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A large number of dark energy and modified gravity models lead to the same expansion history of the
Universe, hence making it difficult to distinguish them from observations. To make the calculations
transparent, we consider fðRÞ gravity with a pressureless matter without making any assumption about the
form of fðRÞ. Using the late-time expansion history realizations constructed by Shafieloo et al. [Phys. Rev.
D 98, 083526 (2018)], we explicitly show for any fðRÞ model that the Bardeen potentials Ψ and Φ evolve
differently. For an arbitrary fðRÞ model that leads to late-time accelerated expansion, we explicitly show
that jΨþΦj and its time derivative evolves differently than the ΛCDM model at lower redshifts. We show
that the Ψ=Φ has significant deviation from unity for larger wave numbers. We discuss the implications of
the results for the cosmological observations.
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I. INTRODUCTION

Our current understanding of the cosmos is based
on an enormous extrapolation of our limited knowledge
of gravity, since General Relativity (GR) has not been
independently tested on galactic and cosmological scales
[1–3]. On the largest scales, the biggest surprise from
observational cosmology has been that the current Universe
is accelerating [4,5]. The observations of type Ia super-
novae suggest that the current Universe is undergoing
a phase of accelerated expansion [6], which agrees with
the observations of cosmic microwave background radia-
tion [7–9].
Providing a fundamental understanding of the late-time

accelerated expansion of the Universe is one of the most
challenging problems in cosmology. GR alone cannot
explain the late-time acceleration of the Universe with
ordinary matter or radiation. The presence of an exotic
matter source energy referred to as dark energy can explain
the late-time accelerated expansion [10–14]. The most
straightforward candidate for the dark energy is the
cosmological constant Λ [15–18]. However, the estimated
value of Λ from observations shows that it is many orders
smaller than the vacuum energy density predicted by
particle physics [15,16]. The cosmological constant does
not change with the evolution of the Universe. However,
in models like quintessence, K essence, phantom models,
and chameleon scalar fields, dark energy changes with
time [11].
An alternative to dark energy is the modified gravity

(MG)model, inwhich the late-time acceleration is due to the

large-scale modifications to GR. Several modified gravity
models, like fðRÞ, braneworld, and Galileon models, have
been proposed as the possible explanation for the late-time
accelerated expansion of the Universe [19–22]. Among the
modified gravity models, fðRÞ models (in which f is an
arbitrary function of theRicci scalarR) are popular, owing to
the simplicity of the dynamical equations. Also, fðRÞ
models do not suffer from Oströgradsky instability [23].
Naturally, many phenomenological fðRÞ models that are

consistent with local gravity tests and have a stable late-
time de Sitter point have been proposed [24–28]. The fðRÞ
models also suffer from the fine-tuning problem like the
ΛCDM model. In other words, one needs to tune the
threshold value of the Ricci scalar R0 to obtain the observed
late-time acceleration.
As mentioned above, many different fðRÞ models with

fine-tuning can account for the late-time acceleration.
Similarly, many different dark energy models, within GR,
can also account for the late-time acceleration. This leads to
the question of whether there are signatures that distinguish
dark energy and modified gravity models.
Such parameters have been constructed in the literature

[29]. Authors have shown that, while the background
equations are degenerate, the first-order perturbations are
not. In particular, Song and Koyama provided a consistency
test, based on the first-order scalar metric perturbations.
They proposed that the modified gravity models can be
mapped to modifications in Newton’s constant. They
obtained two parameters that can distinguish MG and dark
energy models.
In this work, we focus on the generic fðRÞmodel, which

leads to a late-time expansion history that is consistent with
observations. In particular, we use 6400 late-time expan-
sion history realizations constructed by Shafieloo et al. [30]
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from the latest Pantheon supernovae distance modulus
compilation [6]. For each of these 6400 realizations, we
obtain the evolution of fðRÞ as a function of redshift (z).
Using the constructed fðRÞ in the first-order perturbation
equations, we obtain observationally relevant quantities
like Φþ Ψ, Φ0 þ Ψ0 and Ψ=Φ. We explicitly show that
these quantities evolve differently for fðRÞ and dark energy
models. More specifically, we show that one of the Bardeen
potentials Ψ is suppressed compared to Φ for any fðRÞ
model that leads to late-time acceleration. To our knowl-
edge, such an analysis has not been done already for an
arbitrary fðRÞ. We then discuss the implication of our
results relating to future observations.
In Sec. II, the two scenarios—GR with cosmological

constant Λ and the fðRÞ model in which fðRÞ is an
arbitrary function of R—are introduced. In Sec. III, we
obtain the evolution of various background quantities using
the model-independent data of the late-time expansion
history of the Universe constructed by Shafieloo et al..
in Refs. [30,31]. In Sec. IV, we obtain density perturbations
and scalar metric perturbations. In Sec. V, we discuss the
difference in the growth of the first-order quantities in these
two scenarios and obtain the relevant variables for the
cosmological observations. In Sec. VI, we conclude by
briefly discussing the results.
In this work, we use the natural units in which c ¼ ℏ ¼ 1,

κ2 ¼ 8πG, and the metric signature ð−;þ;þ;þÞ. The greek
alphabet denotes the four-dimensional space-time coordi-
nates, and the latin alphabet denotes the three-dimensional
spatial coordinates. Overbarred quantities [like ρ̄ðtÞ, f̄ðRÞ,
and F̄ðRÞ] are evaluated for the Friedmann–Robertson–
Walkermetric background.H0 is theHubble constant, and it
does not explicitly appear in the final evolution equations for
both scenarios. For matter density parameterΩm, we use the
value calculated from the Planck data [8,9]. Unless other-
wise specified, a prime denotes the derivativewith respect to
redshift z.

II. FRAMEWORK AND THE TWO SCENARIOS

As mentioned in the Introduction, we consider two
scenarios—dark energy and fðRÞ gravity—that explain
the late-time acceleration of the Universe. In this section,
we briefly discuss the two scenarios and use the expansion
history realizations constructed by Shafieloo et al. [30,31]
to obtain the evolution of fðRÞ as a function of z:

(i) Scenario I.—In this scenario, we consider General
Relativity with dark energy, in which dark energy is
represented by cosmological constant Λ. The field
equations are given by

Rμν −
1

2
gμνRþ Λgμν ¼ κ2Tμν; ð1Þ

where Tμν is the stress tensor of the matter fields. We
consider only the pressureless matter while keeping
the successes of standard cosmology at early times.

(ii) Scenario II.—In this scenario, we assume that the
late-time acceleration is due to the large-scale
modifications to GR. The modifications to GR are
described by fðRÞ. f is an arbitrary, continuous
function of R. We keep the function f arbitrary
throughout the analysis. We do not assume any
specific functional form of f. The action and the
corresponding field equations are given by

SII ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
LM ð2Þ

FRμν−
1

2
fðRÞgμν−∇μ∇νFþgμν□F¼ κ2Tμν; ð3Þ

where F ¼ ∂f
∂R. In the case of fðRÞ gravity, unlike

General Relativity, the trace of the field equation (3)
is dynamical [23]:

RFðRÞ þ 3□FðRÞ − 2fðRÞ ¼ κ2T: ð4Þ

Thus, in fðRÞ gravity, the scalar curvature R, which
can be expressed in terms of the metric and its
derivatives, plays a nontrivial role in the determi-
nation of the metric itself. As a result, fðRÞ gravity
has 11 dynamical variables—10 metric variables
(gμν) and FðRÞ. Note that the above equation points
out that FðRÞ is a dynamical quantity as FðRÞ is
acted on by the differential operators.

Here, again, we consider only the pressureless
matter, while keeping the success of standard
General Relativity at early times. In other words,
we assume that until around the redshift of 1.2 the
Universe can be described by GR with a dominant
contribution from the pressureless matter.

To distinguish the above two scenarios in a model-
independent manner, we do not assume any form of fðRÞ;
i.e., fðRÞ is an arbitrary function. Instead, we assume that
both scenarios lead to the same background evolution of the
Universe and have the same evolution of the Hubble
parameter [HðzÞ]. In other words, the input parameter
for the two scenarios isHðzÞ as a function of redshift z. We
use the model-independent data constructed by Shafieloo
et al. in Refs. [30,31]. In particular, we use 6400 late-time
expansion history realizations constructed by Shafieloo
et al. [30] from the latest Pantheon supernovae distance
modulus compilation [6].
It is important to note that the Pantheon dataset consists

of 1048 supernovae in the redshift range [0.01, 2.26].
Pantheon dataset has 630, 832, and 1025 supernovae below
z ¼ 0.3, z ¼ 0.5 and z ¼ 1, respectively [6]. The data are
sparse beyond the redshift of 1.2, leading to uncertainty in
the determination of HðzÞ beyond the redshift of 1.2 [30].
Note that strong deviations from ΛCDM are allowed by the
data at z≳ 1 in the reconstructed Hubble parameter [32].
Hence, in our analysis, for the 6400 late-time expansion
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history realizations, we consider the evolution of the
Hubble parameter in the range 0.01 < z < 1.2.
In the next section, using the above realizations, we

obtain F̄ as a function of z. In Sec. IV, we use the evolution
of F̄ðzÞ to obtain the first-order scalar perturbations in both
scenarios. We use the evolution of HðzÞ and F̄ðzÞ to obtain
first-order scalar perturbations in both scenarios.

III. BACKGROUND EVOLUTION
IN THE TWO SCENARIOS

In this work, we consider a spatially flat FRW line
element,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð5Þ

where aðtÞ is the scale factor and δij is the Kronecker delta.
As mentioned in Sec. II, for both scenarios, the matter
content of the Universe is pressureless dust.
For the above background, the time component of the

divergence of both Eqs. (1) and (3) results in the continuity
equation satisfied by the matter energy density [33,34]. For
the pressureless dust, written in terms of redshift (z), the
conservation equation leads to

ð1þ zÞ dρ̄ðzÞ
dz

− ρ̄ðzÞ ¼ 0: ð6Þ

Thus, the evolution of background energy density ρ̄ðzÞ is
identical in both scenarios and does not explicitly depend
on hðzÞ. The evolution of ρ̄ðzÞ is given by

ρ̄ ¼ ρ0ð1þ zÞ3; ρ0 ¼
3H2

0Ωm

κ2
: ð7Þ

It is possible to obtain the evolution of background
matter energy density ρ̄ðzÞ using a different procedure. For
instance, in the case of scenario I, the field equations (1)
lead to

H2ðzÞ ¼ Λ
3
þ κ2

3
ρ̄ðzÞ; ð8Þ

where ρ̄ðzÞ is the background matter density. We use the
value of cosmological constant Λ ¼ ð4.24� 0.11Þ ×
10−66 eV2 from Planck 2018 [9] and the value of hðzÞ≡
HðzÞ=H0 from the late-time expansion history by Shafieloo
et al. [30]. Substituting these two quantities in the above
Friedmann equation, we obtain the evolution of the back-
ground matter energy density ρ̄ðzÞ.

A. Scenario I

For this scenario, the exact analytical solution for the
scale factor exists [10]:

HðtÞ ¼ 2α

3
cothðαtÞ; α ¼

ffiffiffiffiffiffi
3Λ
4

r
;

ρ̄ðtÞ ¼ ρ0
a3ðtÞ ¼ ρ0ð1þ zÞ3; ρ0 ¼

Λ
2κ2

: ð9Þ

However, in this work, we will use the evolution of the
matter density given by Eq. (7). We will use the value of
matter density parameter Ωm ¼ 0.3158, obtained from the
Planck 2018 analysis [9].

B. Scenario II

For the FRW background, the field equations (3) lead to

H2ðzÞ d
2FðzÞ
dz2

þ
�
HðzÞ dH

dz
þ 2

H2ðzÞ
ð1þ zÞ

�
dFðzÞ
dz

− 2
HðzÞ
ð1þ zÞ

dH
dz

FðzÞ þ κ2

ð1þ zÞ2 ρ̄ðzÞ ¼ 0: ð10Þ

As mentioned above, due to the sparsity of the Pantheon
data beyond the redshift of 1.2 [6], we assume that beyond
the redshift of 1.2 the Universe can be described by GR
with a cosmological constant with the dominant contribu-
tion from the pressureless matter ρ̄ðzÞ. In other words, the
modifications to gravity begin to dominate the evolution of
the Universe around z ∼ 1.2. To obtain the evolution of
FðzÞ as a function of z in the above equation, we use the
following initial conditions:

Fðz ¼ 1.2Þ ¼ 1; and
dF
dz

����
z¼1.2

¼ 10−5: ð11Þ

We would like to mention the following points regarding
the initial conditions. First, the analysis is independent of
the choice of the initial value of z. Our choice of the initial
value of z is linked to the dataset. Second, the condition
Fð1.2Þ ¼ 1 implies that at z ¼ 1.2 the gravity is described
by General Relativity. The condition dFðz ¼ 1.2Þ=dz ¼
10−5 provides the initial choice of the rate of change of F.
For the above initial conditions, 6400 late-time expansion
history realizations constructed by Shafieloo et al. [30] give
the evolution of hðzÞ, and the evolution of ρ̄ is given by
Eq. (7). Using these quantities, we obtain FðzÞ as a function
of z using the midpoint discretization (A4) in Eq. (10).
Evolution of FðzÞ corresponding to the 6400 realizations of
the expansion history of the Universe lies with in the
dashed lines in the left panel of Fig. 1. Blue lines in both
panels represent the evolution of F corresponding to the
datasets which satisfy the condition F0ðzÞ > 0 for all values
of z. This condition is imposed on avoid any singularities in
the evolution equations of scalar metric perturbations. For
Ωm ¼ 0.3158, there are four such datasets. In the following
sections, we consider only these datasets for the analysis.
The number of datasets that satisfy this condition depends
on the value of Ωm and the initial value of dF=dz.
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This is the first key result, regarding which wewould like
to stress the following points. First, various realizations of
the expansion history of the Universe correspond to a wide
range of evolutions of the function FðzÞ. But all except a
few of those solutions will result in singularities in the
evolution of the scalar perturbations. Second, the above
analysis does not assume any form of fðRÞ. It is possible
that many different fðRÞ models, with fine-tuned parame-
ters, may produce the same evolution. In Appendix A 2, we
have looked at the popular fðRÞ models [24–28] that lead to
the late-time accelerated expansion and compared them with
the generic FðzÞ we have obtained. Third, the evolution of
FðzÞ does not depend on the value of dF=dz at z ¼ 1.2.
Appendix A 3 contains the plots of the evolution of FðzÞ for
different values of dF=dz at z ¼ 1.2. These plots clearly
show that the evolution of FðzÞ is independent of the initial
condition on dF=dz.

IV. FIRST-ORDER SCALAR PERTURBATIONS
IN THE TWO SCENARIOS

We aim to distinguish between GR and modified gravity
models using observations. To obtain the physical param-
eters that can be used to separate the two scenarios, we need
to obtain perturbed quantities about the FRW background.
In the largest scales, it is a good approximation to assume

that the perturbed part is small compared to the back-
ground. More specifically, the perturbed energy density is
smaller than the (average) background density. The first-
order scalar perturbations about the FRW line element in
the Newtonian gauge is given by [35]

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞδijdxidxj; ð12Þ

where Φ≡Φðt; xiÞ and Ψ≡Ψðt; xiÞ are the scalar per-
turbations. As mentioned earlier, for both scenarios, the
matter content of the Universe is represented by pressure-
less dust with energy-momentum tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð13Þ

where uμ is the 4-velocity, ρðt; xiÞ ¼ ρ̄ðtÞð1þ δðt; xiÞÞ is
the energy density including the first-order density pertur-
bations, δðt; xiÞ ¼ δρðt; xiÞ=ρ̄ðtÞ is the fractional amplitude
of density perturbations, and p is the pressure of the fluid,
which is taken to be zero.

A. Scenario I

The first-order perturbed Einstein equation in this
scenario leads to the following equations in the Fourier
space [35]:

δ̈GR þ 2H _δGR −
κ2

2
ρ̄δGR ¼ 0 ð14Þ

k2

a2
ΦGR þ κ2

2
ρ̄δGR ¼ 0 ð15Þ

ΦGR −ΨGR ¼ 0: ð16Þ

Even though the result for this scenario is trivial, the
procedure we follow is the same for both scenarios. First,
using the background density ρ̄ðzÞ in Eq. (14), we obtain
the fractional amplitude of density perturbations δGRðzÞ.
[We use the expressions in Appendix A 1, to convert the
differential equations from t to z.] Next, substituting δGRðzÞ
in Eq. (15), we obtain ΦGR. In the case of GR, with single
fluid, the two Bardeen potentials (ΦGR, ΨGR) are identical.

B. Scenario II

As mentioned earlier, the scalar curvature R satisfies the
differential equation (4) and plays a nontrivial role in the
determination of the metric itself. Hence, FðRÞ can be
treated as a dynamical variable. For the perturbed FRW line
element (12), the i ≠ j component of the modified Einstein
equations (10) leads to

FIG. 1. Evolution of F as function of redshift z: for all the datasets (left panel) and for datasets satisfying the condition F0ðzÞ > 0 for all
z (right panel).
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ΦMG −ΨMG ¼ −
δF
F̄

where δF ¼
�∂F
∂R

�
δR: ð17Þ

The above expression shows that the two Bardeen poten-
tials (ΦMG, ΨMG) are not identical and their difference
depends on FðRÞ. (We only list the key equations in this
section and relegate the details to Appendix C.)
The evolution of fractional amplitude of density pertur-

bations δðzÞ in fðRÞ model is given by [36,37]

δ̈MG þ 2H _δMG −
κ2eff
2

ρ̄δMG ¼ 0; ð18Þ

where

κ2eff ¼
κ2

F

�
1þ 4

k2

a2
∂lnF
∂R

���
1þ 3

k2

a2
∂lnF
∂R

�
: ð19Þ

Note that in the limit of fðRÞ → R, κeff → κ and
δMG → δGR. Like in the earlier scenario, using the back-
ground density ρ̄ðzÞ, we obtain the fractional amplitude of

density perturbations δMGðzÞ. The evolution of δGR and
δMG is plotted in Fig. 2.
As we see here, for the datasets considered, the evolu-

tions of δGR and δMG are nearly identical.
The Bardeen potentials satisfy the following coupled

differential equations:

_ΨMG þ
�
H −

F _H
_F

þ F

3 _F

k2

a2

�
ΦMG þ

�
F _H
_F

þ F

3 _F

k2

a2

�
ΨMG

þ κ2ρ̄

3 _F
δMG ¼ 0 ð20Þ

_ΦMG þ
�
H −

_F
F
−
F _H
_F

−
F

3 _F

k2

a2

�
ΨMG

þ
�
2
_F
F
þ F _H

_F
−

F

3 _F

k2

a2

�
ΦMG −

κ2ρ̄

3 _F
δMG ¼ 0: ð21Þ

Using δMG from Eq. (18), we numerically solve the above
differential equations for the four realizations that satisfy
F0ðzÞ > 0 and is plotted in Fig. 3.
This is the second key result, regarding which we would

like to stress the following points. First, for any arbitrary
fðRÞ that leads to late-time acceleration, ΦMG ≠ ΨMG, and
the evolution of ΨMG=ΦMG and Ψ0=Φ0 deviates from
scenario I at the lower redshifts. Specifically, we have
shown that at late times ΨMG is less than ΦMG. Second, the
deviation of ΨMG=ΦMG also depends on the value of the
scaled wave number k=H0, as we see in Fig. 4. During
the course of the evolution, perturbation modes with larger
wave number show a larger deviation of ΨMG=ΦMG from
ΨGR=ΦGR ¼ 1. This implies that the scalar perturbations
with the largest possible length scales ðk=H0 → 0Þ are not
affected by fðRÞ. However, the perturbations within the
current horizon radius are affected by fðRÞ. Our results are
consistent with the Universe initially undergoing inflation,
followed by the standard model of cosmology of the
Universe. The longer wavelength modes during inflation

FIG. 2. Evolution of δMG and δGR as a function of z for k ¼ H0,
and all realizations.

FIG. 3. Evolution of ΦMG, ΨMG, and ΦGR (left panel) and the evolution of ΨMG=ΦMG and ΨGR=ΦGR (right panel) as a function of
redshift z for k ¼ H0.

LOW-ENERGY MODIFIED GRAVITY SIGNATURES ON THE … PHYS. REV. D 100, 083526 (2019)

083526-5



leave the Hubble radius at earlier epochs, and these modes
reenter the current epoch much later and have undergone
little structure formation. Thus, the modes within the event
horizon have been affected by the modified gravity, while
the longer-wavelength modes have not been affected.

V. CONFRONTING WITH OBSERVATIONS

In the previous section, we showed that, even if both
scenarios lead to the same background evolution, the scalar
perturbations in both scenarios evolve differently.
The quantity ΦþΨ determines the geodesic of a

photon, which affects the weak gravitational lensing [35].
Figure 5 contains the evolution of ΦþΨ for both scenar-
ios. This is the third key result, regarding which we would
like to stress the following.
In the case of GR, the quantity jΨþΦj is larger as

compared to the fðRÞ in the current epoch for the observed
matter density, and the relative difference is of the order of
0.1. Though the difference is small, including reliable high-
redshift data beyond, z > 1.1 might provide a better
estimate of the difference between GR and fðRÞ models.

Even though this is not much of a difference, as we
mentioned earlier, the choice of redshift range over which
these quantities are evolved was made based on the
availability of the reliable observational data at higher
redshifts.
Since the Bardeen potentials evolve differently in the

cases of GR and fðRÞ, this change should potentially
change the temperature fluctuations of the cosmic micro-
wave background (CMB) photons. In other words, the rate
of change of the ðΦþΨÞwith resptec to η contribute to the
evolution of scalar perturbations in the temperature fluc-
tuations in CMB in large scales—the integrated Sachs-
Wolfe effect [38]. Here, η is the conformal time, which is
related to the cosmic time via η ¼ R

dt=a. Figure 6 shows
the Φ0 þΨ0 as a function of z, where the prime denotes the
derivative with respect to η.
The two plots show the difference in the evolution of

ΦþΦ and Φ0 þ Ψ0 in both scenarios. Our analysis pro-
vides a possibility to distinguish the two scenarios using
weak gravitational lensing and the integrated Sachs-
Wolfe effect in a model-independent manner. The lack
of reliable data at higher redshifts prevents us from making
a precise quantitative prediction of the differences in the

FIG. 4. Value of Ψ=Φ (left panel) and Ψ0=Φ0 (right panel) at z ∼ 0 in both scenarios as a function of k=H0.

FIG. 5. Evolution ofΨMG þΦMG andΨGR þΦGR as a function
of redshift z for k ¼ H0.

FIG. 6. Evolution ofΨ0
MG þΦ0

MG andΨ0
GR þΦ0

GR as a function
of redshift z for k ¼ H0.
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evolution of scalar perturbation. Although the relative
differences in the values of these quantities at lower
redshifts in both scenarios are of the order of 10−1,
evolution over a larger redshift range might lead to more
significant differences in the evolution of these quantities
in the two scenarios considered. To demonstrate this, we
have evolved the relevant quantities from z ¼ 1.5 to z ∼ 0,
and the results show a more significant difference in the
evolution of the Φ0 þ Ψ0 in the two scenarios. See
Appendix B for details.

VI. CONCLUSIONS

In this work, we have investigated in detail the two
scenarios of General Relativity with a cosmological con-
stant and fðRÞ gravity, which can explain the late-time
acceleration of the Universe. We have shown that in these
two scenarios for which the background evolution is
identical the growth of scalar perturbations is different.
More specifically, we have demonstrated that at late times
ΨMG is less thanΦMG. We have shown that the difference in
the growth of the scalar perturbations can be used to
distinguish the two scenarios using the weak lensing and
integrated Sachs-Wolfe effect. To our knowledge, this is the
first time such an analysis has been done for an arbitrary
fðRÞ model.
To study the evolution of various backgrounds and

perturbed quantities, we have used the model-independent
data of the late-time expansion history of the Universe
constructed by Shafieloo et al. [30]. We have analyzed in
the redshift range z ¼ 0 to 1.2. Because of the scarcity of
Pantheon data at redshift greater than 1.2, we have not
included the high redshift data in our analysis. We assumed
that the effect of modifications to gravity begins to
contribute from z ¼ 1.2 and has kept the success of
standard General Relativity at early times. The current
analysis can be extended to higher redshifts once more data
on the expansion history of the Universe at higher redshifts
are available.
In Appendix A, we have compared the generic fðRÞ

model with the popular fðRÞ models in the literature. We
have shown that the evolution of FðzÞ constructed can
describe various fðRÞ models to explain the late-time
acceleration of the Universe.
To keep the calculations transparent, we have assumed

that pressureless matter contributes to the stress tensor.
Extending the analysis for multiple fields is possible. This
is currently under investigation.
Our analysis shows that the growth of ΨMG is less than

ΦMG for fðRÞ theories. It is interesting to see whether this
feature is common for all modified gravity theories. This is
currently under investigation.
We have shown that the perturbation modes with a larger

wave number shows a larger deviation of ΨMG=ΦMG from
ΨGR=ΦGR ¼ 1. For this parameter to be a tool for the

detection of modified gravity theories, we need to confirm
for other theories of gravity.
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APPENDIX A: BACKGROUND EVOLUTION
IN f(R): DETAILS

In this Appendix, we provide more details of the results
from Sec. III for scenario II.

1. Numerical analysis in redshift space

The time derivatives in the evolution equations can be
rewritten in terms of the derivative with respect to redshift
z, using the following relations:

d
dt

¼ −Hð1þ zÞ d
dz

ðA1Þ

d2

dt2
¼ Hð1þ zÞ2 dH

dz
d
dz

þH2ð1þ zÞ d
dz

þH2ð1þ zÞ2 d2

dz2
:

ðA2Þ

To numerically solve the equations, derivatives are rewrit-
ten using the central difference method:

dfðzÞ
dz

¼ fiþ1 − fi−1
2dz

ðA3Þ

d2fðzÞ
dz2

¼ fiþ1 − 2fi þ fi−1
dz2

: ðA4Þ

2. Comparison of general f(R) model
with popular models

Many fðRÞ models that lead to the late-time acceleration
of the Universe have been proposed [24–28].
In this Appendix, we corroborate the evolution of F we

obtained using different realizations of the expansion
history of the Universe compared with two such fðRÞ
models. Table I gives the best fit with root mean square
error (RMS) for the constructed realizations of FðzÞ in the
range 0 < z < 1.2 for these models.
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We see that the evolution of FðzÞ constructed using the
different realizations of the expansion history of the
Universe describes the fðRÞ models that have been
proposed in the literature.

3. Evolution of F(z) for different initial conditions

As mentioned in Sec. III, we obtain the evolution of
F̄ðzÞ for different values of the initial condition. It is
important to note that the physical assumption that at
redshift z ¼ 1.2 the gravity is described by GR leads to the
condition that F̄ð1.2Þ ¼ 1. Here, we show that the results
obtained in Sec. III do not depend on this value. In Fig. 7,

we have plotted the evolution of F̄ for four other initial
conditions:

dF
dz

����
z¼1.2

¼ 10−3; 10−4; 10−5; 10−6; 10−7: ðA5Þ

Here, we see that the evolution of F̄ does not vary
depending on the initial conditions. One significant change
is the number of datasets that satisfy the requirement
F̄0ðzÞ > 0. More datasets satisfy this condition with a
larger value of F̄0

i. But for a given realization of the
expansion history of the Universe, the choice of initial
conditions does not have any bearing on the evolution
of FðzÞ.

APPENDIX B: EVOLUTION OVER A LARGER
RANGE OF REDSHIFT

In this Appendix, we compare the evolution of various
background and perturbed quantities over the redshift
ranges z ¼ 1.2 − 0 and z ¼ 1.5 − 0. The number of data-
sets satisfying the condition F0ðzÞ > 0 changes with the
redshift range over which these quantities are evolved.
In Figs. 8–12, we see that as these quantities are evolved

over a broader range of redshift the difference between two
scenarios becomes more significant. Hence, there will be an
observable difference in the evolution of these quantities
over a large redshift range.FIG. 7. Evolution of F̄ for different values of F0ðz ¼ 1.2Þ.

TABLE I. Best fit for fðRÞ models.

FðRÞ Best fit

1 FðRÞ ¼ 1 − 2λn R
R0
½1þ ð RR0

Þ2�−ðnþ1Þ Starobinsky [25] n ¼ 3.676, λ ¼ 1.312 × 106, R0 ¼ H2
0, RMS ¼ 6.8 × 10−4

2 FðRÞ ¼ 1 − n c1
c2

ð R
R0
Þn−1

½ð R
R0
Þn−1�2 Hu and Sawicki [24] n ¼ 7.176, c1=c2 ¼ 8.67 × 105, R0 ¼ H2

0, RMS ¼ 6.6 × 10−4

FIG. 8. Plot of F̄ vs z. Left panel: 0 ≤ z ≤ 1.2; right panel: 0 ≤ z ≤ 1.5.
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APPENDIX C: SIMPLIFIED FIRST-ORDER
EVOLUTION EQUATIONS FOR Φ AND Ψ

IN SCENARIO II

In this Appendix, we provide the complete set of first-
order scalar perturbation equations for an arbitrary fðRÞ.

For the perturbed line element (12), the modified Einstein
equations (3) and the trace equation (4) lead to

−
∇2Ψ
a2

þ3HðHΦþ _ΨÞþ 1

2F

��
3H2þ3 _Hþ∇2

a2

�
δF−3H _δF

þ3H _FΦþ3 _FðHΦþ _ΨÞþκ2δρ

�
¼0; ðC1Þ

FIG. 10. Plot of ΨMG=ΦMG and ΨGR=ΨGR vs z. Left panel: 0 ≤ z ≤ 1.2; right panel: 0 ≤ z ≤ 1.5.

FIG. 9. Plot of ΦMG, ΨMG, and ΨGR vs z. Left panel: 0 ≤ z ≤ 1.2; right panel: 0 ≤ z ≤ 1.5.

FIG. 11. Plot of ΨMG þΦMG, and ΨGR þΨGR vs z. Left panel: 0 ≤ z ≤ 1.2; right panel: 0 ≤ z ≤ 1.5.
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3ð _HΦþH _Φþ Ψ̈Þ þ 6HðHΦþ _ΨÞ þ 3 _HΦþ∇2Φ
a2

−
1

2F

�
3δ̈F þ 3H _δF − 6H2δF −

∇2δF
a2

− 3 _F _Φ−3 _FðHΦþ _ΨÞ − ð3H _F þ 6F̈ÞΦþ κ2δρ

�
¼ 0; ðC2Þ

δ̈F þ 3H _δF þ
�
k2

a2
− 4H2 − 2 _H

�
δF − 2FΨ̈ − ð8FH þ 3 _FÞ _Ψ

− ð2FH þ _FÞ _Φ −
�
6H _F þ 2F̈ þ 4F _H þ 8FH2 −

2Fk2

3a2

�
Φ −

4Fk2

3a2
Ψ −

κ2δρ

3
¼ 0 ðC3Þ

HΦþ _Ψ −
1

2F
ð _δF −HδF − _FΦÞ ¼ 0; ðC4Þ

Φ −Ψþ δF
F

¼ 0; ðC5Þ

δF − F0δR ¼ 0: ðC6Þ

Substituting for δF using Eq. (C5), we get

�
3H þ 3 _F

F

�
_Ψþ

�
3H2 þ 3 _H − 3H

_F
F
þ k2

a2

�
Ψþ

�
3H2 − 3 _H þ 9H

_F
F
þ k2

a2

�
Φþ 3H _Φþ κ2δρ

F
¼ 0; ðC7Þ

_Φþ _Ψþ
�
H −

_F
F

�
Ψþ

�
H þ 2

_F
F

�
Φ ¼ 0; ðC8Þ

Ψ̈þ Φ̈þ 3

�
H þ

_F
F

�
_Φþ

�
3H −

_F
F

�
_Ψþ

�
2H2 −

F̈
F
−
H _F
F

−
k2

3a2

�
Ψþ

�
2H2 þ 3F̈

F
þ 3H _F

F
þ 4 _H −

k2

3a2

�
Φ

−
κ2δρ

3F
¼ 0; ðC9Þ

Φ̈þ Ψ̈þ
�
5H þ

_F
F

�
_Ψþ

�
4H2 −

F̈
F
−
3H _F
F

þ 2 _H þ k2

3a2

�
Ψþ

�
5H þ 3 _F

F

�
_Φ

þ
�
4H2 þ 3F̈

F
þ 9H _F

F
þ 2 _H þ k2

3a2

�
Φþ κ2δρ

3F
¼ 0: ðC10Þ

Substituting _Φ in Eq. (C8) using Eq. (C7), we get

FIG. 12. Plot of ΨMG
0 þΦMG

0, and ΨGR
0 þ ΨGR

0 vs z. Left panel: 0 ≤ z ≤ 1.2; right panel: 0 ≤ z ≤ 1.5.
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_Ψþ
�
H −

F _H
_F

þ F

3 _F

k2

a2

�
Φþ

�
F _H
_F

þ F

3 _F

k2

a2

�
Ψþ κ2δρ

3 _F
¼ 0: ðC11Þ

Similarly, substituting Φ̈ and _Ψ in Eq. (C10) using Eq. (C9) and Eq. (C11), respectively, we get

_Φþ
�
H −

_F
F
−
F _H
_F

−
F

3 _F

k2

a2

�
Ψþ

�
2
_F
F
þ F _H

_F
−

F

3 _F

k2

a2

�
Φ −

κ2δρ

3 _F
¼ 0: ðC12Þ
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