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The viability of a given model for inflation is determined not only by the form of the inflaton potential,
but also by the initial inflaton field configuration. In many models, field configurations which are otherwise
well-motivated nevertheless fail to induce inflation, or fail to produce an inflationary epoch of duration
sufficient to solve the horizon and flatness problems. In this paper, we propose a mechanism which enables
inflation to occur even with such initial conditions. Our mechanism involves multiple scalar fields which
experience a time-dependent mixing. This in turn leads to a “re-overdamping” phase as well as a parametric
resonance which together “slingshot” the inflaton field from regions of parameter space that do not induce
inflation to regions that do. Our mechanism is flexible, dynamical, and capable of yielding an inflationary
epoch of sufficiently long duration. This slingshot mechanism can therefore be utilized in a variety of
settings and thereby enlarge the space of potentially viable inflation models.
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I. INTRODUCTION, MOTIVATION,
AND SUMMARY

Because of its many properties, both theoretical and
observational, the inflationary paradigm has become a
standard component of early-universe cosmology [1–6].
Indeed, many observations and cosmological fine-tuning
problems—e.g., the horizon problem, the absence of
primordial topological defects, the flatness problem—can
be understood by positing an epoch of rapid inflationary
expansion in the early universe. Moreover, models for
inflation generally predict a nearly scale-invariant spectrum
of primordial perturbations, in agreement with observations
of the cosmic microwave background (CMB) and large-
scale structure [7–12].
One critical ingredient in any inflationary scenario is an

appropriate scalar potential VðϕÞ for the inflaton ϕ. The
form of VðϕÞ is constrained by observations—in particular,
inflation typically only occurs when ϕ traverses a suffi-
ciently flat region of the potential. Likewise, an inflationary
model also requires the specification of a set of initial
conditions for the inflaton field within the phase space

fϕ; _ϕg. Only certain regions within this phase space give
rise to inflationary dynamics, and only certain subregions
thereof lead to an inflationary epoch of sufficient duration.
Indeed, the number of e-folds required for successful
inflation generally falls within a rangeNinf ≳ 50–60, where
the uncertainty is due to our ignorance of the amount of
expansion which occurs during the reheating epoch [13].
As a result, the initial field configuration fϕ; _ϕg is another
critical ingredient in determining the phenomenological
viability of a given inflation model.
As an example, let us consider perhaps the simplest

inflaton potential, VðϕÞ ¼ 1
2
m2

ϕϕ
2, wheremϕ is the inflaton

mass. In Fig. 1 we show the corresponding phase space
fϕ; _ϕg, with contour lines indicating the number of e-folds
of inflation that are eventually produced if our field begins
at that location. We have also colored the different regions
of this phase space accordingly, so that initial configura-
tions within the red region do not lead to inflation at all
while points within the gray region lead to insufficient
inflation (defined for this figure as having fewer than 60
e-folds). Only the regions in blue lead to an inflationary
epoch of sufficient duration.
These results can be understood in terms of the dynami-

cal flow of the inflaton field within this phase space. In
general, regardless of its initial location, the field will travel
along an e-fold contour line in the direction of one of the
black-dashed attractor curves at _ϕ ¼ � ffiffiffiffiffiffiffiffi

2=3
p

mϕMp where
Mp is the reduced Planck mass. Two sample flows are
indicated in yellow in Fig. 1. Only when the inflaton
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reaches the attractor does inflation begin, and only when
the inflaton joins the attractor at sufficiently large jϕj will
this inflationary epoch have sufficient duration. Thus, as a
result of this dynamics, we see that the regions of phase
space which lead to sufficiently long inflationary epochs
are those with sufficiently large initial values of jϕj or j _ϕj
or both. Similar conclusions hold for a wide variety of
potentials.
Within the context of such potentials, many different

scenarios exist for generating such initial conditions
involving large jϕj or j _ϕj. For example, in chaotic inflation
[14], initial conditions are assumed to be randomly dis-
tributed, subject to a Planckian bound on the total energy
density ρ ≤ M4

p. One then finds that for smallmϕ, the initial

vacuum expectation values (VEVs) for jϕj and/or j _ϕj are
typically large, the former even trans-Planckian. Likewise,
natural inflation [15,16] also implements such a large field
VEV for jϕj, even if j _ϕj in such scenarios is typically small.
Our focus here, by contrast, is on the opposite situation:

what happens if both jϕj and j _ϕj are initially small, perhaps
both even sub-Planckian? After all, sub-Planckian field
VEVs might be viewed as more natural from an effective

field theory point of view. However, in many inflationary
models, such initial field VEVs correspond to regions of
phase space in which slow-roll conditions will be severely
violated and inflation will not occur. Is there any way
inflation can be salvaged in such scenarios?
In this paper, we shall propose a mechanism which

accomplishes precisely this. We shall refer to this as a
“slingshot”mechanism: even if we begin within a region of
phase space from which inflation would not ordinarily be
expected to occur, the dynamics of the system can “sling-
shot” the inflaton field into a different region of phase space
in which it does. Our slingshot mechanism is built upon a
brief time-dependent modification to the scalar potential in
the inflationary sector of the theory—precisely as might
arise as the consequence of a pre-inflationary cosmological
phase transition. As we shall discuss, the resulting inflaton
dynamics includes a short-lived but robust parametric
resonance followed by a unique re-overdamped phase,
and together these two features propel the inflaton field into
new regions of phase space which potentially exhibit the
desired large field VEVs. Indeed, we shall find that both of
these features generically arise together in such scenarios.
Our slingshot mechanism is therefore completely flexible,
dynamical, and capable of giving rise to an inflationary
epoch of sufficiently long duration. We also expect that our
mechanism is also rather general, and can be utilized in a
variety of different settings and for a variety of different
potentials. This mechanism can thereby enlarge the space
of potentially viable inflation models.
This paper is organized as follows. We begin in Sec. II by

presenting the physics of our slingshot mechanism. As we
shall discuss, the natural arena for this physics is a sector of
scalar fields experiencing a mass-generating phase tran-
sition. Specifically, we shall focus our study on the simple
yet illustrative example of a sector consisting of two real
scalar fields. Then, in Sec. III, we embed this sector within
the context of a general cosmology and demonstrate that
our slingshot mechanism can indeed give rise to inflation—
even when our initial field configuration is within otherwise
“forbidden” regions such as the red region in Fig. 1. We
investigate the general parameter space associated with our
mechanism and determine those regions in which sufficient
inflation can be produced. In this way we demonstrate that
our mechanism can give rise to not only an inflationary
epoch but also one with a number of e-folds sufficient for
phenomenological purposes. In Sec. IV, we then develop an
analytic approach to understanding the numerical results
presented in Sec. III—an approach which allows us to forge
a direct connection between the underlying parameters
which characterize the phase transition and the relevant
inflationary parameters and observables. In Sec. V we then
exploit this connection in order to establish constraints
on this minimal realization of our “slingshot” mechanism.
Finally, in Sec. VI, we summarize our main results,
elaborate on the various implications of our slingshot

FIG. 1. The space of possible initial configurations fϕ; _ϕg for
the inflaton field in the case of a quadratic potential VðϕÞ ¼
1
2
m2

ϕϕ
2 with mϕ ¼ 10−6Mp. The blue regions indicate the

locations that can yield an inflationary epoch of duration [here
taken to be ≳Oð60Þ e-folds] sufficient to solve the horizon and
flatness problems, while the gray regions lead to insufficient
inflation and the red regions lead to no inflation at all. The brown
contours indicate the initial Hubble scale HI for each initial
configuration fϕ; _ϕg, and two example trajectories (yellow) for
the inflaton field are also shown. The black dashed curves show
the attractors along which inflation occurs.
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mechanism, and discuss a number of potential extensions
and generalizations of the minimal scenario we have
presented here. In Appendix A, we discuss constraints
that can arise from particle production due to nonadiabatic
changes in the vacuum state.

II. THE SCALAR SECTOR AND THE
SLINGSHOT MECHANISM

As discussed in Sec. I, our slingshot mechanism is built
upon the nontrivial dynamics of a two-scalar system which
undergoes a mass-generating phase transition. In this
section we shall therefore introduce our scalar system
and discuss its dynamics, with the goal of understanding
how and why a slingshot emerges.

A. Two scalars and a mass-generating
phase transition

We begin by assuming the existence of a nonminimal
scalar sector which experiences a mass-generating phase
transition in the early universe, prior to an inflationary
epoch. In particular, for concreteness we shall imagine
that this sector consists of two scalar fields fϕ0;ϕ1g
whose dynamics is governed by an effective potential
Veffðϕ0;ϕ1; tÞ which depends not only on the field
VEVs ϕ0 and ϕ1 (thereby implicitly introducing a time
dependence for Veff as our two fields evolve in field space)
but also on other parameters which may carry their own
explicit time dependence as the result of a possible phase
transition. In a spatially flat Friedmann-Robertson-Walker
(FRW) cosmology, the corresponding action for these fields
then takes the form

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂μϕ0Þ2 þ

1

2
ð∂μϕ1Þ2 − Veffðϕ0;ϕ1; tÞ

�
ð2:1Þ

where g is the determinant of the FRW metric. While many
algebraic forms for Veffðϕi; tÞ are possible, for simplicity
we shall henceforth assume that the contributions to
Veffðϕi; tÞ are of the form

Veffðϕi; tÞ ¼
1

2

X
i;j

ϕiM2
ijðtÞϕj; ð2:2Þ

where M2ðtÞ is the corresponding 2 × 2 time-dependent
squared-mass matrix for our two scalars. Under this
assumption, our cosmological phase transition can be
viewed as a mass-generating phase transition. As we shall
see, a sector consisting of only two scalar fields is
sufficiently complex to give rise to all of the phenomena
which shall eventually interest us, but also sufficiently
simple that our analysis remains relatively straightforward
and tractable. We emphasize, however, that there will be
nothing in our eventual results that requires that there be

only two fields in this scalar sector. Indeed similar
phenomena can emerge in more complicated scenarios.
In order to maintain as much generality as possible, we

shall follow Refs. [17,18] in parametrizing the effects of
our phase transition on the mass matrixM2. First, we shall
let tG denote the time at which the phase transition occurs
and assume that at early times t ≪ tG the mass matrix takes
the simple form

M2 ¼
�
0 0

0 M2

�
for t ≪ tG: ð2:3Þ

In other words, we are assuming that our lighter field is
initially massless while our heavier field has a nonzero
mass M. Next, we shall assume that our phase transition
produces additional contributions to this mass matrix such
that for times t ≫ tG long after the phase transition our
mass matrix takes the late-time asymptotic form

M2 ¼
�
0 0

0 M2

�
þ
"
m̄2

00 m̄2
01

m̄2
01 m̄2

11

#
for t ≫ tG; ð2:4Þ

where m̄2
ij represent the late-time contributions to the mass

matrix arising from the phase transition. In this way, we
allow for the possibility that our phase transition not only
modifies the masses of our states, but also introduces a
nontrivial mixing between them. Finally, we shall make
the natural assumption that the phase transition unfolds
smoothly in such a way that these extra contributions to
M2 are all generated with a uniform time dependence. In
other words, for any arbitrary time t, we shall assume that
the mass matrix takes the form

M2ðtÞ ¼
�
0 0

0 M2

�
þ
"
m2

00ðtÞ m2
01ðtÞ

m2
01ðtÞ m2

11ðtÞ

#
; ð2:5Þ

where we can write

mijðtÞ ¼ m̄ij · hðtÞ ð2:6Þ

with hðtÞ representing a monotonic function hðtÞ such
that hðtÞ → 0 as t=tG → 0 and hðtÞ → 1 as t=tG → ∞. This
function hðtÞ completely characterizes the manner in which
the phase transition unfolds as a function of t. We shall
enforce our expectation that tG is the “central time” of the
phase transition by defining tG through the relation
hðtGÞ ¼ 1=2. Furthermore, the most significant changes
to hðtÞ occur during a window of approximate duration ΔG
centered around tG—i.e., within the time interval
½tG − ΔG=2; tG þ ΔG=2�. Note that the mass matrix M2

in Eq. (2.5) is Hermitian and has non-negative eigenvalues
at any instant in time so long as all of the m2

ij are real, with
m2

00 ≥ 0, m2
11 ≥ −M2, and m2

00ðM2 þm2
11Þ ≥ m4

01.
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Beyond these requirements, most of the qualitative
results of this paper are largely independent of the
particular choice of functional form for hðtÞ. Indeed, for
many purposes we may regard hðtÞ rather than t itself as our
cosmological clock variable, choosing to study the dynam-
ics of our system relative to our “h-clock”without worrying
about the particular mapping between hðtÞ and the true
cosmological time t. However, when necessary, we shall
adopt the specific choice [17,18]

hðtÞ ¼ 1

2

�
1þ erf

� ffiffiffi
π

p
tG

ΔG
log

�
t
tG

���
; ð2:7Þ

where the parameter ΔG, as discussed above, represents the
approximate time interval over which the phase transition
unfolds. Indeed, as discussed in Ref. [17], the algebraic
form in Eq. (2.7) satisfies all of our requirements and
provides a compelling model for a generic phase transition,
provided that we take ΔG ≤

ffiffiffiffiffiffi
2π

p
tG.

Given the action in Eq. (2.1), our fields ϕ0;1 then evolve
according to the equations of motion

ϕ̈i þ 3H _ϕi þ
X
j

M2
ijϕj ¼ 0; ð2:8Þ

where HðtÞ is the Hubble parameter. With the mass matrix
given in Eq. (2.5), the dynamics of the scalar sector is thus
nearly completely determined. Indeed, it remains only
to specify initial conditions for our fields at some initial
time t⋆ prior to the phase transition.
Given our ultimate goal of extending the space of initial

field configurations for inflation into regions that would
a priori experience no inflation at all, a particularly
convenient choice of initial conditions is to assume that
only our initially massless field ϕ0 has a nonzero displace-
ment, i.e., that ϕiðt⋆Þ ¼ Aϕδi0 where Aϕ is a constant, and

that both fields start from rest, with _ϕiðt⋆Þ ¼ 0. This choice
of initial conditions ensures that our scalar sector has no
energy prior the phase transition, so that all energy in the
scalar sector is derived from the phase transition itself. Note
that it is natural to take ϕ1ðt⋆Þ ¼ _ϕ1ðt⋆Þ ¼ 0 because the
heavy massM of this field renders it initially underdamped,
whereupon Hubble friction damps out any oscillations this
field might undergo. We can therefore assume that this is
what has occurred prior to t⋆. However, there are also
several reasons why we choose _ϕ0ðt⋆Þ ¼ 0. First, even for a
massless (and therefore overdamped) field ϕ0, Hubble
friction damps out any initial field velocity _ϕ0 over a
Hubble timescale, even while ϕ0 remains nonzero.
Moreover, we note that an initial condition with nonzero
ϕ0 but zero _ϕ0 emerges naturally from production mech-
anisms such as misalignment production. But most impor-
tantly, as explained in Sec. I, our goal in this paper is to
have our initial values of ϕi and _ϕi both sub-Planckian.

While our eventual results will prove somewhat sensitive to
Aϕ (which is why we shall keep this as a free parameter
throughout this paper), most of our results will turn out to
be largely insensitive to the precise sub-Planckian value of
_ϕ0ðt⋆Þ as long as this value is of the same sign as Aϕ. For

all of these reasons, we shall assume that _ϕ0ðt⋆Þ ¼ 0 in
what follows. However, in Sec. III we shall return to this
issue and demonstrate explicitly how our results would
change if we allowed _ϕ0ðt⋆Þ to vary.
Our choice of the initial time t⋆ also deserves comment.

Clearly we wish to choose a time which is much earlier than
our phase transition, while our hðtÞ function in Eq. (2.7) is
still fairly close to zero. We shall therefore define our
fiducial time t⋆ through the condition that hðt⋆Þ ¼ 10−10,
and we shall use this value for t⋆ for all explicit calculations
in this paper. In particular, this choice is always larger than
the Planck time, and for values of tG and ΔG within what
will eventually be our main region of phenomenological
interest we find t⋆ ≈ tG − 2.3ΔG. However, the main
qualitative results of this paper will be completely inde-
pendent of t⋆ so long as t⋆ ≪ tG.
This, then, completely specifies the physics of the scalar

sector. In particular, for any choice of the initial conditions
M and Aϕ, we see that there are five parameters which
govern the resulting physics: two parameters tG and ΔG
which govern the temporal features of the phase transition,
and three parameters m̄2

00, m̄
2
11, and m̄2

01 which describe
the late-time contributions to the mass matrix that result
from this phase transition. Because of the time-dependent
nature of the mass matrix, our two fields ϕ0 and ϕ1

experience a nontrivial time evolution. In particular, at
any instant of time these two fields experience a mixing
angle θðtÞ given by

tanð2θÞ≡ 2m2
01

M2 −m2
00 þm2

11

: ð2:9Þ

Thus, the mass eigenstates of our system ϕλ0 and ϕλ1—
along with their corresponding mass eigenvalues λ0 and
λ1—are continually changing over the course of the phase
transition. At any instant, the mass eigenstate ϕλiðtÞ is
overdamped if λiðtÞ < 3HðtÞ=2 and otherwise under-
damped. Indeed it is only at late times t ≫ tG after the
phase transition has passed that our system asymptotes to
one with particular fixed late-time mass eigenstates ϕλ0 and
ϕλ1 with fixed late-time masses λ̄0 and λ̄1.
For our work, it shall prove convenient to recast the mass

matrix (2.5) into the form

M2 ¼ 1

2
m2

sum

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
2
664

ffiffiffiffiffiffiffi
1−α
1þα

q
1 − β

1 − β
ffiffiffiffiffiffiffi
1þα
1−α

q
3
775; ð2:10Þ
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where we have defined the time-dependent quantities

m2
sum ≡M2 þm2

00 þm2
11;

α≡ M2 −m2
00 þm2

11

M2 þm2
00 þm2

11

;

β≡ 1 −
m2

01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

00ðM2 þm2
11Þ

p : ð2:11Þ

Thus β—the only one of these quantities which depends on
m2

01—parametrizes the degree to which our fields mix
at any instant of time. Requiring a Hermitian, positive-
semidefinite mass matrix in Eq. (2.10) then restricts us to
the parameter rangem2

sum ≥ 0, jαj ≤ 1, and 0 ≤ β ≤ 2, with
α ¼ �1 allowed only for β ¼ 1. Indeed, within these
ranges, Eq. (2.9) now takes the form

tanð2θÞ ¼ 1 − β

α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
; ð2:12Þ

where −π ≤ θ ≤ π. Likewise, at any moment in time, the
eigenvalues of the mass matrix in Eq. (2.10) take the
simple form

λ20;1 ¼
1

2
m2

sum

h
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ ð1 − α2Þð1 − βÞ2

q i
; ð2:13Þ

with λ20 þ λ21 ¼ m2
sum, as expected. Since λ0 ≤ λ1 in all

cases, we see that m2
sum=2 is both the maximum possible

value for λ20 and the minimum possible value for λ21.
It is possible to exploit certain symmetries of this two-

scalar model to restrict the ranges of our parameters still
further. For example, as long as we are only interested in
understanding the behavior of our fields and their corre-
sponding energy densities, our system is invariant under the
transformation ðϕ0;ϕ1Þ → −ðϕ0;ϕ1Þ in which the signs
of both fields are simultaneously flipped. This symmetry
allows us to restrict our attention to the range −π=2 ≤
θ ≤ π=2. Likewise, flipping the relative signs of the fields
—e.g., taking ðϕ0;ϕ1Þ → ðϕ0;−ϕ1Þ—is tantamount to
flipping β → 2 − β. We can thus restrict our attention to
values of β which lie within the range 0 ≤ β ≤ 1 without
loss of generality. This corresponds to restricting m2

01 ≥ 0,
or equivalently restricting our attention to −π=4 ≤ θ ≤
π=4, with positive (negative) values of θ corresponding to
positive (negative) values of α.
Thus, for any values of M and Aϕ, our scalar sector

can be parametrized in terms of m̄2
sum, ᾱ, β̄, tG, and ΔG.

However, for any value of m̄2
sum and ᾱ, our result in

Eq. (2.13) provides a one-to-one relationship between β̄
and the late-time mass λ̄0 of the lighter scalar ϕλ0. Since ϕλ0

will eventually be identified with the inflaton, and λ̄0 with
the inflaton mass, we will occasionally trade β̄ for λ̄0 in
what follows.

B. Building the slingshot:
Assembling the required ingredients

In general, this two-field scalar system can exhibit a
variety of different behaviors and thereby give rise to a rich
set of possible phenomenologies [17]. However, what shall
concern us in this paper is the possibility of a “slingshot”
effect in which the VEVof the lighter field ϕλ0 is propelled
toward super-Planckian values. We shall therefore hence-
forth focus on this possibility, and demonstrate that the
required ingredients emerge quite naturally within the setup
we have described.
In order to understand how this dynamics emerges,

let us begin by considering the behavior of the lighter
mass eigenvalue λ0 as a function of the three parameters
fm2

sum; α; βg. The value of λ0 is given in Eq. (2.13), with
contours of constant λ20 plotted in Fig. 2 as fractions of its
maximum value m2

sum=2. For this figure we have taken
m2

sum ¼ M2 and plotted contours within the remaining
ðα; βÞ parameter space.
Superimposed on this contour plot we have also indi-

cated various “flow” lines, denoted with arrows. These
lines indicate the time evolution of the system, and may be
understood as follows. Long before the phase transition,
our mass matrix takes the form given in Eq. (2.3),

FIG. 2. A contour plot of the lighter eigenmass λ20, normalized
by its maximum possible value m2

sum=2, across the fα; βg
parameter space. For this plot we have taken m2

sum ¼ M2, with
M ¼ Mp=3. Superimposed on this contour plot are “flow lines”
(indicated with arrows), whose interpretations are discussed in
the text. When needed for concreteness later in this paper, we
shall often consider the “benchmark” flow line with ᾱ ¼ 0.8 and
β̄ ≪ 1 shown in red. An additional green contour line connects
the points along each flow line at which the value of λ0 is
maximized.
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corresponding to m2
sum ¼ M2 and α ¼ β ¼ 1. This is

therefore the initial point for our time flow. In general,
our system then evolves through different values (m2

sum,
α, β) as functions of time, and the particular path that is
followed through this parameter space ultimately depends
on the values of the chosen late-time parameters m̄2

ij [or
equivalently ðm̄2

sum; ᾱ; β̄Þ] which parametrize the particular
phase transition under study. However, for the special case
m̄2

sum ¼ M2 (or equivalently m̄2
11 ¼ −m̄2

00), it turns out that
m2

sum remains fixed at M2 for all times. In this case our
system evolves only within the two-dimensional ðα; βÞ
plane shown in Fig. 2. Thus, for m̄2

sum ¼ M2 and any
chosen ðᾱ; β̄Þ, the flow line connecting ðα; βÞ ¼ ð1; 1Þ to
ðα; βÞ ¼ ðᾱ; β̄Þ indicates the path for the flow of our system
as a function of time, with the corresponding values of λ20
varying as the different λ20-contour lines are crossed. This
flow then terminates once the final location ðᾱ; β̄Þ is
reached.1

For any specified final location ðᾱ; β̄Þ, the results in
Fig. 2 indicate how the lightest eigenvalue λ0 varies as our
system evolves in time. For our purposes, however, the
most important feature of this dynamical evolution is the
fact that λ0 often evolves nonmonotonically, first rising and
then falling again as we pass through the phase transition.
Indeed, this nonmonotonicity in λ0 occurs for all flow lines
which cross the green line in Fig. 2, with values of ðᾱ; β̄Þ
lying below and/or to the left of this green line. As we see
from Fig. 2, such behavior tends to be rather generic across
much of the ðᾱ; β̄Þ parameter space, and is particularly
dramatic in cases for which ᾱ < 0 and β̄ is relatively small.
We can understand how this behavior arises as follows.

At early times prior to the phase transition, the eigenvalues
of our mass matrix are λ0 ¼ 0 and λ1 ¼ M. However, as we

enter the phase transition, the value of λ0 inevitably begins
to rise, and when ᾱ < 0 the two eigenvalues λ0;1 actually
begin to approach each other. There is no level-crossing,
however, because the mixing between these states ulti-
mately induces a level repulsion which kicks λ1 toward
even higher values while causing λ0 to drop again before
settling into its final, asymptotic value. This level repulsion
is particularly strong in cases for which the two states
experience significant mixing (i.e., cases in which β̄ is
relatively small). Thus it is ultimately level repulsion that
lies at the root of the nonmonotonicity of λ0.
This nonmonotonic “pulse” behavior for λ0 is sketched

in Fig. 3. For concreteness, we have also superimposed
a Hubble parameter which falls with time as HðtÞ ∼ 1=t.
As we shall see, the existence of such a pulse has two
important consequences. Both of these will turn out to be
critical ingredients in building our eventual slingshot.
The first of these ingredients is the existence of a

“re-overdamped” phase in the dynamics of the lighter
scalar field. Recall that in general, a scalar of constant
mass m begins in an overdamped phase if 3HðtÞ ≥ 2m at a
sufficiently early time t. During such a phase, the field VEV
remains approximately constant, with very little kinetic
energy. However, since the Hubble parameter falls with
time as the universe evolves, there eventually comes a point
at which such a scalar transitions to an underdamped phase
in which 3HðtÞ < 2m. The field VEV then begins to
oscillate around zero. However, if the mass of the scalar
in question experiences a pulse, as shown in Fig. 3, it is
possible for the scalar to become overdamped once

FIG. 3. “Pulse” behavior for the lightest eigenvalue λ0, sketched
as a function of time. This pulse behavior is ultimately the result
of level repulsion between the two scalars in our system, and is
particularly severe when the two mass eigenvalues approach each
other (as occurs when ᾱ < 0) and experience significant mixing
(as occurs when β̄ is relatively small). For the special case
m2

sum ¼ M2, such pulse behavior emerges for all ðᾱ; β̄Þ lying
below and/or to the left of the green contour in Fig. 2. As we shall
see, this pulse behavior simultaneously gives rise to the two
ingredients which are critical for building a slingshot for ϕλ0 : the
phenomenon of re-overdamping and the possibility of a para-
metric resonance.

1As an aside, we note that since a given flow line is specified
by the choice of its final location ðᾱ; β̄Þ, our ability to plot general
flow lines without endpoints as in Fig. 2 rests upon a highly
nontrivial fact: any flow line passing through a given point
ðα�; β�Þ en route to its final location ðᾱ; β̄Þ entirely subsumes the
(a priori distinct) flow line for which the final location is instead
taken to be ðα�; β�Þ. In other words, all flow lines which begin at
ðα; βÞ ¼ ð1; 1Þ and include a given intermediate point ðα�; β�Þ
actually coincide for all portions of the flow between these two
points regardless of the particular time at which the ðα�; β�Þ point
is reached. Interestingly, this in turn implies that any arbitrary
shift t� → t� þ δt in the time t� at which a given intermediate
point is reached can be realized simply by shifting the final
location ðᾱ; β̄Þ of the flow line (and thereby shifting the under-
lying theory). Moreover, this shift in ðᾱ; β̄Þ simply moves ðᾱ; β̄Þ
along the same flow line. In this sense, then, these flow lines—
now viewed as trajectories within the ðᾱ; β̄Þ plane—have an
additional interpretation as classical renormalization-group flows
which describe how our different theories are connected under
such time shifts. While this discussion has been limited to the
special case withm2

sum ¼ M2, as shown in Fig. 2, these properties
hold even for flows that traverse the full three-dimensional
ðm2

sum; α; βÞ parameter space.
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again for a nontrivial interval of time—even after having
already been underdamped. Indeed, we see from Fig. 3
that there are two distinct intervals of time during which
3HðtÞ ≥ 2λ0ðtÞ. Upon entering this second overdamped
phase, the oscillations of the field VEV cease, as expected.
However, because the field VEV is already oscillating when
it enters the re-overdamped phase, it enters with an initial
velocity which is no longer subject to the restoring forces
that would have produced oscillations. Such a field VEV
thus retains this initial velocity, subject only to the Hubble
friction that eventually brings this velocity to zero.
The existence of a “pulse” for the mass λ0 can also

potentially give rise to our second important ingredient: a
parametric resonance that acts during the initial under-
damped phase—i.e., during the pulse itself. Recall that
in general a harmonic oscillator experiences an nth-order
parametric resonance that magnifies the amplitudes of
successive oscillations if the mass of the oscillator exhibits
its own oscillatory behavior whose frequency is approx-
imately ð2=nÞ times the natural oscillator frequency, with
n ∈ Zþ. However, this is exactly what can occur here, since
the pulse described above furnishes us with a changing
mass. Of course, a true parametric resonance requires that
the mass experience periodic oscillations, whereas in our
case λ0 experiences only a single pulse. However, such a
pulse mimics half an oscillation, and it turns out that even
this small segment of an oscillation is sufficient to induce a
parametric resonance provided this pulse has an appro-
priate effective frequency ωeff. In general, the effective
frequency ωeff of the pulse may be obtained from the
curvature of λ20ðtÞ near t ≈ tp, where tp is the time at which
the pulse reaches its maximum height, and is given by [17]

ω2
eff ¼ −4

λ̈0
λ0

				
t¼tp

: ð2:14Þ

By contrast, the natural frequency of the oscillating scalar
field near t ≈ tp is nothing but λ0ðtpÞ, since it is the mass
of the field that drives the oscillations. We thus obtain a
condition for the existence of an nth-order parametric
resonance [17]:

�
λ̈0
λ30

�				
t¼tp

¼ −
1

n2
; n ∈ Zþ: ð2:15Þ

Varying the width ΔG of the phase transition induces
variations in the value of the left side of this equation.
Thus, there exists a discrete set of phase-transition widths

ΔðnÞ
G for which this resonance condition is satisfied.

Assuming the width ΔG of the phase transition matches

one of these resonant widths ΔðnÞ
G , an nth-order parametric

resonance therefore enhances the size of the field oscil-
lations near the end of the underdamped phase that
immediately precedes re-overdamping.

Putting these two ingredients together, we now have
the basic recipe for our slingshot that propels the lighter
mass-eigenstate field ϕλ0 to a super-Planckian VEV.
Choosing an appropriate set of parameters ðᾱ; β̄Þ gives
rise to a pulse for the mass λ0 of this field. If this pulse has
an appropriate shape, as described in Eq. (2.15), the field
oscillates during the pulse. Of course, it is critical for
the functioning of our slingshot that we enter the re-
overdamped phase precisely at a moment where the
oscillating field has its maximum velocity, so that our
field is “released” from oscillatory behavior and launched
with the maximum possible velocity. However, it turns
out that the condition for this to happen is the same as that
in Eq. (2.15) which establishes the parametric resonance
in the first place. Thus, once the parametric resonance is
established through the proper choice of ΔG, the resulting
pulse has precisely the correct width in order to launch
the field VEV with maximum velocity into the re-
overdamped phase. Indeed, it turns out that if the width

of the phase transition is given by ΔðnÞ
G , appropriate for

satisfying the nth-order parametric resonance condition,
then our field experiences n=2 oscillations within the
underdamped phase before the eventual “launch” into the
re-overdamped phase. As a result, parametric resonances
with odd orders n launch their field VEVs in a direction
which is opposite to that for even orders n.
These points are illustrated in Fig. 4, which shows our

slingshot mechanism in action. In this figure, we show the
time evolution of the lighter field ϕλ0 when the phase-

transition width ΔG is set to ΔðnÞ
G for n ¼ 1; 2;…; 6. In each

case, our field begins with a VEV at −Mp and undergoes
n=2 oscillations within the underdamped phase before
being launched toward a field value whose magnitude
vastly exceeds that of its initial value prior to the phase
transition. Indeed, in each case the field is “launched”
precisely upon entrance into the re-overdamped phase.
It is natural to refer to this mechanism for generating a

large field VEV as a “slingshot.” In ancient times, prior to
the invention of rubber and other elastic materials, a
slingshot of the David/Goliath variety was fashioned by
attaching a projectile to a rope, twirling the rope around
overhead with increasing speed, and then releasing the
projectile at just the right moment so as to launch the
projectile in the desired direction. Our slingshot mechanism
is essentially the same: we too begin with an interval of
periodic oscillations enhanced through a parametric reso-
nance, followed by a “release” from the oscillatory behav-
ior at just the proper moment so as to propel the projectile
forward with maximum velocity. Indeed, the projectile in
this instance is nothing but the field VEV, and its release
from oscillations is nothing but the entrance into the re-
overdamped phase. Likewise, the different higher-order
resonances correspond to the different points at which the
release can take place, with successive higher orders of
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resonance alternating between forward or backward motion
of the projectile.
At first glance it might seem that our slingshot mecha-

nism is fine-tuned in the sense that we must be precisely

sitting on the parametric resonance, with ΔG ¼ ΔðnÞ
G , in

order to successfully launch our fields to other regions.
However, this is not the case. In Fig. 5, we show the same
n ¼ 1 and n ¼ 2 resonance curves from Fig. 4, along with
48 additional curves that illustrate the behavior of the field
ϕλ0 when we are not sitting on either resonance, but rather
are situated between these resonances. Indeed, in some
sense these curves “interpolate” between the n ¼ 1 and
n ¼ 2 resonance curves and correspond to phase-transition

widths ΔG which progress in equal-sized steps from Δð1Þ
G to

Δð2Þ
G . We see that even in cases which are off resonance, our

slingshot mechanism continues to propel the field VEV
toward large values. In other words, our parametric
resonances are quite broad, and our system continues to
benefit from the existence of these resonances even if it is
not finely tuned to match their parameters.

Given this slingshot mechanism, we can now proceed to
consider how our scalar sector would evolve in a cosmo-
logical setting, both during and after the slingshot. In Fig. 6
we show the evolution of the masses λi (top panel), the
fields ϕλi (second panel), and their corresponding energy
densities ρλi (third panel). For all panels, the flow of time is
indicated in terms of logða=aGÞ≡ log½a=aðtGÞ�, the num-
ber of e-folds since the phase transition, and we have
plotted all of these quantities as functions of this number
under our continuing assumption that our background
cosmology is radiation-dominated. Note that the energy
densities plotted in Fig. 6 are given by

ρ̄λi ¼
1

2
ð _ϕ2

λi þ λ̄2iϕ
2
λi
Þ: ð2:16Þ

However, these energy densities can be meaningfully
associated with the mass-eigenstate fields ϕλ0 and ϕλ1 only
after the phase transition has effectively concluded and the
mixing angle θ between these states has settled into its

FIG. 5. The n ¼ 1 (blue) and n ¼ 2 (red) resonance curves
from Fig. 4, along with a spectrum of 48 intermediate curves that
describe the behavior of the ϕλ0 field for phase-transition widths
ΔG lying at equally spaced intervals between the resonant widths

Δð1Þ
G and Δð2Þ

G . From top to bottom, these curves correspond to

phase-transition widths ΔG ¼ ð1 − r=49ÞΔð1Þ
G þ ðr=49ÞΔð2Þ

G with
r ¼ 1; 2;…; 48 respectively. For reference, the curve whose
asymptotic field behavior is almost completely flat corresponds
to r ¼ 27. We see that even when we are not sitting precisely on a

resonant width ΔðnÞ
G , our slingshot mechanism is often still

capable of propelling our field VEVs to relatively high values.
This ultimately happens because our parametric resonances are
quite broad. Thus our slingshot mechanism does not require a
significant amount of fine-tuning in order to operate as desired.

FIG. 4. The time-evolution of the ϕλ0 field in cases where the

phase-transition width ΔG is equal to a resonant width ΔðnÞ
G ,

plotted as functions of time for 1 ≤ n ≤ 6 and assuming an initial
field VEV ϕλ0 ¼ −MP for t ≪ tG. (This sign is chosen as a
convention so that the primary n ¼ 1 resonance propels our field
VEV toward positive values.) For each nwe see that our slingshot
mechanism successfully propels the field toward a large field
VEV. In this figure (and in all subsequent figures in this paper),
all dimensionful quantities are to be understood in units of
appropriate powers of the Planck scale Mp, and we have taken
M ¼ Mp=3 throughout. Note that the parameters chosen for this
plot—namely m2

sum ¼ M2, ᾱ ¼ 0.8, and λ̄0 ¼ 10−7Mp—corre-
spond to the flow line indicated in red in Fig. 2.
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asymptotic, late-time value θ̄. By contrast, at earlier times,
the identities of the mass eigenstates are continually
evolving and changing, and the existence of additional

_θ-dependent mixing terms within the total energy density
ρϕ of the scalar system prevents ρϕ from being cleanly
separated into individual contributions of the form appear-
ing in Eq. (2.16). For this reason the separate energy
densities ρλi are plotted only after

_θ has become sufficiently
small and these contributions to ρϕ can be meaningfully
separated. The moment at which this occurs is indicated
with open circles within this panel, and at earlier times we
simply plot the total scalar-sector energy density ρϕ.
Likewise, in Fig. 6 we have also plotted the equation-of-
state parameter wϕ of the scalar sector (bottom panel). This
is defined as

wϕ ≡ Pϕ

ρϕ
¼

1
2

P
k
_ϕ2
k − Veffðϕi; tÞ

1
2

P
k
_ϕ2
k þ Veffðϕi; tÞ

; ð2:17Þ

where Pϕ and ρϕ are the total pressure and energy density
associated with the scalar scalar. For all panels of this figure
we have chosen M ¼ Mp=3 as a benchmark value, with
m2

sum ¼ M2, ᾱ ¼ 0.8, and λ̄0 ¼ 10−7Mp. We have also

taken our phase transition to have a width ΔG ¼ Δð1Þ
G .

The results in Fig. 6 can be understood as follows. In the
top panel, we see the behavior of the mass eigenvalues λ0;1
(blue and black curves, respectively), along with the
Hubble curve superimposed (red). The Hubble parameter
scales as 1=ð2tÞ, as expected for a radiation-dominated
cosmology, while λ1 remains close to Mp across the full
time interval shown in the figure. However λ0 clearly
exhibits the “pulse” we have discussed, along with a
relatively long subsequent period of re-overdamping.
This re-overdamping period is demarcated in Fig. 6 as
that period existing between the vertical dashed red lines.
In the second panel, we show the corresponding behavior

of the mass-eigenstate fields ϕλ0;1 . As discussed above, the
heavier field ϕλ1 (solid black curve) remains underdamped
and thus experiences damped oscillations throughout the
time interval shown, but the amplitudes of these oscillations
are always sufficiently small that these oscillations are not
readily evident in this figure. By contrast, the VEV of the
lighter field ϕλ0 (solid blue curve) experiences a dramatic
change as a result of the “slingshot” dynamics: this field is
endowed with a huge velocity upon emerging from the
phase transition and for this choice of model parameters is
ultimately propelled to a value around ϕλ0 ≈ 35Mp after
only a few e-folds. Indeed, it is only after the period of re-
overdamping ends that this field begins to exhibit damped
oscillations, as expected.
For purposes of comparison, we also display the corre-

sponding ϕλ0 curves (dashed blue curves) that would

result if we had taken ΔG ¼ Δð2Þ
G or ΔG ¼ Δð3Þ

G rather than

ΔG ¼ Δð1Þ
G . We see that for each of these higher-order

resonances, our slingshot mechanism likewise endows ϕλ0

FIG. 6. Dynamical evolution of the scalar sector within a
background (radiation-dominated) cosmology with a falling
Hubble parameter HðtÞ ≈ 1=ð2tÞ. The different panels from top
to bottom indicate the evolution of the scalar masses λi, the
corresponding fields ϕλi , their energy densities ρλi , and the
equation-of-state parameter wϕ of the scalar sector. All curves
correspond to the case of the n ¼ 1 resonance, except the dashed
curves which show how the fields would have evolved under the
n ¼ 2 and n ¼ 3 resonances instead. For this figure we have
taken M ¼ Mp=3 and λ̄0 ¼ 10−7Mp as reference values. We
observe that _ρλ0 ≈ 0 during the time interval shaded in gray, with
the equation-of-state parameter for our scalar sector remaining
near wϕ ≈ −1 during this interval.
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with a large, trans-Planckian field VEV—albeit a VEV
which is somewhat smaller than that obtained for the
primary resonance.
In the third panel of Fig. 6, we show the evolution of the

energy densities ρλ0;1 . The energy density ρλ1 associated
with the heavier scalar (black curve) declines steadily as
ρλ1 ∝ a−3 across the entire time interval shown in the
figure, as appropriate for a field which behaves like massive
matter. By contrast, the energy density ρλ0 of the lighter
field (blue curve) evolves in nontrivial way. Immediately
upon emerging from the phase transition, the energy
density of this field is almost entirely kinetic. It thus
redshifts much more rapidly, dropping as ρλ0 ∝ a−6.
However, as the lighter field VEV approaches its apex,
the dissipation of the corresponding energy density ceases
almost entirely. Indeed, at this point the velocity of the
lighter field approaches zero, whereupon our field is fully
re-overdamped with no residual velocity remaining from
the slingshot. This is thus an epoch in which the energy
density of the lighter field behaves effectively as vacuum
energy, with _ρλ0 ≈ 0. Because of the importance of this
epoch in our eventual discussion, we have shaded this
_ρλ0 ≈ 0 epoch with a gray background in Fig. 6. This epoch
only ends when the period of re-overdamping ends, where-
upon this field begins to oscillate again and ρλ0 begins to
fall accordingly as 1=a3.
In the bottom panel of Fig. 6 we plot two quantities: the

effective equation-of-state parameter wϕ for our scalar
system (black curve), and the equation-of-state parameter
w for this entire example universe (orange). The behavior of
wϕ follows directly from the properties we have seen in
the previous panels. Because ρλ0 ≫ ρλ1 at all times after
the phase transition, wϕ is essentially determined by the
behavior of ϕλ0 . At early times—i.e., for a ≪ aG—we have
wϕ ≈ −1. However, the scalar sector becomes kinetic-
energy dominated, with wϕ ≈þ1, immediately after ϕλ0
is released from the slingshot. As we enter the fully re-
overdamped region shaded in gray, wϕ drops to −1,
signifying the passage to a vacuum-energy dominated phase
for the scalar sector. When the period of re-overdamping
eventually ends and ϕλ0 begins to behave like massive
matter, wϕ begins to oscillate around wϕ ≈ 0. Of course,
despite this behavior for wϕ, we see that the equation-of-
state parameter w for the universe as a whole remains fixed
at w ¼ þ1=3. This reflects our original assumption that we
are operating within a background cosmology which is
radiation-dominated, as consistent with the falling Hubble
curve indicated in the top panel of Fig. 6.

III. BUILDING AN INFLATIONARY
SLINGSHOT COSMOLOGY

In this section, we discuss how the scalar sector and
slingshot mechanism described in Sec. II can become the

core elements of an inflationary cosmology. In Sec. III A,
we describe how a full slingshot cosmology can be
constructed and we demonstrate that such a cosmology
can indeed give rise to an inflationary epoch. Then, in
Sec. III B, we show that such an inflationary epoch can can
have a duration sufficient to address the horizon and
flatness problems.

A. From scalar sector to inflationary
slingshot cosmology

In Sec. II, we considered a system of two scalar fields
which undergo a cosmological phase transition and dem-
onstrated a mechanism in which a parametric resonance
followed by a re-overdamping phase together conspire to
“slingshot” the VEVof the lighter field to super-Planckian
values. We even found that such a system can give rise to
many of the features normally associated with cosmologi-
cal inflation, with the lighter scalar field effectively
experiencing something akin to “slow-roll” behavior, with
_ρλ0 ≈ 0. Indeed, this situation arises within the gray shaded
region in Fig. 6. We even demonstrated that the energy
associated with our scalar sector as a whole behaves as
vacuum energy during this period, with a corresponding
equation-of-state parameter wϕ ≈ −1.
Unfortunately, this period of evolution is ultimately not

inflationary. Inflation would require a slowly varying
Hubble parameter j _Hj ≪ H2, but instead our Hubble
parameter is falling with HðtÞ ≈ 1=ð2tÞ, as consistent with
our original assumption of a fixed radiation-dominated
background cosmology. Likewise, we have seen that the
equation of state for the entire universe is correspondingly
fixed at w ¼ þ1=3, as expected under radiation-domina-
tion. Of course, in Sec. II we fixed the background
cosmology in this way so that we could focus on the
scalar sector. However, by embedding our scalar sector
within a fixed background cosmology, we were effectively
disregarding the gravitational backreaction of this cosmol-
ogy on the scalar field dynamics. In other words, we were
implicitly assuming that the scalar sector is only a sub-
dominant component of our total cosmology, with a total
scalar-sector energy density which is much less than the
total energy density of the universe.
In order for our slingshot effect to potentially trigger

an inflationary phase for the universe, we must instead
enlarge our perspective by treating the scalar sector as the
dominant component. However, this change in perspective
immediately introduces several complications that must be
considered.
First, we must take care to track the total energy flow

within our cosmological setup. Recall that our scalar sector
begins without energy, and only gains energy through the
cosmological phase transition. Indeed, it is this phase
transition which is ultimately responsible for the explicit
time dependence in the effective potential Veffðϕi; tÞ in
Eq. (2.2). However, if this energy is now to be considered
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the dominant component of energy density in the universe,
then we must account for its source. In particular, since the
energy density ρϕ of our scalar sector has a time-evolution
governed by

_ρϕ þ 3Hð1þ wϕÞρϕ ¼ þ ∂Veff

∂t ; ð3:1Þ

there must also be a generic source sector with energy
density ρS governed by

_ρS þ 3Hð1þ wSÞρS ¼ −
∂Veff

∂t : ð3:2Þ

This will therefore balance the total energy budget in the
H → 0 limit (or equivalently in the co-moving frame), as
required. It is of course natural to imagine that wS ¼ −1, so
that this sector consists of vacuum energy, and we shall
make this choice throughout the rest of this paper. Indeed,
we shall further assume that ρS is negligible after the phase
transition, and thus its details are irrelevant for the physics
after this transition.
In a similar vein, we may also wish to have a radiation

sector of some sort to trigger the phase transition as the
universe cools. Thus, we shall henceforth consider a
minimal cosmological model consisting of three sectors:
the scalar sector as outlined in Sec. II, a source sector as
described above, and a radiation sector with total energy
density ρR. Indeed, our discussion in Sec. II implicitly
assumed the relation

ρS þ ρϕ ≪ ρR; ð3:3Þ

but we now wish to consider the more general situation
in which

ρS þ ρϕ ≳ ρR ð3:4Þ

during and after the phase transition, when our slingshot
operates. In fact, the specific initial conditions in Sec. II
imply that ρϕ ¼ 0 prior to the phase transition, whereupon
the assumption in Eq. (3.4) reduces to the assumption
that ρS ≳ ρR.
This in turn leads to our second complication. In Sec. II,

our analysis of the slingshot assumed a Hubble parameter
which falls as HðtÞ ≈ 1=ð2tÞ, regardless of the dynamics of
the scalar sector. However, if we now wish to incorporate
the situation in Eq. (3.4), then the scalar and source sectors
all contribute non-negligibly, and in general HðtÞ is given
by the Friedmann equation

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ þ ρS þ ρR

3M2
p

s
: ð3:5Þ

This then introduces a gravitational back-reaction on the
dynamics of scalar system, so that its equations of motion
are rendered nonlinear. As a result, we expect the dynamics
discussed in Sec. II to be significantly altered. In particular,
we now must determine the extent to which the critical
ingredients of our slingshot mechanism in Sec. II—e.g., the
re-overdamping phase, the parametric resonance, etc.—
survive this gravitational backreaction. After all, it is
a priori possible that our slingshot mechanism as a whole
fails to survive this change. Moreover, even if these features
do survive, it is possible that our parametric resonances
might become much more narrow and thereby require an
extreme fine-tuning in the value of ΔG. This too would be
an undesirable outcome.
To investigate these possibilities, we repeat the calcu-

lations leading to Fig. 6, now under the assumption given in
Eq. (3.4). In particular, we shall consider two particular
cases of Eq. (3.4), one in which ρRðt⋆Þ ¼ M4

p and the
second in which ρRðt⋆Þ ¼ 10−3M4

p. We shall also continue
to assume the same parameter choices as for Fig. 6, namely
M ¼ Mp=3, m̄2

sum ¼ M2, ᾱ ¼ 0.8, and λ̄0 ¼ 10−7Mp.
Our results are shown in Fig. 7, where the solid (dotted)

curves for HðtÞ, ρRðtÞ, and wðtÞ correspond to the larger
(smaller) value of ρRðt⋆Þ listed above. Several features
immediately become apparent upon comparing these
results with those in Fig. 6. First, we note from the top
panel that the Hubble curve still crosses the lighter mass λ0
at multiple points, giving rise to several damping transi-
tions. In other words, the re-overdamping phase appears to
survive gravitational backreaction. Second, examining the
field evolution, we find that the parametric resonance also
survives, including the higher-order resonances. Thus, our
slingshot remains intact: we continue to have a relatively
long period of re-overdamping at the beginning of which
the VEVof the lighter field ϕλ0 is propelled to large, trans-
Planckian values. Indeed, we see that the period of re-
overdamping is now significantly extended beyond what it
was in Fig. 6, lasting for more than three times as many
e-folds.
As before, the magnitude of the field VEV ϕλ0 continues

to grow, in this case ultimately reaching a maximum value
ϕλ0 ≈ 8Mp, until the kinetic energy of the field is depleted
by Hubble friction. This once again leads to an epoch
during which _ρλ0 ≈ 0, as shaded in gray. Indeed, during this
epoch the lighter field satisfies the slow-roll conditions.
Moreover, the energy density in the lighter scalar field
continues to dominate that of the heavier scalar field, with
ρλ0 ≫ ρλ1 throughout this interval. We therefore once again
have wϕ ≈ −1.
However, in stark contrast to what occurs in Fig. 6, the

total energy density for the universe is now dominated by
the scalar field dynamics. Thus the transition to a vacuum-
dominated scalar sector now indicates the beginning of a
truly inflationary epoch, with the lighter scalar field ϕλ0
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serving as the inflaton. In other words, the epoch shaded
in gray in Fig. 7 experiences slow-roll inflation, with w ≈
wϕ ≈ −1 throughout this epoch. This is consistent with the
fact that the Hubble parameter in the top panel of Fig. 7 is
now approximately constant during this period—the same
fact which is responsible for lengthening the period of re-
overdamping relative to what it was in Fig. 6, and thereby

extending our period of inflation to a larger number of e-
folds than would otherwise have occurred.
We thus conclude that an inflationary epoch can emerge

from field configurations which, at first glance, do not lead
to inflation. Indeed, it is the detailed properties of the
cosmological phase transition which create the slingshot
that propels the VEVof the inflaton field ϕλ0 to the super-
Planckian values from which inflation then emerges.
The gravitational backreaction has additional important

effects. For example, during the slingshot launch of the
lighter scalar field ϕλ0 , as the VEVof this field is growing
toward its maximum value, the kinetic-energy density of
this field dominates that of the scalar sector and thus
dominates the Hubble damping. We thus find that H ≈
j _ϕλ0 j=ð

ffiffiffi
6

p
MpÞ, whereupon we see that ϕλ0 evolves linearly

with respect to the number of e-folds Nkin ≡ R Hdt during
this period, i.e.,

dϕλ0

dNkin
≈ ζ

ffiffiffi
6

p
Mp; ð3:6Þ

with an overall sign ζ ≡ ð−1ÞnsgnðAϕÞ which depends on
the order n of the resonance and the initial value Aϕ of ϕ0,
as defined below Eq. (2.8). In this sense, the “velocity”
dϕλ0=dNkin of the field as it is launched is independent of
the particular resonance involved. Likewise, we see that the
maximum field VEV to which our lighter scalar field is
launched is smaller in Fig. 7 than it was in Fig. 6. This loss
of efficiency is not surprising, since the damping H ∼ ffiffiffiffiffi

ρϕ
p

is now directly determined by the amount of energy density
in the scalar sector.
Consulting Fig. 7, we can also see the effect of varying

ρRðt⋆Þ. As long as ρRðt⋆Þ≲M4
p, it turns out that ρR ≲ ρλ0 at

the time when inflation begins. Thus the radiation compo-
nent of the total energy density is already subdominant by
this point, and changing ρR will have essentially no effect
on the resulting inflationary epoch. Of course, if ρR were to
exceed ρλ0 at this time, then the onset of inflation would be
delayed until the later time at which ρR finally falls below
ρλ0 . However, such a situation cannot happen because this
greater value of ρR would imply a super-Planckian radi-
ation energy density prior to the phase transition, which is
of course unphysical. The solid pink line for ρR shown in
Fig. 7 is therefore the maximum value for ρR that can be
adopted in any self-consistent cosmology. On the other
hand, our choice for ρRðt⋆Þ does have an effect on the
physics prior to the phase transition, most notably as it
concerns the overall equation-of-state parameter wðtÞ.
However, all of these effects are transient, existing only
for a short period of time until the phase transition sets
in. We thus conclude that the physics of our inflationary
epoch is largely independent of the particular sub-
Planckian choice for ρRðt⋆Þ, and we shall therefore

FIG. 7. Same as Fig. 6, except within the context of a
cosmology in which the energy density of the scalar sector
dominates. We see that the resulting gravitational backreaction
not only preserves our slingshot but also leads to a period of slow-
roll inflation (shaded in gray).
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adopt the simplifying assumption that ρR ≪ ρS þ ρϕ in
what follows.
We have not yet investigated the extent to which

gravitational backreaction affects one important remaining
feature of our slingshot mechanism. Recall that in the
discussion surrounding Fig. 5, we observed that the sling-
shot is not especially fine-tuned in ΔG. However, it is
possible—as with the other phenomena presented in
Sec. II—that this property is spoiled by the gravitational
backreaction. If so, this would be problematic, as such a
fine-tuning would make it far less likely for realistic
slingshot models to exhibit appropriate values of ΔG.
However, this is ultimately not the case. In Fig. 8 we plot

the maximum inflaton field VEV jϕðIÞ
λ0
j that is ultimately

reached after the slingshot as a function of the phase-
transition width ΔG for several different late-time eigen-
masses λ̄0. As we see from Fig. 8, the parametric
resonances generally continue to be extremely broad, a
feature which remains valid regardless of the mass λ̄0 of the
inflaton. In fact, each of the resonances in Fig. 8 is so broad
that a fine-tuning is necessary in order to avoid resonant
behavior. Our slingshot mechanism can therefore operate
with a wide variety of phase-transition widths ΔG, and is

therefore not particularly sensitive to this aspect of the
phase transition.

B. Shooting further

Thus far we have demonstrated that our slingshot
mechanism—properly embedded within an appropriate
cosmological framework—is capable of giving rise to an
inflationary epoch. Indeed, given the parameters under-
lying the plots in Fig. 7, we have seen that the resulting
inflationary epoch lasts for approximately 20 e-folds.
However, we have yet to explore the full parameter space
of our model and thereby assess how many e-folds of
inflation may ultimately be obtained through this mecha-
nism. In particular, we seek to know whether we can
exploit our slingshot mechanism in order to reach the target
Ninf ∼Oð50–60Þ needed to address the horizon and flat-
ness problems.
Towards this end, we shall now perform a more

systematic exploration of the parameter space of our
slingshot model in order to identify the regions within
whichNinf is maximized. Our results are shown in Fig. 9. In
this figure we display contours of the number Ninf of e-
folds of inflation produced by our slingshot, starting from
ϕλ0 ¼ Aϕ ¼ −Mp and _ϕλ0 ¼ 0 prior to the phase transition.
These results are obtained by numerically solving
Eqs. (2.8) and (3.2) at each point in parameter space, with
HðtÞ given by Eq. (3.5). From left to right, the results
shown in the three panels of the figure respectively
correspond to the late-time inflaton-mass values λ̄0=Mp ¼
f10−5; 10−7; 10−9g, and we have taken the width of the

phase transition to be ΔG ¼ Δð1Þ
G in each case.

Given the results in Fig. 9, we see that for each choice of
λ̄0 there actually exists a global maximum for Ninf within
the ðᾱ; m̄2

sumÞ-space. The location of this maximum is
largely insensitive to the value of λ̄0, and occurs around
m̄2

sum ≈M2 and ᾱ ≈ 0.9 in each panel of this figure. We
shall therefore adopt these as benchmark values for all
future analyses in these paper. We also see that the global
maximum value of Ninf actually increases with decreasing
λ̄0—a fact already suggested in Fig. 8 on the basis of the

corresponding values of jϕðIÞ
λ0
j reached in each case.

The presence of such a global maximum for Ninf stems
from the interplay between two competing considerations.
The first of these considerations is the value of the peak
mass λ0ðtpÞ at top of the pulse, as this determines the
velocity with which the field is released from the slingshot.
In order to indicate how λ0ðtpÞ varies as a function of
m̄2

sum=M2 and ᾱ for fixed λ̄0, we have also included within
each panel of Fig. 9 contours (red curves) of the dimen-
sionless ratio

Q≡ λ0ðtpÞ
λ̄0

: ð3:7Þ

FIG. 8. The maximum field VEV jϕðIÞ
λ0
j ultimately reached after

the slingshot, plotted as a function of the phase-transition width
ΔG for several different late-time eigenmasses λ̄0. From left to
right, the different peaks within each curve correspond to the
successive higher-order parametric resonances driven by the
mass-generating phase transition. We see that each of these
peaks (particularly that associated with the left-most primary
n ¼ 1 resonance) is quite broad, with essentially the same large
VEV realized for a relatively large range of phase-transition
widths ΔG near their resonant values. Thus very little fine-tuning
is required in order for our slingshot mechanism to capture the
benefits of these parametric resonances.
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Note that since λ̄0 is fixed within each panel, contours ofQ
are also essentially contours of λ0ðtpÞ. In general, we
observe that within each panel, both Q and λ0ðtpÞ increase
with m̄2

sum=M2 and with 1 − ᾱ throughout the parameter
space shown.
The second consideration which has a significant impact

on the value of Ninf is the energy density ρλ1 of the heavier
field. In the regions of parameter space within which ρλ1
represents a significant fraction of ρϕ at the onset of
inflation, Ninf is significantly suppressed. In order to
illustrate the impact of this suppression, we have included
a black dashed curve within each panel of Fig. 9 which
separates the regions (to the left and right, respectively) in
which either ρλ0 or ρλ1 dominates the other at the onset of
inflation. We immediately see that Ninf is significantly
suppressed when ρλ1 dominates. Thus, within each panel of
the figure, we see that Ninf increases with λ0ðtpÞ (i.e., with
1 − ᾱ and m̄2

sum=M2)—but only up to the point at which we
cross this black dashed curve and this suppression sets in.
It is for this reason that each value of λ̄0 or Q leads to a
global maximum for Ninf.
Note that requiring that ρλ1 ≲ ρλ0 at the onset of inflation

also places an upper bound on the initial energy density ρλ1
(or equivalently ρ1) at times t⋆ prior to the phase transition.
To determine this bound analytically, we begin by noting
that the mass of this field is sufficiently large that this field
is always highly underdamped. Thus ρλ1 ∝ a−3 at all times
other than during the phase transition. Moreover, relative to
the timescales associated with the rapidly oscillating heavy
field, the phase transition is essentially adiabatic and thus

does not significantly perturb the time-evolution of this
field away from this scaling behavior [assuming, of course,
that the contribution to ρλ1 generated by the phase transition
is less than the initial ρλ1ðt⋆Þ]. In order to leave our
inflationary epoch undisturbed, we therefore require that

ρλ1ðt⋆Þe−3N ≲ 1

2
λ̄20

h
ϕðIÞ
λ0

i
2
; ð3:8Þ

where N is the number of e-folds between t⋆ and the
beginning of inflation. We can estimate N by noting that
the slingshot occurs approximately at the time tG þ ΔG,
and therefore

N ≈
2

3ð1þ hwipreÞ
log

�
tG þ ΔG

t⋆

�
þ Nkin; ð3:9Þ

where hwipre represents a rough average value of the
equation-of-state parameter wðtÞ prior to the phase tran-
sition and where Nkin represents the number of e-folds
during the kination phase prior to inflation. Using an
approximation for Nkin to be derived in Eq. (4.2), we then
find that Eq. (3.8) places a bound on the initial energy
density:

ρλ1ðt⋆Þ ≲
1

2
λ̄20

�
tG þ ΔG

t⋆

�
2=ð1þhwipreÞ

Q
			Aϕϕ

ðIÞ
λ0

			: ð3:10Þ

Moreover, while a precise value of hwipre depends on
model-specific details concerning our initial source and
radiation sectors, we can obtain a conservative estimate by

FIG. 9. Contours (black curves) showing the number of e-folds of inflation Ninf produced by our slingshot, starting from ϕλ0 ¼
Aϕ ¼ −Mp and _ϕλ0 ¼ 0, plotted within the ðᾱ; m̄2

sumÞ plane assuming the primary (n ¼ 1) resonance. The different panels correspond to
different choices of the inflaton mass λ̄0. In each panel, the thick black dashed curve separates the regions in which the total energy
density immediately prior to inflation is dominated by that of the lighter field (left) versus the heavier field (right). Contours of the mass
quotient Q≡ λ0ðtpÞ=λ̄0 are also shown (red). In each case, we see that Ninf is maximized immediately to the left of the thick black
dashed curve, near ᾱ ≈ 0.9 and m̄2

sum ≈M2, and that this maximum value of Ninf increases with decreasing inflaton mass λ̄0 (or
increasing Q).
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taking hwipre equal to its maximum value, which in this
case is þ1=3. Of course, the initial conditions we have
chosen in Sec. II imply that ρλ1ðt⋆Þ ¼ 0, so the bound in
Eq. (3.10) is always satisfied.
Overall, however, we see from Fig. 9 that our slingshot

mechanism leads to an inflationary epoch spanning a
significant number of e-folds within sizable regions of
the parameter space shown. Moreover, comparing the
results across the three panels of this figure, we also
observe that the maximum value of Ninf is largest when
λ̄0 is small and the corresponding value ofQ at the location
of the maximum is large.
Given this, the natural question is to determine how large

Ninf might become if we push this process still further.
Unfortunately, due to numerical limitations, full contour
plots of the sort shown in Fig. 9 become increasingly
difficult to obtain as λ̄0 is taken increasingly small (or as Q
is taken increasingly large). However, now that we have
identified the location of parameter space in which Ninf is
maximized, and given that this region is largely indepen-
dent of λ̄0, we can focus our numerical analysis to this
smaller relevant region in order to study how the maximum
value of Ninf varies as a function of Q.
Our results are shown in Fig. 10, where we plot the

maximum field VEV jϕðIÞ
λ0
j reached by our slingshot (top

panel) as well as the corresponding number Ninf of e-folds
of inflation produced as functions ofQ for several different
initial conditions parametrized byAϕ (solid colored curves).
For this figure we have taken M ¼ Mp=3, m̄2

sum ¼ M2,

ᾱ ¼ 0.9, and the primary resonance ΔG ¼ Δð1Þ
G . In all cases,

we see that the maximum value of Ninf can easily exceed our
target range Ninf ∼Oð50–60Þ, provided Q is sufficiently
large. Indeed, with these parameter choices the precise value
Ninf ¼ 60 corresponds to Q ≈ 4 × 109 for jAϕj ¼ Mp, or
equivalently λ̄0 ≈ 10−11Mp. Thus, we conclude that our
slingshot mechanism is indeed capable of yielding infla-
tionary epochs of sufficient duration to solve the horizon and
flatness problems—even when the inflaton starts with initial
conditions from which inflation would not otherwise have
been possible.
Interestingly, we also see from Fig. 10 that Ninf does not

grow without bound as Q is increased, but eventually
saturates somewhat beyond our target range. This is
apparently a direct result of the dynamics of this system.
However, there is also another limitation on the size ofNinf .
Increasing the value of Ninf corresponds to increasing the
abruptness with which our scalar-field eigenvalues λ0;1 (and
the mixings between the corresponding eigenstates) vary
during the phase transition. Such changes render the
evolution of the potential nonadiabatic, which in turn
results in the production of particles and a concomitant
loss of energy density from the zero-modes of ϕλ0 and ϕλ1 .
This too can ultimately suppress the maximum attainable
value of Ninf . This particle-production effect and the

corresponding upper bound it implies for Ninf are discussed
in greater detail in Appendix A. The upshot, however, is
that our main conclusion is unchanged. Consequently our
slingshot mechanism can indeed yield inflationary epochs
of sufficient duration, as described above.
As we discussed in Sec. II, our slingshot mechanism has

thus far been built on the assumption that ϕ0ðt⋆Þ ¼ Aϕ but

that _ϕ0ðt⋆Þ ¼ 0. A natural question, then, is to examine
what might happen if we loosen this last restriction and
consider arbitrary values of _ϕ0ðt⋆Þ. In Fig. 11 we plot the
resulting values of Ninf as a function of _ϕ0ðt⋆Þ for a variety
of different masses λ̄0. In this plot the solid and dashed lines
respectively correspond to primary-resonance slingshots
with ρRðt⋆Þ ¼ 0.1M4

p and ρRðt⋆Þ ¼ 10−3M4
p, and we have

taken Aϕ ¼ Mp along with our usual benchmark choices
M ¼ Mp=3 and ᾱ ¼ 0.9. Interestingly, when Aϕ and
_ϕ0ðt⋆Þ are of opposite signs, our field is first propelled

FIG. 10. The maximum field VEV jϕðIÞ
λ0
j reached by our

slingshot prior to the onset of inflation (top panel) as well as
the corresponding number Ninf of e-folds of inflation produced
(lower panel), plotted as functions of Q for several different
values of Aϕ assuming the primary (n ¼ 1) resonance. The solid
curves of a given color indicate the exact numerical values of

jϕðIÞ
λ0
j and Ninf that result from numerically solving the evolution

equations in Eqs. (2.8) and (3.2) in our preferred region of
parameter space with m̄2

sum ¼ M2 and ᾱ ¼ 0.9, while the dashed
curves indicate the results of analytical approximations to be
discussed in Sec. IV. In each case, we conclude that for
sufficiently large Q, our slingshot mechanism is indeed capable
of yielding inflationary epochs of sufficient duration to solve the
horizon and flatness problems—even when the inflaton starts
with initial conditions from which inflation would not otherwise
have been possible.
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towards smaller field VEVs before ultimately experiencing
the slingshot. This then results in a marked suppression in
the total number of inflationary e-folds produced. Indeed,
we see that the behavior of Ninf in the highly-suppressed
region is largely independent of the mass λ̄0 of the inflaton.
However, we also see from Fig. 11 that we can nevertheless
achieve large values of Ninf even when _ϕ0ðt⋆Þ ≠ 0. Indeed,
when Aϕ and _ϕ0ðt⋆Þ are of the same sign, our results for

Ninf are approximately independent of _ϕ0ðt⋆Þ, as claimed in
Sec. II. Thus we do not need to fine-tune the value of _ϕ0ðt⋆Þ
in order to achieve our results.
Finally, while the plots shown in Fig. 7 illustrate the

cosmological evolution resulting from our slingshot
mechanism, it is also instructive to understand our slingshot
mechanism from the perspective of an inflaton phase-space
diagram of the sort shown in Fig. 1. In Fig. 12 we show
the same phase-space diagram as in Fig. 1 assuming the
same quadratic inflaton potential Vðϕλ0Þ ¼ 1

2
m2

ϕϕ
2 where

we now identify the inflaton field ϕ as ϕλ0 and the inflaton
mass mϕ as λ̄0, and where we have now chosen
λ̄0 ¼ 3 × 10−12Mp. Superimposed on this diagram we also
plot two possible inflaton trajectories: the first (yellow)

illustrates the slingshot trajectory with Aϕ ¼ −Mp and

ΔG ¼ Δð1Þ
G (corresponding to Q ≈ 1.2 × 1010 and

Ninf ≈ 65, in accordance with the results in Fig. 10), while
the second (white) shows the trajectory with Aϕ ¼ −MGUT

and ΔG ¼ Δð2Þ
G (corresponding to Ninf ≈ 42), where

MGUT ≈ 2 × 1016 GeV. In each case all other parameters
are chosen as in Fig. 10. The yellow and white inflaton
trajectories each begin within the red region, signifying that
their initial configurations would not ordinarily lead to
inflation. However, in each case it is the slingshot mecha-
nism which propels the inflaton into another phase-space
region from which inflation can eventually emerge: in the
first case the inflaton is propelled upwards into the blue
region, while in the second case the inflaton is initially
carried upwards but is then ultimately propelled down-
wards into the gray region—a reversal of direction which
is consistent with the properties of the n ¼ 2 parametric
resonance, as shown in Fig. 4.
In general, for a fixed inflaton potential, we have seen in

Fig. 1 that any inflaton trajectory is restricted to follow

FIG. 11. The number of inflationary e-folds produced by
our slingshot mechanism, plotted as a function of the initial
field velocity _ϕ0ðt⋆Þ prior to the phase transition. The solid and
dashed lines correspond to slingshots with ρRðt⋆Þ ¼ 0.1M4

p and
ρRðt⋆Þ ¼ 10−3M4

p, respectively. Despite the emergence of a

strong localized suppression when Aϕ and _ϕ0ðt⋆Þ are of opposite
signs, we see that Ninf remains large and approximately constant
when Aϕ and _ϕ0ðt⋆Þ are of the same sign. Thus our results are

fairly insensitive to the precise value of _ϕ0ðt⋆Þ in such cases, and
no fine-tuning of this variable is needed.

FIG. 12. The trajectory of the inflaton field ϕλ0 within the
fϕλ0 ;

_ϕλ0g phase space for different slingshots: the n ¼ 1 reso-
nance with Aϕ ¼ −Mp (yellow), and the n ¼ 2 resonance with
Aϕ ¼ −MGUT (white). Each slingshot is plotted for m̄2

sum ¼ M2,
ᾱ ¼ 0.9, and λ̄0 ¼ 3 × 10−12Mp. The background regions and
contours are similar to those in Fig. 1, and are drawn for a
quadratic inflaton potential Vðϕλ0Þ ¼ 1

2
λ̄20ϕ

2
λ0
. In the first case

(yellow), our slingshot launches the inflaton from the red region
upwards into the blue region, producing Ninf ≈ 65 e-folds of
inflation, while in the second case (white) our slingshot ulti-
mately launches the inflaton from the red region downwards into
the gray region, producing Ninf ≈ 42 e-folds of inflation. Many
other slingshot trajectories are also possible.
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contour lines of constant Ninf until reaching an attractor. It
may therefore seem surprising that our slingshot is capable
of propelling our inflaton field across such contour lines
into new regions of phase space which differ so funda-
mentally in their ability to generate inflation. However, as
discussed in Sec. II, at the root of our slingshot mechanism
is a cosmological phase transition which introduces a
fundamental time dependence into our effective inflaton
potential Veffðϕi; tÞ. It is this time dependencewhich allows
our inflaton trajectories to cross such contour lines. Phrased
slightly differently, this explicit time dependence in the
inflaton potential indicates that the phase transition induces
a flow of energy into/out of the scalar sector, and it is this
flow of energy which can kick the inflaton field to new
locations in phase space. Additionally, this time depend-
ence can endow the heavier scalar ϕλ1 with a non-negligible
portion of the energy density, so that the energy density of
the universe is not entirely dominated by that of the lighter
field. However, after the phase transition has ultimately
passed and the energy density of the heavier field has
been diluted to negligible levels, our model is effectively
described by a single light field ϕλ0 moving in a quadratic
potential

Vðϕλ0Þ ¼
1

2
λ̄20ϕ

2
λ0
; ð3:11Þ

with ϕλ0 starting at the new phase-space location to which it
has been propelled by the slingshot. Indeed, from this point
forward, the inflaton will then follow the usual contour
lines. Thus, it is only during the phase transition that the
slingshot can work its magic, kicking the inflaton into a
new region of phase space from which the standard
inflationary dynamics then operates in order to produce
inflation.

IV. MAPPING TO INFLATIONARY
OBSERVABLES

Having demonstrated the success of our slingshot
mechanism in producing inflationary epochs of sufficient
duration, we now turn to a somewhat more theoretical
issue. Normally one would parametrize an inflationary

model in terms of the VEV ϕðIÞ
λ0

of the inflaton at the
moment when inflation commences. Indeed, the value of

ϕðIÞ
λ0

in turn determines most of the quantities of interest
which characterize the inflationary epoch, including Ninf .
However, our slingshot mechanism and its associated phase
transition furnish us with dynamics that occurs prior to this
point. As such, this mechanism effectively establishes a
map from parameters that characterize the phase transition
to the inflaton VEV itself:

fM; m̄ij;Aϕ;ΔG; tGg → ϕðIÞ
λ0
: ð4:1Þ

In this section, we shall construct this map analytically for
the region of parameter space where Ninf is a maximum,
and then use this tool to elucidate different behaviors of the
slingshot mechanism. These results will also be useful
when we discuss several constraints on our mechanism in
Sec. V. For concreteness, we shall focus on the case in
which n ¼ 1, but we emphasize that qualitatively similar
results are obtained for higher-order resonances as well.

In order to derive our analytic expression for ϕðIÞ
λ0
, we

begin by noting that ϕλ0 undergoes a period of under-
damped oscillation during the phase transition, prior to the
onset of re-overdamping. Throughout this period, ϕλ0
oscillates with a frequency approximately equal to the
peak mass λ0ðtpÞ which the inflaton attains as a result of
the pulse. The velocity of the field as it is released by
the slingshot is therefore approximately _ϕλ0 ∼Aϕλ0ðtpÞ.
Within our region of interest, the corresponding kinetic-
energy density 1

2
_ϕ2
λ0 ∼

1
2
Aϕ

2λ20ðtpÞ is sufficiently large that
the universe enters a brief epoch of kination-domination
immediately after this release, wherein w ≈ wϕ ≈ 1.
During this epoch, however, the kinetic-energy density

with which ϕλ0 is initially endowed is rapidly dissipated
by Hubble damping, falling as ρϕ ∼ a−3ð1þwϕÞ ∼ a−6 until
essentially only potential energy remains. We can therefore
determine the number of e-folds of kination-domination
Nkin by taking the ratio of ρϕ between the beginning and
ending of this period:

e6Nkin ≈
1
2
½λ0ðtpÞAϕ�2
1
2
½λ̄0ϕðIÞ

λ0
�2

≈Q2
Aϕ

2

½ϕðIÞ
λ0
�2
: ð4:2Þ

Here Q is the mass ratio defined in Eq. (3.7). Meanwhile,
during the kination-dominated epoch, ϕλ0 evolves from

approximately its initial value ϕλ0 ≈Aϕ to its value ϕðIÞ
λ0

when inflation begins. Since the rate of change in ϕλ0
during the kination-dominated epoch is given by Eq. (3.6),
and since we are focusing our attention on the n ¼ 1
resonance, we have

ϕðIÞ
λ0

≈Aϕ − sgnðAϕÞ
ffiffiffi
6

p
MpNkin: ð4:3Þ

By eliminating Nkin between Eqs. (4.2) and (4.3), we

may obtain a rough estimate for the value ϕðIÞ
λ0
. However, in

order to refine this estimate, we incorporate a correction
factor into Eq. (4.2) which compensates for the fact that this
relation was derived within the approximation that the
transitions into and out of the kination-dominated epoch
are effectively instantaneous. This correction factor may
be parametrized as a linear shift in Nkin of the form
Nkin → Nkin þ δNkin. By comparing the results obtained
from Eq. (4.2) with our numerical results, we find that
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δNkin ≈ −1=3. Incorporating this correction, we find that

ϕðIÞ
λ0

is approximately

			ϕðIÞ
λ0

			 ≈
ffiffiffi
2

3

r
MpW

 
2
ffiffiffi
3

p
Q

e
ffiffi
3
2

p jAϕ j
Mp

jAϕj
Mp

!
; ð4:4Þ

where WðxÞ denotes the Lambert W-function and where
we have approximated 2−3=2e ≈ 1 in the argument of this
function.
Remarkably, despite the complicated dynamics associ-

ated with the phase transition, Eq. (4.4) indicates that the

initial value ϕðIÞ
λ0

for the inflaton field at the onset of
inflation is principally determined by the value ofQ. In this
sense, Q acts as a figure of merit which determines the
efficacy of the slingshot mechanism. Moreover, given that
Q is simply the ratio of the peak mass λ0ðtpÞ to the late-time
inflaton mass λ̄0, there exists a straightforward mapping
from the parameters fM;Aϕ; m̄ij;ΔG; tGg to Q, and hence

to ϕðIÞ
λ0
. For example, within our region of interest, we have

β̄ ≪ 1. Within this regime, the late-time inflaton mass is
given approximately by

λ̄20 ≈
1

2
m̄2

sumð1 − ᾱ2Þβ̄: ð4:5Þ

Likewise, we find that the mass λ0ðtpÞ at the peak of the
pulse is given by

λ20ðtpÞ ≈
M̄2

00

�
1þ m̄2

sum
M2 − 2

ffiffiffiffiffiffiffi
M̄2

11

M2

q �

1þ m̄2
sum
M2



m̄2

sum
M2 − 2ᾱ

� : ð4:6Þ

Since λ̄0 ∝ β̄1=2 in this regime, while λ0ðtpÞ is independent
of β̄, we have the freedom to adjust these two mass scales
independently of one another by varying the mixing
saturation. Thus, we can obtain a large Q—and thus, by

extension, a large field VEV ϕðIÞ
λ0
—by taking β̄ to be small

and thereby arranging a separation between the mass scales
λ0ðtpÞ and λ̄0.
From the relationship in Eq. (4.4) between our model

parameters and ϕðIÞ
λ0
, it is straightforward to determine the

number of e-folds of inflation generated by our slingshot
mechanism. In particular, since the final value of ϕλ0 at the

end of inflation is ϕðEÞ
λ0

¼ ffiffiffi
2

p
Mp, we find that

Ninf ≈
Z

ϕðEÞ
λ0

ϕðIÞ
λ0

dϕλ0

H
_ϕλ0

≈
1

4

h
ϕðIÞ
λ0

i
2

M2
p

−
1

2
; ð4:7Þ

with ϕðIÞ
λ0

given by Eq. (4.4). We may simplify the resulting
expression by noting that Q ≫ Mp=jAϕj≳ 1 within our

region of interest and invoking the approximation WðxÞ ≈
logðx= log xÞ for x ≫ 1. We then find that

Ninf≈
1

6
log2

2
64 2jAϕjQe

ffiffi
3
2

p 

1−

jAϕ j
Mp

�
1þ 3ffiffi

2
p


1− jAϕj

Mp

�
þ ffiffiffi

3
p

log

jAϕj

Mp
Q
�
3
75: ð4:8Þ

In Fig. 10, we have already plotted the exact values of

jϕðIÞ
λ0
j and Ninf as functions ofQ (solid curves) using results

obtained through full numerical calculations. We now
superimpose on these plots the results of the analytic

approximations in Eqs. (4.4) and (4.8) for jϕðIÞ
λ0
j and Ninf

respectively (dashed curves). As we see from this figure,
these two sets of results coincide well for all Q≲ 1010. We
thus conclude that Eqs. (4.4) and (4.8) provide excellent

approximations for jϕðIÞ
λ0
j and Ninf as functions of Q for all

Q within this range. Most importantly, this includes the
target range for Ninf in which we are most interested,
namely that for which Ninf ∼Oð50–60Þ. Of course, these
approximations fail to capture the suppression for jϕðIÞ

λ0
j and

Ninf that develops for Q≳ 1010. This is not unexpected, as
this suppression involves effects beyond those involved in
this analytical approximation.

V. CONSTRAINTS

At this point we have realized our main objectives in this
paper: we have developed a “slingshot” mechanism, we
have shown that it can lead to an inflationary epoch, and we
have further shown that there exist regions of parameter
space wherein a sufficient number of e-folds arises. In this
final section, we shall take a cursory look beyond these
primary objectives and briefly discuss the observational
consequences of this particular realization of the slingshot
mechanism.
Generally speaking, most of the useful information we

have about the inflationary epoch is derived from the
spectrum of anisotropies detected in the CMB. Since
λ̄0 ≪ H during the inflationary epoch, our inflaton field
ϕλ0 experiences quantum fluctuations

δϕλ0 ≈
H
2π

ð5:1Þ

throughout this epoch. These fluctuations are systemati-
cally “frozen-in” as classical curvature perturbations while
the universe inflates. Specifically, a fluctuation with
comoving wavenumber k effectively becomes classical
once k < aH and the corresponding wavelength exceeds
the comoving horizon. To a zeroth-order approximation
these primordial perturbations are scale-invariant, since H
is approximately constant during inflation. It is therefore
sensible to parametrize the scalar power spectrum PsðkÞ
and tensor power spectrum PTðkÞ in terms of their
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deviations from a purely scale-invariant form [19]. In
particular, these primordial power spectra are typically
parametrized as

PsðkÞ ¼ As

�
k
k�

�
ns−1

;

PTðkÞ ¼ AT

�
k
k�

�
nT
; ð5:2Þ

where As and AT are the respective amplitudes and ns, nT
are the scalar and tensor spectral indices. The fiducial
wavenumber k� which appears in both PsðkÞ and PTðkÞ
corresponds to the scale of perturbations which exit the
horizon some N�

inf e-folds before the end of inflation. Since
these modes leave detectable imprints in the CMB, obser-
vational data constrains the values of the parameters As, AT ,
ns, and nT and combinations thereof.
While the slingshot dynamics which leads to the infla-

tionary epoch is fairly complicated, the corresponding
predictions for inflationary observables are relatively
straightforward if Ninf ≫ N�

inf . The reason is that once
our phase transition has concluded, the inflaton potential in
this model is static and purely quadratic in ϕλ0 . For a
potential of this form, most inflationary observables are
effectively determined by the value of N�

inf alone, provided
that Ninf ≫ N�

inf . For example, the ratio of scalar-to-tensor
power is given by

r≡ As=AT ≈
16

1þ 2N�
inf

; ð5:3Þ

while the scalar spectral index is given by

ns ≈ 1 −
2

1þ 2N�
inf

; ð5:4Þ

and so forth. In other words, the observational constraints
which apply to our model are essentially the same as those
which apply to other models of inflation in which the
inflaton potential is purely quadratic, regardless of the
complicated dynamics through which the initial conditions
for the inflaton field are established.
By contrast, the amplitude As in Eq. (5.2) depends not

solely on N�
inf , but on other model parameters as well. In

particular, As is in determined by the energy scale of
inflation—or equivalently, given our potential, the late-time
mass λ̄0 of the inflaton—through the relation

As ¼
1

12π2M6
p

�
V3=2ðϕλ0Þ
V 0ðϕλ0Þ

�2				
ϕλ0

¼ϕ�
λ0

¼ 1

6

�
λ̄0½ϕ�

λ0
�2

4πM3
p

�2

; ð5:5Þ

where ϕ�
λ0
is the inflaton VEVat the time at which the mode

with wavenumber k� exits the horizon. Recent measure-
ments by the Planck Collaboration at the scale k� ¼
0.05 Mpc−1 yield an amplitude As ≈ 2 × 10−10 [20] for
scalar perturbations. Thus, in order to produce both
sufficient scalar power and a sufficient amount of infla-
tionary expansion, the inflaton mass must reside around the
scale λ̄0 ¼ Oð10−6MpÞ in such a scenario.
If we assume that the dominant primordial perturbations

are generated by quantum fluctuations of the inflaton
field, then a tension clearly exists between Eq. (5.5) and
other predictions which follow from this realization of
our slingshot mechanism. Of course, a significant feature
of this mechanism is that the initial inflation-triggering

field configuration ϕðIÞ
λ0

is not put in by hand, but rather
determined by the pre-inflationary phase transition. Indeed,
our slingshot mechanism provides a linkage between λ̄0 and

the field VEV ϕðIÞ
λ0
at the beginning of inflation, such that a

degree of freedom is mapped from the inflation model to
the phase transition.
This tension can be addressed in several ways. For

example, one might consider a generalization of our
minimal model in which the contributions to Veffðϕ; tÞ
from the phase transition include not only quadratic terms,
but higher-order terms as well. Alternatively, the primordial
perturbations may originate from another sector, such as
from the dynamics of a curvaton field χ [21–23], which
couples negligibly to the scalars involved in our slingshot
mechanism. Indeed, curvatons are a standard ingredient in
many models of early-universe dynamics, and in our case
the degrees of freedom associated with such a curvaton
sector allow us to relieve this tension and thereby render
our slingshot mechanism consistent with the observed
perturbation spectrum. Although at early times the curvaton
would be subdominant ρχ ≪ ρϕ and thereby act as a
spectator to the inflationary dynamics, the curvaton is still
subject to fluctuations δχ ≈H=ð2πÞ, provided it is suffi-
ciently light. After inflation ends, the curvaton grows closer
to dominating the energy density and eventually decays,
transferring its perturbations to the radiation bath [24,25].
The properties of the resulting perturbation spectrum are
then set not only by the Hubble scale during inflation, but
also by details of the curvaton evolution. Furthermore, we
note that while the curvaton dynamics depends on the
inflation model, the slingshot mechanism we have dis-
cussed in this paper is not affected by the introduction of
the curvaton. In general, the curvaton could conceivably
have many different types of potentials which lead to very
different field evolutions. Of course, for the (quadratic)
inflaton potential discussed in this paper, concave-up
curvaton potentials would fall short phenomenologically
since they cannot produce a sufficiently red-tilted spec-
trum. However, as explicitly shown in Ref. [26] and then
argued more generally in Ref. [27], potentials with a
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concave-down region can be phenomenologically viable.
Thus, our slingshot mechanism is not only capable of
producing an inflationary epoch with a sufficient number
of e-folds but can also co-exist with a curvaton sector that
helps to produce a phenomenologically acceptable per-
turbation spectrum.
We emphasize that the results of this section rests on the

assumption that Ninf ≫ N�
inf . If this assumption does not

hold, the analysis of the perturbation spectrum becomes
more subtle. Indeed, in this case PsðkÞ and PTðkÞ ulti-
mately depend on the state of the universe prior to inflation.
Such considerations shall be discussed in greater detail
in Sec. VI.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a novel “slingshot”
mechanism which can enlarge the space of viable initial
field configurations for inflation. We have illustrated this
mechanism within the context of a minimal model whose
core is a sector consisting of two scalar fields undergoing
a mass-generating phase transition. However, while this
minimal model contains all of the essential ingredients
necessary for our slingshot mechanism and yields a
sufficient number of e-folds of inflation, there are a number
of possible generalizations and extensions which merit
further study.
One such possible generalization concerns the form of

our effective potential Veffðϕi; tÞ. For simplicity, we have
focused in this paper on the case in which Veffðϕi; tÞ is
quadratic in the fields of the scalar sector. However, in the
most general case, higher-order terms may also arise in
Veffðϕi; tÞ. The presence of such anharmonic terms in the
potential can have a significant impact on the scalar
potential at large distances in field space away from its
minimum, potentially giving rise to plateau regions or other
features which could potentially alter the inflationary
dynamics and impact inflationary observables.
One natural way in which such higher-order terms in the

scalar potential might be generated is through a non-
minimal coupling of the fields in the scalar sector to
gravity. In particular, one could consider scenarios in
which a nonminimal coupling between the ϕi and the
scalar curvature R—e.g., a term ∝ Rϕ2

i—is present in the
Jordan frame [28]. In such scenarios, the resulting modi-
fication of the scalar potential in the Einstein frame can help
to ease tensions with applicable phenomenological con-
straints. Indeed, even in the simplest case in which the
scalar potential is quadratic in the Jordan frame, a non-
minimal coupling between the inflaton and R can deform
the potential such that it becomes concave down at large
field values, thereby rendering such a potential viable for
realistic inflation [29,30]. It would therefore be interesting
to investigate whether the introduction of such nonminimal
couplings between the ϕi and R in the context of our
slingshot mechanism would have similar advantages,

enhancing the number of e-folds, while at the same time
producing a sufficient amount of power in scalar
perturbations.
An interesting feature of our slingshot mechanism is that

the maximum number of e-folds of inflation obtained is
only slightly above the threshold value Ninf ≈Oð50–60Þ
needed in order to solve the horizon and flatness problems.
In most inflationary scenarios, the epoch of inflationary
expansion typically begins long before currently observ-
able modes in the perturbation spectrum exit the horizon. In
such models, the Bunch-Davies vacuum [31,32] provides a
natural set of initial conditions for these perturbations. By
contrast, in scenarios with Ninf ≈Oð50–60Þ, the initial
conditions which determine the spectrum of large-scale
perturbations differ from those associated with the Bunch-
Davies vacuum. In particular, they depend on the state of
the universe prior to the inflationary epoch [33,34]. In the
context of our slingshot mechanism, this spectrum in
principle depends on the state of the universe both during
the phase transition itself and during the kination-
dominated phase that follows it. Thus, in scenarios which
make use of our slingshot mechanism, the predictions for a
number of inflationary observables could deviate from
those associated with more standard inflationary scenarios.
It would be interesting to investigate the possible pertur-
bation spectra that can arise as a consequence—especially
since the spectra associated with nonstandard initial con-
ditions can exhibit certain features which are advantageous
from a phenomenological perspective. For example,
many scenarios involving other kinds of modifications of
the cosmological history prior to inflation—among them
fast-roll inflation [35–37], inflection-point inflation [38],
“climbing-scalar” scenarios in braneworld cosmologies
[39–42], other inflationary scenarios in string theory
[43], and scenarios involving an early epoch of radia-
tion-domination prior to inflation [44,45]—have been
invoked as explanations for the suppression of power at
low multipole number in the CMB.
Detectable cosmological imprints of our slingshot

mechanism could also potentially arise as a result of the
nonadiabatic evolution of the fields within our scalar sector.
One consequence of such nonadiabaticity is, of course,
particle production due to rapid changes in the inflaton
mass during the phase transition. This is discussed in
Appendix A. However, nonadiabaticity can have other
cosmological consequences as well. For example, abrupt
turns in the trajectory of the inflaton in field space can not
only likewise lead to particle production, but can also alter
the primordial perturbation spectrum [46]. Within the
context of our simple two-field model, this is not a concern:
while the mixing generated by the phase transition does
induce a turn in the inflaton trajectory, this occurs mostly
prior to inflation, and the turn is sufficiently gradual that
these effects may be safely neglected. However, these
effects could play an important role in constraining
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other, more general models in which our slingshot mecha-
nism is realized.
Along similar lines, the presence of additional heavy

fields during inflation can affect the pattern of non-
Gaussianities in the CMB. Indeed, our slingshot mecha-
nism relies on the mixing between the inflaton and other
heavy fields in the scalar sector. Thus, signatures of this sort
can potentially provide a way of testing our proposal.
Indeed, imprints in the CMB resulting from the presence
of such heavy fields have been studied extensively in the
literature, both within the context of quasi-single-field
inflation [47–49] and more generally via the analysis of
other, “cosmological collider” signatures [50]. That said,
the extent to which the pattern of non-Gaussianities is
modified by these considerations is set primarily by the
ratio H=mΦ, where mΦ is the mass scale of the additional
heavy field. Hence, while the effect of these fields on the
resulting pattern of non-Gaussianities will be important for
testing realizations of our mechanism with other kinds
of dynamically-generated potentials—e.g., realizations
which include heavy fields with masses closer to the
Hubble scale—the size of this effect is typically small
for the model considered in this paper since H=λ1 ≪ 1.
Another natural question regarding our slingshot mecha-

nism concerns whether it can be applied more than once.
Although we have shown that an adequate number of
e-folds of inflation can arise from a single slingshot, it
would be interesting to investigate whether an additional,
subsequent cosmological phase transition could induce a
second slingshot, thereby propelling the lighter field in the
scalar sector to even larger VEVs. Indeed, one might even
imagine being able to obtain Ninf ≈Oð50–60Þ e-folds of
inflation—or more—through a sequence of successive
slingshots. At first glance, it might not seem that multiple
slingshots could occur in succession, given that any
radiation present in the universe prior to the onset of
any inflationary epoch would be inflated away during that
epoch and would thus no longer be present after inflation in
order to trigger the next phase transition. This is not the
case, however. As we have seen in Sec. III, the period of
inflation precipitated by our slingshot mechanism typically
begins only after both the corresponding phase transition
and the kination-domination epoch which follows the
slingshot have essentially concluded. This opens up the
possibility that a second phase transition—and hence
another slingshot—could occur after the end of the first
phase transition but before inflation begins. Of course, this
presupposes that a suitable set of initial conditions for
the second slingshot arises after the first slingshot, and so
forth. However, the state of the scalar sector at end of the
kination-dominated epoch is one in which both fields are
effectively at rest, in which a significant hierarchy exists
between the masses of the two mass-eigenstates, and in
which the lighter of these two states (which is sufficiently
light that it effectively behaves as vacuum energy) is

displaced from the minimum of the potential. These are
precisely the initial conditions upon which our slingshot
is built.
Unfortunately, a significant amount of energy density is

dissipated from the scalar sector by Hubble friction during
the kination-dominated epoch which follows each sling-
shot. For this reason, it may be challenging to obtain a

significant overall enhancement in ϕðIÞ
λ0
—and hence in

Ninf—through successive slingshots. This issue is currently
under study [51].
On a final note, we comment on the extent to which fine-

tuning is required in order for our slingshot mechanism
to yield an inflationary epoch of acceptable duration. As
discussed in Sec. III, the parametric-resonance condition

ΔG ≈ ΔðnÞ
G does not require a significant degree of fine-

tuning. In fact, as we have seen in Fig. 8, a reasonable
amount of fine-tuning would actually be required in order
for ϕλ0 to avoid experiencing a substantial resonant
enhancement upon its release from the slingshot.
Similarly, we argued in Sec. III that we do not need to
fine-tune our initial inflaton velocity _ϕλ0ðt⋆Þ, provided that
it has the correct sign. (Indeed, in other inflation scenarios
this may no longer be true [52–59].) There is, however, one
fine-tuning which is required in order for our slingshot
mechanism to give rise to a suitable inflationary epoch. In
order to ensure that we obtain an inflationary epoch of
sufficiently long duration, our scenario requires a fairly
large value ofQ, which in turn requires a significant degree
of mixing between the two fields of our scalar sector, with
β̄ ≪ 1. However, this is tantamount to demanding that
λ̄0 ≪ H. Although commonly a requirement in many
models of inflation, such a small inflaton mass is unnatural
unless protected by some symmetry (e.g., a global shift
symmetry) and is generally difficult to control in the
presence of Planck-suppressed operators. These issues
constitute nothing other than the well-known η-problem.
Of course, it has not been our goal in this paper to eliminate
or ameliorate these fine-tuning problems; rather, our goal
has been to provide a slingshot-based method of establish-
ing viable initial conditions for inflation to occur. Our
slingshot mechanism can nevertheless be viewed as refor-
mulating these fine-tuning issues in terms of the mixing
structure of a scalar sector, as established by a preinfla-
tionary phase transition. This could potentially provide an
alternative route toward addressing these fine-tuning issues.
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APPENDIX: PARTICLE PRODUCTION IN THE
SCALAR SECTOR

In this paper, we have framed our discussion of the
scalar-field dynamics associated with our slingshot mecha-
nism largely in terms of the motion of the classical fields.
However, certain quantum-mechanical effects can have an
appreciable impact on the cosmology of our scalar sector
and must also be taken into account. In particular, in
scenarios in which the masses of the fields change abruptly,
there can be significant production of particlelike excita-
tions with comoving momenta k and corresponding ener-
gies ωk for which the adiabaticity condition

				 1ω2
k

dωk

dt

				≪ 1 ðA1Þ

is violated [60–63]. Bounds on the energy density asso-
ciated with such particlelike excitations of the fields in
our two-scalar model ultimately lead to an upper bound on
Ninf for any given choice of model parameters. Indeed, any
energy density pumped into particle production dilutes
the energy density carried by the homogeneous scalar
fields, thereby compromising the efficacy of our slingshot
mechanism.
In this Appendix, we derive a rough estimate for the total

energy density ρðpÞλ0
of particlelike excitations generated

during the phase transition in our model and assess the
extent to which the presence of this energy density at the
onset of inflation impacts our results. Since the heavier
mass λ21 typically evolves adiabatically before, during, and
after the phase transition, we focus solely on the contri-
bution associated with the lighter field ϕλ0 , which plays the
role of the inflaton.
In the mass eigenbasis, the evolution of ϕλ0 is governed

by the equation of motion [17]

ϕ̈λ0 þ 3H _ϕλ0 þ ðλ20 − _θ2Þϕλ0

¼ −2 _θ _ϕλ1 − ðθ̈ þ 3H _θÞϕλ1 ; ðA2Þ

where θ is the time-dependent mixing angle defined in
Eq. (2.9). The mixing-dependent terms, which are induced
by the rotation of the mass eigenbasis during the phase
transition, are negligible within regions of parameter space

which give rise to inflation. Dropping these terms and
making the field redefinition φ≡ a3=2ϕλ0 , we find that

φ̈þ
�
λ20 þ

�
3

2
H

�
2

w

�
φ ¼ 0; ðA3Þ

where w is the equation-of-state parameter for the universe
as a whole. At times soon before or after the phase
transition, λ0 ≪ H, and thus the second term inside the
square brackets in Eq. (A3) provides the dominant con-
tribution. However, during the phase transition the inflaton
field becomes underdamped, with 3H ≲ 2λ0, as a result
of the pulse in the time development of λ0ðtÞ. During a brief
interval around t ∼ tG, then, the first term in the square
brackets in Eq. (A3) dominates. It is this interval during
which the effects of nonadiabaticity are the most
pronounced.
In order to estimate the amount of particle production

due to these considerations, we must track the occupation
numbers of all the momentum modes, treating the homo-
geneous zero mode of φ as a classical, time-dependent
background. We begin by recalling that the quantum
inflaton field φ̂ is represented in the Heisenberg picture as

φ̂ðx; tÞ ¼
Z

d3k

ð2πÞ3=2 ½âkφkðtÞe−ik·x þ â†kφ
�
kðtÞeþik·x�;

ðA4Þ

where φkðtÞ is the Fourier mode of φðtÞ with comoving
momentum k, and where â†k and âk are the time-independent
creation and annihilation operators for this mode. Each of
the φkðtÞ satisfies an equation of motion of the form

φ̈k þ ω2
kφk ¼ 0; ðA5Þ

where the corresponding frequency

ω2
k ¼

k2

a2
þm2

eff ðA6Þ

inherits a time dependence both from the redshift of the
physical momentum k=a and from the evolution of the
effective inflaton mass meff . This effective mass, which is
given by

m2
eff ≡ λ20 þ

�
3

2
H

�
2

w; ðA7Þ

evolves in time both as a result of the scalar-field dynamics
associated with the phase transition and as a result of Hubble
expansion. Moreover, while the first term in Eq. (A7) is
completely specified by Eq. (2.13), the second depends
on the state of the universe at times prior to the phase
transition—and in particular on the equation-of-state param-
eter w for the universe at such times.
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In Fig. 13, we show how the value of m2
eff evolves as a

function of time during the phase transition, normalized to
the value of λ20ðtpÞ. The red curve shows the result obtained
for an initial equation-of-state parameter w ¼ −1 for the
universe immediately before the phase transition. The solid
black and dashed green curves shown in the figure
represent the contributions from the individual terms λ20
and ð3H=2Þ2w in Eq. (A7), respectively, as time evolves.
We observe that in the vicinity of the pulse, where the
change in the effective mass is most abrupt and the
departure from adiabaticity is expected to be greatest, λ20
represents the dominant contribution to m2

eff .
In order to derive an approximate analytic expression for

the energy density, we must determine the Bogoliubov
coefficients which relate the asymptotic solutions to the
equation of motion in Eq. (A5) for the φkðtÞ at early times
t ≪ tG, before the phase transition begins, to the corre-
sponding asymptotic solutions at late times t ≫ tG, after
it effectively concludes. Of course, the values for these
coefficients depend on how the effective mass m2

eff evolves
during the phase transition. For simplicity, and in order
to make the parametric dependence of our results more
transparent, we shall proceed by adopting a simple analytic
approximation for m2

eff—an approximation which shall
allow us to derive a corresponding analytic approximation

for ρðpÞλ0
. In particular, we find that the function

m2
eff ≈ λ20ðtpÞsech2

�
t − tp
1
2
ΔG

�
ðA8Þ

provides a good approximation to both λ20 and m2
eff in the

vicinity of the pulse. In fact, the blue dashed curve in
Fig. 13 actually agrees well with the λ20 curve throughout
the time interval shown.
Unfortunately, the blue dashed curve does not agree with

the m2
eff curve prior to the pulse. However, we expect that

this deviation will not have a large impact on our results.
The fact that m2

eff < 0 in the asymptotic regime in which
t ≪ tG implies that the φkðtÞ with k≲Ha are tachyonic,
with ω2

k < 0. However, such modes, whose wavelengths
exceed the Hubble radius at production, cannot properly be
considered to be particlelike excitations [46]. These modes,

which behave classically, therefore do not contribute to ρðpÞλ0
(although they can affect the spectrum of density pertur-
bations). It then follows that the spectrum of φkðtÞ with

higher momenta, which do contribute to ρðpÞλ0
, is approx-

imately equivalent to the spectrum of modes which would
be obtained had we replaced m2

eff with λ20 in Eq. (A6).
Given this, we shall approximate m2

eff as λ20 in deriving

our estimate for ρðpÞλ0
. We note, however, that the initial

value of w can have an impact on other inflationary
observables.
In both the early-time and late-time asymptotic regimes,

the inflaton potential evolves adiabatically and the φkðtÞ are
well approximated by φkðtÞ ≈ e−iωkt=

ffiffiffiffiffiffi
ωk

p
. It can therefore

be shown that the problem of finding the Bogoliubov
coefficients which relate these two sets of asymptotic
solutions for φkðtÞ is mathematically equivalent to the
problem of determining the transmission coefficients for
scattering off a potential VðxÞ ∝ −sech2ðxÞ in nonrelativ-
istic quantum mechanics [64]. Thus, by analogy, we find

that the differential energy density dρðpÞλ0
=dk of inflaton field

quanta per unit comoving momentum k at the time the
nonadiabatic evolution effectively ceases—which is
roughly equivalent to the time at which ϕλ0 is released
from the slingshot—takes the form

dρðpÞλ0

dk
≈
4πk2 cos2

h
π
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ20ðtpÞΔ2

G

q i
ð2πÞ3 sinh2 ðπ

2
ΔGkÞ

: ðA9Þ

We note that this differential energy density is largest for
modes with momenta in the regime k≲ Δ−1

G . Integrating
this energy density over k, we arrive at our estimate for the
total energy density associated with particlelike excitations
of the inflaton at the end of the phase transition. In
particular, at this time we find that

FIG. 13. The time development of the effective mass m2
eff of

the inflaton in our two-scalar model in the vicinity of the pulse.
The red curve shows the result obtained for an initial equation-
of-state parameter w ¼ −1 for the universe immediately before
the phase transition. The solid black and dashed green curves
shown in the figure represent the corresponding individual
contributions from the individual terms λ20 and ð3H=2Þ2w in
Eq. (A7), respectively. The dashed blue curve represents the
analytic approximation in Eq. (A8).
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ρðpÞλ0
≈
6ζð3Þ
π6Δ4

G

h
1þ cos



π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ20ðtpÞΔ2

G

q �i
; ðA10Þ

where ζðxÞ denotes the Riemann zeta function.
In order for our slingshot mechanism to be successful,

we must ensure that ρðpÞλ0
is small in comparison with the

energy density ρλ associated with the classical background
fields of the scalar sector. At the time at which the inflaton

is released from the slingshot, ρðpÞλ0
is given by Eq. (A10),

while ρλ ≈ 1
2
½λ0ðtpÞAϕ�2. Within our parameter-space

region of interest, λ20ðtpÞΔ2
G ≳ 1 and the ratio of these

two energy densities at this time is therefore

ρðpÞλ0

ρλ
≈

12ζð3Þ
π6λ20ðtpÞAϕ

2

�
1

Δ4
G

�
: ðA11Þ

During the subsequent kination-dominated epoch that
precedes the onset of inflation, this ratio increases due to

the fact that ρλ ∝ a−6 during this epoch, whereas ρðpÞλ0
,

which is dominated by the contribution from relativistic

momentum modes, scales like ρðpÞλ0
∝ a−4. Thus, the ratio of

these energy densities at the end of the kination-dominated
epoch, when inflation begins, is

ρðpÞλ0

ρλ

					
ϕini
λ0

≈
12ζð3Þ

π6λ20ðtpÞAϕ
2

�
e2Nkin

Δ4
G

�

≈
12ζð3ÞQ2=3

π6λ20ðtpÞΔ4
GjϕðIÞ

λ0
j2=3jAϕj4=3

; ðA12Þ

where in going from the first to the second line we have
used Eq. (4.2). Thus, we find that for a given choice of

model parameters, the bound ρðpÞλ0
≪ ρλ on the energy

density of inflaton field quanta at the onset of inflation
ultimately translates into a bound on Q of the form
Q ≪ Qmax, where

Qmax ≡ π9

24
ffiffiffi
3

p
ζ3=2ð3Þ λ

3
0ðtpÞΔ6

GjϕðIÞ
λ0
jAϕ

2: ðA13Þ

It is now straightforward to assess how this bound on Q
constrains our slingshot model. For example, for our
preferred parameter choices jAϕj¼Mp, m̄2

sum¼M2, and

ᾱ ¼ 0.9 with ΔG ¼ Δð1Þ
G , we find from Eq. (A13) that

Qmax ≈ 3.2 × 1011. Comparing this upper bound onQ with
the results shown in Fig. 10, we see that this bound indeed
imposes a nontrivial constraint on our model. However, we
also see that our slingshot mechanism can nevertheless
yield a sufficient number of e-folds for cosmic inflation.
It is also important to note that while the bound on Q

from particle production can be quite constraining, par-
ticularly for jAϕj < Mp, there are several ways in which
this bound can be relaxed in comparison to the benchmark
quoted above. First, we note that this bound can be
considerably weaker for higher-order parametric resonan-

ces than it is for the primary resonance. Indeed, since ΔðnÞ
G

increases with n—and in fact turns out to be roughly
proportional to n—higher-order resonances require larger
values of ΔG. Thus, given the explicit dependence of Qmax
on ΔG in Eq. (A13), we expect larger values of n to lead to
significantly higher values ofQmax. WhileQmax also has an

additional, implicit dependence on ΔG through jϕðIÞ
λ0
j which

somewhat mitigates this effect, the suppression of jϕðIÞ
λ0
j as

ΔG increases is quite gradual, as indicated in Fig. 8. Thus,
the net impact of increasing n is to raise Qmax and thereby
weaken the particle-production bound.
In this same connection, we also note from Fig. 8 that

the parametric resonances in our slingshot model are quite
broad. For example, the range of ΔG values associated
with the n ¼ 1 resonance spans several decades. Although
the corresponding range of Ninf is fairly narrow, the
corresponding range of Qmax is quite broad, extending
over an order of magnitude or more. Thus, the bounds on
Q obtained for a given resonance by taking ΔG to be

precisely equal to the corresponding ΔðnÞ
G are likely to be

overly conservative.
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