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We investigate the cosmology of mini primordial black holes (PBHs) produced by large density
perturbations. The mini PBHs evaporate promptly in the early Universe, and we assume that a stable
remnant is left behind. The PBH remnants can constitute all of the dark matter in the Universe for a wide
range of remnant masses. We build inflationary models, in the framework of α-attractors utilizing
exponential functions, in which the PBHs are produced during matter, radiation, and kination domination
eras. The advantage of these inflationary models is that the spectral index takes values favorable to the
Planck 2018 data. The PBH production from runaway inflaton models has the unique and very attractive
feature to automatically reheat the Universe. In these models the PBHs are produced during the kination
stage, and their prompt evaporation efficiently produces the required entropy. Such runaway models are
remarkably economic, having interesting implications for the early Universe cosmology, possibly giving
rise to a quintessence late time cosmology as well.
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I. INTRODUCTION

The primordial origin of black holes (PBH) is a rather
attractive scenario because PBHs can constitute all of the
cosmological dark matter (DM), or some significant frac-
tion of it [1–3]. Contrary to stellar black holes, the mass
range of the PBHs can be very wide, spanning over 30 dec
of mass, from 10−18 M⊙ to 1015 M⊙.
A synergy of observations, including the cosmic micro-

wave background (CMB) [4], the stochastic gravitational
wave background [5], the Lyman α forest [6], lensing
events [7–9], and dynamical studies of bound astrophysical
systems [10–14] derive a combination of constraints on the
PBH abundance for nearly the entire PBH mass range.
Neglecting possible enhanced merging rates or an extended
PBH mass distribution, the current allowed mass windows
for the dominant PBH dark matter scenario are quite narrow
and have central values M ∼ 10−15 M⊙ and M∼10−12M⊙.
Remarkably, although triggered by LIGO events [15–17],
PBH research has been extended into scenarios with vastly
different mass scales. PBHs with very light masses are
anticipated to Hawking radiate energetically, and this
places strong constraints on their abundance. The lightest
PBHs that can constitute a non-negligible part of the
cosmic dark matter have mass M ∼ 10−17 M⊙. PBHs with
smaller mass are prone to evaporation and hence are much
constrained from the extragalactic gamma-ray background
[18], CMB, and big bang nucleosynthesis (BBN) [19].

Mini PBHs with massesM ≪ 10−24 M⊙ ≃ 109 g will have
promptly evaporated in the very early Universe, potentially
leaving no observational traces.
However, the scenario of mini PBHs is of major interest

due to the theoretical expectation that black holes cannot
evaporate into nothing; see, e.g., [20–22]. If the black hole
evaporation halts at some point, then a stable state, called
the black hole remnant, will survive. Remnants from the
PBH’s prompt evaporation have important cosmological
consequences, with the most notable one being that PBH
remnants can constitute all of the dark matter in the
Universe [23,24]. The cosmological scenario of the mini
PBH’s evaporation and the PBH remnants has been studied
in several contexts in [25–32].
The generation of mini PBHs implies that PRðkÞ has

to feature a peak at very large wave numbers k. The
most attractive mechanism to generate PBHs is inflation.
Because of the natural generation of large scale per-
turbations from quantum fluctuations, inflation is the
dominant paradigm that cosmologists follow to explain
the origin of the large scale structure and has been, so far,
successfully tested by the CMB precision measurements
[33]. Nevertheless, inflation does not seed large scale
perturbations only; it seeds perturbations in all scales.
Hence, PBHs can form if perturbations strong enough to
collapse are produced at scales k−1 ≪ k−1cmb characteristic of
the PBH mass.
There have been numerous inflationary models con-

structed to predict a significant abundance of PBHs; for a
recent proposal see, e.g., [34–49]. Their common feature is
that the spectrum of the curvature perturbations, PRðkÞ,
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turns from red into blue at small scales. Since inflation
models primarily generate the CMB anisotropies, these
new inflationary proposals, though successful at generating
PBHs, might fail at the k−1cmb scale. In general the predicted
spectral index ns and running αs values are in best
accordance with the CMB measured values when the
PBHs have masses of minimal size; see, e.g., [50], where
the growth of the power spectrum is discussed. Light PBHs
imply that the PRðkÞ shape has to be modified at k values,
far beyond the scales probed by the CMB. From a model
building perspective, achieving an enhancement of PRðkÞ
at the very end of the spectrum might seem to be an
attractive feature. This is extra motivation to examine the
mini PBH scenario.
In this work we build inflationary models that generate

mini PBHs and examine the early and late Universe
cosmology of the PBH remnants. Our inflationary models
belong in the family of the α-attractors [51], and the
building blocks we use are exponential potentials. The
PBHs are generated by the presence of an inflection point at
small field values where the inflaton velocity decreases
significantly producing a spike in PRðkÞ. Since PBHs form
during the very early postinflationary cosmic stage and
reheating might have not been completed, it is natural to
examine the evolution of the PBHs and their remnants for
different backgrounds and expansion rates.
We derive expressions for the relic abundance of

the PBH remnants for an arbitrary barotropic parameter
w and remnant mass Mrem. These expressions are general
and applicable to the stable PBH scenario as well.
Afterward, we examine explicitly the radiation domina-
tion, matter domination, and kination domination cases.
We explicitly construct and analyze three different infla-
tionary potentials, and we compute the power spectrum of
the comoving curvature perturbation, solving numerically
the Mukhanov-Sasaki equation, and we estimate the
fractional PBH remnant abundance. A great advantage
of our inflationary models is that the predicted values for
ns and αs are placed inside the 1σ C.L. region of the Planck
2018 data.
Moreover, we introduce the scenario of PBH production

during the kination domination regime (called also the
stiff phase), which has interesting cosmological implica-
tions. Kination is driven by the kinetic energy of the
inflaton field itself. The duration of the kination regime
is solely specified by the mass and the abundance of the
PBHs produced. The fact that the PBHs promptly evaporate
means that the Universe is automatically and successfully
reheated without the need of special couplings or tailor-
made resonance mechanisms. In addition, the inflaton field
might play the role of the quintessence at late times giving
rise to a testable wCDM cosmology, where cold dark
matter, comprising PBHs remnants, is produced by the
primordial fluctuations of the very same field, and w is the
equation of state of the dark energy; see Fig. 1. Apparently,

in terms of ingredients, this is a maximally economic
cosmological scenario.
The analysis in this paper is structured as follows. In

Sec. II we discuss the bounds on themasses of the PBHs and
of their remnants, reviewing briefly theoretical consider-
ations and deriving the associated cosmological bounds. In
Sec. III the cosmology of the PBH remnants is presented for
a general expansion rate, and the main formulas are derived.
In Sec. IV we turn to the inflationary model building and
formulate the constraints thatPRðkÞ has to satisfy. In Sec. V
we examine inflationary models based on the α-attractors
that generate mini PBHs, we compute numerically PRðkÞ,
and we construct explicit examples in which the PBH
remnants constitute all of the dark matter in the Universe.
We present and illustrate our results with several plots and
tables. In Sec. VI we conclude.

II. PBH EVAPORATION REMNANTS

Hawking predicted that black holes radiate thermally
with a temperature [52,53]

TBH ¼ ℏc3

8πGMkB
∼ 108

�
M

105 g

�
−1

GeV ð2:1Þ

and are expected to evaporate on a timescale tevap ∼
G2M3=ðℏc4Þ, which is found to be [19]

tevap ¼ 407f̃ðMÞ
�

M
1010 g

�
3

s; ð2:2Þ

whereM is the mass of the PBH formed. We see that PBHs
in the mass rangeM ∼ 109–1012 g evaporate during or after
the BBN cosmic epoch, and that β is significantly con-
strained by the abundance of the BBN relics. For PBH in
the mass range M ∼ 1013–1014 g, the evaporation takes
place during the cosmic epoch of recombination and the
CMB observations put the stringent constraints on βðMÞ.
Larger PBH masses contribute to the extragalactic gamma-
ray background; for a review see [19]. Hence, the scenario
of the PBH remnants as dark matter is motivated for
M < 109 g. In particular, the remnants from the evapora-
tion of the PBHs can constitute all or a significant portion
of the cosmic dark matter if the PBH mass is smaller than

M <

�
κm2

PlM
1=2
eq

1þ w

�2=5

; ð2:3Þ

as we will show in Sec. III. The Planck mass is
mPl ¼ 2.2 × 10−5 g, and Meq is the horizon mass at the
moment of radiation-matter equality. The w stands for the
equation of state of the background cosmic fluid. For
reasons that we will explain later, we call the upper mass
bound Minter and it has a size, roughly, of 2κ2=5106 g.
Remnants from PBHs with mass M > Minter contribute
only a small fraction to the total dark matter.
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A. Theoretical considerations about
the PBH remnant mass

There are several theoretical reasons for anticipating that
black holes do not evaporate completely but leave behind a
stable mass state. Hawking radiation is derived by treating
matter fields quantum mechanically, while treating the
space-time metric classically. When the mass of an evapo-
rating black hole becomes comparable to the Planck scale,
such a treatment would break down, and quantum gravi-
tational effects would become relevant. Energy conserva-
tion [54], extra spatial dimensions [55,56], higher order
corrections to the action of general relativity [23], and
the information loss paradox [22] could be sufficient to
prevent complete evaporation. Higher order correction to
the Hawking radiation emerging from some quantum
gravity theory are also expected to modify the evaporation
rate. The mass of the final state of the evaporation, i.e., the
PBH remnants, Mrem can be written in terms of the Planck
mass

Mrem ¼ κmPl: ð2:4Þ

κ is a factor that parametrizes our ignorance. Different
theories predict stable black hole relics of different mass.
κ may be of order 1, with relic black hole masses charac-
terized by the fundamental scale of gravity, mPl ¼ G−2, but
other values for κ are also admitted. If black holes have
quantum hair, e.g., if they possess discrete electric and
magnetic charges, the remnant mass depends on the value
of the charge, Mrem ∼mPl=g, where g is the corresponding
coupling constant [21]. Thus, Mrem can be orders of
magnitudes larger than 1, κ ≫ 1, for weakly coupled
theories. In other theories, such as those where a gener-
alized uncertainty principle is applied [57], the mass of the
black hole remnants can be much smaller than mPl (see,
e.g., [58]); hence, it is κ ≪ 1. In our analysis and expres-
sions κ is a free parameter. This is a justified approach since
we know next to nothing about the physics at that energy
scale. In explicit examples we will pick up the benchmark
κ ∼ 1 value, and in others κ ≪ 1. We will also comment on
the cosmology of different κ values; see Figs. 2 and 3.
This work aims at the cosmology of the PBH remnants,

and we will remain agnostic about the fundamental physics
that prevents black holes (or holes more properly) from
complete evaporation. We will not enter into the details
regarding the modification of the Hawking temperature
with respect to the black hole mass either. Nevertheless,
we remark that the formation of mini PBHs with mass
M < Minter ∼ κ2=5106 g takes place in the very early
Universe, at the cosmic time tform, and we expect these
PBHs to evaporate promptly with their temperature reach-
ing a maximum value contrary to what the standard
expression (2.1) dictates. If the temperature of the PBHs
is initially smaller that the background cosmic temperature,
TBHðtformÞ < TðtformÞ, the accretion effects should be taken

into account. Although the accretion decreases the temper-
ature of the PBH, the decrease of the cosmic temperature
due to the expansion is much faster, and the amount of
matter that a PBH can accrete is small. Hence, the PBH
lifetime will not be modified, and once the cosmic temper-
ature falls below the value TBH ∼ 108ðM=105 gÞ−1 GeV,
the PBHs heat up and evaporate. Concerning the black hole
temperature, TBH is expected to reach a maximal value and
afterward decrease as M → Mrem. In this last stage of PBH
evaporation, the rate dM=dTBH turns positive. The PBHs
are expected to exist in stable equilibrium with the back-
ground only when their mass is already close to the remnant
mass [23]; thus, possible related corrections can be con-
sidered negligible for the scope of this work.

B. Cosmological constraints on the mass
of the PBH remnants

The examination of the PBH remnant cosmology pro-
vides us with observational constraints on the κ value. The
corresponding analysis is presented in detail in Sec. III, and
here, in advance, we will use part of the results to report the
cosmological allowed values for the PBH remnant masses.
Let us first examine the minimal possible value forMrem.

In the inflationary framework the formation of PBHs with
mass M can be realized only if the horizon mass right after
inflation, Mend ¼ 4πM2

Pl=Hend is smaller than M=γ. The γ
parameter is the fraction of the Hubble mass that finds itself
inside the black hole. In terms of the Hubble scale at the end
of inflation, Hend, the bound reads

M > γ105 g
109 GeV
Hend

: ð2:5Þ

The above inequality yields a lower bound for the
PBH mass. The upper bound on the tensor-to-scalar ratio
r� < 0.064 [33] and the measured value of the scalar
power spectrum amplitude constrain the Hubble scale,
H�≃ðπ2Asr�=2Þ1=2MPl. It is Hend<H�<2.6×10−5MPl ≃
6.5×1013GeV; hence, the minimal PBH mass that can be
generated isM=γ > Oð1Þðr�=0.06Þ−1=2 g. Assuming that a
radiation domination phase follows inflation, the fractional
abundance of the PBH remnants, given by Eq. (3.10), is
maximal frem ¼ 1 for κ ≳ 10−18.5. Hence, the PBH rem-
nants are able to have a significant relic abundance only if
they have mass

Mrem > 1 GeV ≃ 1.8 × 10−24 g: ð2:6Þ

This lower bound has been derived assuming the minimum
possible PBH mass, M ∼ 1 g, and the maximum possible
formation rate, β ∼ 1; see Eq. (3.10). It is also valid for
nonthermal postinflationary cosmic evolution. PBHs rem-
nants with smaller mass can constitute only a negligible
amount of the total dark matter energy density.
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On the other side, the κ value has a maximum
value, κmax ¼ M=mPl. Apparently, for κ ¼ κmax there is
no Hawking radiation, and one does not talk about PBH
remnants. For κ ≪ M=mPl the Hawking radiation is impor-
tant, and it might affect the BBN and CMB observables for
light enough PBHs. Assuming again a radiation domination
phase after inflation, Eq. (3.10) implies that κ ∝ 1=β for
frem ¼ 1. According to Eq. (2.2), for M ≳ 109 g the PBH
evaporates after a timescale of 1 s, and the BBN constrains
β < 10−22. However, the BBN β upper bounds cannot be
satisfied for κ ≪ κmax. Hence, for Mrem ≪ M we conclude
that only the remnants with mass in the window

10−24 g < Mrem ≪ 108 g ð2:7Þ

can have a sufficient abundance to explain the observed
dark matter in the Universe. The upper bound is determined
by the BBN constraints on the parent PBH mass. It might
be satisfied for Mrem about 1 order of magnitude less than
108 grams; its exact value depends on how Eqs. (2.1) and
(2.2) are modified and on the equation of state w after
inflation. In the following we derive the expressions for
the relic abundance of the PBH remnants for a general
expansion rate and Mrem parameter, and we examine
separately the cases of radiation, matter, and kination
domination eras.

III. THE EARLY UNIVERSE COSMOLOGY OF
THE PBH REMNANTS

The cosmology of the PBH remnants originating from
large primordial inhomogeneities was studied in detail in
Refs. [23,24], where the basic expressions were derived.
PBH remnants might also originate form micro black holes
produced from high energy collisions in the early Universe
[59]. In the following we will consider the formation of
PBHs due to large inhomogeneities and will generalize the
key expressions for arbitrary barotropic parameter w,
introducing also the PBH–stiff fluid (kination) scenario.
Let us suppose that at the early moment tform a fraction β

of the energy density of the Universe collapses and forms
primordial black holes. The mass density of the PBHs is
ρPBH ≃ γβρtot at the moment of formation, where ρtot ¼
3H2M2

Pl with MPl ¼ mPl=
ffiffiffiffiffiffi
8π

p
, the reduced Planck mass.

The formation probability is usually rather small, β ≪ 1,
and the background energy density ρbck ¼ ð1 − γβÞρtot is
approximately equal to ρtot.
The PBHs are pressureless nonrelativistic matter, and

their number density nPBH scales like a−3. The background

energy density scales as ρ ∝ a−3ð1þwÞ, where aðtÞ ∝ t
2

3ð1þwÞ

and w is the equation of state of the background fluid. The
perturbations evolve inside the curvature scale 1=H, which
has massMH ¼ ð3=4Þð1þ wÞm2

Plt, called the Hubble scale
mass. In the approximation of instantaneous evaporation,
the moment right before evaporation that we label t<evap,

the energy density of the PBHs over the background energy
density is

ρPBHðt<evapÞ
ρbckðt<evapÞ

¼ γβγ
2w
1þw

�
MHðt<evapÞ

M

� 2w
1þw

g̃ðg�; tevapÞ; ð3:1Þ

where g̃ðg�; tevapÞ is equal to 1 unless the Universe is
radiation dominated; in that case it is g̃ðg�; tevapÞ≡
ðg�ðtformÞ=g�ðtevapÞÞ−1=4, where g� represents the thermal-
ized degrees of freedom (d.o.f.), which we took to be equal
to the entropic d.o.f., gs. Substituting the Hubble mass
at the evaporation moment of a PBH with mass M,
MHðtevapÞ ¼ 3M3ð1þ wÞ=4m2

Pl, a threshold βðMÞ value
is found. For

β < h̃−1ðγ; w; tevapÞ
�
mPl

M

� 4w
1þw

; ð3:2Þ

where h̃ðγ; w; tevapÞ≡ γ
1þ3w
1þw

�
3
4
ð1þ wÞ

� 2w
1þwg̃ðg�; tevapÞ, the

Universe has never been PBH dominated.
At the moment right after the evaporation, which we

label t>evap, the energy density of the PBHs has decreased
ðκmPl=MÞ−1 times. This factor is much larger than 1, and
thus nearly the entire energy density of the initial PBHs
turns into radiation apart from a tiny amount, reserved
by the PBH remnants. The present density of the PBH
remnants depends on the equation of state of the Universe
after the PBH evaporation. If we assume that a radiation
domination phase follows the PBH evaporation, the frac-
tional abundance of the PBH remnants over the total DM
abundance today is

fremðMÞ ¼ c̃β

�
Meq

MHðtevapÞ
�

1=2 κmPl

M

�
M
mPl

� 4w
1þw

; ð3:3Þ

where c̃ðγ; w; teqÞ ¼ 21=4h̃ðγ; w; teqÞΩm=ΩDM. However,
the assumption that there is a radiation domination phase
after the PBH evaporation holds either when the Universe
has become PBH dominated at the moment t<evap or when
the equation of state of the background fluid is w ¼ 1=3.
Otherwise, one has to replace theMHðtevapÞwith theMrh—
that is, the Hubble radius mass at the completion of
reheating—and include a w-dependent factor to account
for the different expansion rate. Next, particular cases will
be examined.
If the Universe has become PBH dominated at the

moment t<evap and we ask for fremðMÞ ¼ 1, we get the mass

Minter ¼ α̃2=5ðwÞðκm2
PlM

1=2
eq Þ2=5; ð3:4Þ

where α̃ðwÞ ¼ 21=4ðΩm=ΩDMÞð
ffiffiffi
3

p ð1þ wÞÞ−1. This is the
intersection mass of Eq. (3.2) and the fremðMÞ ¼ 1 line,
given by Eq. (3.3). We see thatMinter slightly depends on w.
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This means that there is a single PBH mass scale such that
the early Universe becomes PBH dominated and the
evaporation remnants account for the total DM, for
any positive value of the equation of state. Plugging
in values, Meq ≃ 6 × 1050 g, g�ðTeqÞ ¼ 3.36, we obtain
Minter ≃ 2κ2=5106 g. The intersection mass is the maximum
M value in Figs. 2 and 3. For masses M ≥ Minter the upper
bound on β is practically removed. Turning to β, the βinter
value that yields frem ¼ 1 and the momentary PBH
domination phase is w dependent,

βinterðwÞ ¼ h̃−1ðγ; wÞα̃ −2w
5þ5w

�
mPl

Meq

� 4w
5þ5w

: ð3:5Þ

Larger values for w require smaller β, and hence minimal β
values are achieved for w ¼ 1; see Figs. 2 and 3.
For masses M > Minter the relic abundance of the PBH

remnants is always smaller than the total dark matter
abundance even if PBHs dominate the early Universe.
Hence, for M ≥ Minter there is no constraint on β from
fremðMÞ. This can be understood as follows. Let us assume
that M ¼ Minter and β ¼ βinter such that Ωrem ¼ ΩDM.
This means that right before evaporation the PBH number
density is nPBHðt<evapÞ ≃ ρtot=Minter. If it had been β > βinter,
the PBH domination phase would have started at times
t < tevap, but the number density of the PBH relics at the
moment tevap would have been the same. Hence, the value
of fremðMinterÞ does not increase for β > βinter. Also, for
M > Minter the number density of the PBHs is always
smaller than ρtot=Minter at the moment t<evap ∼G2M3

max, even

FIG. 1. A schematic illustration of the runaway inflationary model introduced in this work (the kination scenario) that produces PBHs,
explains the dark matter with the PBH remnants, reheats the Universe via the PBH evaporation, and implements a wCDM late time
cosmology, where the dark energy (DE) is identified as the energy density of the inflaton field itself.
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FIG. 2. βmax, given by the condition frem ¼ 1 for PBH
formation during three different cosmic phases with equation
of states: w ¼ 0 (for three different reheating temperatures),
w ¼ 1=3, and w ¼ 1. At the mass M ¼ Minter the requirement
frem ≤ 1 does not imply any bound on β. We considered the mass
of the PBH remnants to be equal to the Planck mass, κ ¼ 1.
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FIG. 3. As in Fig. 2, for PBH remnants with arbitrary chosen
masses 106mPl (solid lines), 10−4mPl (dashed lines), and 102 TeV
(dotted lines).
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if βðMÞ ∼ 1. Since the PBHs will evaporate into PBH
remnants with the universal mass κmPl, the conclusion to be
drawn is that the relic energy density parameter of PBH
remnants with mass M > Minter is always less than ΩDM.
Summing up, any constraint on βðMÞ for Minter < M <
1017 g comes only from the Hawking radiation of the
PBHs, not from the abundance of the PBH remnants.
Let us now turn to the M ¼ MðkÞ relation, assuming a

one-to-one correspondence between the scale k−1 and the
mass M. Following the Press-Schechter formalism [60],
there is a probability β an overdensity with wave number k
to collapse when it enters the Hubble radius (or some time
later if the Universe is matter dominated). The mass M of
the PBH is related to the wave number k ¼ aH as

M
Mrh

¼ γ
H−1

H−1
rh

¼ γ

�
k
krh

�−3ð1þwÞ
3wþ1

; ð3:6Þ

where we utilized the relation between the wave number
and the scale factor,

k
krh

¼
�

a
arh

�
−1
2
ð3wþ1Þ

: ð3:7Þ

The horizon mass at the completion of reheating,
Mrh ¼ 4πðπ2g�=90Þ−1=2M3

Pl=T
2
rh, reads

Mrh ≃ 1012 g

�
Trh

1010 GeV

�
−2
�

g�
106.75

�
−1=2

: ð3:8Þ

If PBHs form during the radiation domination era, it is
M=γ > Mrh, whereas if they form before the completion of
the thermalization of the Universe, it is M=γ < Mrh. We
will return to the relation between the PBH mass and the
wave number k in Sec. IV, where we will explicitly write
theM ¼ Mðk; Trh; wÞ formula in order to connect the PBH
mass with the PRðkÞ peak.
Let us note that the formation of PBHs with mass M is

possible only if the horizon mass right after inflation is
smaller than M=γ; see Eq. (2.5). Equivalently, a PBH with
massM will form due to superhorizon perturbations only if
the corresponding wavelength k−1 is larger than the Hubble
scale at the end of inflation. Thus, a different way to express
condition (2.5) is kend > k.
Next, we examine separately the interesting cosmologi-

cal scenarios with barotropic parameter w ¼ 0, w ¼ 1=3,
and w ¼ 1.

A. PBH production during radiation domination

Let us assume that the bulk energy density is in the form
of radiation. Thus, it is ρPBH ≃ γβρrad after the approxima-
tion ρrad ¼ ð1 − βÞρtot ≃ ρtot, which is legitimate for β ≪ 1.
The PBH mass isM ¼ γMH, whereMH¼m2

Pl=ð2HÞ≃m2
Plt

is the Hubble radius mass during radiation domina-
tion (RD).
Assuming a RD phase until the moment of the evapora-

tion and making the approximation of instantaneous evapo-
ration, the energy density of the PBHs at the moment right
before evaporation is ρPBHðt<evapÞ ¼ γ3=2βMm−1

Pl ρradðt<evapÞ.
Thus, the assumption of a radiation dominated phase
is valid for γ3=2βMm−1

Pl < 1. In the opposite case the
Universe becomes PBH dominated before the moment of
evaporation. At the moment right after the PBH evaporation,
the energy density of the PBH relics is κγ3=2β times the
energy density of the radiation background. For a RD
phase until the epoch of matter-radiation equality, teq, it is
ρremðteqÞ ≃ ðκmPl=MÞγβρradTevap=Teq, and the fractional
abundance of the PBH remnants is found,

fremðMÞ ¼ c̃Rγ3=2
κmPl

M
β

�
Meq

M

�
1=2

; ð3:9Þ

where c̃R ¼ 21=4ðgðTformÞ=gðTeqÞÞ−1=4Ωm=ΩDM. Tevap and
Teq are the cosmic temperatures at the moment of
evaporation and the epoch of matter-radiation equality.
The effectively massless d.o.f. for the energy and entropy
densities were taken to be equal. The maximum value
frem ¼ 1 gives the maximum value for βmaxðMÞ; see
Figs. 2 and 3. Equation (3.9) is rewritten after inserting
the benchmark values,

fremðMÞ ≃ κ

�
β

10−12

��
γ

0.2

�3
2

�
M

105 g

�
−3=2

; ð3:10Þ

where we omitted the factor 0.95ðgðTkÞ=106.75Þ−1
4 from the

rhs and took ΩDMh2 ¼ 0.12.
Assuming Gaussian statistics, the black hole formation

probability for a spherically symmetric region is

βðMÞ ¼
Z
δc

dδ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2ðMÞ
p e

− δ2

2σ2ðMÞ; ð3:11Þ

which is approximately equal to β
ffiffiffiffiffiffi
2π

p
≃ σðMÞ=δce−

δ2c
2σ2ðMÞ.

The PBH abundance has an exponential sensitivity to the
variance of the perturbations σðkÞ and to the threshold
value δc. In the comoving gauge Ref. [61] finds that δc has
the following dependence on w,

δc ¼
3ð1þ wÞ
5þ 3w

sin2
π

ffiffiffiffi
w

p
1þ 3w

: ð3:12Þ

For w ¼ 1=3 it is δc ¼ 0.41. The variance of the density
perturbations in a window of k is given by the relation
σ2 ∼ Pδ, where Pδ is related to the power spectrum of the
comoving curvature perturbation as

PR ¼
�

5þ 3w
2ð1þ wÞ

�
2

Pδ; ð3:13Þ
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hence, it is σ2 ∼ ð4=9Þ2PR. From the approximation of
Eq. (3.11), we get PR ∼ ð9=4Þ2ðδ2c=2Þ lnð1=ð

ffiffiffiffiffiffi
2π

p
βÞÞ−1.

Benchmark values β ¼ 10−12, δc ¼ 0.41, κ ¼ 1 yield the
required value for the power spectrum PR ∼ 1.6 × 10−2.
Increasing the value of κ by 1 order of magnitude or
more gives only a slight decrease in the required value
of PR.
Finally, let us note that PBHs are expected to form with

mass M ¼ γMH when the cosmic temperature is

TðMÞ ≃ 1011 GeVγ1=2
�

M
1010 g

�
−1=2

�
g�

106.75

�
−1=4

:

ð3:14Þ

For example, formation of PBHs with mass M ∼ 105 g
requires a reheating temperature Trh > 1013 GeV. If the
reheating temperature is lower than TðMÞ, then PBHs with
mass M form during the nonthermal phase.
A particular example that yields frem ¼ 1 is described

in Sec. V.

B. PBH production during matter domination

For PBH formation during the matter domination (MD)
era, expression (3.9) has to be multiplied with ðtform=trhÞ1=2
to account for the absence of a relative redshift of ρPBH with
respect to the background energy density. That is,

fremðM;MrhÞ ¼ c̃M
κmPl

M
γβ

�
Meq

Mrh

�
1=2

; ð3:15Þ

where c̃M ¼ 21=4ðgðTrhÞ=gðTeqÞÞ−1=4Ωm=ΩDM and for
M < Mrh. The Hubble scale mass at the completion of
reheating reads Mrh ¼ MHðTrh; g�Þ ¼ 4πðπ2g�=90Þ−1=2 ×
M3

Pl=T
2
rh. Equation (3.15) is rewritten after normalizing M,

Mrh with benchmark values,

fremðM;MrhÞ ≃ 3κγ

�
β

10−9

��
Mrh

1010 g

�
−1=2

×
�

M
105 g

�
−1
�

g�
106.75

�
−1=4

; ð3:16Þ

and the mass M is related to the scale k−1 of the
inhomogeneity as

k ¼ kend

�
4πM2

Pl

Hend

�
1=3

�
M
γ

�
−1=3

for k > krh: ð3:17Þ

In a pressureless background overdensities can grow and
collapse more easily if the MD era is sufficiently long.
A slow reheating stage after inflation was examined in
Ref. [62]. Contrary to the RD case, nonsphericity and spin
effects suppress the formation probability. Reference [63]
examined the PBH production in the MD era and found that

for not very small σ the PBH production rate tends to be
proportional to σ5,

βðMÞ ¼ 0.056σ5: ð3:18Þ

If the collapsing region has angular momentum, the
formation rate is further suppressed and reads [64]

βðMÞ ¼ 1.92 × 10−7fqðqcÞI6σ2e−0.147
I4=3

σ2=3 : ð3:19Þ

Benchmark values are qc ¼
ffiffiffi
2

p
, I ¼ 1, fq ∼ 1. According

to [64], expression (3.19) applies for σ ≲ 0.005, whereas
Eq. (3.18) applies for 0.005≲ σ ≲ 0.2.
During the MD era, an additional critical parameter is the

duration of the gravitational collapse. Reference [64] con-
cluded that the finite duration of the PBH formation can be
neglected if the reheating time trh satisfies trh > ð2

5
IσÞ−1tk,

where tk is the time of the horizon entry of the scale k−1

(it does not coincide with the formation time tform). In
terms of temperature this condition is rewritten as Trh <
ð2
5
IσÞ1=2Tk, where Tk is the temperature at which the scale

k−1 would enter the horizon during RD. Let us define the
temperature

TMD
form ¼

�
2

5
Iσ

�
1=2

Tk: ð3:20Þ

If the reheating temperature is smaller than TMD
form, PBHs

form during the MD era. Unless this condition is fulfilled,
the time duration for the overdensity to grow and enter the
nonlinear regime is not adequate. Hence, the formation
rates (3.18) and (3.19) apply only for the scales k that
experience a variance of the comoving density contrast at
horizon entry that is larger than

σ > σcr ≡ 5

2
I−1

�
krh
k

�
3

: ð3:21Þ

In terms of temperature this translates into σ > 5=
2I−1ðTrh=TÞ2. If σ < σcr, one should consider the radiation
era formation rate.
A particular example that yields frem ¼ 1 is described

in Sec. V. σ in that example is less than 0.005 and larger
than σcr; thus, the overdensity collapses during the matter
era, with the spin effects being crucial.

C. PBH production during stiff fluid domination

Let us assume that the bulk energy density is in the form
of stiff fluid (SD era), that is, a fluid with barotropic para-
meter w ¼ 1, also called the kination phase. A nonoscilla-
tory inflaton can give rise to a kination phase. It is ρPBH≃
γβρS, where we have approximated ρS ¼ ð1 − βÞρtot ≃ ρtot
for β ≪ 1. The PBH mass is M ¼ γMHðtformÞ, and the
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Hubble scale mass for stiff fluid domination at the
evaporation moment is MHðtevapÞ ¼ ð3=2ÞM3=m2

Pl.
Assuming that the SD era lasts at least until the moment

of evaporation and making the approximation of instanta-
neous evaporation, the energy density of the PBHs at the
moment right before evaporation is

ρPBHðt<evapÞ
ρSðt<evapÞ

¼ 3

2
γ2β

M2

m2
Pl

: ð3:22Þ

The assumption of a kination phase is valid roughly for
γ2βM2m−2

Pl < 1; otherwise, the Universe becomes PBH
dominated before the moment of evaporation.
Let us assume that γ2βM2m−2

Pl < 1. At the moment
right after PBH evaporation, the energy density of the
PBH remnants is ρremðt>evapÞ ¼ ð3=2Þκγ2βðM=mPlÞρtot. The
background energy density is now partitioned between
the stiff fluid, ρS, and the entropy produced by the PBH
evaporation, ρrad. The latter is about M=ðκmPlÞ times
larger than ρremðt>evapÞ. Assuming that the evaporation
products thermalize fast, the radiation redshifts like
ρrad ∝ g�g

−4=3
s a−4, whereas the stiff fluid background

redshifts like ρS ∝ a−6. At some moment the radiation
dominates the background energy density, and we define it
as the reheating moment trh. The scale factor is

aðtrhÞ
aðtevapÞ

¼
�
2

3

m2
Pl

M2

1

γ2β

g1=3� ðtrhÞ
g1=3� ðtevapÞ

�1=2

: ð3:23Þ

At that moment we also define the reheating temperature
of the Universe, which reads

Trh ≡ 6.3 MeV

�
β

10−28

�
3=4

γ3=2g−1=2� : ð3:24Þ

Until the moment trh, the energy density of the PBH
remnants increases relatively to the stiff fluid dominated
background as ρrem=ρS ∝ a3, and afterward, that radiation
dominates: it increases as ρrem=ρrad ∝ T−1. It is

fremðMÞ ¼ c̃S
3

2
γ2β

κM
mPl

�
aðtrhÞ
aðtevapÞ

�
3
�
Meq

Mrh

�
1=2

; ð3:25Þ

where c̃S ¼ 21=4ðgðTrhÞ=gðTeqÞÞ−1=4Ωm=ΩDM and Mrh ¼
MHðtrhÞ. For times t < trh the Hubble radius mass increases
like MH ∝ a3, and, given that MHðtevapÞ ¼ ð3=2ÞM3=m2

Pl,
we find the Mrh mass:

Mrh ¼
ffiffiffi
2

3

r
γ−3β−3=2g1=2� mPl: ð3:26Þ

Therefore, the Eq. (3.25) is rewritten as

fremðMÞ ¼
ffiffiffi
2

3

r
c̃S

�
3

2
γ2β

�
1=4

κ

�
mPl

M

�
3=2

�
Meq

M

�
1=2

;

ð3:27Þ

and normalizing with benchmark values, we attain

fremðMÞ ≃ 4κ
ffiffiffi
γ

p �
β

10−32

�
1=4

�
M

105 g

�
−2
: ð3:28Þ

For κ ∼ 1 and M ∼ 105 g, β values as small as 10−32 can
explain the observed dark matter in the Universe. Pressure
is maximal, and we expect the overdense regions to be
spherically symmetric. Utilizing relation (3.12), PBH for-
mation occurs when the density perturbation becomes
larger than δc ¼ 0.375, and for the formation probability
βðMÞ given by Eq. (3.11), we find that power spectrum
values PR ≲ 3.5 × 10−3, for κ ≳ 1 and M ∼ 105 g, can
yield frem ¼ 1.
A particular example that yields frem ¼ 1 is described

in Sec. V.

1. BBN constraints

A kination regime has to comply with the BBN con-
straints. Let us assume that a runaway inflaton φ is
responsible for the kination regime. The energy density
during BBN is partitioned between the kinetic energy of the
φ field and the background radiation. Any modification to
the simple radiation domination regime is parametrized by
an equivalent number of additional neutrinos, and the
Hubble parameter has to satisfy the constraint [65]

�
H
Hrad

�
2
����
T¼TBBN

≤ 1þ 7

43
ΔNνeff ≃ 1.038; ð3:29Þ

where H is the actual Hubble parameter and Hrad is the
Hubble parameter if the total energy density is equal to the
radiation. The ΔNνeff ¼ 3.28–3.046 is the difference
between the cosmologically measured value and the SM
prediction for the effective number of neutrinos. In order to
prevent the Universe from expanding too fast during BBN
due to the extra energy density _φ2=2, the reheating temper-
ature has to be larger than [66]

Trh > ðα − 1Þ−1=2
�
g�ðTBBNÞ

Trh

�
1=4

TBBN

¼ Oð10Þ MeV; ð3:30Þ

where α≡ 1þ 7=43ΔNνeff ≃ 1.038.
An additional issue is that the gravitational wave energy

in the gigahertz region gets enhanced during the kination
regime [67–70]. The energy density of the gravitational
waves does not alter BBN predictions if
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I ≡ h2
Z

kend

kBBN

ΩGWðkÞd ln k ≤ 10−5; ð3:31Þ

which is written as [71]

I ¼ 2ϵh2Ωradðt0Þ
π2=3

�
30

gðTrehÞ
�

1=3 h2GWV
1=3
end

T4=3
rh

; ð3:32Þ

where ϵ ∼ 81=ð16π3Þ, h2Ωradðt0Þ¼2.6×10−5, and h2GW ¼
H2

end=ð8πM2
PlÞ. Substituting numbers, the observational

constraint I ≲ 10−5 gives a lower bound on the reheating
temperature,

Trh ≳ 106 GeV

�
106.75
g�

�
1=4

�
H2

end

10−6MPl

�
2

: ð3:33Þ

Substituting the reheating temperature predicted by kin-
ation-PBH models, Eq. (3.24), into the bound (3.33), we
obtain a lower bound on the formation rate

β ≳ 2 × 10−17
�
106.75
g�

�
1=3

�
Hend

10−6MPl

�
8=3

: ð3:34Þ

Smaller values for β mean that the radiation produced from
the PBH evaporation dominates later during the early
cosmic evolution, and the kination regime is dangerously
extended. Asking for frem ¼ 1, the lower bound on β yields
a lower bound on the ratio

Mffiffiffi
κ

p ≳ 1.6 × 107 gγ1=4
�

Hend

10−6MPl

�
1=3

�
g�

106.75

�
1=12

:

ð3:35Þ

We recall that the mass M has to satisfy the upper bound
given by Eq. (3.4), M < Minter ≃ 2κ2=5106 g; otherwise,
it is always frem < 1. This bound gives a maximum value
for κ,

κ

10−10
≲ 8.5γ−5=2

�
Hend

10−6MPl

�
−10=3

�
g�

106.75

�
−5=6

: ð3:36Þ

Unless Hend ≪ 10−6MPl, it must be κ < 1; hence, for high
scale inflation the PBH remnants must have sub-Planckian
masses. For κ ¼ κmax a maximum value for the mass of the
PBHs, M ¼ Minter, is obtained for the kination regime in
order for the remnants to saturate ΩDM.
PBH remnants with κ ≥ 1 require Hend ≲ 2×

10−9γ−3=4MPl, which can be achieved either in a small
field inflation model or by models where the CMB and
PBH potential energy scales have a large difference, so the
high frequency gravitational waves (GWs) have a smaller
amplitude. We underline that the above results are valid
only if the postinflationary equation of state of the inflaton

field satisfies w ≃ 1, at least until the BBN epoch. If it is
w < 1, the derived bounds get relaxed.

IV. BUILDING A PRðkÞ PEAK IN ACCORDANCE
WITH OBSERVATIONS

A. The position of the PRðkÞ peak
The wave number that inflation ends is

kend ¼ k�
Hend

H�
eN� ; ð4:1Þ

where N� are the e-folds of the observable inflation and
given by the expression

N� ≃ 57.6þ 1

4
ln ϵ� þ

1

4
ln

V�
ρend

−
1 − 3w

4
Ñrh: ð4:2Þ

ϵ�, H�, and V� are, respectively, the first slow-roll param-
eter, the Hubble scale, and the potential energy when the
CMB pivot scale exits the Hubble radius, while Hend and
ρend are the Hubble scale and the energy density at the end
of inflation.
The N� value is related to the postinflationary reheating

e-folds Ñrh and the corresponding (averaged) equation of
state w. We have implicitly assumed that w refers to the
postinflationary equation of state until the moment reheat-
ing completes. The number of e-folds until the completion
of the reheating Ñrh are

ÑrhðTrh; Hend; g�; wÞ

¼ −
4

3ð1þ wÞ ln
��

π2g�
90

�
1=4 Trh

ðHendMPlÞ1=2
	
: ð4:3Þ

An inhomogeneity of size k−1 crosses inside the horizon
during radiation domination if k < krh, where

krh ¼ kende−
3wþ1
2

Ñrh : ð4:4Þ

For a general expansion rate determined by the effective
equation of state value w, the kðMÞ relation reads

kðM;wÞ ¼ kend

�
M=γ
Mend

�
− 3wþ1
3ð1þwÞ

: ð4:5Þ

Mend and kend depend on the details of the inflationary
model, with the latter becoming larger for larger values of
w. kðM;wÞ can be written using the reheating completion
moment as the reference period replacing, respectively, kend
and Mend with krh and Mrh in Eq. (4.5). Then we attain the
more general kðM;Trh; wÞ relation
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kðM;Trh; wÞ ≃ 2 × 1017 Mpc−1
�

Trh

1010 GeV

� 1−3w
3ð1þwÞ

×

�
M=γ
1012 g

�
− 3wþ1
3ð1þwÞ

�
g�

106.75

�1
4

1−3w
3ð1þwÞ

: ð4:6Þ

For the case of kination domination the minor correction,
Trh → 21=4Trh, should be added due to the equipartition of
the energy density between the radiation and the sca-
lar field.
Assuming a one-to-one correspondence between the scale

of perturbation and the mass of PBHs, an inflationary model
builder who aims at generating PBHs with mass M has to
produce a PRðkÞ peak at the wave number kðM;Trh; wÞ.
Next, we briefly discuss the additional observational con-
straints, regarding the width of the peak, which one has
to take into account in order for the inflationary model to
be viable.

B. Observational constraints
on PRðkÞ at small scales

A power spectrum peak at large wave number, k ≫ k�, is
welcome for not spoiling the ns and αs values measured at
k�. Also, such a peak can generate PBHs abundant enough
to compose all of the dark matter in the Universe, either as
long-lived PBHs or as PBH remnants. However, shifting
the peak at large wave number does not render PRðkÞ free
from constraints. The impact of Hawking radiation on the
BBN and CMB observables and the extragalactic γ-ray
background put strong upper bounds on the PRðkÞ at large
k-bands. These bounds rule out a great part of the PBH
mass spectrum with range 109 g < M < 1017 g by explain-
ing ΩDM with PBH remnants (PBH remnants from holes
with mass M ∼ 1010 g or larger could explain ΩDM if
κ ≫ 1). Moreover, even if the power spectrum peak
produces PBHs at a mass scale where the PBH abundance
can be maximal (e.g., M ∼ 1018 g), the width of the peak
has to be particularly narrow. The stringent constraint
comes from the CMB, at the mass scaleM ∼ 1013 g, where
the electrons and positron produced by PBH evaporation
after the time of recombination scatter off the CMB photons
and heat the surrounding matter damping small-scale CMB
anisotropies, contrary to observations. The next stringent
constraint is applied at the mass range M ¼ 1010–1013 g,
where evaporation affects the BBN relics via hadrodisso-
ciation and photodissociation processes [19,72–74].
In Ref. [75] the observational constraints have been

explicitly translated into PRðkÞ bounds. In a radiation
dominated early Universe, utilizing Eq. (4.6), the CMB
constraint for Mcmb ≡ 2.5 × 1013 g and wrh ¼ 1=3 yields
the bound

σð3 × 1017k�Þ≲ 0.035

�
δc
0.41

�
: ð4:7Þ

σ is the variance of the comoving density contrast,
σ2∼ð4=9Þ2PR, and the bound PRð4×1017k�Þ≲Oð10−3Þ
is derived.
Turning to a MD early Universe reheated at temperatures

Trh ≲ 107 GeV, the variance of the density perturbations
has to satisfy the CMB bound,

σðkðMcmb; TrhÞÞ≲ Exp

�
−6.9 − 0.09 ln

Trh

GeV

þ 2 × 10−3
�
ln

Trh

GeV

�
2

− 3 × 10−5
�
ln

Trh

GeV

�
3
	
; ð4:8Þ

where kðMcmb; TrhÞ ≃ 3 × 1017k�γ1=3ðTrh=107 GeVÞ1=3
ðg�=106.75Þ1=12, according to Eq. (4.6) for wrh ¼ 0.
During the matter domination era, it is σ ∼ ð2=5ÞPR

1=2

and for γ ¼ 0.1 and Trh ¼ 107 GeV the constraint on the
power spectrum reads PRð1.4 × 1017k�Þ≲Oð9 × 10−7Þ. If
the reheating temperature is 107GeV≲Trh≲4×108 GeV,
then the BBN constraint on the power spectrum applies. For
MBBN ≡ 5 × 1010 and Trh ¼ 108 GeV, the constraint reads
PRð1018k�Þ ≲Oð4 × 10−6Þ, which is a bit weaker than the
CMB. For larger reheating temperatures, Trh ≳ 109 GeV,
the constraints get significantly relaxed and are given
by Eq. (4.7).
For the case of kination domination the CMB constraint

applies on the scale with wave number kðMcmb; TrhÞ and
reads

σðkðMcmb; TrhÞ≲ 0.032

�
δc

0.375

�
: ð4:9Þ

It is kðMcmb; TrhÞ ≃ 5 × 1018k�γ2=3ðTrh=107 GeVÞ−1=3
ðg�=106.75Þ−1=12, according to Eq. (4.6) for wrh ¼ 1 and
Mcmb ¼ 2.5 × 1013 g. Note here that the CMB bound (4.9)
applies for reheating temperatures Trh ≲ 2 × 109 GeV
since the gravitational collapse can be considered instanta-
neous, contrary to the case of the matter era [75].
For smaller PBH masses that evaporate in less than a

second, there are limits on the amount of thermal radiation
from the PBH evaporation due to the production of entropy
that may be in conflict with the cosmological photon-
to-baryon ratio [76]. There are also constraints from the
abundance of dark matter produced by the evaporation,
e.g., the lightest supersymmetric particle (LSP). In our
models the abundance of the PBH remnants saturates the
dark matter density parameter ΩDMh2 ¼ 0.12; thus, the
LSP constraint does not apply. Finally, for ultrasmall PBH
masses, the constraint comes only from the relic abundance
of the Planck-mass remnants [23,24,77]. These constraints
are labeled entropy, LSP (with a dotted-dashed line due to
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fact that in our models this constraint is raised), and Planck,
respectively, in our figures.

V. PBHs FROM THE α-ATTRACTOR
INFLATION MODELS

A. The inflaton potential and the computation ofPRðkÞ
The above constraints imply that, even in large wave

numbers, the power spectrum peak has to be positioned in a
particular range of k and, additionally, to be sufficiently
narrow. In this section our goal is to generate PBHs that
will evaporate fast enough in the early Universe without
affecting the BBN and CMB observables and, at the same
time, leave behind mass remnants that will saturate the dark
matter abundance. In order to implement this scenario, we
employ the machinery of α-attractors and build inflationary
models with inflection point at large k.
If the inflaton potential features an inflection point, a

large amplification in the power spectrum PRðkÞ can be
achieved due to the acceleration and deceleration of the
inflaton field in the region around the inflection point, as
was pointed out in [38,78]. The presence of an inflection
point requires V 0 ≈ 0 and V 00 ¼ 0. In the context of
supergravity such a model may arise from α-attractors,
by choosing appropriate values for the parameters in the
superpotential as described in Ref. [41].
We focus on the effective Lagrangian for the inflaton

field φ in the α-attractor scenario that turns out to be

e−1L ¼ 1

2
R −

1

2
ð∂μφÞ2 − f2

�
tanh

φffiffiffiffiffiffi
6α

p
�
; ð5:1Þ

where ReΦ ¼ ϕ ¼ ffiffiffi
3

p
tanhðφ= ffiffiffiffiffiffi

6α
p Þ is a chiral superfield.

Polynomial and trigonometric forms for the function
fðϕÞ can feature an inflection point plateau sufficient to
generate a significant dark matter abundance in accordance
with the observational constraints [41]. Nevertheless, other
forms for the function fðϕÞ are plausible. Exponential
potentials enjoy a theoretical motivation in several BSM
frameworks, and their cosmology has been extensively
studied; see, e.g., [79–86]. In the following we will
examine the PBH formation scenario from α-attractor
inflationary potentials built by exponential functions.
The form of the potential fully determines the subsequent

adiabatic evolution of the Universe; see Fig. 4. Firstly, the
number of e-folds N�, which follow the moment the k−1�
scale exits the quasi–de Sitter horizon, determine the
duration of the nonthermal stage after inflation.
Secondly, the position and the features of the inflection
point plateau determine the mass and the abundance of the
PBHs that form and, in particular, the moment the over-
densities reenter the horizon. If PBHs of a given mass M
form during the radiation era a specific inflationary
potential has to be designed. On the contrary, PBH
production during the matter era requires a different

potential. Furthermore, an inflationary potential might be
a runaway without a minimum at all. Such a potential is
acceptable if it can realize an inflationary exit and a
sufficient reheating of the Universe. Remarkably, both of
these conditions can be satisfied in our modes with the
generated mini PBHs to guarantee a successful reheating
via their evaporation. Last but not least, at large scales k ∼
k� we demand that the CMB observables, as specified by
the Planck 2018 data, remain intact.
The PBH abundance is found only after the compu-

tation of the value of the comoving curvature perturbation
Rk. In the comoving gauge we have δφ ¼ 0 and gij ¼
a2½ð1 − 2RÞδij þ hij�. Expanding the inflaton-gravity
action to second order in R, one obtains

Sð2Þ ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
a3

_φ2

H2

�
_R2 −

ð∂iRÞ2
a2

	
: ð5:2Þ

After the variable redefinition v ¼ zR, where z2 ¼ a2 _ϕ2=
H2 ¼ 2a2ϵ1, and switching to conformal time τ (defined by
dτ ¼ dt=a), the action is recast into

Sð2Þ ¼
1

2

Z
dτd3x

�
ðv0Þ2 − ð∂ivÞ2 þ

z00

z
v2
	
: ð5:3Þ

The evolution of the Fourier modes vk of vðxÞ are described
by the Mukhanov-Sasaki equation

v00k þ
�
k2 −

z00

z

�
vk ¼ 0; ð5:4Þ

where z00=z is expressed in terms of the functions

ϵ1 ≡ −
_H
H2

; ϵ2 ≡ _ϵ1
Hϵ1

; ϵ3 ≡ _ϵ2
Hϵ2

ð5:5Þ

as

z00

z
¼ ðaHÞ2

�
2 − ϵ1 þ

3

2
ϵ2 −

1

2
ϵ1ϵ2 þ

1

4
ϵ22 þ

1

2
ϵ2ϵ3

	
:

ð5:6Þ

We are interested in the super-Hubble evolution of the
curvature perturbation, that is, for k2 ≪ z00=z. The power of
Rk on a given scale is obtained once the solution vk of the
Mukhanov-Sasaki equation is known and estimated at a
time well after it exits the horizon and its value freezes out,

PR ¼ k3

2π2
jvkj2
z2

����
k≪aH

: ð5:7Þ

After the numerical computation of the Mukhanov-Sasaki
equation, PR at all of the scales is obtained; see Figs. 5, 6,
and 7. As required, the PRðkÞ of our models satisfy the
constraints given by Eq. (4.7), (4.8), and (4.9) for the
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radiation, matter, and kination eras, respectively. From the
PRðkÞ we compute the frem as described in Sec. III; see
Tables I and II. We note that we have neglected possible
impacts on the power spectrum from non-Gaussianities
[87–90] and quantum diffusion effects [91–94].

B. Inflaton potential for PBH production during
the radiation and matter eras

1. Radiation era

A function fðϕÞ built by exponentials can feature a
proper inflection point plateau. The form of the potential is
chosen to produce PBHs of the right abundance. We ask for

large reheating temperatures so that the large inhomoge-
neities can reenter the horizon after the thermalization of
the Universe. This is achieved by sufficiently strong
couplings of the inflaton field to the visible sector. We
also demand values for ns and αs that are favored by the
Planck 2018 data [33]. An example of a combination of
exponentials that can fulfill the above requirements is of
the form

fðϕ=
ffiffiffi
3

p
Þ ¼ f0ðc0 þ c1eλ1ϕ=

ffiffi
3

p
þ c2eλ2ϕ

2=3Þ; ð5:8Þ

which generates the potential
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FIG. 4. (Left panel) The potentials from the superconformal attractors, Eq. (5.9), which trigger PBH formation during the radiation era
(solid line) and during the matter era (dashed line). Although the potentials differ slightly, they yield very different power spectra (see
Figs. 5 and 6) and PBH masses. (Right panel) The potential for the runaway model, Eq. (5.11), with the characteristic asymptotic
flatness for large negative values of φ. In both panels the position of the inflection point and the total number of e-folds N� determine the
mass of the PBHs. The red dashed vertical line indicates the φ� position of the field that corresponds to the Planck pivot scale k�; it is
φ�=MPl ¼ 4.59, 4.60, 11.81 for the radiation, matter, and kination cases, respectively. The parameters of the potentials are listed in
Table III.
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FIG. 6. The power spectrum of the comoving curvature
perturbations for model (5.9), with parameters listed in Table III
for the MD case and the potential depicted in Fig. 4. The power
spectrum has a peak with amplitude PR ≃ 7 × 10−5 at the scale
k ¼ 9.6 × 1020 Mpc−1 about N ≃ 2 e-folds before the end of
inflation and before mini PBHs are produced. The shaded part of
PRðkÞ corresponds to the scales that enter the horizon during the
matter era.
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FIG. 5. The power spectrum of the comoving curvature
perturbations for model (5.9) with parameters listed in Table III
for the RD case and potential depicted in Fig. 4. A significant
amplification of the power spectrum PR ≃ 4 × 10−2 takes place
at small scales k ¼ 5.9 × 1020 Mpc−1 about N ≃ 4 e-folds before
the end of inflation, triggering the production of mini PBHs. The
duration of the reheating era is almost instantaneous.
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VðφÞ ¼ f20ðc0 þ c1eλ1 tanhφ=
ffiffi
6

p
þ c2eλ2ðtanhφ=

ffiffi
6

p Þ2Þ2; ð5:9Þ

having taken α ¼ 1. The determination of the parameter
values requires a subtle numerical process that we outline.
Firstly, a central PBH mass M has to be chosen, and from
Eq. (3.10) the β value that saturates fPBH is specified. M is
the parameter that spots the k-position of the PRðkÞ peak.
β is exponentially sensitive to the amplitude of the peak,
and its exact value is found after a delicate selection
of the potential parameters. PRðkÞ is produced by solving
numerically the Mukhanov-Sasaki equation, following the
method described in Ref. [41]. At the same time consis-
tency with the CMB normalization and the measured

ns and αs values, as well as a large enough N� value, is
required.
For ϕ →

ffiffiffi
3

p
the potential energy drives the early

Universe cosmic inflation, and CMB normalization gives
the first constraint for the parameters. We also demand zero
potential energy at the minimum of the potential that gives
a second constraint. We also note that f0 is a redundant
parameter since it can be absorbed by c0, c1, and c2. We
keep it only for numeric convenience. An example of
parameter values that realize the PBH production during

100 105 1010 1015 1020 2. ×1025
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

1
0 5 10 15 20 25 30 35 40 45 50 55 60 63.

k[Mpc−1]

P
R
( k

)
N

FIG. 7. The power spectrum of the comoving curvature
perturbations for model (5.11) with parameters listed in Table III
for the SD case and the potential depicted in Fig. 4. The power
spectrum has a peak with amplitude PR ≃ 2.7 × 10−2 at the
scales k ¼ 2 × 1025 Mpc−1 about N ≃ 12 e-folds before the end
of inflation, triggering the production of mini PBHs during the
kination regime. The shaded part of PRðkÞ corresponds to the
scales that enter the horizon during the kination era.
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FIG. 8. Potential (5.11), depicted in Fig. 4, for the parameters
listed in Table III (Kin.). The plot is in logarithmic scale in order
to make the VðφÞ value visible both during inflation and today.
See also Fig. 1.

w=1/3, Trh =2.13×1015GeV
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FIG. 9. The PBH formation rate βðMÞ estimated by Eq. (3.11)
for model (5.9) with the parameters listed in Table III, and PRðkÞ
depicted in Fig. 5 for the RD case. The central mass of the PBHs
is M ≃ 4 × 104 g that evaporate, leaving behind Planck-mass
remnants with frem ¼ 1. The dotted black line depicts the
constraints if the reheating temperature is Trh > 1015 GeV.
The LSP upper bound is not applicable since the PBH remnants
compose the total dark matter in our scenarios. EGγ stands for the
extra galactic gamma ray background.

w=0, Trh =5.6×1012GeV
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FIG. 10. The PBH formation rate βðMÞ estimated by Eq. (3.19)
for model (5.9) with the parameters listed in Table III, and PRðkÞ
depicted in Fig. 6 for the MD case. The central mass of the PBHs
isM ≃ 61 g that evaporate, leaving behind Planck-mass remnants
with frem ¼ 1. The dotted black and blue lines depict the
constraints at an arbitrary large reheating temperature.
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the RD era is listed in Table III, and the potential is depicted
in the left panel of Fig. 4.

2. Matter era

An early Universe matter domination era can be rea-
lized if the shape of the inflationary potential around
the minimum is approximated with a quadratic potential.

For moderately suppressed inflaton couplings the inflaton
decays after a large number of oscillations. The inhomo-
geneities that reenter the horizon during the stage of
the inflaton oscillations might collapse in a pressureless
environment.
The calculation of PBH production during the matter era

involves the same numerical steps as the case of radiation
plus some extra conditions that have to be taken into
account. Firstly, the PBH mass M value is not adequate to
specify the k-position and the amplitude of the PRðkÞ peak
since there is a crucial dependence on the reheating
temperature. Hence, after choosing the PBH mass M,
the required β is fixed for a particular reheating temper-
ature. In turn, the Trh fixes the number of e-folds that
constrain the inflaton excursion in the field space.
Moreover, the amplitude of the peak has an additional
dependence on the reheating temperature—namely, the
variance of the perturbations has to satisfy the bound
(3.21), σ > σcrðTrhÞ—in order for the inhomogeneities to
fully collapse during the matter domination era.
An inflationary example that predicts PBH formation

during the matter era is given by Eq. (5.8) after proper
parameter values are chosen. The set of the parameters,
listed in Table III, yields an amplitude for PRðkÞ in which
spin effects have to be considered in the estimation of the
formation probability.

C. Inflaton potential for PBH production
during the kination era

The period of kination domination has an interesting and
distinct cosmology. It is able to be realized after inflation if
the potential does not have a vacuum; see [71,95,96] for
α-attractor kination models. A nonoscillatory inflaton field
will run away without decaying, resulting in a period where
the kinetic energy dominates over the potential energy. The
attractive feature of such models is that the inflaton can
survive until today and might play the role of quintessence.
Moreover, such models are attractive because they lead to a
different early Universe phenomenology since the effective
equation of state is w ∼ 1 and the expansion rate is reduced.
This is the so-called stiff fluid or kination era, which gives

w=1, Trh =1.8×106GeV
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FIG. 11. The βðMÞ predicted by the inflationary model (5.11),
with parameters listed in Table III for the SD case. The PBHs with
central mass M ¼ 2 × 102 g are produced and evaporate during
the kination era (SD). The evaporation leaves behind sub-
Planckian-mass remnants with mass Mrem ¼ 4 × 10−11mPl ≃
6 × 108 GeV that compose all of the dark matter, frem ¼ 1.
The reheating temperature is determined by Eq. (3.24) and is
proportional to β3=4. The βmax constraints for the entropy, BBN,
CMB, and EGγ are ðM=MrhÞ1=2 stringent compared to the RD
case (dotted lines).

TABLE I. The predictions for the three inflationary models
discussed in the text. The era indicates the production era of the
PBHs, that is, the era in which the perturbations with the largest
amplitude reenter the horizon. The PBH remnant abundance,
frem, is the maximal one. Depending on the parameters of the
potentials, the initial PBH mass Mpeak

PBH varies in the range
M ∼ 10–104 g.

Era β Trh (GeV) Ñrh MpeakðgÞ frem

RD 1.25 × 10−13 2.13 × 1015 0 3.9 × 104 ∼1
MD 1 × 10−15 5.6 × 1012 7.5 69 ∼1
Kin. 1.07 × 10−14 1.8 × 106 13.57 2 × 102 ∼1

TABLE II. Characteristic values for the curvature power
spectrum are listed.

Era PR
peak kend N�

RD 4 × 10−2 3.45 × 1022 55.5
MD 1.4 × 10−4 5.69 × 1021 53.7
Kin. 2.7 × 10−2 2 × 1025 63.0

TABLE III. A set of values for the parameters of each potential
in Eqs. (5.9) and (5.11) responsible for PBH production in the
radiation, matter, and kination domination scenarios are listed.
For the kination model we also took φP ¼ 0.995MPl. We add
the parameter values f20 ¼ 7.49267 × 10−11, 7.37421 × 10−11,
3.11497 × 10−62 for the radiation, matter, and kination cases,
respectively.

Era c0 c1 c2 λ1 λ2

RD −1.856 1.173 −0.14 −0.987 95.5904
MD −1.856 1.173 −0.13 −0.987 124.57
Kin. −8.70 × 10−27 0.1045 −4 × 1025 62.2 −4430.973
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rise to different predictions regarding some early Universe
observables such as the spectrum of the tensor perturba-
tions, a fact that renders such an era testable.
The kination scenarios usually suffer from radiation

shortage since the inflaton field does not decay and special
mechanisms have to be introduced. A source of radiation
comes from the Hawking temperature of de Sitter space,
called gravitational reheating, but this is very inefficient
[97,98]. On the other hand, the Hawking radiation from
mini PBHs formed by a runaway inflaton automatically
reheats the Universe. So, in our models radiation is
produced by the evaporation of the PBHs, which can be
efficient enough. According to Eq. (3.24), common values
for β imply large enough reheating temperatures.
The construction of kination inflation models that induce

PBH production is very challenging. Firstly, the inflaton
runs away until it freezes at some value φF, and this
residual potential energy of the inflaton must not spoil
the early and late time cosmology. The inflaton potential
energy at φF has to be tuned to values VðφFÞ≲ 10−120M4

Pl,
and similarly to all of the quintessence models. Secondly,
the kination inflaton model parameters are self-constrained.
A particular PBH mass M specifies the k of PRðkÞ only if
the reheating temperature is known. However, the reheating
temperature is not a free parameter, as, e.g., in matter or
radiation cases where the Trh depends on the inflaton decay
rate. In the kination scenario Trh depends on β:β is found
using the condition frem ¼ 1, and this fixes the reheating
temperature.
Hence, the characteristics of the peak in the power

spectrum determine
(i) the mass of the evaporating PBHs,
(ii) the dark matter abundance, and
(iii) the reheating temperature of the Universe.

In addition, the tail of the potential might lead to the obser-
ved late time acceleration of the Universe; see Fig. 8.
Undoubtedly, this scenario is remarkably economic.
To be explicit, let us introduce the model

fðϕ=
ffiffiffi
3

p
Þ ¼ f0ðc0 þ c1eλ1ϕ=

ffiffi
3

p
þ c2eλ2ðϕ−ϕPÞ2=3Þ; ð5:10Þ

which generates the potential

VðφÞ ¼ f20½c0 þ c1eλ1 tanhφ=
ffiffi
6

p

þ c2eλ2ðtanhðφ=
ffiffi
6

p Þ−tanhðφP=
ffiffi
6

p ÞÞ�2: ð5:11Þ

φP is a fixed value in the field space that determines the
position of the inflection point. Again here the f0 can be
absorbed in c0, c1, and c2. For ϕ →

ffiffiffi
3

p
early Universe

cosmic inflation takes place, and CMB normalization gives
the first constraint for the parameters. For ϕ → −

ffiffiffi
3

p
we

demand zero potential energy, and thus we get the second
constraint,

c0 ¼ −c1e−λ1 − c2eλ2ð
ffiffi
3

p þϕPÞÞ2=3: ð5:12Þ
The kination stage lasts until the moment that the radiation
produced by the PBH evaporation dominates the energy
density. Later the field freezes at some value ϕF and
defreezes at the present Universe. The runaway potential
is flat enough to lead to the currently observed accelerated
expansion; hence, we implement a wCDM cosmology as a
quintessence model.
Let us pursue some approximate analytic expressions

that describe the postinflationary evolution of the field φ.
After inflation φ rolls past the potential and a stage of
kination commences, where _φ2=2 ≫ VðφÞ. The Klein-
Gordon equation for φ for negligible potential energy is
φ̈þ 3H _φ≃ 0. During kination it is a ∝ t1=3, and for t≫ tend
the field value evolves as

φ − φend ≃ −
ffiffiffi
2

3

r
MPl ln

�
t

tend

�
; ð5:13Þ

where we considered negative initial velocity for φ. At the
moment tform thePBHs formand later, at tevap, they evaporate.
Later, at the moment trh the Universe becomes radiation
dominated and the kination regime ends. Until reheating it is
a∝ t1=3, and one finds that trh¼ðΩradðtevapÞÞ−3=2tevap, where
ΩradðtevapÞ ¼ ð3=2Þγ2βM2=m2

Pl, given by Eq. (3.22). At the
moment of reheating the field value, φrh, is

φrh ≃ φend −
ffiffiffi
2

3

r �
−
3

2
lnΩradðtevapÞ þ ln

�
tevap
tend

��
MPl:

ð5:14Þ
After reheating it is a ∝ t1=2, and the field evolution slows
down,

φ − φrh ≃ −
2ffiffiffi
3

p MPl

�
1 −

ffiffiffiffiffi
trh
t

r �
: ð5:15Þ

For t ≫ trh the field gets displaced 2MPl=
ffiffiffi
3

p
from φrh, and

thus, at some latemoment tF, the field freezes at the valueφF,

φF ≃ φend −
ffiffiffi
2

3

r � ffiffiffi
2

p
−
3

2
lnΩradðtevapÞ þ ln

�
tevap
tend

��
MPl:

ð5:16Þ
Asking for frem ¼ 1, we find from Eq. (3.28) that

ΩradðtevapÞ ¼ 3 × 10−13ðM=105 gÞ10ð4κÞ−4. Also, it is
tevap ∼ 4 × 102ðM=1010 gÞ3 s and tend ≃ tPlðmPl=HendÞ.
Therefore, we obtain an expression for φF that depends
only on the initial mass of the PBH M and the mass of the
PBH remnant κmPl,

φF ≃ φend −
ffiffiffi
2

3

r
½19þ 13 lnðM=105 gÞ þ 4 lnð1=κÞ�MPl:

ð5:17Þ
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This is a general approximate expression for any runaway
potential that predicts PBH remnants as dark matter. It is
general because we have omitted the potential VðφÞ from
both the Friedman and Klein-Gordon equations for being
negligible. The φF value depends only on the mass M and
the parameter κ. For κ ¼ 1 andM ¼ 105 g it is φF − φend ∼
−15MPl. For κ ¼ 10−10 and M ¼ 102 g it is φF − φend∼
−17MPl. We note that the exact value of φF is found after
the numerical solution of the Klein-Gordon and Friedman
equations, and jφF − φendj is a bit less than the value
of Eq. (5.17), as we neglected the potential VðφÞ and
considered instant transitions between the kination and
radiation regimes.
If we want to identify the dark energy as the energy

density of the scalar field φ, then we have to tune the
potential energy value at φF. For our model (5.11) we
impose the condition

ρinf
ρ0

≃
Vðφ ≫ 1Þ
VðφFÞ

∼
e2λ1

e−2λ1
∼ 10108 ð5:18Þ

dictated by the hierarchy of energy scales between the
α-attractor inflation and the dark energy. This condition
gives a third constraint to the parameters of the potential,
together with the CMB normalization and the requirement
for zero vacuum energy as φ → −∞, Eq. (5.12).
Equation (5.18) gives a rough relation for the size of the
exponent parameter λ1,

4λ1 ∼ 108 lnð10Þ: ð5:19Þ
In Table III we list a set of parameters in which the

kination model (5.11) generates PBHs which after evapo-
ration leave behind remnants with frem ¼ 1 and act as
quintessence.

D. Observational constraints on PRðkÞ
Let us now make the all-important checks of our PBH

generation models: the spectral index at small wave number
k ¼ 0.05 Mpc−1, and the BBN and CMB bounds from
PBH evaporation at large wave number k ≫ 0.05 Mpc−1,
as discussed in Sec. IV.

1. At large scales: The CMB spectral index

The ns and r values in the standard α-attractors are
expressed as the analytic relations ns ∼ 1–2=N� and
r ∼ 12α=N2�. These expressions still apply in α-attractor
models that feature an inflection point, with the essential
difference that N� is replaced by the number of e-folds ΔN
that separate the moments of horizon exit of the CMB scale
k−1� and the PBH scale k−1. Thus, we have ns ∼ 1–2=ΔN
and r ∼ 12α=ΔN2. In our models we get ΔN ≳ 50; hence,
the spectral index value is predicted to be

ns ≳ 0.96 ð5:20Þ

and the tensor-to-scalar ratio

r < 0.048; ð5:21Þ

placing the prediction of our models in the 68% C.L. region
of the Planck 2018 data [33] without assuming running for
the ns. Generally, the ns value becomes larger than 0.96 if
the PBHs have mass less than about 105 g.

2. At small scales: The width constraints
on the PRðkÞ peak

In Sec. IV B we discussed the impact and the bounds of
BBN and CMB to the variance of the comoving density
contrast, which can be translated to the power spectrum
PRðkÞ bounds. In the case of the radiation model the
variance of the comoving density contrast is σRD ∼ 4.5 ×
10−6 at small scales, satisfying easily the Eq. (4.7) bound.
In the case of matter domination, the upper bound on the
variance of the comoving density contrast is the stringent
one. For our models we find that σMD ∼ 2 × 10−6 at Mcmb
in accordance with the bound (4.8). Also, for the kination
domination scenario the variance corresponding to the
CMB mass scale is σKN ∼ 2.6 × 10−5 well below the upper
bound (4.9).

VI. CONCLUSIONS

In this work we investigated the cosmology of mini
PBHs. The very motivation for examining this scenario is
the theoretical postulation that a stable or long-lived
remnant is left behind after the evaporation of the “black”
holes. The mass of the remnant is expected to depend on
the unknown physics that operates at the Planck energy
scale. Therefore, we examined the cosmology of PBH
remnants with arbitrary mass Mrem ¼ κmPl and with κ
being a free parameter that might be orders of magnitude
larger or smaller than 1. We computed the general relic
abundance of the PBHs remnants and found the conditions
that they constitute all of the cold dark matter in the
Universe. We found that the PBH remnants have a
significant cosmological abundance only if they have mass
Mrem > 1 GeV. Also, the mass of the remnants must have
mass Mrem ≪ 108 g; otherwise, the parent PBH affects the
BBN or the CMB observables.
Mini PBHs imply that the comoving curvature pertur-

bation is enhanced at the extreme end of the PRðkÞ. This is
a rather attractive feature since the required large primordial
inhomogeneities can be produced by the inflationary phase
without spoiling the spectral index value ns. The PBHs
formed in the very early Universe after the inflationary
phase; hence, the primordial inhomogeneities are expected
to collapse during a nonthermal phase unless the inflaton
field decays very fast.
In this work we built inflationary models in the

framework of α-attractors. We produced a peak in power
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spectrum by constructing an inflection point and computed
numerically PRðkÞ by solving the Mukhanov-Sasaki equa-
tion. The PBH remnants constitute all or a significant part
of the dark matter in the Universe; see Figs. 9, 10, and 11.
Our models yield a spectral index value ns > 0.96, which
places them in the 68% C.L. contour region of
the Planck 2018 data. The building blocks of the infla-
tionary potentials are exponential functions. We examined
the PBH production for three different inflationary scenar-
ios. In the first, the inflaton field decays nearly instanta-
neously after inflation, reheating the Universe at very large
temperatures. In this scenario the mini PBHs are produced
and evaporate during the radiation phase. In the second
scenario the inflaton field decays a bit later, after oscillating
several times about the minimum of its potential, resulting
in a postinflationary stage of pressureless matter domina-
tion. During matter domination the primordial inhomoge-
neities collapse into PBHs. After the inflaton decay the
Universe is reheated and the mini PBHs evaporate.
In the third scenario the PBH are produced during a

kination regime. This is a novel scenario; hence, we
examined it in more detail. A kination regime takes place
if the inflaton potential has no minimum, and the inflaton
runs away after the end of inflation. The radiation is

produced by the PBH evaporation that gradually dominates
the energy density and reheats the Universe. The resulting
reheating temperature can be larger than 106 GeV, termi-
nating the kination era fast enough to be in accordance with
the BBN constraints. The PBH remnants can account for all
of the dark matter in the Universe. Interestingly enough, the
nondecaying inflaton can additionally act as a quintessence
field, giving rise to the observed late time accelerated
expansion implementing a wCDM cosmological model.
Actually this model is remarkably economic in terms of
ingredients.
Now that the existence of black holes and dark matter are

unambiguous, the investigation of the PBH dark matter
scenario is very motivated. Here we examined the less
studied mini PBH scenario and derived general expressions
complementing older results and put forward new and
testable cosmological scenarios for the early and late
Universe.
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