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via Irnerio 46, 40126 Bologna, Italy
3Center for Space Research, North-West University, Mafikeng, Private Bag X2046, South Africa

4School of Astronomy, Institute for Research in Fundamental Sciences (IPM),
P. O. Box 19395-5531 Tehran, Iran

(Received 6 May 2019; published 14 October 2019)

The scenario of constant-roll inflation in the framework of a noncanonical inflaton model is studied.
Both of these modifications lead to the appearance of some differences in the slow-roll parameters besides
the Friedmann equations, resulting in a better justification of theoretical predictions compared to
observations. Phenomenologically, by assuming a constant η, i.e., a second slow-roll parameter, and
recalculating the related perturbation equations, obviously there should appear some modification in the
scalar spectral index and amplitude of scalar perturbations. It is shown that finding an exact solution for the
Hubble parameter is one of the main advantages and triumphs of this approach. Also, whereas making a
connection between subhorizon and super-horizon regions has a crucial role in inflationary studies, the
main perturbation parameters are obtained at the horizon crossing time. To examine the accuracy of our
results, we consider the Planck 2018 results as a confident criterion. To do so by virtue of the r − ns
diagram, the acceptable ranges of the free parameters of the model are illustrated. As a result, it is found that
the second slow-roll parameter should be a positive constant and smaller than unity. By constraining the
free parameters of the model, also, an energy scale of inflation is estimated that is of order 10−2. Even more,
by investigating the attractor behavior of the model, it is clear that the aforementioned properties can be
appropriately satisfied.
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I. INTRODUCTION

The first ideas about the very early Universe to cope with
(at least) three fundamental problems of the standard big
bangmodel date back to 1981, and the paper written byGuth
[1], called “old inflation.” Before this idea, a type of infla-
tionary model was proposed by A. Starobinsky based on the
theory of conformal anomaly in quantum gravity [2,3]. The
model was complicated and had a different goal than solving
the horizon and flatness problem. The old inflation model
posed a problem in justifying a smooth exit at the end of
inflation. To solve this fatal problem, many models of
inflation have been put forward such as new inflation
[4,5], chaotic inflation [6], k-inflation [7,8], brane inflation
[9,10], G-inflation [11–14], warm inflation [15–21], etc.
Inflation is assumed to be a phase of a very rapid accelerated
expansion of the super–high energy Universe. In single or
multiple field scenarios of inflation, the Universe usually
evolved in the presence of scalar fields [22,23]. Nonetheless,

there are some models in which instead of scalar fields, for
instance, the gauge fields play the main role [24,25].
Most inflationary models are based on the slow-roll

assumption, in which the scalar field is present and rolls
down slowly from the top of its potential to the bottom of
the hill. The flatness of the potential provides a condition for
having a quasi–de Sitter expansion, weak dependence on
the time of the Hubble parameter, especially at the begin-
ning of the inflation. Besides the aforementioned necessary
parts to run inflation, we need small enough slow-roll
parameters to cope with the well-known three problems of
the hot big bang theory [26]. The definition of the first slow-
roll parameter is based on the time evolution of the Hubble
parameter divided by its square, i.e., ϵ ¼ − _H=H2, and the
condition ϵ < 1 is required to have an accelerated expansion
phase at the initiation eras (ä > 0). The second slow-roll
parameter is defined as η ¼ ϕ̈=H _ϕ, in which we hold out
the rate of the time derivative of the scalar field during the
Hubble time [27]. Smallness of the latter parameter states
that _ϕ should vary very slowly, and it therefore guarantees
the appropriate behavior of the inflation.
Whereas the single field canonical versions of inflation are

not able to cover all results that arise throughobservation, one
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might seek amodification in the inflationarymodels [28–30].
One possible extension, for instance, is quasisingle field
inflation, or maybe multiple field inflation [31–33], etc.
Another proposal addresses the scalar field where the
Lagrangian is a function of the scalar field ϕ and the kinetic
term X ¼ 1

2
gμν∂μϕ∂νϕ; i.e., Lðϕ; XÞ is the k-essence model

[7,8,34]. In this model, the sound speed is no longer equal to
the light speed, and it could be smaller, which leads to a
smaller tensor-to-scalar ratio to meet the observational
range. One type of the aforementioned Lagrangian is with
a modified kinetic term of the canonical scalar field
Lagrangian. In this work, the modification to the kinetic
term is restricted to the time derivative of the scalar field so
that it is possible to receive the canonical one. This type of
Lagrangian has received attention for application to cosmo-
logical studies; for instance, one can see [35]. In that
reference, De-Santiago et al. studied the dynamical system
of the Universe when it is filled with a barotropic fluid and a
scalar field with a modified kinetic term. Also, in [36], a
noncanonical scalar field with a modified Lagrangian has
been taken as a candidate for dark energy. It has been claimed
that, for a simple choice of the modified kinetic term, this
model can be considered a unified model of dark matter and
dark energy. Besides, these models, which usually are based
on modification of the kinetic portion, have received more
attention recently because of their ability to justify the
inflation behavior. In [37], Mukhanov and Vikman showed
that, for specific choices of free parameters, the tensor-to-
scalar ratio, which originates from enhancement of the sound
speed, could increase. It has been indicated that other
consequences of this model can be enumerated as larger
energy scales and higher temperatures for reheating [38]. In
the latter reference, one can find some good clues about
intermediate inflation for the noncanonical model with a
power-law kinetic term. Additionally Unnikrishnan et al.
[39] determined that, despite the canonical intermediate
inflation, the noncanonical model could properly satisfy
the observational data in their case for chaotic inflation. The
quantities of the model are derived, and the existence of an
inflationary attractor is confirmed. Evenmore, Unnikrishnan
et al. showed that, for a steep potential, the model is able to
properly describe inflation. In addition, the results of [40]
have clarified the fact that the power-law inflation in the
standard model of inflation leads to a tensor-to-scalar ratio
which is out of range compared to observational data.
However, by using a noncanonical scalar field, there could
be a new power-law inflation for which predictions are
consistent with the Planck results. In [41] the scenario of
warm inflation is extended to the noncanonical case, where it
means that the kinetic term will be modified again. The new,
but still scale invariant, curvature spectrum is obtained, and it
is demonstrated that the tensor-to-scalar ratio is insignificant
for the strong regime and significant for the weak regime.
Such models have a better consistency with observa-

tional data compared to canonical scalar field models.

Some interesting features of the noncanonical scalar field
model can be addressed as follows [42]:
(a) Steep potentials like vðϕÞ ∝ ϕ−n, which are known as

the dark energy potential, could give a better inflaton
potential in a noncanonical scalar field than in cano-
nical ones.

(b) The consistency relation r ¼ −8nT is violated in the
noncanonical scalar field model of inflation.

(c) In the canonical scalar field models of inflation, the
exponential potential roughly stands in an acceptable
range of data. However, this type of potential in the
noncanonical model of inflation could show better
agreement with the data.

The slow-roll features of inflation are almost provided by a
potential with a flat part. It prompts this question: what
happens if the potential is exactly flat? This question was
considered for the first time in [43]. From the equation of
motion of the scalar field, it is determined that for a flat
potential the second slow-roll parameter becomes η ¼ −3,
which is not smaller than unity; actually it is of order 1.
After that, in [44], Namjoo et al. studied the non-
Guassianity of the case, and it was specified that the
non-Gaussianity cannot be ignored anymore and that it
could be of order 1 [44]. The concept of having flat
potential was generalized in [45], where Martin et al.
assumed that η could be a constant. They found an
approximate solution for the model and obtained a scalar
perturbation amplitude that could vary even on super-
horizon scales, and also, for some choices, it could be
scale invariant. In [46], where for the first time the term
“constant roll” was addressed, the same model was re-
consider by using the Hamilton-Jacobi formalism [47–53]
and the authors found an exact solution for the Hubble
parameter which possesses the attractor behavior as well.
Also, it was concluded that the power spectrum could
remain scale invariant for specific choices of the constant.
The scenario of constant-roll inflation in modified gravity
was studied in [54–58], and the generalized version of this
approach, known as smooth-roll inflation could be found in
[59–61].
The interesting feature and application of noncanonical

scalar field in slow-roll inflationary scenarios motivated us
to investigate this model for constant-roll inflation. The
perturbation equations will be reconsidered, and we will
find the modified amplitude of scalar perturbations, and
also, the correction to the scalar spectral index are deter-
mined which are of the second order of η. Comparing the
result with observational data showed that, for some
specific values of η, one could have obtained a scale
invariant perturbation on superhorizon scales.
The paper is organized as follows: In Sec. II, the general

formulas of the framework of the noncanonical scalar field
will be obtained, and they are rewritten for specific choices
of the kinetic term. The slow-roll parameters and the
differential equation for the Hubble parameter will be

MOHAMMADI, SAAIDI, and SHEIKHAHMADI PHYS. REV. D 100, 083520 (2019)

083520-2



addressed in Sec. III, where the constant-roll approach is
applied to the equations. The scalar and tensor perturba-
tions will be discussed in Sec. IV, and the power spectrum
of the perturbations is derived. And finally we conclude and
discuss our results in Sec. V.

II. NONCANONICAL SCALAR FIELD MODEL

The action is assumed to be

S ¼ −1
16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lðϕ; XÞ; ð1Þ

where X ¼ gμν∂μϕ∂νϕ=2, and where Lðϕ; XÞ is the
Lagrangian of the noncanonical scalar field that in general
is an arbitrary function of the scalar field ϕ and X. Variation
of the action with respect to the metric comes to the field
equation of the model

Rμν −
1

2
gμνR ¼ 8πG

�∂L
∂X ∂μϕ∂νϕ − gμνL

�
; ð2Þ

and also, variation of the action with respect to the field
come to the following equation of motion:

∂L
∂ϕ −

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p ∂L
∂ð∂μϕÞ

�
¼ 0: ð3Þ

It is assumed that the geometry of the Universe is described
by a spatially flat Friedmann-Lemaître-Robertson-Walker
metric

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ: ð4Þ
Since the term in parentheses on the right-hand side of field
equation (1) is the energy-momentum tensor of the scalar
field, in a comparison to the energy-momentum of a perfect
fluid Tμν ¼ ðρþ pÞuμuν − pgμν, it is concluded that the
energy density, pressure, and four velocity of the field are

ρ ¼ 2X
∂L
∂X − L; p ¼ L; uμ ¼

∂μϕffiffiffiffiffiffi
2X

p : ð5Þ

Substituting this metric into field equation (2), one arrives
at the Friedmann equations

H2 ¼ 8πG
3

ρ; _H ¼ −4πGðρþ pÞ: ð6Þ

Also, the equation of motion (3) for this geometry reads [42]
�∂L
∂X þ 2X

∂2L
∂X2

�
ϕ̈þ

�
3H

∂L
∂X þ _ϕ

∂L
∂X∂ϕ

�
_ϕ −

∂L
∂ϕ ¼ 0:

ð7Þ
In this work, we are going to work with a specific type of

k-essence Lagrangian which contains a modification of the
kinetic term. We notice that this model leads to interesting

results working out inflation besides the study of dynamical
system of the Universe and dark energy. The Lagrangian is
assumed to be

L ¼ X

�
X
M4

�
α−1

− VðϕÞ; ð8Þ

where α is a dimensionless constant andM is a constant with
mass dimension. Using this definition for a scalar field
Lagrangian, its energy density and pressure are expressed by

ρ ¼ ð2α − 1ÞX
�

X
M4

�
α−1

þ VðϕÞ;

p ¼ X

�
X
M4

�
α−1

− VðϕÞ: ð9Þ

Then, equation of motion (7) is reduced to

ϕ̈þ 3H
2α − 1

_ϕþ
�
2M4

_ϕ2

�
α−1 VϕðϕÞ

αð2α − 1Þ ¼ 0: ð10Þ

Introducing the Hubble parameters as a function of scalar
field, and using Eqs. (6) and (9) and relation _H ¼ _ϕHϕðϕÞ,
the time derivatives of the scalar field are given by

_ϕ2α−1 ¼ −2αM2ð2α−1Þ
p μ4ðα−1Þ

α
H;ϕðϕÞ; ð11Þ

in which M2
p ¼ 1=8πG and μ≡M=Mp. Then, substituting

this into the Friedmann equation (6) and using Eq. (9), the
potential of the scalar field reads

VðϕÞ¼ 3M2
pH2ðϕÞ− ð2α−1ÞM4α

p

2αM4ðα−1Þ

�
−2αμ4ðα−1Þ

α
H;ϕðϕÞ

� 2α
2α−1

:

ð12Þ

For the rest of the paper, the reduced mass Planck is taken to
beMp ¼ 1 formore convenience, andwe also define the new
parameter λ ¼ M4ðα−1Þ.

III. NONCANONICAL INFLATION

During inflation, the Universe undergoes an extreme
expansion in a short period of time. Here, it is assumed that
the inflation is caused by a noncanonical scalar field.Usually,
inflation is describe by using slow-roll parameters. The first
slow-roll parameter indicates the rate of the Hubble param-
eter during a Hubble time as [27]

ϵ ¼ −
_H
H2

ð13Þ
so that, to have a quasi–de Sitter expansion, this parameter
should be much smaller than unity [27]. Using this equation
and Eq. (6), one could obtain the time derivative of the scalar
field in terms of the Hubble parameter and the slow-roll
parameters ϵ as [42]
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_ϕ2α ¼ 2αλ

α
ϵH2: ð14Þ

Assuming theHubble parameter to be a function of the scalar
field, H ≔ HðϕÞ, one has _H ¼ _ϕH;ϕ. Then, the slow-roll
parameter ϵ reads

ϵ ¼
�
2αλ

α

� 1
2α−1 H

2α
2α−1
;ϕ

H2
: ð15Þ

The second slow-roll parameter is defined as η ¼ ϕ̈= _ϕH,
where in constant-roll inflation it is assumed to be a constant,
η ¼ β. Using this definition and also Eqs. (14) and (15), we
arrive at the following differential equation for the Hubble
parameter,

H
2−2α
2α−1
;ϕ H;ϕϕ ¼ C0H; C0 ≡ ð2α − 1Þβ

�
α

2αλ

� 1
2α−1

; ð16Þ

which comes to the same differential equation for theHubble
parameter as in [46], where Motohashi et al. consider the
constant-roll inflation for the canonical scalar field. Since
H;ϕ ¼ dH=dϕ, there is dϕ ¼ dH=H;ϕ. Therefore, for the
second derivative of the Hubble parameter in terms of the
scalar field, we have H;ϕϕ ¼ dH;ϕ=dϕ ¼ H;ϕdH;ϕ=dH.
Substituting this into the above differential equation, one
arrives at

H
2α

2α−1
;ϕ ¼ αC0

2α − 1
H2 þ C1; ð17Þ

where C1 is the constant of integration. Taking another
integration from Eq. (17), the scalar field could be expressed
in terms of the Hubble parameter as

ϕ ¼ ϕ0 þ
H
C1

2F1

�
1

2
; 1 −

1

2α
;
3

2
;

C0α

C1ð1 − 2αÞH
2

�
; ð18Þ

in which ϕ0 is a constant of integration too. From Eqs. (17)
and (18), it seems that every quantity could be expressed in
terms of the Hubble parameter, such as the slow-roll
parameter

ϵ ¼
�
2αλ

α

� 1
2α−1 ð αC0

2α−1H
2 þ C1Þ

H2
; ð19Þ

and also, for the number of e-folds, there is

N ¼
Z

te

ti

Hdt ¼
Z

He

Hi

H
_H
dH ¼

Z
He

Hi

−1
ϵH

dH

¼ −
�

α

2αλ

� 1
2α−1

Z
He

Hi

HdH
αC0

2α−1H
2 þ C1

; ð20Þ

and by taking the integral, one arrives at

N ¼ −
�

α

2αλ

� 1
2α−1 2α − 1

2αC0

ln

�
αC0

2α − 1
H2 þ C1

�����
He

Hi

; ð21Þ

whereHe is the Hubble parameter at the end of inflation, and
where Hi is the Hubble parameter at the horizon exit time.
From Eq. (12), the potential of the scalar field could also be
derived only as a function of the Hubble parameter

V ¼ 3M2
pH2

�
1 −

ð2α − 1Þ
3α

�
2αλ

α

� 1
2α−1 ð αC0

2α−1H
2 þ C1Þ

H2

�
:

ð22Þ

IV. PERTURBATIONS OF NONCANONICAL
SCALAR FIELD

Assume a small inhomogeneity of the scalar field as
ϕðt;xÞ ¼ ϕ0ðtÞ þ δϕðt;xÞ. This perturbation with respect
to the background ϕ0ðtÞ (from now on, we will omit the
subscript “0”) induces a perturbation to the metric because,
from the field equation, it is clear that geometry and matter
are tightly coupled. The metric in the longitudinal gauge is
written as

ds2 ¼ ð1þ 2Φðt;xÞÞdt2 − a2ðtÞð1 − 2Ψðt;xÞÞδijdxidxj;
ð23Þ

where, by assuming a diagonal tensor for the spatial part of
the energy-momentum tensor (i.e., δTi

j ∝ δij), we have
Ψðt;xÞ ¼ Φðt;xÞ.
The action for linear scalar perturbation is derived

as [8,62]

S ¼ 1

2

Z �
v02 þ c2svð∇vÞ2 þ z00

z
v

�
dτd3x; ð24Þ

in which v≡ zζ, where ζ is the curvature perturbation
given by ζ ¼ ΦþH δϕ

_ϕ
, and where the prime denotes the

derivative with respect to the conformal time τ, adτ ¼ dt.
Also, cs is the sound speed of the model, which is stated as

cs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2α − 1
p ; ð25Þ

which is a constant. To get a physical sound speed, the
constant α should always be positive and bigger than 0.5,
and also, to not exceed the speed of light, it should be
bigger than 1.
The quantity z is known as the Mukhanov variable,

which, for our model, is defined as [8,62]

z2 ≡ 2αaX
c2sH2

�
X
M4

�
α−1

: ð26Þ
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From Eq. (24), the equation for perturbation quantity v
becomes

d2

dτ2
vðτ;xÞ − c2s∇2vðτ;xÞ − z00

z
vðτ;xÞ ¼ 0; ð27Þ

and by utilizing the Fourier mode, one arrives at

d2

dτ2
vkðτÞ þ

�
c2sk2 −

1

z
d2z
dτ2

�
vkðτÞ ¼ 0: ð28Þ

Before discussing the solution of the above equation, we try
to compute the term z00=z. From the definition of z and the
slow-roll parameters of the previous section, we get

z≡
ffiffiffiffiffiffiffi
2α

2αλ

r
a _ϕ2

csH
; ð29Þ

dz
dτ

¼ zðaHÞ½1þ αηþ ϵ�: ð30Þ

To calculate the second derivative, we first need to obtain
the derivative of the slow-roll parameters with respect to the
conformal time,

dϵ
dτ

¼ ðaHÞ½2αηϵþ ϵ2�: ð31Þ

Then, the second derivative of the quantity z with respect to
the conformal time reads

1

z
d2z
dτ2

¼ðaHÞ2½2þ2ϵþ3ηþðαþ2αθÞηϵþα2η2�: ð32Þ

Here, θ ¼ �1 and appears through the time derivative of
the scalar field. [From Eqs. (14) and (15), _ϕ2 are derived in
terms of the scalar field. On the other hand, the time
derivative of ϵ can be expressed as _ϵ ¼ _ϕϵ;ϕ. Then, we need
_ϕ, which in general is _ϕ ¼ θ

ffiffiffiffi
O

p
.]

On subhorizon scales, where csk ≫ aH (i.e.,
csk ≫ z00=z), the quantity vk is obtained as

d2

dτ2
vkðτÞ þ c2sk2vkðτÞ ¼ 0; ⇒ vkðτÞ ¼

1ffiffiffiffiffiffiffiffiffi
2csk

p eicskτ:

ð33Þ

In order to find the general solution of Eq. (28), we make
the variable changes vk ¼

ffiffiffiffiffiffi
−τ

p
fk and x≡ −cskτ. After

some manipulation, the find the following Bessel differ-
ential equation,

d2fk
dx2

þ 1

x
dfk
dx

þ
�
1 −

ν2

x2

�
fk ¼ 0;

z00

z
¼ ν2 − 1

4

τ2
; ð34Þ

where we use a2H2 ¼ ð1þ ϵÞ2=τ2, and keeping only the
first order of the slow-roll parameter ϵ, the parameter ν is
acquired as

ν2 ¼ 9

4
þ6ϵþ3αηþð7αþ2αθÞϵηþð1þ2ϵÞα2η2: ð35Þ

The general solution for the above differential equation is
the first and second kind of Hankel function. However, to
have consistency with the solution on subhorizon scales,
the second kind of Hankel function should be ignored;
therefore, the final solution is acquired as

vkðτÞ ¼
ffiffiffi
π

p
2

ei
π
2
ðνþ1

2
Þ ffiffiffiffiffiffi

−τ
p

Hð1Þ
ν ð−cskτÞ: ð36Þ

The spectrum of curvature perturbation is defined as

Ps ¼
k3

2π2
jζj2 ¼ k3

2π2

���� vkz
����
2

: ð37Þ

On superhorizon scales, the asymptotic behavior of the
Hankel function is

lim
−kτ→∞

Hð1;2Þ
ν ðxÞ ¼

ffiffiffi
2

π

r
1ffiffiffiffiffiffiffiffiffi
2csk

p e∓ðicskτþδÞ;

δ ¼ 1

2

�
νþ 1

2

�
: ð38Þ

Then, the spectrum of curvature perturbation on super-
horizon scales will be

Ps ¼
�
2ν−

3
2ΓðνÞ

Γð3=2Þ
�2� H2

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csðρþ pÞp

�
2
�
csk
aH

�
3−2ν

: ð39Þ

V. CONSISTENCY WITH OBSERVATION

An advantage of the inflationary scenario is the pre-
diction for quantum perturbations including the scalar,
vector, and tensor ones. Among them, scalar perturbations
are considered to be the primary seeds for large structure
formation, and tensor perturbation is interpreted as the
source of gravitational waves. During inflation, these
perturbations are stretched out to the horizon and remain
invariant. On the other hand, the observational data almost
indicate a scale invariant spectrum for curvature perturba-
tions. This scale invariant feature is described by the scalar
spectral index, so it is defined as Ps ¼ A2

sðcskaHÞns−1, where
A2
s is the amplitude of scalar perturbation at horizon

crossing csk ¼ aH. For ns ¼ 1, the amplitude of scalar
perturbation is exactly scale invariant; however, the latest
observational data imply that ln ðAs × 1010Þ ¼ 3.044�
0.014 and ns ¼ 0.9649� 0.0042, expressing an almost
scale invariant perturbation [63]. To measure the tensor
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perturbations, the usual procedure is indirectly through the
parameter r known as the tensor-to-scalar ratio, r ¼ Pt=Ps.
The data originated by Planck 2018 show that there is only
an upper bound on this parameter, r < 0.064, and it is still
not measured exactly [63].
Consistency of the presented model with observational

data is the main goal of this section. At the end of inflation,
the first slow-roll parameter reaches unity [64], which
happens for H ¼ He,

ϵðHeÞ ¼
�
2αλ

α

� 1
2α−1 ð αC0

2α−1H
2 þ C1Þ

H2
¼ 1; ð40Þ

which leads to the following value for the Hubble param-
eter at the end of inflation:

H2
e ¼

�
2αλ

α

� 1
2α−1 −C1

αη − 1
: ð41Þ

To guarantee the positiveness of H2
e, the term −C1λ=

ðαη−1Þ should always be positive. At the horizon exit,
the slow-roll parameter ϵ is smaller than unity, and the cor-
responding Hubble parameter could be determine through
the number of e-fold equation (20)

H2⋆ðNÞ ¼
�
2αλ

α

� 1
2α−1 −C1

αη − 1

�
e2αηN þ αη − 1

αη

�
; ð42Þ

which is expressed in terms of the number of e-fold
parameters N. The right-hand side should always be
positive, so besides the above restriction, the term in the
parentheses should always be positive. Note that, in order
to overcome the horizon and flatness problems, we need
about 60–70 e-folds [34].
From Eqs. (6), (5), and (14), we determine that the time

derivatives of the Hubble parameter are negative, so by
passing time and approaching the end of inflation, the
Hubble parameter decreases. On the other hand, since
ϵ ¼ 1 is taken as the end of inflation, it is expected that the
first slow-roll parameter smaller than 1 will be for bigger
values of the Hubble parameter—namely, the horizon
crossing occurs for bigger values of the Hubble parameter.
This point is illustrated in Fig. 1, where by passing time and
decreasing the Hubble parameter, the parameter ϵ
approaches 1, indicating the end of inflation (the selected
values for the constant in the figure is based on the results
that will be determined below).
Using Eq. (42), the main perturbation parameters such

as the scalar spectral index, amplitude of scalar perturba-
tion, and tensor-to-scalar ratio could be obtained in terms of
N as

ϵðNÞ ¼ αβe2αβN

e2αβN þ αβ − 1
; ð43Þ

nsðNÞ ¼ 4 − 2νðNÞ; ð44Þ

ν2ðNÞ ¼ 9

4
þ 3αβ þ α2β2 þ ð6þ 7αþ 2αθ þ 2α2β2ÞϵðNÞ;

ð45Þ

PsðNÞ ¼ 1

8π2

�
2νðNÞ−3

2ΓðνðNÞÞ
Γð3=2Þ

�2 H2ðNÞ
csϵðNÞ ; ð46Þ

rðNÞ ¼ 16

�
Γð3=2Þ

2νðNÞ−3
2ΓðνðNÞÞ

�
2

csϵðNÞ: ð47Þ

It is clear that the scalar spectral index and the tensor-to-
scalar ratio depend only on the constants α and η. Using the
Planck r − ns diagram, we could obtain a range of these
constants that puts the model predictions about ns and r in
the range of data. Figure 2 shows this area, in which the
light blue area illustrates the range related to the 95% C.L.,
and the dark blue section determines values of α and η that
put ns and r in the 68% C.L. It shows that the second slow-
roll parameter should be positive, and there is no consistent
result for negative η. The second slow-roll parameter could
be of order 10−3, but the best results occur for smaller
values. By increasing the constant η, the range of α
decreases.
The other constantsM and C1 appear in the amplitude of

the curvature perturbation and also in the potential of the
scalar field through the Hubble parameter. Imposing the
observational data for the amplitude of curvature perturba-
tions determines that we should get

−C1M
4ðα−1Þ
2α−1

αβ − 1
¼

�
α

2α

� 1
2α−1 P⋆

s

8π2csϵ⋆

�
Γð3=2Þ

2ν
⋆−3

2Γðν⋆Þ

�
2

×
αη

e2αηN þ αη − 1
: ð48Þ

The amplitude of the curvature perturbation is clear from
the data, so by choosing some values for the constants α
and η from Fig. 2, the right-hand side would be clear.

FIG. 1. Behavior of the first slow-roll parameter ϵ in terms of
the Hubble parameter for different values of α and η.
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Table I expresses these terms for different choices of
α and η.
Also, the term on the left-hand side of Eq. (48) appears in

the potential of the scalar field, for which, at the time of
horizon crossing, one has

V⋆ ¼ 3

�
2α

α

� 1
2α−1 −C1M

4ðα−1Þ
2α−1

αβ − 1

e2αηN

ϵ⋆
�
1 −

ð2α − 1Þ
3α

ϵ⋆
�
: ð49Þ

Then, using the determined values of α and η, the inflation
energy scale is determined, which is implied in Table I. It is
clearly seen that the energy scale of inflation is about 10−2.

VI. ATTRACTOR BEHAVIOR

Consideration of the attractor behavior of the solution
will be performed following the same process as mentioned
in [59,60,65], which is a simple approach and also an
effective one, as one works in the Hamilton-Jacobi for-
malism. In this formalism, it is assumed that there is a
homogeneous perturbation to the Hubble parameter as
H ¼ H0 þ δH. Now by introducing it in the Hamilton-
Jacobi equation (12) and keeping the terms up to the first
order of δH, one arrives at

δH0

δH
¼ 3

�
2αλ

α

�
H0

_ϕ2α
0

H0
0; ð50Þ

By taking the integral from the above equation, we have

δH ¼ δHi exp

�
−3

Z
H

Hi

H
_H
dH

�
; ð51Þ

where δHi is the perturbation at the initial time. From the
above equation, it is realized that, by approaching the end
of inflation, the term within the power of the exponential
term grows, and the negative sign brings out the fact that
the perturbation δH decreases continuously. This feature is
determined in Fig. 3, where the integral has been plotted for
different values of α, β, and M, and for all cases, the term
decreases during inflation. Therefore, it results that the
model satisfies the attractor behavior.

FIG. 2. Parametric plot for the constant η and α such that, for these values of the constants, the scalar spectral index and tensor-to-scalar
ratio stands in the observational range. The figure has been plotted for θ ¼ −1 and the number of e-folds: (a) N ¼ 65, (b) N ¼ 70.

TABLE I. We determine the constant term C1M
4ðα−1Þ
2α−1 by using

Fig. 2 and the data for the curvature perturbations. Then, the
energy scale of inflation is illustrated for these values of the
constants. The results have been derived for the number of e-folds
N ¼ 65.

α η −C1M
4ðα−1Þ
2α−1 V⋆

3 0.0002 −4.56 × 10−11 2.26 × 10−8

3 0.001 −3.30 × 10−11 1.92 × 10−8

5 0.0003 −5.73 × 10−11 2.94 × 10−8

5 0.0005 −4.69 × 10−11 2.66 × 10−8

7 0.0002 −6.73 × 10−11 3.53 × 10−8

7 0.0004 −5.58 × 10−11 3.21 × 10−8

FIG. 3. The power of the exponential term in Eq. (51) during
inflation. By passing time and approaching the end of inflation,
the power increases with negative sign. Then, the perturbation δH
exponentially decreases during inflation, and the solution is
attractive.
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VII. CONCLUSION

This work has relied on a scenario of constant-roll
evolution in the initial Universe. It has been supposed that
inflation has been derived by considering a modification in
the kinetic term of the Lagrangian called the noncanonical
model of the scalar field. In the constant-roll scenario, it has
been assumed that the second slow-roll parameter, i.e., η,
has to be a constant, and therefore we have had to
recalculate the necessary inflationary parameters. By cal-
culating the slow-roll parameters in terms of the Hubble
parameter, we could derive a differential equation for the
Hubble parameter, which could lead to the corresponding
differential equation for the canonical scalar field model by
taking α ¼ 1. On the other hand, by taking into account the
assumption of the constant-roll method, the perturbation
equation should be recalculated again. Doing so, obviously
there are some modifications in the amplitude of scalar
perturbation, and the scalar spectral index leads to the
appearance of the second order of η in our investigation.
By finding an exact solution, which is one of the main

advantages and triumphs of this approach, it was realized
that every parameter of the model can be expressed in terms
of the Hubble parameter. Therefore, comparing our
approach with the usual Hamilton-Jacobi formalism of
inflation, the Hubble parameter here behaves as the scalar
field in that approach. The importance of this result goes
back to this fact: there is no need to introduce an ansatz for
a Hubble parameter based on the scalar field. The condition
ϵ ¼ 1 clarified the Hubble parameter at the end of inflation,
i.e., He, and using the number of e-folds, the Hubble
parameter is determined in terms of the number of e-folds
and other constant parameters of the model. Utilizing this
result, we express the main perturbation parameters of the
model in terms of the number of e-folds to obtain better
estimates compared to the observations.
It has been shown that the scalar spectral index and the

tensor-to-scalar ratio at the horizon exit can be obtained in

terms of two free parameters of the model—namely, α and
η. Then, by making use of the r − ns diagram originating
from Planck 2018, the proper ranges based on these two
parameters are estimated and depicted in Fig. 2. It is noticed
for any values of α and η in the best estimated range that
both the scalar spectral index and the tensor-to-scalar ration
are in good agreement with the observational data. The
results show that the second slow-roll parameter η is
constant, as it should be, and is of order 10−4, and by
increasing the constant α, the range of η becomes smaller.
On the other hand, applying the data for the amplitude of

curvature perturbation, the constant C1M
4ðα−1Þ
2α−1 is deter-

mined, and imposing this result in the potential of the
scalar field, it is found that the energy scale of inflation is
around V⋆1=4 ∝ 10−2.
Ultimately, the attractor behavior of the model when we

assume a homogeneous perturbation to the Hubble param-
eter is investigated. By introducing into the Hamilton-
Jacobi equation, it leads to a differential equation of the
homogeneous perturbation. From Fig. 3, it is obvious that
the perturbation decreases exponentially by approaching
the end of inflation, which indicates the attractor behavior
of the solution.
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