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In this paper, a cosmological solution of the polynomial type H ≈ ðtþ constÞ−1 for the causal
thermodynamical approach of Isarel-Stewart [Phys. Rev. D 96, 124020 (2017); Phys. Lett. B 767, 103
(2017)] is constrained using the joint of the latest measurements of the Hubble parameter (OHD) and type
Ia supernovae (SNIa). Since the expansion described by this solution does not present a transition from a
decelerated phase to an accelerated one, both phases can be well modeled, connecting both phases by
requiring the continuity of the Hubble parameter at z ¼ zt, the accelerated-decelerated transition redshift.
Our best fit constrains the main free parameters of the model to be A1 ¼ 1.58þ0.08

−0.07 (A2 ¼ 0.84þ0.02
−0.02 ) for the

accelerated (decelerated) phase. For both phases, we obtain q ¼ −0.37þ0.03
−0.03 (0.19þ0.03

−0.03 ) and ωeff ¼
−0.58þ0.02

−0.02 (−0.21þ0.02
−0.02 ) for the deceleration parameter and the effective equation of state, respectively.

Comparing our model and LCDM statistically through the Akaike information criterion and the Bayesian
information criterion, we obtain that the LCDM model is preferred by the OHDþ SNIa data. Finally, it is
shown that the constrained parameters values satisfy the criterion for a consistent fluid description of a
dissipative dark matter component, but with a high value of the speed of sound within the fluid, which is a
drawback for a consistent description of the structure formation. We briefly discuss the possibilities to
overcome this problem with a nonlinear generalization of the causal linear thermodynamics of bulk
viscosity and also with the inclusion of some form of dark energy.

DOI: 10.1103/PhysRevD.100.083524

I. INTRODUCTION

The Universe is currently in an accelerated expansion
epoch that has been observed through the type Ia super-
novae (SNIa) [1,2] and the large-scale structure (LSS) [3].
Typically, this phenomenon is associated to a component
known as dark energy (DE), and together with the one
named dark matter (DM), it constitutes the dark sector that
corresponds to about 96% of the Universe [4]. The simplest
cosmological model to explain this dark sector and also
compatible with the observational data is the so-called
Λ-cold dark matter (ΛCDM). This model proposes a
cosmological constant responsible for the accelerated
expansion of the Universe and a nonrelativistic entity
without pressure as the dark matter. However, one of the
open problems in the investigation of the dark sector is its
division into DM and DE, which has been proven to be
merely conventional since there exists a degeneracy
between both components, resulting from the fact that

gravity only measures the total energy tensor [5,6]. So, in
the lack of a well confirmed detection (nongravitational) of
the DM, only the overall properties of the dark sector can be
inferred from the cosmological data at the background and
perturbative levels. These results have driven the research
to explore alternative models which consider a single fluid
that behaves as DM but also presents the effects of an
effective negative pressure at some stage of the cosmic
evolution. They are called unified DM models (UDM), and
examples of them are (generalized) Chaplygin fluids
[7–10], a logotropic dark fluid [11], and more recently,
generalized perfect fluid models [12,13]. Apart from them,
there exists the possibility of explaining the accelerated
expansion of the Universe at late times as an effect of the
effective negative pressure due to bulk viscosity in the
cosmic fluids that was first considered in [14,15]. Several
models regarding this approach have been studied and
constrained using cosmological data [16–21].
A consistent description of the relativistic thermody-

namics of nonperfect fluids is the causal description
framework given by the Israel-Stewart (IS) theory [22].
Due to the high degree of nonlinearity of the differential
equations involved, only some exact solution has been

*norman.cruz@usach.cl
†ahalmada@uaq.mx
‡octavio.cornejo@uaq.mx

PHYSICAL REVIEW D 100, 083524 (2019)

2470-0010=2019=100(8)=083524(9) 083524-1 © 2019 American Physical Society

https://orcid.org/0000-0003-0405-9344
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.083524&domain=pdf&date_stamp=2019-10-14
https://doi.org/10.1103/PhysRevD.96.124020
https://doi.org/10.1016/j.physletb.2017.01.035
https://doi.org/10.1016/j.physletb.2017.01.035
https://doi.org/10.1103/PhysRevD.100.083524
https://doi.org/10.1103/PhysRevD.100.083524
https://doi.org/10.1103/PhysRevD.100.083524
https://doi.org/10.1103/PhysRevD.100.083524


found for a simple ansatz of the bulk viscosity coefficient ξ,
as a function of the energy density ρ of the fluid with
dissipation. For the election ξ ¼ ξ0ρ

1=2, a cosmological
solution of the polynomial type H ≈ ðtþ constÞ−1 for the
Hubble rate was found as an ansatz in [23,24], which can
describe accelerated, decelerated, or even a phantom type
cosmic expansion.
This solution can also be obtained in a systematic way by

applying the factorization method to the dynamics equation
for the Hubble rate. The factorization of second-order linear
ordinary differential equations (ODEs) is a well established
method to get solutions in an algebraic manner. It goes back
to some works of Dirac to solve the spectral problem for the
quantum oscillator [25], and was further developed due to
Schrodinger’s works on the factorization of the Sturm-
Liouville equation [26,27]. However, in recent times, the
factorization technique has been developed and applied to
find exact solutions of nonlinear second-order ODEs
[28–34]. The basic concept follows the same pattern
already used in linear equations, and it works efficiently
for ODEs with polynomial nonlinearities. The method is
well adapted to the Hubble rate ODE, which raises, for
instance, in viscous cosmological models [35,36].
The main aim of this work is to constrain this solution

using the latest measurements of the Hubble parameter
(OHD) and type Ia supernovae (SNIa), reported in [37] and
[38], respectively. Despite the fact that the expansion
described by this solution does not present a transition
from a decelerated phase to an accelerated one, which is an
ultimate feature supported by the observational data, both
phases can be well modeled by separation using the
analytical solution obtained, as we will show in our results.
In the case of the noncausal Eckart’s approach, ξ0 can be

estimated, for example, directly from the observational data
[39]. Nevertheless, in the case of our solution, the obser-
vational constraints lead to allowed regions for ξ0 and the
parameter ϵ, which is related to the nonadiabatic contri-
bution to the speed of sound in the viscous fluid as will be
discussed in Sec. II. Since the above mentioned parameters
are involved in a constraint which is a necessary condition
for maintaining the thermal equilibrium, we will discuss
our results considering such a constraint.
This paper is organized as follows: in Sec. II, we describe

briefly the causal Israel-Stewart theory, showing the general
differential equation to be solved. In Sec. III, we solve this
differential equation by using the factorization technique.
In Sec. IV, we present the constraints for our model using
the observational data coming from the direct measure-
ments of the Hubble parameter and SNIa. Finally, in Sec. V,
we discuss our results.

II. ISRAEL-STEWART-HISCOCK FORMALISM

In what follows, we shall present briefly the Israel-
Stewart-Hiscock formalism to describe the thermodynamic
properties and evolution of a Universe filled with only one

fluid as the main component, which experiments a dis-
sipative process during its cosmic evolution. We assume
that this fluid obeys a barotropic EoS, p ¼ ωρ, where p is
the barotropic pressure and 0 ≤ ω < 1. For a flat Friedman-
Lemaitre-Robertson-Walker Universe, the equation of con-
straint is

3H2 ¼ ρ: ð1Þ

In the ISH framework, the transport equation for the
viscous pressure Π is given by [22]

τ _Πþ
�
1þ 1

2
τΔ

�
Π ¼ −3ξðρÞ; ð2Þ

where the “dot” accounts for the derivative with respect to
the cosmic time. τ is the relaxation time, ξðρÞ is the bulk
viscosity coefficient, for which we assume the dependence
upon the energy density ρ, H is the Hubble parameter, and
Δ is defined by

Δ ¼ 3H þ _τ

τ
−
_ξ

ξ
−

_T
T
; ð3Þ

where T is the barotropic temperature, which takes the form
T ¼ βρω=ðωþ1Þ that is the Gibbs integrability condition
when p ¼ ωρ and β is a positive parameter. We also have
that [40]

ξ

ðρþ pÞτ ¼ c2b; ð4Þ

where cb is the speed of bulk viscous perturbations (the
nonadiabatic contribution to the speed of sound in a
dissipative fluid without heat flux or shear viscosity),
c2b ¼ ϵð1 − ωÞ, and 0 < ϵ ≤ 1, in order to ensure causality,
with a dissipative speed of sound lower to or equal to the
speed of light. We shall also assume a power law depend-
ence for ξ in terms of the energy density of the main fluid,
i.e., ξ ¼ ξ0ρ

s, where s is an arbitrary parameter and ξ0 a
positive constant, in order to satisfy the second law of
thermodynamics [41]. This particular election of ξðρÞ is
rather arbitrary but allows us to obtain a differential
equation for the Hubble parameter that can be integrated
for some particular values of s, obtaining well-known
analytic solutions. As we will be discussed below, the
case s ¼ 1=2 leads to the most simple form of the differ-
ential equation involved.
Using the barotropic equation of state (EoS) in Eq. (4),

we obtain the following expression for the relaxation time:

τ ¼ ξ0
ϵð1 − ω2Þ ρ

s−1; ð5Þ

and according to Eq. (3),
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Δ ¼ 3H
δðωÞ

�
δðωÞ −

_H
H2

�
; ð6Þ

where we have defined the δðωÞ parameter by

δðωÞ≡ 3

4

�
1þ ω

1=2þ ω

�
: ð7Þ

So, for 0 ≤ ω < 1, δðωÞ > 0. Using Eqs. (1) and (5), we
can write

τH ¼ 3s−1ξ0
ϵð1 − ω2ÞH

2ðs−1=2Þ: ð8Þ

For the particular case s ¼ 1=2, we obtain that

τH ¼ ξ0ffiffiffi
3

p
ϵð1 − ω2Þ : ð9Þ

In this case, the necessary condition for keeping the fluid
description of the dissipative dark matter component is
given by τH < 1, which leads to the upper limit for ξ0,

ξ0 <
ffiffiffi
3

p
ϵð1 − ω2Þ: ð10Þ

Wewill discuss later this condition when a cold dark matter
fluid with dissipation, as the main component of a late time
Universe, can be constrained by the observational data.
The differential equation for the Hubble parameter can

be constructed by using the conservation equation,

_ρþ 3H½ð1þ ωÞρþ Π� ¼ 0; ð11Þ

the Eqs. (1) and (2), and the relation ξðρÞ ¼ ξ0ρ
s. So, we

can obtain the following differential equation:

�
2

3ð1−ω2Þ
�
3ð1þωÞ _H

H2
þ Ḧ
H3

�
−3

�
H2ðs−1=2Þ

þ 1

3sξ0

�
1þ3s−1ξ0ΔH2ðs−1Þ

2ð1−ω2Þ
��

3ð1þωÞþ2 _H
H2

�
¼0: ð12Þ

For s ¼ 1=2, the following ansatz:

HðtÞ ¼ Aðts − tÞ−1 ð13Þ

is a solution of Eq. (12) with a big rip singularity [23], and
the ansatz,

HðtÞ ¼ Aðt − tsÞ−1; ð14Þ

is also a solution which can describe cosmic evolutions
with accelerated, linear, and decelerated expansion [24]. In
the next section, we will show that by using the factori-
zation method, this ansatz can be obtained as a particular

solution of the differential equation (12), which gives a
deeper understanding of its particularity and its dependence
on the initial conditions.

III. SOLVING THE DIFFERENTIAL EQUATION
FOR THE HUBBLE RATE

The nonlinear differential equation for the Hubble
function (12) can be rewritten for s ¼ 1=2 as follows:

Ḧ þ α1
H

_H2 þ α2H _H þ α3H3 ¼ 0; ð15Þ

where

α1 ¼ −
3

2δ
; ð16Þ

α2 ¼
3

2
þ 3ð1þ ωÞ − 9

4δ
ð1þ ωÞ þ

ffiffiffi
3

p
ϵð1 − ω2Þ
ξ0

; ð17Þ

α3 ¼
9

4
ð1þ ωÞ þ 9

2
ϵð1 − ω2Þ

�
1þ ωffiffiffi
3

p
ξ0

− 1

�
; ð18Þ

are constant coefficients.
Let us consider the following factorization scheme

[29–31] to obtain an exact particular solution of the
Eq. (15). The nonlinear second order differential equation,

Ḧ þ fðHÞ _H2 þ gðHÞ _H þ jðHÞ ¼ 0; ð19Þ
where _H ¼ dH

dt ¼ DtH, can be factorized in the form,

½Dt − ϕ1ðHÞ _H − ϕ2ðHÞ�½Dt − ϕ3ðHÞ�H ¼ 0; ð20Þ
where ϕiðHÞ (i ¼ 1, 2, 3) are factoring functions to be
found. Expanding Eq. (20), one is able to group terms as
follows [31]:

Ḧ−ϕ1
_H2þ

�
ϕ1ϕ3H−ϕ2−ϕ3−

dϕ3

dH
H

�
_Hþϕ2ϕ3H¼ 0:

ð21Þ
Then, by comparing Eq. (19) with Eq. (21), we get the
following conditions:

fðHÞ ¼ −ϕ1; ð22Þ

gðHÞ ¼ ϕ1ϕ3H − ϕ2 − ϕ3 −
dϕ3

dH
H; ð23Þ

jðHÞ ¼ ϕ2ϕ3H: ð24Þ

Any factorization like (20) of an scalar ODE in the
form given in (19) allows us to find a compatible first
order ODE [28],

½Dt − ϕ3ðHÞ�H ¼ DtH − ϕ3ðHÞH ¼ 0; ð25Þ
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whose solution provides a particular solution of
Eq. (19).
We apply now the previous scheme to Eq. (15). The

factoring function ϕ1 ¼ − α1
H , since fðHÞ is explicitly given

in Eq. (15). Also, according to Eq. (24), the two unknown
functions ϕ2 and ϕ3 are easily obtained by merely factoring
the polynomial expression jðHÞ ¼ α3H3 given as well in
Eq. (15). Then, the functions,

ϕ2 ¼ a−11 H; and ϕ3 ¼ a1α3H; ð26Þ

where a1ð≠0Þ is an arbitrary constant, are proposed.
The explicit value of a1 is obtained by substituting

gðHÞ ¼ α2H and the ϕi functions into Eq. (23). Then, we
get the constraint equation,

α2H ¼ −ða1α1α3 þ a−11 þ 2a1α3ÞH; ð27Þ

and equating both sides of the equation provides

a1 ¼
−α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4α3ð2þ α1Þ

p
2α3ð2þ α1Þ

: ð28Þ
Therefore, the Eq. (15) admits the factorization,�

Dt þ
α1
H

_H − a−11 H

�
½Dt − a1α3H�H ¼ 0; ð29Þ

with the compatible first order ODE,

_H − a1α3H2 ¼ 0; ð30Þ
whose solution is also a particular solution of the Eq. (15)
factorized in the form (29).
The integration of this equation generates one arbitrary

integration constant, which can be written in explicit terms
of an initial condition. If we consider the initial condition
Hðt0Þ ¼ H0, where H0 is the Hubble constant, then we get
the following particular solution of Eq. (12) with s ¼ 1=2:

HðtÞ ¼ A�
t − ðt0 − A�

H0
Þ ; ð31Þ

where A� ¼ − 1
α3a1

, or equivalently,

A� ¼ 2
ffiffiffi
3

p
ϵðω2 − 1Þ − 6ξ0 � 2

ffiffiffiffiffi
3ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðω2 − 1Þ2 þ 6ξ20ð1 − ωÞ

p
3ðωþ 1Þð−3ξ0 þ 2ϵðω − 1Þ½ ffiffiffi

3
p ð1þ ωÞ − 3ξ0�Þ

; ð32Þ

with the restriction equation ξ0 ≠
2
ffiffi
3

p
ϵðω2−1Þ

3þ6ϵðω−1Þ , which avoids

A� to be an indeterminate function. The above particular
solution (31) can also be written in the form,

HðtÞ ¼ A�
t − ts

; ð33Þ

where ts ¼ t0 − 1
H0ð1þq0Þ, and q0 is the initial value of the

deceleration parameter, but since

1þ q ¼ −
_H
H2

¼ 1

A�
; ð34Þ

this means that this solution represents an expansion with a
constant deceleration parameter. Once a q0 is given, a value
is obtained for A� and a family of possible values for the
parameters ϵ, ω, and ξ0 can be evaluated from Eq. (32). Or,
once the value of A� is given, or constrained from the data,
as it will be done in the next section, q0 and the other ranges
of the parameters can be evaluated.
The solution (33) can also be written in terms of the

redshift variable. For the scale factor, one obtains

a
a0

¼
�
t − ts
t0 − ts

�
A� ¼ 1

1þ z
: ð35Þ

Therefore,

HðzÞ ¼ H0ð1þ zÞ1=A� ; ð36Þ

where H0 ¼ 100 h km s−1Mpc−1, and h denotes the
dimensionless Hubble constant. Notice that this form of
the Hubble parameter is defined for both phases of the
Universe, the accelerated and decelerated one. However,
we can connect both phases by requiring the continuity of
the Hubble parameter function at z ¼ zt, where zt is the
accelerated-decelerated transition redshift. Then, we obtain

HðzÞ¼
(
H0ð1þ zÞ1=Â1 ; z≤ zt;

H0ð1þ ztÞ1=Â1−1=Â2ð1þ zÞ1=Â2 ; z > zt:
ð37Þ

In the above expression, Â1 and Â2 are the free parameters
corresponding to the accelerated and decelerated phases,
respectively.

TABLE I. Priors considered for the model parameters.

Parameter Prior

Â1
Flat in [1, 5]

Â2
Flat in [0, 1]

h Gaus(0.7324, 0.0174)
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IV. COSMOLOGICAL CONSTRAINTS

In this section, we describe the observational data used
and build the χ2-function to perform the confidence regions
of the free model parameters. We employ a chain Markov
Monte Carlo analysis based on emcee module [42] by
setting 5000 chains with 500 steps. The nburn is stopped up
to a value of 1.1 on each free parameter in the Gelman-
Rubin criteria [43]. Table I presents the priors considered
for each parameter. We also set the redshift of the
accelerated-decelerated transition as zt ¼ 0.64 [44] in the
Eq. (37). Then, in order to constrain the model parameters,
we use the Hubble parameter measurements and super-
novae data, and the combined data.

A. Hubble observational data

The direct way to observe the expansion rate of the
Universe is through measurements of the Hubble parameter
(OHD) as a function of the redshift, HðzÞ. The latest OHD
obtained using the differential age (DA) method [45] are
compiled in [37] and consist of 51 Hubble parameter points
covering the redshift range [0, 1.97]. We constrain the free
model parameters by minimizing the chi-square function,

χ2OHD ¼
X
i

�
HthðziÞ −Hobs

σiobs

�
2

; ð38Þ

where HthðziÞ and HobsðziÞ � σiobs are the theoretical and
observational Hubble parameter at the redshift zi,
respectively.

B. Type Ia supernovae

We use the Pantheon data set [38] consisting of 1048
type Ia supernovae (SNIa) located into the range
0.01 < z < 2.3. The comparison between data and model
is obtained with the expression,

χ2SNIa ¼ ðmth −mobsÞ · Cov−1 · ðmth −mobsÞT; ð39Þ

where mobs is the observational bolometric apparent mag-
nitude and Cov−1 is the inverse of the covariance matrix.
mth is the theoretical estimation and is computed by

mthðzÞ ¼ Mþ 5 log10 ½dLðzÞ=10pc�: ð40Þ
Here, M is a nuisance parameter and dLðzÞ is the
dimensionless luminosity distance given by

dLðzÞ ¼ ð1þ zÞc
Z

z

0

dz0

Hðz0Þ ; ð41Þ

where c is the speed of light.

C. Joint analysis

We also perform a joint analysis by defining the merit-of-
function as

χ2joint ¼ χ2OHD þ χ2SNIa; ð42Þ
where χ2OHD and χ2SNIa are given in Eqs. (38) and (39),
respectively. The best fitting parameters are obtained by
setting the acceleration-deceleration transition zt ¼ 0.64
[44]. Table II presents the summary of the best estimates of
the parameters for the dissipative unified dark matter
(DUDM) model [see Eq. (37)].
Figure 1 shows the best fit curves over OHD and SNIa

samples at the top and bottom panel, respectively, using the

TABLE II. Best fit values of the free parameters of the UDM model.

Data χ2 Â1 Â2
h M BIC AIC

OHD 34.10 1.58þ0.15
−0.12 0.84þ0.02

−0.02 0.700þ0.014
−0.014 � � � 57.69 40.10

SNIa 1029.48 1.62þ0.11
−0.10 0.71þ0.16

−0.14 0.732þ0.017
−0.017 5.76þ0.05

−0.05 1085.12 1035.48
OHDþ SNIa 1064.91 1.58þ0.08

−0.07 0.84þ0.02
−0.02 0.700þ0.010

−0.010 5.67þ0.02
−0.02 1120.93 1070.91

FIG. 1. Joint best fit of DUDM and ΛCDM using the best
fitting values of joint analysis.
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joint analysis. We observe an evident behavior in
the Hubble parameter between the DUDM and LCDM
at z < 0 (the future). While LCDM gives a Universe
expansion smoothly, the DUDM model has a Universe
expansion as a big rip. From Eq. (34) and the joint analysis
values, we estimate the decelerated parameter q ¼ −0.37
and 0.19 for the accelerated and decelerated phases,
respectively. Notice that q is constant during each phase.
Figure 2 shows the 2D contours at the 68%, 95%, and

99.7% (1σ, 2σ, and 3σ) confidence level (CL) and the 1D
posterior distributions of the free model parameters. It
shows a good agreement between the best fits within
1σ CL.

V. DISCUSSION

In the following, we will refer the mathematical expres-
sions given in Eq. (32) as Aþ or A−, and the numerical
values of each expression could be Â1 or Â2. By using
Eq. (32), which gives A� as a function of the model
parameters, we explore the behavior of ξ0 as a function of ϵ.
These curves are shown in Fig. 3 for several values of
ω ¼ 0, 0.05, 0.1 (from bottom curve to the top one) and are
obtained when we consider the positive (top panel) and
negative (bottom panel) sign in Eq. (32), i.e., Aþ and A−,
respectively. For Aþ, we find values ξ0 > 0 in the region
0.5 < ϵ < 1 and ξ0 < 0 for 0 < ϵ < 0.5. Similarly, when
we consider A−, we find positive values of ξ0 in the allowed
region ξ0 <

ffiffiffi
3

p
ϵ in 0.5 < ϵ < 1 for both epochs. In

contrast, we find values of ξ0 < 0 within 0 < ϵ < 0.5
for both epochs when any sign is considered. Then, we
discard the phase space of ϵ; ξ0 where ξ0 < 0 because the
second law of thermodynamics would be infringed. It is

interesting to note that when we use Aþ and ξ0 > 0, the
curves for decelerated/accelerated epochs are not sensitive
to the Â1;2 values (see Table II).
A further insight of the previous results can be done

considering the effective EoS, ωeff , which is defined by

ωeff ¼ −1 −
2

3

_H
H2

¼ −1þ 2

3

1

Â
; ð43Þ

where Â takes the values Â1 or Â2 for the accelerated or
decelerated phase, respectively, For the accelerated phase,
we take, Â1 ¼ 1.58þ0.08

−0.07 , corresponding to the obtained
value using OHDþ SNIa data. In this case, we obtain from
Eq. (43) that ωeff ¼ −0.58þ0.02

−0.02 , which means that the
dissipative effects drive a quintessence like behavior. For
the same set of data, Â2 ¼ 0.84þ0.02

−0.02 in the decelerated
phase and ωeff ¼ −0.21þ0.02

−0.02 ; therefore, in this case,
even with dissipative effects present in the dark matter
fluid, they are not enough to drive acceleration. We find a

FIG. 2. 2D contours considering OHD (green), SNIa (gray),
and joint analysis (blue) at the 68%, 95%, 99.7%
confidence level.

FIG. 3. Top (bottom) panel displays the behavior of ξ0 as a
function of ϵ considering the positive (negative) sign of the
Eq. (32). The green (blue) color lines correspond to the Â1 (Â2)
value. In the top panel, the green and blue lines in the region
ξ0 > 0 are superimposed. For both plots and each color, from
bottom to top, the green (blue) lines refer to ω ¼ 0, 0.05, 0.1,
respectively.
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deviation of 6.2σ over the region of quintessence
(ω < −1=3).
Despite the fact that the solution found does not display a

smooth transition in the deceleration parameter, it allows us
to describe both phases separately by using such a solution
with the parameters Â1 and Â2, derived from cosmologi-
cal data.
On the other hand, the condition to keep the fluid

description of the dark matter component, which is an
essential assumption of the thermodynamical formalism
invoked, given by Eq. (10), provides the upper limit ξ0 <ffiffiffi
3

p
ϵ for a pressureless dark matter fluid. By a simple

inspection of the curves displayed in Fig. 3, it is easy to
see that the constraint can be satisfied by both solutions
Aþ and A− and also in the case of the decelerated and
accelerated expansions. Nevertheless, this constraint is
fulfilled for approximately ϵ > 0.82 for the Aþ solution
and for ϵ > 0.5 in the A− solution. This fact indicates
that it needs a great nonadiabatic contribution to the
speed of sound within the fluid. It is well known that the
structure formation observed implies a very low speed of
sound, consistent with a cold dark matter component.
Therefore, this issue represents a weakness of the model.
Moreover, in the case of the solution with the accelerated
expansion, the thermal equilibrium of the fluid can not
be maintained. Besides, a positive entropy production
and the convexity condition, d2S=dt2 < 0, are only
satisfied by the decelerated solution, as it was shown
in [24].
The solution analyzed in this work takes the simple form

given by Eq. (33), which is too simple and clearly not a
general solution of the IS formalism. In fact, only one initial
condition is enough to determine the solution, and since it
represents a cosmic expansion with a constant deceleration
parameter, the other initial condition, q0, necessary to
determine the solution of a second order differential
equation in the Hubble parameter, plays no role at all. It
is hoped that more general solutions could overcome the
above spotlighted difficulties.
Finally, we compare the DUDM and LCDM statistically

through the Akaike information criterion (AIC) [46,47] and
the Bayesian information criterion (BIC) [48]. The AIC and
BIC are defined by AIC¼χ2þ2k and BIC¼ χ2þ2k lnðNÞ,
respectively, where χ2 is the χ2 function, k is the number of
degree of freedom, and N is the data size. The preferred
model by data is the one with the minimum value of these
quantities. In order to compare the models, we use the full
data sample, OHDþ SNI, and obtain the χ2 as the sum of
the ones obtained in the decelerated and accelerated phases
for the DUDM model. Then, we estimate a yield value
of ΔAIC ¼ AICDUDM − AICLCDM ¼ 7.96 and ΔBIC ¼
BICDUDM − BICLCDM ¼ 19.96, which suggest that the
LCDM is the model preferred by the OHDþ SNIa data
used. This result is expected since the DUDM model
contains a degree of freedom greater than LCDM.

In summary, we analyze an exact solution of a DUDM
model using the most recent cosmological data of the
Hubble parameter and SNIa, that cover the redshift region
0.01 < z < 2.3. Although the exact solution under study
was proposed as an ansatz in [23,24], we are able to obtain
it in a systematic way by following a factorization pro-
cedure [29–31]. Due to the inability of the model to drive
accelerated and decelerated phases with the same value of
the main free parameters A as is shown in Eq. (36), we build
the Hubble parameter of the model by connecting both
phases as is expressed in Eq. (37) and the free parameters
Âþ and Â−. Then, we employ an analysis using the
combined data, OHDþ SNIa, and considering the tran-
sition redshift zt ¼ 0.64 [44] to constrain their values.
According to Eq. (37) and (34), the model presents an
acceleration (deceleration) phase when Â1 > 1 (Â2 < 1). In
these epochs, we infer a constant value of q ¼ −0.37þ0.03

−0.03
(0.19þ0.03

−0.03 ), and an effective EoS ωeff ¼ −0.58þ0.02
−0.02

(−0.21þ0.02
−0.02 ). It is interesting to see that ωeff is in the

quintessence region for the accelerated epoch, while the
decelerated phase is characterized by a negative effective
EoS, even though it is not enough to drive an accelerated
expansion of the Universe. We have also found that our
solution can fit well the cosmological data, and the
evaluated values of ξ0 from the constrained values of Aþ
and A− always satisfy the condition of a fluid description
for both phases, required from the thermodynamics for-
malism. Nevertheless, the high value of the speed of sound
within the fluid is an undesirable behavior of the model.
It is important to point out that our solution is obtained

assuming a Universe filled with only one fluid with
dissipation; therefore, it is clear that it can describe only
the late time evolution. An extension of this model to early
ages of the Universe requires us to introduce radiation and
evaluate the behavior of the linear perturbations. In the
framework of the Eckart theory, the discussion of the linear
perturbations has been realized, for example, in [49]. The
found results indicate that viscous dark matter leads to
modifications of the large-scale cosmic microwave back-
ground spectrum, weak lensing and cosmic microwave
background-galaxy cross-correlations, which implies diffi-
culties in order to fit the astronomical data. In the case of a
perturbative study in the framework of the causal thermo-
dynamics, it was found in [50] that numerical solutions for
the gravitational potential seem to disfavor causal theory,
whereas the truncated theory leads to results similar to those
of the ΛCDM model for a very small bulk viscous speed.
Let us discuss here what can be a possible way to

overcome this difficulty, which is present in this type of
models. As we mentioned above, the division into DM and
DE is merely conventional due to the degeneracy between
both components, resulting from the fact that gravity only
measures the total energy tensor. In the case of DUDM
models, the viscous stress provides the negative pressure
which allows accelerated phases, but the near equilibrium
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condition demanded in the thermodynamics approaches of
relativistic viscous fluids implies that the viscous stress
must be lower than the equilibrium pressure of the fluid. In
general, this condition is not fulfilled, and one possibility is
to go further and to consider a nonlinear generalization of
the causal linear thermodynamics of bulk viscosity, where
deviations from equilibrium are allowed (see, for example,
[51]). Another possibility is to consider a cosmological
scenario with dissipative DM and some other DE compo-
nent. In [21], an introduction of a cosmological constant is
considered together with a dissipative DM component. This
also allows in some regions the satisfaction of the near
equilibrium condition. Of course, in this scenario, UDM
models with dissipation are abandoned as consistent models
to describe the evolution of the Universe, and, on the other
hand, we are assuming the division into DM and DE.
As a conclusion of the above discussion, we can say that

the solution found within the full causal Israel-Stewart-
Hiscock formalism indicates that accelerated expansion
compatible with OHD and SNIa data can be obtained with
only one dissipative DM component, but having a great
nonadiabatic contribution to the speed of sound within the
fluid, which is not compatible with the structure formation.
Further investigations are required to solve this drawback

including some form of DE, along with the dissipative
component.
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full causal bulk viscous FRW cosmological model with

variable G and Λ through factorization, Can. J. Phys. 95,
559 (2017).
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