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If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved
in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space
must feel the influence of objects propagating in the other space. We show this in the cases of the scalar,
electromagnetic, and gravitational field. The case of gravity is perhaps the most interesting. Namely, by
studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black
hole harbors a traversable wormhole. In particular, with a near future acceleration precision of 10−6 m=s2, a
few solar masses star orbiting around Sgr A* on the other side of the wormhole at the distance of a few
gravitational radii would leave a detectable imprint on the orbit of the S2 star on our side. Alternatively, one
can expect the same effect in black hole binary systems, or a black hole–star binary systems.
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I. INTRODUCTION

Wormholes have been always attracting a lot of attention
for various reasons ranging from pure academic interests
and science fiction to a possible explanation of entangle-
ment of particles in quantum mechanics [1–17]. The
purpose of this work, however, is to establish a clear link
between wormholes and astrophysical observations. By
definition, a wormhole smoothly connects two different
spacetimes. If the wormhole is traversable, then the flux
(scalar, electromagnetic, or gravitational) can be conserved
only in the totality of these two spaces, not individually in
each separate space. Suppose that there is a physical
electric charge on one side of the wormhole. An observer
on the other side where there is no physical electric charge
sees the electric flux coming out of the wormhole, so he
concludes that the wormhole is a charged object. Any
measurement that he can perform by measuring the flux
would tell him that the wormhole contains charge (though
there is no real charge at the wormhole). In other words the
flux is only apparently conserved in each space separately,
but strictly conserved only if we consider the entirety of
both spaces. A time dependent gravitational case is even
more indicative. If a real gravitational source is time
dependent (e.g., a star orbiting a wormhole throat), an
observer on the side where there is no source will conclude

that the gravitational perturbations he is observing cannot
be sourced by a static wormhole.
As a direct consequence, trajectories of objects propa-

gating in a vicinity of a wormhole must be affected by the
distribution of masses/charges in the space on the other side
of the wormhole. Since wormholes in nature are expected
to exist only in extreme conditions, e.g., around black
holes, the most promising systems to look for them are
either large black holes in the centers of galaxies, or binary
black hole systems. We study motion of a star S2 which
orbits a super massive black hole in Sgr A* at the center of
our galaxy and demonstrate that the near future data will be
able to tell us if this black hole harbors a wormhole.

II. CHARGED PARTICLE AND A WORMHOLE
IN A FLAT SPACE

A realistic traversable wormhole requires the presence
of exotic fields that can keep it open. In order to avoid
unnecessary complications, we consider a toy model which
can be solved analytically and is easy to understand.
Consider a flat space in spherical coordinates ðr; θ;ϕÞ.
If we place a charge, q, at the distance r ¼ A from the
center of our coordinate system, this charge will create an
electromagnetic potential

VfreeðrÞ ¼
q

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2 − 2Ar cos θ

p : ð1Þ

We now introduce a simple model of a wormhole. Consider
two copies of a flat space connected through a spherical
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wormhole mouth of the radius R. The coordinates in these
two flat spaces are ðr1; θ1;ϕ1Þ and ðr2; θ2;ϕ2Þ respectively.
Such a configuration is shown in Fig. 1. A charge, q, is now
placed at the distance r1 ¼ A from the center of a worm-
hole, in the space ðr1; θ1;ϕ1Þ. Let us call the space where
the charge is placed the “other space,” in contrast to the
copy with coordinates ðr2; θ2;ϕ2Þ where the observer is
located, which we will call “our space.” There is no
physical charge in our space. The wormhole’s radius
is R. Therefore our space and other space cover only the
r2 > R and r1 > R regions respectively.
The presence of the wormhole will inevitably change the

flat space potential. Since near the charge the potential is
approximately given by Eq. (1), the potential in the whole
other space may be written as

V1ðr1Þ ¼ Vfreeðr1Þ þ
X∞
l¼0

Tl

rlþ1
1

Plðcos θ1Þ; ð2Þ

where PnðxÞ is an nth-order Legendre function. The
corresponding potential in our space is

V2ðr2Þ ¼
X∞
l¼0

Bl

rlþ1
2

Plðcos θ2Þ: ð3Þ

Here, Tl and Bl are the coefficients in the expansion. We
can also expand the free potential in terms of the Legendre
functions using

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xtþ t2

p ¼
X∞
n¼0

PnðxÞtn: ð4Þ

The potentials should match at the wormhole throat,
r1 ¼ r2 ¼ R. Since there is no charge on the surface of the
wormhole, the derivative of the potential in radial direction
at the wormhole throat must be continuous too, i.e.,

V1ðRÞ ¼ V2ðRÞ ð5Þ

∂r1V1ðr1Þjr1¼R ¼ −∂r2V2ðr2Þjr2¼R: ð6Þ

Comparing the coefficients of Plðcos θÞ, we find

Tl ¼ −
q
4π

1

2ðlþ 1Þ
R2lþ1

Alþ1
ð7Þ

Bl ¼
q
4π

2lþ 1

2ðlþ 1Þ
R2lþ1

:
ð8Þ

Since Bl ≠ 0, we see that there is an apparent potential
in our space, though there is no physical charge in it.
Following the standard procedure, an observer in our space
can draw a Gaussian surface at r2 → ∞. He finds that the
effective charge in our universe is

Q2 ¼
Z

−∂r2V2dA2jr2→∞ ¼ q
2

R
A
; ð9Þ

where dA2 is an element of area in our space. If an observer
in our space is not aware of the physical charge in the other
space, he may conclude that the wormhole has a chargeQ2.
The induced effect of the physical charge to our space is
stronger if the physical charge is placed closer to the
wormhole. When the charge is exactly at the wormhole
throat, i.e., A ¼ R, the induced charge Q2 become one half
of the original charge q.
Similarly, an observer in the other space can draw a

Gaussian surface at r1 → ∞, and calculate the value for the
charge he observes as

Q1 ¼
Z

−∂r1V1dA1jr1→∞ ¼ q −
q
2

R
A
: ð10Þ

Obviously, the Gaussian flux will be conserved, i.e.,
Q1 þQ2 ¼ q, only if we include Gaussian surface on both
sides.
We plot the charges Q1 and Q2 in Fig. 2. When the

physical charge is far from the wormhole (i.e., A → ∞), the
effective charge in our space is close to Q2 ¼ 0, while
the charge on the other side is Q1 ¼ q. As the distance A
decreases, Q1 decreases and Q2 increases. Finally, when
the original charged particle is placed exactly at the
wormhole throat, A ¼ R, then the effective charges become
equal, i.e., Q1 ¼ Q2 ¼ q=2. This implies that even before
the particle falls into the wormhole, its effect in its world is
already diminished. Simultaneously, an observer on the
other side of the wormhole (i.e., our space) can feel the
influence even before the charge crosses over.
A physical charge (or particle that sources the field)

located in the other space does not have to be at the fixed
distance A. One can consider a particle orbiting a wormhole
in a circular, elliptic or some other type of orbit (see Fig. 3).
For an elliptic orbit, the radius of an orbit, A, is not fixed, so
the monopole effect will change according to the particle’s
location. If the orbit is circular, then A is not changing, and
one has to consider the multipole effects, primarily a dipole.

FIG. 1. This figure represents a spherical wormhole with the
radius R. A point charge q is placed at the radial distance r ¼ A
away from the center of the wormhole.
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The effect observed in our space will depend on the
location of the particle.

III. SCALAR FIELD AND A SCHWARZCHILD
WORMHOLE

We now move to a more realistic case, as shown in
Fig. 4. We start with the Schwarzschild space-time metric

ds2 ¼ −
�
1 −

rg
r

�
dt2 þ 1

1 − rg
r

dr2 þ r2dΩ ð11Þ

where rg ¼ 2GM. Consider now two copies of the
Schwarzschild space-time connected through a throat of

radius R. The radius must satisfy R ≥ rg, otherwise there
would be no distinction between a wormhole and a black
hole. As in the previous section, r2 is the radial coordinate
in our space, while r1 is the radial coordinate in the other
space. Outside of the throat, i.e., r1 > R and r2 > R, the
space-time is Schwarzschild on both sides. These two
copies of the Schwarzschild space-time are connected
at r1 ¼ r2 ¼ R.
We first consider a scalar field propagating in this

background. We place a scalar particle at the distance
r ¼ A from the center of a wormhole. For our purpose, we
decompose a single-particle scalar field potential in the
basis of the Legendre functions

VfreeðrÞ ¼
X∞
l¼0

ClðrÞPlðcos θÞ; ð12Þ

which satisfies

□VfreeðrÞ ¼ −
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − rg=R
p δðr −RÞ: ð13Þ

Since we consider a static case, time derivatives are not
included. The wave equation satisfies

1

r2
∂r½ð1 − rg=rÞr2�∂rCl −

lðlþ 1Þ
r2

Cl ¼ 0; ð14Þ

except at r ¼ R where we have to match the solutions. The
l ¼ 0 solutions is

C0 ¼ a0D0ðrÞ þ b0E0ðrÞ ð15Þ

D0 ¼ 1 ð16Þ

FIG. 2. The solid line represents the effective charge, Q1,
obtained from the Gaussian surface at infinity in the other space
(where the original charge was placed). The doted line represents
the effective charge, Q2, obtained from the Gaussian surface at
infinity in our space, where the observer is located. The dashed
and dotted dashed lines represent the same quantities Q1 and Q2

but for the Schwarzschild wormhole. The wormhole radius in that
case is R ¼ 1.2rg.

FIG. 3. The black disk represents a wormhole. A particle that
sources the field can have a circular (dashed line) or an elliptic
(solid line) orbit. Other types of orbits are also possible, e.g.,
hyperbolae or parabolae, but they are not shown in this figure.

FIG. 4. A wormhole connects two copies of the Schwarzschild
space-time. The source of the Schwarzschild space-time is a
black hole with the gravitational radius rg. Stars orbit this
wormhole on both sides. If the gravitational field can propagate
through the wormhole, then the orbits of the stars will be affected,
and will deviate from the standard Schwarzschild orbits.
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E0 ¼ ln

�
1 −

rg
r

�
; ð17Þ

where a0 and b0 are constants. The l ¼ 1 solutions is

C1 ¼ a1D1ðrÞ þ b1E1ðrÞ ð18Þ

D1 ¼
�
r −

rg
2

�
ð19Þ

E1 ¼ rg þ
�
r −

rg
2

�
ln
�
1 −

rg
r

�
; ð20Þ

where a1 and b1 are constants. Since the field is finite and
satisfies Eq. (13), we can write the whole solution as the
following. If r > A, then

Vfree ¼
q

4πrg
E0ðrÞ þ

12q
4πr3g

E1ðrÞ cos θ þ � � � ð21Þ

If r < A, then

Vfree ¼
q

4πrg
E0ðAÞ þ

12q
4πr3g

E1ðAÞ
D1ðAÞ

D1ðrÞ cos θ þ � � � ð22Þ

As before, we have to find solutions in our space and
other space. For this purpose, we decompose the scalar
field in the basis of the Legendre functions. The scalar field
potential in the other space is

V1ðr1Þ ¼ Vfreeðr1Þ þ h0Eoðr1Þ þ h1E1ðr1Þ cos θ1 þ � � �
ð23Þ

The potential in our space is

V2ðr2Þ ¼ s0E0ðr2Þ þ s1E1ðr2Þ cos θ2 þ � � � ð24Þ

Exactly at the wormhole throat, the solution must be
continuous and satisfy the conditions in Eqs. (5) and (6).
From this matching, we find the coefficients

s0 ¼ −h0 ¼
q

8πrg

E0ðAÞ
E0ðRÞ

ð25Þ

s1 ¼
6q
4πr3g

E1ðAÞ
D1ðAÞ

�
D1ðRÞ
E1ðRÞ

−
D0

1ðRÞ
E0
1ðRÞ

�
ð26Þ

h1 ¼ −
6q
4πr3g

E1ðAÞ
D1ðAÞ

�
D1ðRÞ
E1ðRÞ

þD0
1ðRÞ

E0
1ðRÞ

�
ð27Þ

Fig. 2 shows the scalar field charges on both sides of the
wormhole in the Schwarzschild case. The effect is similar
to the electromagnetic case but less pronounced. As the
wormhole radius approaches the Schwarzschild horizon,

R → rg, then E0ðRÞ, E1ðRÞ and E0ðRÞ approach infinity. In
that limit, the scalar field cannot pass the wormhole throat,
h0 ¼ h1 ¼ s0 ¼ s1 ¼ 0, unless A ¼ R. This is not surpris-
ing, because in this case the wormhole would not be
traversable. This effect is very similar to the black hole no
hair theorems.

IV. GRAVITY AND A SCHWARZSCHILD
WORMHOLE

We now move to the gravitational force. Gravitational
perturbations in the Schwarzschild background have been
extensively studied [18–23]. We focus on the monopole
perturbations, since the higher order modes do not have
analytic form in asymptotically flat coordinates. The
monopole metric perturbations can be written as [23]

htt ¼
2μ

r
Θðr − AÞ þ 2μ

A
ΘðA − rÞ ð28Þ

hrr ¼
2μr

ðr − rgÞ2
Θðr − AÞ þ 2μA

ðA − rgÞ2
ΘðA − rÞ ð29Þ

where μ is the effective mass of the particle that perturbs the
metric, while ΘðA − rÞ is the standard Heaviside function.
All the other metric perturbation are zero in this case. The
perturbations in the other space are

hothtt ðr1Þ ¼ httðr1Þ þ
2att
r1

ð30Þ

hothrr ðr1Þ ¼ hrrðr1Þ þ
2arrr1

ðr1 − rgÞ2
: ð31Þ

The perturbations in our space are

hourtt ðr2Þ ¼
2btt
r2

ð32Þ

hourrr ðr2Þ ¼
2brrr2

ðr2 − rgÞ2
: ð33Þ

We can find att, arr, btt and brr from the continuity con-
dition (hourαβ ðRÞ¼ hothαβ ðRÞ and∂r2h

our
αβ jr2¼R ¼ ∂r1h

our
αβ jr1¼R) as

btt ¼ −att ¼ μ
R
A

ð34Þ

brr ¼ −arr ¼ μ
AðR − rgÞ2
RðA − rgÞ2

: ð35Þ

Since btt is nonzero, a static observer can feel an
additional acceleration from the object. If the observer is
far away from the wormhole, this additional acceleration is
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a ≈ −μ
R
A
1

r22
: ð36Þ

In contrast with the scalar field case, the effect still exists
even if R ¼ rg. This implies that the gravitational field can
cross from one to the other side of the wormhole even from
inside the horizon (which was impossible for the scalar
case).

V. OBSERVATIONAL SIGNATURE OF
A WORMHOLE

It is widely accepted that Sgr A* harbors a super massive
black hole at the center of our galaxy [24–31]. Sgr A*
contains mass of M• ¼ 4 × 106 M⊙, with the correspond-
ing Schwarzschild radius of rg ¼ 0.084 AU. While many
potential effects may affect the orbits the stars that orbit this
black hole [32], we would like to explore perhaps the most
interesting possibility that Sgr A* might be a wormhole.
In this case, stars orbiting around it in the other space
should affect stars’ orbits in our universe.
We choose the star S2, which orbits the radio source

Sgr A*. Its mass is about 14 solar masses, with an orbital
period of 15.9 years, a semi-major axis of 1031.69 AU, and
orbit ellipticity of e ¼ 0.8831 [25]. Since we only have a
monopole contribution, we consider an object orbiting on
the other side of the wormhole with the periapsis radius rp
and apoapsis radius ra. From Eq. (36), the contribution
from the monopole perturbation causes the acceleration
variation

Δa ¼ μ

�
R
rp

−
R
ra

�
1

r22
: ð37Þ

If the orbit of an object on the other side of the wormhole’s
is elongated so that ra ≫ rp, then we can approximate

Δa ¼ μ
R
rp

1

r22
: ð38Þ

To obtain definite values, we set the wormhole throat of the
order of the black hole horizon, i.e., R ≈ rg, and the orbit
for the S2 star, r2 ≈ 1000 AU, to find the constraints on the
detectable values of μ and rp.
The acceleration of S2 has been measured with the

precision of 4 × 10−4 m=s2, with two years (1997-1999) of
data [32,33]. With 20 years data, it should be possible to
achieve the precision of 2 × 10−5 m=s2 [32,34]. This can be
further improved to 10−6 m=s2 if the velocity uncertainty is
reduced to 2 km=s [24,32,35]. The best available data
today (see e.g., Table 8 in [36]) is still shy (though not
unreasonably far) from this precision.
Figure 5 shows the regions which are ruled out with the

recent acceleration precision and potential acceleration
precision that can be obtained in future. If Sgr A* is a

wormhole with heavy stars orbiting it on the other side, we
can definitely see the effects in the near future. In particular,
with acceleration precision of 10−6 m=s2, a few solar
masses star orbiting around Sgr A* at the distance of a
few gravitational radii would leave detectable imprint on
the orbit of the S2 star on our side of the wormhole.
In addition, one can also look for the same effect in the

binary systems of a black hole and a star. A deviation of
motion of a star could be a hint of the existence of a
wormhole, if it is consistent with perturbations we derived
here. Finally, if the monopole contribution does not make
much of a difference, one can consider dipole or higher
multipole effects in order to extract more stringent con-
strains or definite predictions.
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FIG. 5. We plot the constraints on the mass μ and the periapsis
radius rp of a hypothetical star that orbits Sgr A* on the other side
and perturbs the orbit of the S2 star on our side. The black, dotted,
and dashed lines represent the constraints with acceleration
precision of the star S2 of 4 × 10−4 m=s2, 2 × 10−5 m=s2, and
10−6 m=s2 respectively. The regions above the lines rule out a
wormhole explanation. The x-axis has units of rg. The y-axis has
units of M⊙.
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