffiffiffiffiffi
τ21τ0

3

q
− 2

ffiffiffiffiffiffiffiffiffi
b2τ0

3

q
þ τ0

�

¼ 3

2
aðT0Þ lim

τ1→−∞

ffiffiffiffiffiffiffiffi
τ21τ0

3

q
; ð3:4Þ

which goes toþ∞. In other words, the past particle horizon
at a finite positive cosmic time T0 diverges for this
particular bounce-type universe.
With an infinite particle horizon, there may be no

horizon and flatness problems to worry about, and no
need for inflation [10] (further references on infla-
tionary models can be found in Ref. [11]). A succinct
comparison between nonsingular bouncing cosmology
models and big bang inflationary models appears in
Ref. [3].

C. Modified Hubble diagrams

It is a straightforward exercise to calculate the luminosity
distance dL as a function of the redshift z, provided we
distinguish two cases:
(1) the light is emitted by a comoving source in the

expanding phase of the universe (T1 > 0);
(2) the light is emitted by a comoving source in the

contracting phase of the universe (T1 ≤ 0).
In both cases, the light is detected by a comoving observer
in the expanding phase at cosmic time T0 > 0 with
T0 > T1.
Using the auxiliary time coordinate τ from (2.3) with

scale factor (2.7) and adapting the relevant formulae in
Secs. 14. 4 and 14. 6 of Ref. [9], we obtain

dLðτ0; τ1Þjðcase 1Þ ¼
a2ðτ0Þ
aðτ1Þ

Z
τ0

τ1

dτ0

aðτ0Þ ; ð3:5aÞ

3 2 1 0 1 2 3
T6

4

2

0

2

4

6
X

FIG. 3. Null geodesic (3.2) with b ¼ 1 and T0 ¼ 4
ffiffiffi
5

p
.
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dLðτ0; τ1Þjðcase 2Þ ≡ dðpreÞL ðτ1Þ þ dðpostÞL ðτ0Þ

¼ a2ð−bÞ
aðτ1Þ

Z
−b

τ1

dτ00

aðτ00Þ þ
a2ðτ0Þ
aðbÞ

Z
τ0

b

dτ0

aðτ0Þ ;

ð3:5bÞ

where light is emitted at cosmic time τ ¼ τ1 (with τ1 > b
for case 1 and τ1 ≤ −b for case 2) and observed at
τ ¼ τ0 > b > 0 with τ0 > τ1. Taking the positive function
aðτÞ from (2.7) and introducing the redshift,

z≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðτ0Þ=a2ðτ1Þ

q
− 1 ¼ aðτ0Þ=aðτ1Þ − 1; ð3:6Þ

the integrals in (3.5) give

dLðzÞ
���ðcase 1Þ
z∈½0;zmaxÞ

¼ 3τ0
1

2

�
1þ z −

1

1þ z

�
; ð3:7aÞ

dLðzÞ
���ðcase 2Þ
z∈ð−1;zmax�

¼ 3τ0
1

2

�
1þ zmax −

1

1þ zmax

þ 1

ð1þ zmaxÞ2
�

1

1þ z
−

1þ z
ð1þ zmaxÞ2

��
;

ð3:7bÞ

with definition

zmax ≡ aðτ0Þ=aðbÞ − 1 ¼
ffiffiffiffiffiffiffiffiffi
τ0=b

3
p

− 1: ð3:7cÞ

The length scale 3τ0 entering (3.7a) and (3.7b) is deter-
mined by (2.7),

3τ0 ¼
�

1

aðτÞ
daðτÞ
dτ

�
−1

τ¼τ0

≡ ½Hðτ−def:Þ
0 �−1; ð3:8Þ

where the Hubble constantHðτ−def:Þ
0 differs fromHðT−def:Þ

0 ≡
½daðTÞ=dT�=aðTÞjT¼T0

by a factor close to unity, as long
as τ0 ≫ b.

The corresponding expressions for the angular diameter
distance dA read

dAðτ0; τ1Þjðcase 1Þ ¼
a2ðτ1Þ
a2ðτ0Þ

dLðzÞjðcase 1Þ; ð3:9aÞ

dAðτ0; τ1Þjðcase 2Þ ¼
a2ðτ1Þ
a2ð−bÞ d

ðpreÞ
L ðτ1Þ þ

a2ðbÞ
a2ðτ0Þ

dðpostÞL ðτ0Þ:

ð3:9bÞ

With the definitions in (3.5) and aðτÞ from (2.7), the
integrals give

dAðzÞ
���ðcase1Þ
z∈½0;zmaxÞ

¼3τ0
1

2

1

ð1þzÞ2
�
1þz−

1

1þz

�
; ð3:10aÞ

dAðzÞ
���ðcase 2Þ
z∈ð−1;zmax�

¼ 3τ0
1

2

�
1

ð1þ zÞ3 −
1

ð1þ zmaxÞ3

þ zmax þ zð1þ zmaxÞ
ð1þ zmaxÞ2ð1þ zÞ

�
: ð3:10bÞ

The modified Hubble diagram with the luminosity
distance dLðzÞ is plotted in the left-panel of Fig. 4 and
the one with the angular diameter distance dAðzÞ in the
right-panel. The nonsmooth behavior at z ¼ zmax in Fig. 4
is a direct manifestation of the spacetime defect and will be
discussed further in Sec. III D.
The results in Fig. 4 are shown for a relatively small

value of zmax, in order to display the main characteristics of
the modified Hubble diagrams. For very large values of
zmax (as will appear in Sec. IV), it makes more sense to
use a compactified redshift coordinate and to compress
(or compactify) the distance axis. Specifically, we can use
the following compactified variables:

ζ ≡ z
zþ 2

∈ ð−1; 1Þ; ð3:11aÞ

1 0.5 0 0.5 1 1.5 2
z0

0.5

1

1.5

2

2.5

3
dL 3 0

1 0.5 0 0.5 1 1.5 2
z0

0.5

1

1.5

2

2.5

3
dA 3 0

FIG. 4. Modified Hubble diagrams for, on the left, the luminosity distance dLðzÞ from (3.7) and, on the right, the angular diameter
distance dAðzÞ from (3.10). The model parameters are b=τ0 ¼ 1=27 and zmax ¼ 2. With a comoving observer in the expanding phase, the
full curves correspond to case 1 (light emitted by a comoving source in the expanding phase of the universe) and the dashed curves to
case 2 (light emitted by a comoving source in the contracting phase).
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δL ≡ dL
dL þ 3τ0

∈ ½0; 1Þ; ð3:11bÞ

δA ≡ dA
dA þ 3τ0

∈ ½0; 1Þ: ð3:11cÞ

The resulting modified Hubble diagrams are shown in
Fig. 5 for three values of zmax.
After we completed our calculation of the luminosity

distance, we became aware of Ref. [12], which discusses
certain phenomenological aspects of a nonsingular bounc-
ing cosmology but not the dynamics of the bounce. The
behavior of the n ¼ 1=2 curve in Fig. 1 of Ref. [12] agrees
with the more or less constant behavior of the dashed curve
in Fig. 4 of a previous version of this article [13], which
considered the w ¼ 1=3 case.
In the next two subsections, we will discuss these

modified Hubble diagrams in more detail.

D. Cusps in the modified Hubble diagrams

The cusp behavior seen in Fig. 4 is of interest in that it
shows that the spacetime defect at T ¼ 0 (or τ ¼ �b) is not

just a coordinate artifact, as it leads to observable effects.
The discontinuity of the derivative d0LðzÞ at zmax from (3.7a)
and (3.7b) traces back to the nontrivial τ1 behavior in (3.5),
due to the sharp change in slope of aðτ1Þ between τ1 ≤ −b
and τ1 ≥ b. This change of slope is explained by two facts
(the overdot stands for differentiation with respect to τ).
First, the modified first-order Friedmann equation (2.4a) in
terms of the auxiliary coordinate τ implies that the value of
ð _a=aÞ2 at τ ¼ �b is nonvanishing if the value of ρ is.
Second, the nonzero value of _a=a can change sign between
τ ¼ −b and τ ¼ þb, because the interval between these
two points (Δτ ¼ 2b) is nonvanishing, as long as b is
nonzero. Incidentally, we have also calculated dLðzÞ from
(3.5) with an ad hoc function aðτÞ ¼ 1þ ðτ2=b2 − 1Þ2
and find that the cusp in the resulting modified Hubble
diagram is absent.
The possible cusp behavior of the luminosity distance

dLðzÞ has, to the best of our knowledge, not been obtained
before in other bouncing models. In Ref. [12], the authors
did calculate the luminosity distances for different con-
tracting phases but did not give a complete description,

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
L

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
A

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
L

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
A

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
L

1 0.5 0 10.5
0

0.2

0.4

0.6

0.8

1

1.2
A

FIG. 5. Modified Hubble diagrams from (3.7) and (3.10), using the compactified redshift variable ζ from (3.11a) and the compactified
distance variables δL from (3.11b) and δA from (3.11c). The top row has zmax ¼ 2, the middle row zmax ¼ 10, and the bottom row
zmax ¼ 1015. The top-row curves correspond to those of Fig. 4.
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from contraction to expansion. Needless to say, a complete
description of the luminosity distance is far from trivial for
most of the bouncing models in the literature, as it depends
on the details of the bouncing models (especially the dyna-
mics at the bounce moment). As shown in Sec. III C, our
bouncing model not only gives a complete description of
the luminosity distance (or the angular diameter distance)
but also displays a nontrivial effect such as the cusp
behavior, which may be regarded as a characteristic of
our bouncing model.

E. Gedankenexperiment

Assume that modified Hubble diagrams for dLðzÞ and
dAðzÞ have been established. Then, we may consider a
Gedankenexperiment to determine the numerical value of b
(presupposing the relevance of the nonsingular bounce
model of Sec. II to the real Universe). The simplest possible
Gedankenexperiment uses only the modified dLðzÞ Hubble
diagram and proceeds in three steps.
First, determine the numerical value of zmax from the

modified dLðzÞ Hubble diagram, where the zmax value
corresponds to the z-coordinate of the intersection point
of the case-1 curve (3.7a) and the case-2 curve (3.7b);
compare with, respectively, the full and dashed curves in
the left-panel of Fig 4. With the obtained zmax value,
calculate

ΞL ≡ 1þ zmax: ð3:12Þ

In this subsection, we use upper-case Greek letters to
denote experimental quantities.
Second, determine, in the modified dLðzÞ Hubble dia-

gram, the numerical value of the slope of the upper (case-2)
curve just below z ¼ zmax,

ΣL ≡ d
dz

½dLðzÞjðcase-2Þ�z¼zmax
¼ −3

1þ zmax
b; ð3:13Þ

where the last identification results from (3.7b). In prin-
ciple, it is also possible to obtain other experimental
quantities [for example, from the behavior of the curvature
of the case-2 dLðzÞ curve just above z ¼ −1], but the choice
(3.13) suffices for the moment.
Third, the numerical value of b then follows from the

previously determined values ΞL and ΣL by calculating

bnum ¼ −
1

3
ΣLΞL: ð3:14Þ

With zmax significantly larger than 1, the numerical value
of b in (3.14) results from multiplying a reduced value (ΣL)
by a large number (ΞL). Note also that the dLðzÞ function
obtained for the w ¼ 1=3 case [13] gives the same result as
in (3.14) but with the fraction 1=3 on the right-hand side
replaced by 1=2.

Needless to say, we neglect all practical difficulties in
this Gedankenexperiment, if at all feasible. A discussion of
the cosmological context is given in Sec. IV.

IV. DISCUSSION

The construction of the spacetime manifold in Ref. [4] is
entirely classical. But it could very well be that the classical
length parameter b appearing in the metric (2.1a) has its
origin in the (unknown) theory of “quantum spacetime,”
with a fundamental length scale related to the Planck length
or not [8]. It is, then, possible to imagine that this quantum
theory removes the classical times τ ∈ ð−b; bÞ in Fig. 1
and ties together τ ¼ −b and τ ¼ b, so that the resulting
interval of the emerging classical time coordinate T ¼ TðτÞ
has no boundary. In that case, there must be a classical “pre-
big-bang” phase T ≤ 0 and, in this article, we have studied
some cosmological consequences (one example being the
cusps in the modified Hubble diagrams of Fig. 4, as
explained in Sec. III D).
Assuming the relevance of the nonsingular bounce

model of Sec. II, we have discussed, in Sec. III E, a
Gedankenexperiment to determine the numerical value
of the length scale b entering the metric (2.1a). The
required observations for this Gedankenexperiment would
concern images originating before the known epoch of the
“hot big bang” (postbounce in our model universe), which
contains a hot plasma that would strongly scatter the light
of any assumed “standard candles” (or “standard-size
objects”) in the prebounce phase. But it may very well
be that the required standard candles emit gravitational
waves instead of electromagnetic waves (light). For exam-
ple, it is possible to consider a gravitational standard candle
from a binary-black-hole merger [14] with definite masses
(giving a recognizable “chirp”); see Ref. [12] for further
discussion.
Hence, the Gedankenexperiment of Sec. III E relies

on gravitational standard candles. The cosmological sce-
nario for which this Gedankenexperiment may be relevant
is as follows. In the prebounce phase and just after the
bounce, the matter content of the universe can be described
by a homogeneous perfect fluid with a constant equation-
of-state parameter w ¼ 1. The particular value w ≥ 1 agrees
with the absence of instabilities in the prebounce phase, as
discussed in the third and fourth paragraphs of Sec. IV in
Ref. [3], which also contains further references. After the
bounce, the matter content of the universe changes to that
of a homogeneous perfect fluid with w ∼ 1=3, attributed to
the presence of ultrarelativistic particles. In the Appendix,
we present a model with a postbounce change of the
equation-of-state parameter.
Even if the cosmological scenario as discussed holds

true, there are formidable hurdles to overcome before the
Gedankenexperiment can be converted into a realistic
experiment. We only mention two. The first major hurdle
(perhaps the most important one) concerns the actual
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presence and identification of the required gravitational
standard candles (or gravitational standard-size objects),
present before and after the bounce. The second major
hurdle concerns the measurement of b by use of (3.14).
Using the known postbounce age of the universe
(cτ0 ≈ 1010 lyr ≈ 1026 m) and taking the maximum
allowed value for b from (A6b), we get the following
estimate from (3.7c) adapted to the post-bounce expansion
aðτÞ ∝ τ1=2 for the model of the Appendix:

1þ zmax ∼ 1015
�

cτ0
1026 m

�
1=2

�
10−3 m

b

�
1=2

: ð4:1Þ

This large number 1015 (or an even larger number if, for
example, b is very much below the millimeter scale) makes
the determination of b difficult, as mentioned in the
sentence below (3.14). The slope entering (3.13), in
particular, is suppressed by, at least, a factor 10−15, making
it hard to measure.
The experiment as outlined above will stay, for a long

time to come, a Gedankenexperiment and the discussion
will remain entirely academic. Still, the general idea
appears to be valid and may perhaps be adapted to other
circumstances.
Up till now, we have been talking primarily about direct

images of prebounce structures (e.g., hypothetical binary-
black-hole mergers emitting gravitational waves). But, as
mentioned in Fig. 4 of Ref. [3], the currently observed
“superhorizon” patterns in the cosmic microwave back-
ground may also be due to a prebounce phase, assuming
that there has been such a phase. Hence, the crucial
question is whether or not a cosmic bounce has occurred
and, if so, what physics is responsible. The intriguing result
from general relativity, extended to allow for degenerate
metrics, is that a particular “regularization” of the standard
big bang singularity indeed suggests the occurrence of a
cosmic bounce.
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Note added.—The present article is a follow-up paper of
Ref. [4]. There are now two more follow-up papers. The
first of these papers [15] provides a scalar-field model for
the type of time-asymmetric nonsingular bounce con-
structed in the Appendix. The second of these papers
[16] gives a detailed analysis of the dynamics near the
bounce.

APPENDIX: NONSINGULAR BOUNCE WITH
A VARIABLE EQUATION OF STATE

In this Appendix, we give some results for a modified
spatially flat FLRWuniversewith a time-dependent equation-
of-state parameter. In fact, we take our cue from the
general discussion of a particular classical nonsingular
bouncing cosmology in Ref. [3]. With the notation
ϵ≡ ð3=2Þð1þ P=ρÞ≡ ð3=2Þð1þWÞ, Sec. IVof that paper
states: “According to the bouncing scenario, at some point
during or shortly after the bounce, the kinetic energy stored in
scalar fields is converted to the matter and radiation we
observe, with ϵ ≤ 2. The irreversible reheating process
accounts for the asymmetry in ϵ about the bounce point.”
The main characteristics of that nonsingular bouncing cos-
mology are summarized in Fig. 3 of Ref. [3] and the goal of
the present Appendix is to present a “fully-computable
bounce model,” as mentioned in Sec. 6 of Ref. [3].
With reduced-Planckian units (8πGN ¼ c ¼ ℏ ¼ 1), the

modified spatially-flat Friedmann equation, the energy-
conservation equation, and the assumed equation of state
are given by

�
1þ b2

T2

��
1

aðTÞ
daðTÞ
dT

�
2

¼ 1

3
ρðTÞ; ðA1aÞ

d
da

½a3ρðaÞ� þ 3a2PðaÞ ¼ 0; ðA1bÞ

PðTÞ ¼ WðTÞρðTÞ; ðA1cÞ

WðTÞ ¼
(

1
3
þ 2

3
exp

h
−
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2=b2
p

− 1


2
i
; for T > 0;

1; for T ≤ 0;

ðA1dÞ
where (A1c) and (A1d) provide an explicit realization of
the required equation-of-state behavior of the nonsingular
bouncing cosmology as displayed in Fig. 3 of Ref. [3]. The
particular function WðTÞ from (A1d) is shown, for model
parameter b ¼ 1, in the top-left panel of Fig. 6.
By reverting temporarily to the auxiliary coordinate τ

from (2.3) and by focusing on the Hubble parameter hðτÞ≡
a−1ðτÞ½daðτÞ=dτ� it is possible to get an analytic result:

HðTÞ≡
�

1

aðTÞ
daðTÞ
dT

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

b2 þ T2

s
h̄ðTÞ; ðA2aÞ

ρðTÞ ¼ 3h̄2ðTÞ; ðA2bÞ

h̄ðTÞ ¼
8<
:

	
bþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
þ 1

2
b

ffiffiffi
π

p
erf

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2=b2

p
− 1

i

−1
; for T > 0;

ð−3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
Þ−1; for T ≤ 0;

ðA2cÞ
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in terms of the error function

erfðzÞ≡ 2ffiffiffi
π

p
Z

z

0

dt expð−t2Þ: ðA3Þ

From (A2a) and (A2c), we have HðTÞ ∼ ð1=3ÞT−1 < 0 for
T ≪ −b and HðTÞ ∼ ð1=2ÞT−1 > 0 for T ≫ b.
It does not appear possible to get aðTÞ in an explicit

analytic form, but the ordinary differential equation from
(A2a) can be solved numerically for aðTÞ. Figure 6 shows
the cosmological functions for a particular choice of model
parameters, where the bottom-right panel displays the time
asymmetry of the cosmic scale factor, aðTÞ ≠ að−TÞ for
T ≠ 0. The corresponding luminosity distance dL and

angular diameter distance dA (Fig. 7) are found to be
qualitatively the same as those from Sec. III (Fig. 4).
From (A2b) and (A2c), we find that the maximum value

of the energy density (which occurs at T ¼ 0) remains
finite, provided the defect length scale b is nonzero

ρð0Þ ¼ 1

3
E2
planckb

−2; ðA4Þ

in terms of the reduced Planck energy,

Eplanck ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=ð8πGNÞ

q
≈ 2.44 × 1018 GeV: ðA5Þ

1 0.5 0 0.5 1 1.5 2
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3
dL 2 0
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2.5

3
dA 2 0

FIG. 7. Modified Hubble diagrams based on numerical results for the luminosity distance dL from (3.5) and the angular
diameter distance dA from (3.9) in the bounce-type universe of Fig. 6. For the model parameters chosen, the maximum redshift
is given by zmax ≡ aðT0Þ=að0Þ − 1 ≈ 1.32425.
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FIG. 6. Bounce-type universe from the modified Friedmann equation (A1a) with a postbounce change of the equation of state (A1c).
Top-left panel: equation-of-state parameterWðTÞ from (A1d). Top-right panel: Hubble parameter HðTÞ from (A2a) and (A2c). Bottom-
left panel: energy density ρðTÞ from (A2b) and (A2c). Bottom-right panel: numerical solution for the cosmic scale factor aðTÞ from the
ordinary differential equation (A2a) with boundary condition að−T0Þ ¼ 1. The time-asymmetric behavior of aðTÞ in the bottom-right
panel is manifest [having, for example, að10Þ ≠ að−10Þ] and differs from the symmetric behavior in Fig. 2. The model parameters are
fb; τ0; T0g ¼ f1; 9; 4 ffiffiffi

5
p g in reduced-Planckian units with 8πGN ¼ c ¼ ℏ ¼ 1.
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Demanding

ρð0Þ≳ ðTeVÞ4; ðA6aÞ

in order to reproduce, in the postbounce phase, the hot-
big-bang model with temperatures T ≲ TeV, we have the
following qualitative upper bound on the defect length
scale b from (A4):

b≲
�
Eplanck

TeV

�
ℏc=TeV≈1015 ℏc=TeV≈10−3 m: ðA6bÞ

The millimeter scale has, of course, appeared before in
higher-dimensional TeV gravity [17], essentially tracing

back to the Einstein equation [which, here, gives rise
to (A4)].
For the record, we can mention that we also have a

qualitative lower bound on the defect length scale b.
Demanding

ρð0Þ ≲ ðEplanckÞ4; ðA7aÞ

in order that the classical Einstein theory be applicable, we
have the following qualitative lower bound on b from (A4):

b ≳ ℏc=Eplanck ≡ lplanck ≈ 8.10 × 10−35 m: ðA7bÞ

Such a minimal length scale is also expected, on general
grounds, for the emerging classical spacetime [2].
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