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We consider scenarios where the inflaton field decays dominantly to a hidden dark matter (DM) sector.
By studying the typical behavior of the Standard Model (SM) Higgs field during inflation, we derive a
relation between the primordial tensor-to-scalar ratio r and amplitude of the residual DM isocurvature
perturbations β which is typically generated if the DM is thermally decoupled from the SM sector. We
consider different expansion histories and find that if the Universe was radiation- or matter-dominated after
inflation, a future discovery of primordial DM isocurvature will rule out all simple scenarios of this type
because generating observable β from the Higgs is not possible without violating the bounds on r. Seen
another way, the Higgs field is generically not a threat to models where both the inflaton and DM reside in a
decoupled sector. However, this is not necessarily the case for an early kination-dominated epoch, as then
the Higgs can source sizeable β. We also discuss why the Higgs cannot source the observed curvature
perturbation at large scales in any of the above cases but how the field can still be the dominant source of
curvature perturbations at small scales.
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I. INTRODUCTION

The existence of the Standard Model (SM) Higgs boson
is by now a well-established fact. However, currently only
little is known about the dynamics of the Higgs field in the
early Universe and how the physics at very high energies
are affected by the properties of the Higgs. Examples of
scenarios where the field has been suggested to play an
important role include those where during cosmic inflation,
an early epoch of exponential expansion in the early
Universe, the Higgs field either assumed the role of the
inflaton, i.e., was responsible for causing the exponential
expansion, [1–4] or remained as an energetically subdomi-
nant spectator field which did not take part in driving
inflation and left no imprints on inflationary observables
[5–8]. However, even then the field may have had an
important effect on the physics after inflation. For example,
the field may have affected postinflationary reheating [9],
initial conditions for baryo- or leptogenesis [10–14], dark
matter production and electroweak symmetry breaking
[10,15], or generation of curvature perturbation [16–18].
Assuming the SM is a valid theory of the SM particle

properties and interactions up to high energies, the known
properties of the SM Higgs provide for a powerful probe to
the physics of the very early Universe or, equivalently, the
physics at very high energies. To demonstrate that, in this
paper we consider scenarios where inflation was driven by
a field other than the Higgs, an inflaton, and where, after
inflation, the inflaton decayed dominantly to a hidden

sector which was thermally decoupled from the visible SM
sector. By utilizing the known properties of the Higgs field,
we place constraints on this type of scenarios which apply
regardless of how weakly the hidden sector couples to the
SM. The scenario is well motivated, as it has recently been
suggested that in order for the electroweak vacuum to
remain stable and/or the quantum corrections due to the
Higgs ensure flatness of the inflaton potential at high
energies, the coupling between the inflaton and the Higgs
indeed has to be very small [19–24], in some cases even
smaller than g ∼ 10−8 for an operator of the type gϕ2h2,
where h is the Higgs and ϕ the inflaton [24]. If that is the
case, then it is likely that the SM and the hidden sector did
not enter into thermal equilibrium with each other in the
early Universe [10,25–27].
Similar to Refs. [28–31], we assume that the particle(s)

that constitute the observed dark matter (DM) component
in the Universe also reside in the hidden sector together
with the other decay products of the inflaton.1 We assume
that some component in the hidden sector, e.g., the lightest
of the hidden sector particles, came to dominate the energy
density at some epoch in the early Universe and decayed
into the SM sector and thus reheated it only after the
comoving DM density was generated. As shown in the
above works, due to the effective dilution of the DM
abundance at reheating, the DM component can in such
scenarios be as heavy as 1010 GeV while still being a
thermal relic. This is in contrast to the standard upper limit
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1See Refs. [32–35] for similar scenarios where the DM is the
inflaton.
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∼100 TeV imposed by unitarity in a scenario where the
DM component is a thermal relic from the SM sector heat
bath [36].
One may think that the only requirement for such a

scenario involving hidden sector DM and particle decays is
that the SM degrees of freedom must come to dominate the
energy density of the Universe before big bang nucleo-
synthesis at T ≃Oð1Þ MeV [37–40]. However, as we will
show in this work, also the observational constraints on DM
isocurvature perturbations can play an important role in
determining viability of different hidden sector models. By
DM isocurvature one refers to the possibility that pertur-
bations in the local DM energy density do not coincide with
those in the SM radiation. Because in scenarios involving
decoupled hidden sectors typically both the inflaton and the
SMHiggs acquire fluctuations during inflation, there are no
one but two sources of SM radiation energy density. If the
comoving DM density froze before the lightest hidden
sector state decayed into the SM sector, then the local
perturbations in DM energy density indeed will not
generically coincide with those in SM radiation, as DM
was not sourced by the Higgs but only the inflaton.
The current observational limits on primordial DM

isocurvature perturbations obtained from measurements
of the cosmic microwave background radiation (CMB)
are very stringent, i.e., the observations are consistent with
the absence of primordial isocurvature perturbations
[41,42]. The question therefore is: do the fluctuations
the Higgs typically acquires during inflation pose a threat
to scenarios where DM resides in a hidden sector—or can
they even be a virtue? The latter possibility is particularly
interesting, as the analysis of the CMB by the Planck
collaboration finds more smoothing of the so-called acous-
tic peaks of the CMB than predicted by the usual ΛCDM
model. The collaboration has suggested that this may be
explained by DM isocurvature perturbations with a blue-
tilted power spectrum [41,42] (see, however, Ref. [43] for
an alternative explanation). There are plenty of well-
motivated scenarios where a cold DM component generates
a primordial isocurvature mode, such as axion DM [44–47]
or a spectator DM consisting of a scalar [48–59], a vector
[59,60], or a fermion component [50,52]. In many cases,
the isocurvature power-spectrum is naturally blue-tilted
[48,51,53,55–58,60] and therefore can potentially mimic
the smoothing effect of lensing and/or lead to enhanced
structure formation [56,58,60].
However, in this paper we concentrate on an alternative

way to generate the DM isocurvature perturbations, the one
where the source is the SM Higgs. We show that in
scenarios where the DM resides in a decoupled hidden
sector isocurvature perturbations are generically generated
and there is a simple relation between the energy scale of
cosmic inflation and amplitude of the DM isocurvature
perturbations at large scales. The present work generalizes
the results originally presented in Ref. [29], as here we

consider different expansion histories and compute the
primordial DM isocurvature spectrum more carefully.
We find, in particular, that in the standard case where the

Universe was radiation-dominated after inflation or when it
underwent an early matter-dominated epoch, the Higgs
field does not typically pose a threat to models where both
inflaton and DM reside in a decoupled hidden sector, and
any evidence for primordial isocurvature will unambigu-
ously point to the existence of a nonthermal DM compo-
nent. However, as we demonstrate, this is not necessarily
the case for other postinflationary expansion histories. We
also show why the fluctuations in the Higgs field cannot
source the observed curvature perturbation at large scales in
any of the cases we consider but how the field can still be
the dominant source of curvature perturbations at small
scales.
The paper is organized as follows: in Sec. II we discuss

the dynamics of the Higgs and the hidden sector both
during and after inflation, in Sec. III we discuss perturba-
tions in energy densities of different components and derive
the relation between the tensor-to-scalar ratio and ampli-
tude of primordial DM isocurvature perturbations, and in
Sec. IV discuss the results and observational consequences
on hidden sector models in different cases. In Sec. V we
conclude.

II. DYNAMICS OF THE HIGGS
AND THE HIDDEN SECTOR

In this section, we discuss the dynamics of the Higgs and
a decoupled hidden sector both during and after inflation.
We begin by discussing the hidden sector dynamics in
Sec. II A, and then discuss the Higgs dynamics during and
after inflation in Sec. II B and Sec. II C, respectively.

A. Dynamics of the hidden sector

As discussed in Sec. I, we assume that the field
responsible for inflation, the inflaton, resides in a hidden
sector together with the field(s) that constitute the observed
DM abundance, as well as with the field that eventually
decays into the SM sector. We assume that after inflation
the inflaton decays solely to the hidden sector and imprints
its primordial fluctuation spectrum into perturbations in the
energy density of the hidden sector plasma in the usual way.
We assume the hidden sector then remains as the ener-
getically dominant sector up until to a point when the
lightest state decays into the SM sector, thus making it the
dominant energy component. We assume this happens only
after the comoving DM number density has frozen to a
constant value but before BBN. As will become evident in
Sec. IV, these assumptions are motivated by the fact that
they give in most cases the maximum effect the Higgs field
can have on observables. This is exactly what we want to
concentrate on when investigating if an energetically
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subdominant Higgs can be a threat to the success of the
scenario under any circumstances.
We approximate the Friedmann equation by

3H2M2
P ≃

(
ρhid a < areh
ρSM a ≥ areh

ð1Þ

where HðaÞ is the Hubble parameter, MP is the reduced
Planck mass, and ρhidðaÞ and ρSMðaÞ are the hidden and
SM sector energy densities, respectively. We work in the
sudden decay approximation and denote the time when the
hidden sector finally decays into the SM by areh. Evolution
of the scale factor a is governed by the hidden sector until
the SM radiation becomes the dominant energy density
component and the usual hot big bang era begins. This is
what we call “reheating.”
Before reheating, evolution of a can differ from the one

induced by the usual radiation-domination. We assume that
before reheating the hidden sector fluid governing the total
energy density had a barotropic equation of state controlled
by an effective equation of state parameter w ¼ ρ=p from
the end of inflation to the time of reheating, where p is the
pressure of the hidden sector fluid, so that

H ¼ H�

�
a�
a

�3ð1þwÞ
2

; ð2Þ

where H� and a� are the values of the Hubble scale and
scale factor at the end of inflation, respectively. In the
following, we normalize the scale factor such that at the
beginning of postinflationary era a� ¼ 1, whereas in single-
field models of inflation, the scale of inflation H� can
be expressed with the observable tensor-to-scalar ratio
r≡ Pt=Pζ as

H�
MP

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π2Pζr
2

s
; ð3Þ

where r is bound from above by the CMB measurements,
r < 0.06 (at the 2σ level) [61] and the power spectrum of
the curvature perturbation ζ has the amplitude Pζ ≃ 2.1 ×
10−9 (at the 1σ level) [42]. The curvature perturbation
will be defined in Eq. (15). Here we also used Pt ¼
8ðH�=2πÞ2=M2

P for the amplitude of tensor perturbations
(see e.g., Ref. [62]). The result (3) will become useful later.

B. Dynamics of the Higgs field during inflation

It is well known that scalar fields σ which are light,
d2VðσÞ=dσ2 < H2�, and energetically subdominant, ρσ ≪
3H2�M2

P, typically acquire large fluctuations during cosmic
inflation. The magnitude of such fluctuations in one Hubble
time is proportional to the inflationary scale H� [63,64]. In
particular, this is the case for the SM Higgs field [5], unless

the electroweak vacuum is metastable, the Higgs field is
coupled to operators which make it heavy during inflation,
or if it is coupled strongly and nonminimally to gravity,
rendering our treatment inadequate or preventing the field
from gaining such large fluctuations [6–8,65–69]. In this
paper we do not consider these possibilities but assume that
the Higgs was indeed light enough during inflation to
acquire fluctuations and that its potential remains stable up
to the highest scales considered in this work.
Assuming the Higgs potential during inflation

VðhÞ ¼ λ

4
h4; ð4Þ

the one-point probability distribution of the Higgs field at
the end of inflation is given by [63,64]

PðhÞ ¼ N exp

�
−
8π2VðhÞ
3H4�

�
; ð5Þ

where N is a normalization factor ensuring total probability
equal to unity. The distribution (5) describes an effective
position-dependent Higgs condensate with a typical field
value [5]

h� ≡
ffiffiffiffiffiffiffiffiffi
hh2i

q
¼

�
3

2π2

�
1=4

ffiffiffiffiffiffiffiffiffi
Γð3

4
Þ

Γð1
4
Þ

s
H�
λ1=4

≡ Aλ−1=4H�; ð6Þ

in a patch the size of the horizon at the end of inflation.
Here the prefactor A ≃ 0.363 is defined for later purposes.
Thus, the average energy density of the Higgs field at the
end of inflation is

ρh ¼ hVðhÞi ¼ 3H4�
32π2

; ð7Þ

which shows that the Higgs is indeed subdominant to the
total energy density by a factor H2�=M2

P. There is slight
ambiguity in the result (6) related to the inflationary
background, as H� is not strictly constant during inflation
and relaxation of the Higgs’ probability distribution to its
equilibrium state takes a finite time [70,71]. Here we
assume that H� was constant during inflation and the
equilibrium state was reached prior to the end of inflation,
so that Eq. (6) indeed gives the typical initial condition
for postinflationary dynamics. This is a well-motivated
assumption, as in slow-roll inflation j _Hj ¼ ϵH2 with ϵ ≪ 1
the Hubble scale changes only very little during inflation
and, on the other hand, the equilibrium state characterized
by Eq. (5) is reached in N ∼ 1=

ffiffiffi
λ

p
e-folds regardless of the

initial value of the field [70].
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C. Dynamics of the Higgs field after inflation

The postinflationary evolution of the Higgs condensate
has been studied in detail in Refs. [5,10,72–75]. The Higgs
field remains initially frozen at the value h it had at the end
of inflation in a given patch, and begins to oscillate about its
minimum after it becomes massive at H ¼ Hosc, where

H2
oscðhÞ ¼ 3λh2: ð8Þ

Typically, the field decays into SM particles in Oð1Þ e-
folds. The produced particles form a heat bath whose
energy density ρhγ scales down as radiation

ρhγ ¼
1

4
λh4

�
aoscðhÞ

a

�
4

; ð9Þ

where aoscðhÞ is the scale factor at the time when the Higgs
started to oscillate. In the following, we assume that the
Higgs’ oscillations always begin before reheating.
Because the Higgs only constitutes a small fraction of the

total energy density, in our scenario the SM particles are
initially subdominant to the hidden sector heat bath which
was generated by decay of the energetically dominant
inflaton field, as discussed in Sec. II A. This means that at a
time when the Hubble rate is H, the energy density of the
Higgs decay products (9) is

ρhγ ¼
1

4
λh4

�
H2

H2
oscðhÞ

� 4
3ð1þwÞ

∝ jhj43 1þ3w
1þw ; ð10Þ

where h is the local value of the Higgs field at the end of
inflation and we used Eq. (8) for Hosc. For example, in the
case of the radiation equation of state, w ¼ 1=3, we obtain
ρhγ ¼ H2h2=12. Assuming that the SM particles thermalize
instantaneously upon their production, the Hubble param-
eter at the time of reheating Hreh can be expressed in terms
of the reheating temperature

HðarehÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTrehÞ

90

r
T2
reh

MP
≡ B

T2
reh

MP
; ð11Þ

where g�ðTrehÞ is the effective number of degrees of
freedom at the time of reheating and B has again been
defined for later purposes. For the SM particle content
gðTrehÞ ¼ 106.75 for Treh ≫ 100 GeV, so B ≃ 3.42.
The above results are straightforward to generalize to

scenarios where for example prior to the time when the
inflaton decayed into hidden sector particles the effective
equation of state parameter took a value different from the
one during subsequent evolution of the Universe, wdec ≠ w.
In this paper we do not consider this possibility. In any case,
using Eq. (3) we can derive an absolute, model-independent
upper bound on the reheating temperature in terms of
observables,

Treh

MP
≤
�
π2Pζrmax

2B2

�1
4

≃ 0.003; ð12Þ

corresponding to Tmax
reh ≃ 6.6 × 1015 GeV. Here we used

Pζ ¼ 2.1 × 10−9, rmax ¼ 0.06, and B ¼ 3.42. However,
the assumption that in our scenarios the Higgs’ oscillations
begin before reheating gives a slightly more stringent limit
for the reheating temperature

Treh

MP
< λ1=8

�
A2π2Pζr

2B2

�1
4

≃ 0.004r1=4λ1=8; ð13Þ

which follows from Eqs. (8) and (11) by requiring
HðarehÞ < HðaoscÞ.

III. PERTURBATIONS IN ENERGY DENSITIES

If all fluid components were in thermal equilibrium in
the early Universe, there would be no isocurvature pertur-
bations. Thus, in case of a discovery of such perturbations,
all scenarios with perfect thermal equilibrium will be ruled
out. Because primordial DM isocurvature is at the moment
detectable only at very large scales, observable isocurvature
perturbations must have been sourced during inflation. As
single-field models cannot source isocurvature [76], their
detection would point to nontrivial multifield dynamics
during inflation. There would then be two options: either
the Higgs is the inflaton [1–4] and the isocurvature per-
turbatios are generated by some other spectator field, for
example an axion [44–47] or some other field such as a
scalar [48–59] or vector DM [59,60], or inflation is driven
by something else than the Higgs and the Higgs is a
spectator sourcing isocurvature.
In this section we study the latter case above, where the

DM isocurvature perturbations are sourced by the primor-
dialHiggs condensate. During inflation, the Higgs acquired
fluctuations, i.e., there were patches with h different from
Eq. (6), which were a priori completely uncorrelated with
perturbations in the hidden sector. We assume perturbations
within the hidden sector are completely adiabatic, i.e., all
particle species in the hidden sector share the same
perturbations, and that the primordial fluctuations in the
Higgs were imprinted into the SM radiation upon the decay
of the Higgs condensate. Therefore, provided that the
comoving DM number density freezes to a constant value
before reheating and never thermalized with the visible SM
sector, the nonzero fluctuations in the Higgs field generate a
residual isocurvature perturbation2 between the DM and
SM radiation sector

S≡ 3

4

δργ
ργ

−
δρc
ρc

; ð14Þ

2For “adiabatic” perturbations S ¼ 0.
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where perturbations of a fluid component i ¼ γ, c are
defined as δρi ≡ ρiðxÞ − hρii.
To see at a more detailed level how the DM isocurvature

arises and to make use of the observational constraints, we
divide the final energy density of the baryon-photon fluid,
ργ , into a part which was sourced by the Higgs condensate,
ρhγ , and to a part which was sourced by the hidden sector at
the time of SM reheating, ρHγ , so that ργ ¼ ρhγ þ ρHγ . We
assume that first the comoving DM density freezes and then
the hidden sector decays into SM radiation, so that both
components will inherit their perturbation spectra from the
hidden sector, ð3=4ÞδρHγ =ρHγ ¼ δρc=ρc ∝ ζ, where

ζ ≡ −Φ −H
δρ

_ρ
ð15Þ

is the total curvature perturbation on the uniform energy
density hypersurface, Φ is the gravitational potential in the
longitudinal gauge, ρ is the total energy density, and we
assume that the continuity equation _ρ ¼ 3Hð1þ wÞρ holds
at all times, i.e., the eventual decay of the hidden sector to
the SM is instantaneous. Thus, the isocurvature perturba-
tion (14) becomes

S ¼ ρhγ
ρhγ þ ρHγ

�
3

4

δρhγ
ρhγ

−
δρc
ρc

�
: ð16Þ

After the hidden sector has decayed into SM radiation,
the perturbations in the two sectors are separately con-
served as both sectors consist of noninteracting fluids with
a constant equation of state [77]. The isocurvature pertur-
bations imprinted on the CMB can thus be evaluated right
at the point when the hidden sector decays. Because in this
scenario DM is sourced by the hidden sector and radiation
is sourced by both the hidden sector and also in part by the
Higgs, the resulting DM isocurvature perturbation is
correlated with the curvature perturbation ζ.
The power spectrum of S is defined in the standard

manner as a Fourier transform

PSðkÞ ¼
k3

2π2

Z
d3xeik⃗·x⃗hSð0ÞSðx⃗Þi: ð17Þ

and can in our case be written as

PS ¼
�

ρhγ
ρhγ þ ρHγ

�
2
�
1þ

�
3

4

�
2 Pδh

Pζ

�
Pζ; ð18Þ

where we used hδρhγ δρci ¼ 0 and denoted by Pδh the power
spectrum of the radiation energy density perturbation
sourced by the Higgs condensate, δh≡ δρhγ=ρhγ . Because

δρhγ
ρhγ

¼ δðjhj43 1þ3w
1þw Þ

jhj43 1þ3w
1þw

≡ δfðhÞ
fðhÞ ; ð19Þ

as given by Eq. (10), we can compute the two-point
correlator of the energy density perturbations as a function
of the n-point correlators of the field

hδhð0ÞδhðrÞi ¼
hfðhð0ÞÞfðhðrÞÞi − hfðhÞi2

hfðhÞi2 ; ð20Þ

which is an equal-time correlator between two different
points in space. Note that because the mean field value
vanishes, hhi ¼ 0, it would be incorrect to assume
δh ∝ δh=h.
As shown in Ref. [64] (see also Refs. [78,79]), we can

compute the equal-time correlator in terms of a spectral
expansion of the unequal-time correlator

hfðhð0ÞÞfðhðtÞÞi
hfðhÞi2 ¼

X
n

f2ne−Λnt; ð21Þ

where

fn ¼
R
dhψ0ðhÞfðhÞψnðhÞR
dhψ0ðhÞfðhÞψ0ðhÞ

; ð22Þ

and Λn and ψn are the eigenvalues and orthonormal
eigenvectors, respectively, of the eigenvalue equation

�
1

2

∂2

∂h2 −
1

2
ðv0ðhÞ2 − v00ðhÞÞ

�
ψnðhÞ ¼ −

4π2Λn

H3
ψnðhÞ;

ð23Þ

with

vðhÞ ¼ 4π2

3H4
VðhÞ ¼ π2λ

3

�
h
H

�
4

: ð24Þ

Because fðhÞ is an even function, only even eigenvalues
contribute to the spectral expansion. Also, because Λ0 ¼ 0,
the n ¼ 0 term cancels the disconnected part of the
correlator (21). The leading nontrivial term is therefore
to a good accuracy

hfð0ÞfðtÞi − hfi2
hfi2 ≈ f22e

−Λ2t; ð25Þ

and the higher order terms are exponentially suppressed. A
numerical solution of the eigenvalue equation (23) gives

Λ2 ≈ 0.289
ffiffiffi
λ

p
H; ð26Þ

and
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f2ðwÞ ≈

8>><
>>:

0.796 w ¼ 0;

1.057 w ¼ 1=3;

1.268 w ¼ 1:

ð27Þ

Using de Sitter invariancewe can then relate the unequal-
time correlator (21) to the equal-time correlator with spatial
separation by writing t → ð2=HÞ lnðaHrÞ [64]. The corre-
lator (20) then becomes

hδhð0ÞδhðrÞi ≈ f22ðwÞðaHrÞ−2Λ2=H; ð28Þ

where a and H are to be evaluated at the end of inflation.
The corresponding power spectrum can then be computed
to be

Pδh ¼ A
�
k
k�

�
nh−1

; ð29Þ

where k is the comoving wave number and k� ¼ a�H� is a
reference scale defined by horizon crossing at the time
when the observable spectrum of perturbations was formed.
In the following, we take k� ¼ 0.05 Mpc−1, as is custom-
ary. The amplitude and spectral index of the power
spectrum (29) are

A ≃
2f22ðwÞ

π
Γð2 − ðnh − 1ÞÞ sin

�
πðnh − 1Þ

2

�
e−ðnh−1ÞN�

nh ¼ 1þ 2Λ2 ≃ 1.579
ffiffiffi
λ

p
; ð30Þ

respectively. The number of e-folds N� between the end of
inflation and horizon exit of the pivot scale k� depends on
the scale of inflation, reheating temperature and the
expansion history of the Universe after inflation and is
given by (see, e.g., Ref. [80])

N� ≃ 56þ 1

2
ln

�
r
0.1

�
− ln

�
Treh

1016 GeV

�

þ 1

3ð1þ wÞ
�
1.12þ 4 ln

�
Treh

1016 GeV

�
− ln

�
r
0.1

��
:

ð31Þ

The amount of isocurvature perturbations can be
described by defining the usual isocurvature parameter β as

PS ¼
β

1 − β
Pζ; ð32Þ

which for correlated DM isocurvature is constrained by the
Planck satellite to β ≲ 0.047 at k� ¼ 0.05 Mpc−1, whereas
Pζðk�Þ ≃ 2.1 × 10−9 [42]. We can then write Eq. (18) as

β ≃
�
3ρhγ
4ρHγ

�
2
����
reh

Pδh

Pζ
; ð33Þ

which gives the prediction of a given scenario for the
isocurvature parameter β. Here the ratio between the energy
density sourced by the Higgs field and the total energy
density in the SM sector is evaluated at the time of
reheating and we approximated ρHγ þ ρhγ ≃ ρHγ but will
consider below also the case where ρhγ gives a substantial
contribution to the energy density already before reheating.
The ratio of the energy densities in Eq. (33) is given by

ρhγ
ρHγ

����
reh

¼ λh4�
12H2ðarehÞM2

P

�
aosc
areh

�
4

; ð34Þ

where aosc denotes the time when the Higgs condensate
began to oscillate, 3λh2� ¼ H2ðaoscÞ, the power 4 for the
ratio aosc=areh is due to the Higgs field and its decay
products scaling as radiation, Hðareh is given by Eq. (11),
and the scale factor at the time of reheating is
areh ¼ ðH�=HðarehÞÞ2=ð3ð1þwÞÞ. For h� we use the typical
value given by Eq. (6). Trading then the scale of inflation
H� with the tensor-to-scalar ratio r as in Eq. (3) and
substituting Eq. (34) into Eq. (33), we finally obtain a result
for the isocurvature perturbations

β ¼ Cðw; λ;Pζ; Treh; rÞr4−
8

3ð1þwÞ; ð35Þ

where C is a function of the underlying parameters

C≡ 2
−12þ 8

3ð1þwÞ3
− 8
3ð1þwÞπ8−

16
3ð1þwÞA8− 16

3ð1þwÞB−4þ 16
3ð1þwÞ

× λ−
4

3ð1þwÞP
3− 32

3ð1þwÞ
ζ

�
Treh

MP

�
−8þ 32

3ð1þwÞ
Pδhðr; Treh; wÞ;

where the factors A and B are the prefactors in Eqs. (6)
and (11), respectively, and Pδh is given by Eq. (29).
The prediction for the amount of residual DM isocurva-

ture perturbations, Eq. (35), is our main result, as it
connects two observables, the isocurvature parameter β
and the primordial tensor-to-scalar ratio r to each other in a
simple and fairly model-independent way. In the next
section, we will present the results for different cosmo-
logical parameters w and Treh.

IV. RESULTS

A. Radiation-dominated Universe

In the standard radiation-dominated case where
w ¼ 1=3, we obtain a simple result

β ≃ 10−13
r2ffiffiffi
λ

p e−
ffiffi
λ

p ð32.9þ0.1 ln rÞ; ð36Þ
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which for λ≲ 10−3 simplifies to β ≃ 10−13r2=
ffiffiffi
λ

p
.

Therefore, given the observational upper limit on the
tensor-to-scalar ratio r ≤ 0.06 [61], the result (36) shows
that a detection of β ≳ 10−15, i.e., in practice any value of β
observable in the foreseeable future, rules out all scenarios
where (a) DM is a thermal relic, (b) there are no other
sources of isocurvature perturbations besides the SM
Higgs, and (c) the Universe was radiation-dominated after
inflation. In the future the EUCLID satellite will constrain β
roughly at the percent level [81], whereas a detection of r is
possible at the level of Oð10−2Þ by BICEP3 [82] or at
Oð10−3Þ by LiteBIRD [83], CORE [84] or the Simons
Observatory [85].
Therefore, the result shows that the SM Higgs cannot

source observable DM isocurvature consistent with limits
on r, and generating primordial DM isocurvature would
require physics beyond the SM which includes a compo-
nent that was not in thermal equilibrium with the DM nor
the SM in the early Universe. Of course, interpreted in
another way, we can conclude that the Higgs field is
generically not a threat to models where both inflaton and
DM reside in a decoupled hidden sector.
Note that the result is not sensitive to what drives

inflation, when and how the inflaton field decays, nor
what DM actually is, and in this sense the result is fairly
model-independent. The result (36) is inversely propor-
tional to

ffiffiffi
λ

p
but given the very small number in front of

r2=
ffiffiffi
λ

p
, the exact value of λ does not matter unless the SM

β-functions are severely fine-tuned and λ ≪ 1 at the scale
of inflation. Likewise, the result is not very sensitive to the
average initial displacement of the Higgs field within our
observable Universe today. As can be seen in Eq. (6), the
parameter A characterizes how typical the field value and,
consequently, the initial energy density in the SM sector
were. The value of β will not change in any appreciable way
had the initial displacement been larger than that charac-
terized by A: a deviation of p standard deviations from the
typical field value h� ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
only changes the result by

p4–8=ð3ð1þwÞÞ, which is not enough to change our conclusion
in any appreciable way. For example, for a 10σ deviation
from the typical value used above, the result (36) only
changes by a factor 100. Again, given the very small
prefactor in Eq. (36), this will not change our conclusion.

B. Matter-dominated Universe

In a matter-dominated Universe with w ¼ 0, we obtain

β ≃ 10−13
�

Treh

1016 GeV

�
8=3 r4=3

λ5=6

× e−
ffiffi
λ

p ð32.9þ0.1 ln rþ0.2 lnð Treh
1016 GeV

ÞÞ: ð37Þ

We see again that a discovery of a nonzero β in any
foreseeable future rules out this type of scenarios because

they predict negligible β. Again, at the same time the result
shows that residual DM isocurvature, despite being
unavoidably generated, is not a problem for this type of
scenarios, as studied recently in Refs. [28–31]. Note that
the result (37) does not exactly coincide with Eq. (36) at the
limit of maximum reheating temperature for this scenario
Treh=MP ≃ 0.004r1=4λ1=8, as given in Eq. (13). This is
because the solutions for the eigenfunctions (27) and
number of e-folds (31) assume a discrete value for w,
and changing Treh only is not sufficient to go to the limit of
prompt reheating. However, for λ ≪ 1 the exponential in
Eq. (37) goes to unity and the MD and RD results coincide
to a good accuracy at the limit Treh=MP → 0.004r1=4λ1=8.

C. Kination-dominated Universe

The above results are quite natural in a sense that when
the Higgs condensate and its decay products scale as a−4

and w ≤ 1=3, they cannot increase their fraction of the total
energy density. Let us therefore now discuss a case where
w > 1=3 and the SM sector started to increase its fractional
energy density already before the hidden sector decayed
into the SM. We consider two cases: one in which the SM
sector remained strictly subdominant until reheating so that
Eq. (34) still holds, and one where it became the dominant
energy density component early on. This is possible if the
Universe underwent, e.g., a kination phase where the total
energy density after inflation was dominated by a fast-
rolling inflaton field with w ¼ 1, making the hidden sector
energy density dilute as a−6 [86,87].
Thus, in the case of w ¼ 1, we obtain

β ≃ 10−13
�

Treh

1016 GeV

�
−8=3 r8=3

λ1=6

× e−
ffiffi
λ

p ð33.0þ0.2 ln r−0.2 lnð Treh
1016 GeV

ÞÞ; ð38Þ

when the Higgs and its decay products remain energetically
subdominant up until reheating. Notably, in Eq. (38) the
terms proportional to Treh come with a sign different from
those in Eq. (37), reflecting the fact that in this scenario the
SM sector is increasing its fractional energy density and,
consequently, increasing the residual DM isocurvature
perturbation. Again, as with the MD case, the result (38)
does not exactly coincide with the result (36) at the limit of
maximum reheating temperature unless λ ≪ 1. Also, the
result (38) only holds for a sufficiently large reheating
temperature given by

Treh

1016 GeV
> 7.3Pζλ

−1=4r; ð39Þ

which results from requiring that the left-hand side of
Eq. (34) remains smaller than unity. The result (38)
is shown in Fig. 1 for various choices of parameters.

STANDARD MODEL HIGGS FIELD AND HIDDEN SECTOR … PHYS. REV. D 100, 083515 (2019)

083515-7



The lower limit for Treh as given by Eq. (39) varies between
107 GeV and 109 GeV for the contours shown but is
always below the value for which β becomes substantial,
as well as the maximum reheating temperature (13). The
results show that if the hidden sector underwent a kination
phase, the presence of the Higgs field can generate
significant residual DM isocurvature despite the fact that
the SM sector remains a subdominant component until
reheating.
At the opposite limit where the SM sector becomes to

dominate the total energy density before the hidden sector
decays, the SM radiation is reheated by the Higgs only.
Hence, the SM Higgs will in this case act as a curvaton
[88–90], imprinting its fluctuation spectrum into metric
perturbations. This is the scenario studied in Refs. [17,18]
(see also Ref. [16]), where the conclusion was that this
scenario must be ruled out because the Higgs has a roughly
scale-invariant fluctuation spectrum with a very large
amplitude. However, as Eq. (30) clearly shows, fluctuations
in the Higgs’ energy density are not scale-invariant (unless
λ is tiny), and hence the spectrum can, in fact, have a small
enough amplitude at large scales to coincide with the
observed value Pζðk�Þ ≃ 2.1 × 10−9. However, the success
of the scenario is unavoidably spoiled by the blue tilt of the
Higgs’ perturbation spectrum, as observations of the CMB
show that the spectrum is red-tilted at the 8σ confidence
level [41]. Therefore, this scenario is ruled out.
Before concluding this section, let us make a remark on

the magnitude of perturbations at smaller scales. Because
the isocurvature spectrum is very blue-tilted, the perturba-
tions can become large at small scales and even exceed the
initial curvature perturbations if their spectrum has a small
(red) tilt. Even though the Higgs cannot act as a traditional
curvaton field sourcing the perturbations at large scales, it

can still do so at small scales. By defining a curvature
perturbation on the uniform energy density hypersurface of
each fluid i as ζi ≡ −Φ −Hδρi= _ρi [77], it can be shown
that in this case the total curvature perturbation is at early
times

ζ ¼ ρhγ ζγ þ 3
2
ρhidζhid

ργh þ 3
2
ρhid

; ð40Þ

which shows that the Higgs can give an appreciable con-
tribution to the curvature perturbation at scales where
ζh=ζhid ∼ ρhid=ρhγ , where ρhid=ρhγ is to be evaluated
at the decay of the hidden sector. Because ζγ ∝ −Hδρi=
_ρi ∝ δρhγ=ρhγ , the curvature perturbation sourced by theHiggs
can be computed usingEq. (19). However, as ζhid depends on
the inflationary sector, a more detailed investigation of this
possibility is beyond the scope of this paper.

V. CONCLUSIONS

In this paper we studied scenarios where the inflaton
field decays dominantly to a hidden sector which is
thermally decoupled from the visible SM sector. By
assuming that the DM fluid inherits the same perturbation
spectrum as the inflaton and the comoving DM number
density freezes before the eventual decay of the hidden
sector and utilizing the typical behavior of the SM Higgs
during inflation, we derived a relation between the pri-
mordial tensor-to-scalar ratio r and amplitude of the DM
isocurvature perturbations β, Eq. (35).
We considered different expansions histories and found

that in the standard case where the Universe was radiation-
dominated after inflation, the observables are connected
by β ∼ 10−13r2=

ffiffiffi
λ

p
, whereas in matter- and kination-

dominated cases there is extra dependence on the reheating
temperature, as depicted by Eqs. (37) and (38). The above
result for the radiation-dominated case applies for small
Higgs self-coupling, λ ≪ 1, and the full result can be found
in Eq. (36). These equations constitute our main results
together with the conclusion that the Higgs field cannot
source the curvature perturbation at large scales, i.e., act as
a curvaton field, because of its blue-tilted fluctuation power
spectrum. However, the Higgs can still give a sizeable
contribution to the curvature perturbation at smaller scales,
as discussed in Sec. IV C.
We conclude that a future discovery of primordial DM

isocurvature of practically any magnitude will rule out all
simple scenarios where DM is a thermal relic either from
the visible sector or from a hidden one and where the
Universe was either radiation- or matter-dominated before
reheating of the SM. At the same time, the results show that
the Higgs field is generically not a threat to models where
both the inflaton and DM reside in a decoupled hidden
sector. However, a phase of an early kination-domination

10−8 10−7 10−6 10−5 10−4
10−5

10−4

0.001

0.010

0.100

1

TRH 1016GeV

FIG. 1. The isocurvature parameter β as a function of reheating
temperature Treh in the w ¼ 1 case. For black/blue/purple lines
(from left to right) λ ¼ 0.13; 0.01; 10−8 and r ¼ 0.06, 0.01 for
dashed/dotted lines, respectively. The horizontal red line is the
observational upper limit β ¼ 0.047 [42]. The isocurvature
parameter is negligible in the w ¼ 0; 1=3 cases.
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provides for an exception to these conclusions, as then large
DM isocurvature can be generated from the SM Higgs even
in cases where the SM sector remained subdominant until
reheating. The results underline the importance of studying
not only the evolution of fractional energy densities of
different sectors but also how the perturbations in them
evolved in the early Universe.
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