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We study the boundary-crossing probability in the context of stochastic inflation. We prove that for a
generic multifield inflationary potential the probability that the inflaton reaches infinitely far regions in the
field space is critically dependent on the number of fields, being nonzero for more than two fields and zero
otherwise. We also provide several examples in which the boundary-crossing probability can be calculated
exactly, most notably for a particular landscape of a two-field model with a multiwell potential.
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I. INTRODUCTION

Inflation [1–6] is arguably the most prominent theory
for describing the dynamics of the early Universe, address-
ing the flatness and horizon problems of the standard
cosmology as well as explaining the origin of the primor-
dial perturbations that are seen in the cosmic microwave
background (CMB) and that later seed the large-scale
structures [7–12].
The simplest models of inflation are based on a scalar

field dynamics which slowly rolls on top of a flat potential.
The quantum fluctuations of the light inflaton field are
continuously generated in each Hubble patch which are
subsequently stretched to superhorizon scales, to seed the
CMB perturbations and the large-scale structures. Although
the simple single-field slow-roll inflation scenarios are very
consistent with cosmological observation, one can also
look for more complicated scenarios, such as multiple-field
models. The basic predictions of models of inflation are
that the primordial perturbations will be nearly scale
invariant, nearly adiabatic, and nearly Gaussian, which
are in good agreement with observations [13,14].
The stochastic formalism [15–40] is based on coarse

graining the inflaton field’s fluctuations by discarding
the short-wavelength modes and considering their effect
as a classical noise on the long-wavelength modes.

The long-wavelength field is then shown to obey, under
the slow-roll condition, the Langevin equation

dϕ
dN

þ V;ϕ

3H2
¼ H

2π
ξðNÞ; ð1:1Þ

where N is the number of e-folds and ξ is the white
Gaussian noise, satisfying

hξðNÞi ¼ 0; hξðNÞξðN0Þi ¼ δðN − N0Þ: ð1:2Þ

This approach has been used to study eternal inflation
[25,41–44] and, more recently, in combination with the δN
formalism to study the correlation functions of the curva-
ture perturbations [45–53]. The δN formalism [54–58] is
based on the separate Universe approach in which the
background expansion histories of the nearby universes are
modified in the presence of the superhorizon perturbations.
With this picture in mind, one expects that the stochastic δN
formalism will be the right tool to study the dynamics of the
superhorizon perturbations and calculate various correla-
tion functions such as the curvature perturbation power
spectrum and bispectrum [47–49].
One of the quantities that the stochastic formalism makes

easy to calculate is the boundary-crossing probability,
which is the probability that the inflaton will cross a
particular surface (like the reheating surface or a large-
field cutoff surface) in the field space. It was shown in
Ref. [49] that the large-field exploration probability is
critically sensitive to the number of fields D, vanishing for
D ≤ 2 and being nonzero for D > 2. The analysis of
Ref. [49] is based on a special class of potentials, called
vðrÞ potentials, which have a spherical symmetry in the
field space. One of the main results of this paper is to
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generalize that result to generic potentials, which we call
vðϕÞ criticality, as opposed to the vðrÞ criticality of
Ref. [49]. This is done in Sec. III. In addition, we provide
several examples in which the boundary-crossing proba-
bility is explicitly calculated.
This paper is organized as follows. In Sec. II, we review

the boundary-crossing probability and the basic equation
governing it. In Sec. III, we define what we mean by the
critical behavior of boundary-crossing probability and then
prove that it happens in D ¼ 2. In Sec. IV, we consider the
two-field problem and offer two methods for computing the
boundary-crossing probability; we also provide several
examples. Sections III and IV are independent and can
be read separately. Finally, we summarize and conclude in
Sec. V. Some detailed calculations are presented in the
Appendixes A and B.

II. REVIEW OF BOUNDARY-CROSSING
PROBABILITY

In the context of inflationary cosmology, one is often
interested in finding out when the inflaton reaches a
particular region of its field space. This happens, for
example, when one studies the probability of reheating.
Indeed, in most models, reheating takes place on a parti-
cular surface in the field space, namely, the reheating
surface. In a broader context, in a landscape of vacua, one
often studies the probability of the inflaton reaching some
particular vacuum. Again, this can be regarded as the
probability to cross a surface surrounding that vacuum. In
all of these examples, the central concept is “boundary-
crossing probability,” so there is reasonable motivation for
studying it and developing tools to calculate it.
In this section, we introduce the boundary-crossing

probability and the master equation it satisfies. By boun-
dary, we mean the boundary of a region Ω of the field
space. These are scalar fields ϕi (for i ¼ 1;…; D) that can
play the role of the inflaton under the potential

Vðϕ1;…;ϕDÞ ¼ 24π2M4
PlvðϕÞ > 0; ð2:1Þ

where MPl is the reduced Planck mass, vðϕÞ is dimension-
less potential, and we have denoted by D the dimension of
the field space. Throughout this paper and unless stated
otherwise, we assume the slow-roll conditions on the
potential and consider a connected region Ω that has
two boundaries: an outer boundary ∂Ωþ and an inner one
∂Ω−. Let ϕ0 ∈ Ω be the starting point of the inflaton in
field space, as in Fig. 1. Our goal is to study the probability
p� that the inflaton hits ∂Ω�. The boundaries, for example,
can be the reheating surface, the surface representing the
UV cutoff of the large-field models, etc.
Defining p�ðϕÞ as the probability that, starting from ϕ,

the inflaton crosses ∂Ω�, it is shown in Ref. [49] that

�
v∂i∂i −

∂iv
v

∂i

�
p�ðϕÞ ¼ 0; ð2:2Þ

where ∂i ¼ ∂=∂ϕi. The equation has to be solved with
boundary conditions

p�ð∂Ω�Þ ¼ 1; p�ð∂Ω∓Þ ¼ 0: ð2:3Þ

In the sequel, we refer to Eq. (2.2) as the master equation.
There is a special class of potentials and boundary

shapes for which the master equation can be solved
analytically. These so-called vðrÞ potentials are functions
of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ � � � þ ϕ2

D

p
. In addition, the domain is annu-

lar, namely, Ω ¼ fϕjr− ≤ r ≤ rþg. Then, it is easy to
see that

p�ðϕÞ ¼ �
R
rðϕÞ
r∓ r01−De−

1

vðr0Þdr0R
rþ
r−

r01−De−
1

vðr0Þdr0
: ð2:4Þ

It was noted in Ref. [49] that for D ≤ 2 and limr→∞v ≠ 0
the solutions have an rþ → ∞ limit,

pþðϕÞ ¼ 1 − p−ðϕÞ ¼
8<
:

1 ϕ ∈ ∂Ωþ;

0 ϕ ∈ intðΩÞ;
0 ϕ ∈ ∂Ω−;

ð2:5Þ

where intðΩÞ ¼ Ω − ∂Ω is the interior of Ω. This is the
basis of the observation thatD ¼ 2 is the critical dimension
for the boundary-crossing probability. In the next section,
we generalize this result (which was proven for vðrÞ
potentials only in Ref. [49]) to generic potentials.

III. CRITICAL BEHAVIOR OF THE
BOUNDARY-CROSSING PROBABILITY

In this section, we study the behavior of the boundary-
crossing probability p� as we vary the dimension D.
The potential vðϕÞ itself can have explicit dependence

FIG. 1. The domain Ω and its boundaries ∂Ω� in the field
space. Two trajectories, both starting from ϕ0,one hitting ∂Ω−
and the other hitting ∂Ωþ, are drawn.

MAHDIYAR NOORBALA and HASSAN FIROUZJAHI PHYS. REV. D 100, 083510 (2019)

083510-2



on D (as in, e.g., v ¼ ϕ1 þDϕ2). There is also an implicit
D dependence of v due to the fact that it is a D-variable
function [as in the vðrÞ potentials]. So, let us assume a
given family of potentials indexed byD (which for the most
part remains arbitrary) and study the solutions of Eq. (2.2)
as D is varied.
Our motivation is to generalize vðrÞ criticality to the

stronger statement vðϕÞ criticality. These are defined as:
vðrÞ criticality: Let vðϕÞ > 0 be a function of r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2
1 þ � � � þ ϕ2

D

p
such that limr→∞v ≠ 0, and let

Ω ¼ fϕjr− ≤ r ≤ rþg. Then, in the limit rþ → ∞,
for every ϕ in the interior of Ω, we have pþðϕÞ ¼ 0 if
D ≤ 2 and pþðϕÞ ≠ 0 if D > 2.

and
vðϕÞ criticality: Let vðϕÞ > 0 be such that limjϕj→∞v≠0,
and let Ω be an unbounded domain topologically
equivalent to the exterior of the (D − 1)-sphere SD−1

in RD. Then, for every ϕ in the interior of Ω, we have
pþðϕÞ ¼ 0 if D ≤ 2 and pþðϕÞ ≠ 0 if D > 2.

The aforementioned results state that there is a critical
behavior in pþðϕÞ at D ¼ 2. If D > 2, there is always a
nonzero probability for the inflaton to reach infinity
(r ¼ ∞). But if D ≤ 2, there is absolutely zero probability
for the inflaton to reach infinity no matter where it
starts from. The first statement [vðrÞ criticality] is a direct
consequence of Eq. (2.5) and is stated and proven in
Ref. [49]. The second statement relaxes the restrictive
assumption of radial symmetry on the potential and the
domain and is one of the results we intend to prove in
this paper.
To make our statement concrete, let us focus first on the

domain Ω in the field space. vðrÞ criticality assumes an
unbounded Ω. This turns out to be essential in our gene-
ralized version, namely, vðϕÞ criticality, too. Let us see how
this works out. To begin, we note that Eq. (2.2) is an elliptic
equation to which the maximum principle applies; i.e., the
functions p� take on their maximum and minimum values
on the boundary of Ω.1

Given the boundary conditions p�ð∂Ω�Þ ¼ 1 and
p�ð∂Ω∓Þ ¼ 0, this implies the strict inequality 0 <
p�ðϕÞ < 1 for any ϕ in the interior of Ω. At first glance,
this looks contradictory even to vðrÞ criticality, as the latter
asserts that pþ ¼ 0 for D ≤ 2. The point is that, strictly
speaking, Eq. (2.5) is not a solution of the master equation
at all, as it is discontinuous at ∂Ωþ. It is only the rþ → ∞
limit of the solutions of Eq. (2.2). In fact, the master
equation has no solution in D ≤ 2 on the unbounded

domain Ω ¼ fϕjr− ≤ rg, which is an indication of the
critical behavior.
The discussion of the preceding paragraph guides us in

how to proceed. Whenever a solution to the master equation
exists, the maximum principle guarantees that p� must
smoothly interpolate between the values 0 and 1 on the
boundaries without any interior point having p� ¼ 0, 1. On
the other hand, the existence of solutions to the Dirichlet
problem of elliptic equations [like our master equa-
tion (2.2)] on (regular) bounded domains is well established
[59]. We conclude that in order to have a critical behavior
we need to find situations in which no solution exists,
which can only happen on unbounded domains. As we saw
above, the limiting solution (2.5) is not continuous and
hence cannot be regarded as a proper solution. We call such
fake solutions “discontinuous solutions,” and we observe
that they are the symptoms of critical behavior. Note that
the boundary-crossing probabilities p� on the unbounded
domain are given by the discontinuous solutions, although
they are not proper solutions to the master equation. So,
they are fake when considered as solutions to the differ-
ential equation (2.2) but quite genuine when regarded as
boundary-crossing probabilities.
In the sequel, our strategy will be to show that for generic

potential v and on unbounded domain Ω (i) the proper
solution to the master equation exists forD > 2 (Sec. III A)
and (ii) D ≤ 2 can only admit discontinuous solutions
(Sec. III B). This will establish that the critical behavior
occurs at D ¼ 2.

A. D > 2

In this subsection, we construct a proper solution of the
master equation (2.2) for D > 2. Although we will not
uphold to the golden standards of mathematical rigor, we
still need some degree of rigor. Otherwise, we could simply
assume that a solution exists and presume that it is
continuous; as we saw, however, the nature of the question
under study requires being a bit more careful. We therefore
begin by assuming a bounded domainΩ for which rigorous
existence results exist in the standard mathematical text-
books; see, e.g., Ref. [60].
The trick to proceed is to write the master equation (2.2)

as

ve−1=v∂iðe1=v∂ipÞ ¼ 0; ð3:1Þ
with p being either of p�. This can be cast in the form of
the Laplace equation. To see this, define the following
metric on the field space:

ds2 ¼ eωðϕÞðdϕ2
1 þ � � � þ dϕ2

DÞ: ð3:2Þ
Then, the Laplacian reads

∇2p¼ 1ffiffiffi
g

p ∂ið
ffiffiffi
g

p
gij∂jpÞ¼e−Dω=2∂iðeðD=2−1Þω∂ipÞ: ð3:3Þ

1Here is a partial proof: Suppose that ϕ0 is a local maximum.
Then, ∂ip ¼ 0 at ϕ0, and hence Eq. (2.2) implies that the trace of
Hessian vanishes, namely, ∂i∂ip ¼ 0 at ϕ0. This is a contra-
diction of the fact that at a local maximum the Hessian is positive
definite. Actually, the positivity of the second derivative is only a
sufficient condition (consider y ¼ x4); for a complete proof on
bounded and unbounded domains, see Ref. [59].
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So, with the choice

ωðϕÞ ¼ 2

ðD − 2ÞvðϕÞ ; ð3:4Þ

valid for D > 2, the master equation becomes ∇2p ¼ 0
in the curved space described by the conformally flat
metric (3.2).2 This means that p is a harmonic function on
the curved space. Of course, the Laplace equation is
elliptic, and harmonic functions satisfy the maximum
principle, too, even on unbounded curved spaces, so they
take their extrema on the boundaries. But we have to show
that a proper continuous solution does exist to begin with.
We can explicitly construct the solution by invoking the

Dirichlet Green’s function G of Laplacian for the region Ω
on the curved manifold

∀ ϕ;ϕ0 ∈ Ω∶∇02Gðϕ;ϕ0Þ ¼ δðDÞðϕ0 − ϕÞ;
∀ϕ ∈ Ω ;ϕ0 ∈ ∂Ω∶Gðϕ;ϕ0Þ ¼ 0. ð3:5Þ

Green’s theorem on a curved manifold is a straightforward
generalization of the more familiar version on flat space,

Z
Ω
ðf∇2g−g∇2fÞ ffiffiffi

g
p

dDϕ¼
Z
∂Ω

�
f
∂g
∂n−g

∂f
∂n

� ffiffiffi
h

p
dD−1ϕ;

ð3:6Þ

where ∂=∂n is the normal derivative on the boundary
pointing away from Ω and h is the induced metric on ∂Ω. It
follows that Gðϕ;ϕ0Þ ¼ Gðϕ0;ϕÞ. Now, choose fðϕ0Þ ¼
p−ðϕ0Þ and gðϕ0Þ ¼ Gðϕ;ϕ0Þ, to get

p−ðϕÞ ¼ −
Z
∂Ω−

∂Gðϕ;ϕ0Þ
∂n0

ffiffiffiffiffiffiffiffiffiffiffi
hðϕ0Þ

p
dD−1ϕ0

¼ −
Z
intð∂Ω−Þ

∇02Gðϕ;ϕ0Þ
ffiffiffiffiffiffiffiffiffiffiffi
gðϕ0Þ

p
dDϕ0; ð3:7Þ

where again ∂=∂n points away from the interior of ∂Ω− and
we have used divergence theorem in the last expression.
We note that the last integral in Eq. (3.7) has a simple

interpretation in terms of an electrostatic analogy. Gðϕ;ϕ0Þ
plays the role of the electrostatic potential at the position ϕ0
in space due to a negative point charge at ϕ, in the presence
of grounded conductor surfaces located at ∂Ω. The image
charges should be placed outside Ω, so in those regions
−∇02Gðϕ;ϕ0Þ is the density of image charges. Therefore,
p−ðϕÞ is equal to the total interior image charge located
inside ∂Ω− when a negative unit point charge is placed

at ϕ.3 Since the image charges are positive and split to be
either inside ∂Ω− or outside ∂Ωþ, it is clear that, as ϕ
moves from ∂Ω− to ∂Ωþ, p−ðϕÞ continuously interpolates
between 1 and 0.
It is now time to consider the case of unbounded Ω by

taking the limit ∂Ωþ to infinity. To prove that (3.7) is a
proper solution, we need to show that p−ðϕÞ remains
continuous in this limit. Recall that in a discontinuous
solution, like Eq. (2.5), p−ðϕÞ approaches 1 in this limit
[except for ϕ ∈ ∂Ωþ, so that p−ðϕÞ is discontinuous at
ϕ ¼ ∞; see Fig. 2]. We show that, in contrast to Eq. (2.5),
the p−ðϕÞ in Eq. (3.7) approaches zero as ϕ goes to∞, i.e.,

lim
ϕ→∞

h
lim∂Ωþ→∞

p−ðϕÞ
i
¼ 0: ð3:8Þ

The key point to prove the above assertion is that the
potential of point charge in D dimensions has the asymp-
totic behavior ∝ 1=RD−2. For a flat manifold, R is the
Euclidean distance jϕ − ϕ0j between the source ϕ0 and
point of observation ϕ. For our conformally flat manifold,
for which ωðϕÞ approaches a constant

ω∞ ¼ lim
jϕj→∞

ωðϕÞ ¼ 2

D − 2
lim

jϕj→∞

1

vðϕÞ ; ð3:9Þ

we have R ¼ eω∞=2jϕ − ϕ0j. Now let us push ∂Ωþ and then
ϕ to infinity. If p−ðϕÞ ≠ 0 (contrary to our claim), then we
have nonzero interior image charges, and hence they con-
tribute a nonzero potential at ∂Ω−. This nonzero potential
must be canceled by the other two sources of charge (the
original charge at ϕ and the exterior charges beyond ∂Ωþ at
infinity) to yield a grounded surface at ∂Ω−. However, the
latter are too far away to cancel the aforementioned nonzero
potential (in other words, because of the 1=RD−2 decay,
they can be made arbitrary small in the limit ∂Ωþ, ϕ → ∞).
This shows that as ∂Ωþ is pushed to infinity there are points
ϕ at which p−ðϕÞ can be made arbitrarily small. This is the
promised result (3.8); thus, p−ðϕÞ continuously interpo-
lates from 1 to 0 over the unbounded domain Ω. Therefore,
we have a proper continuous solution.
If all this looks trivial, then consider how the argument

fails for D ¼ 1, 2, where the potential of a point charge
goes like R and logR, respectively. It is precisely the
decaying behavior ∝ 1=RD−2 of the potential at long
distances that makes p− (as well as pþ ¼ 1 − p−) a proper
solution to the master equation (2.2) for D > 2. In fact, the
same equation ∇2p ¼ 0 does not have a proper solution on
an unbounded one- or two-dimensional domain. Of course,

2We note that the requirement limjϕj→∞ v ≠ 0 implies that ω is
finite. Then, the conformally flat metric (3.2) preserves bounded-
ness of regions of space. Thus, it is unambiguous when we talk
about the boundedness of Ω.

3As a simple example, consider the point charge q at a distance
r away from the center of a grounded sphere of radius r−. The
image charge inside the sphere is q0 ¼ −qr−=r [61], in complete
agreement with p−ðrÞ of Eq. (2.4) when D ¼ 3, rþ ¼ ∞, and
v ¼ constant.
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the results of this section leading to the metric (3.2) are not
applicable in D ¼ 2, as the conformal factor (3.4) is
undefined. Our point is to emphasize the role of the
decaying potential in D > 2. A more concrete illustration
of this point in the special case of an annular region in flat
space is presented in Appendixes A and B.

B. D ≤ 2

We now turn attention to D ≤ 2, treating the D ¼ 1 and
D ¼ 2 cases separately. Our goal is to prove that a proper
solution does not exist on an unbounded domain and that
only discontinuous solutions exist.
When D ¼ 1, we can define a new variable φ ¼R
e−1=vdϕ, which measures the distance in the metric

(3.2), i.e., ds ¼ dφ. In terms of φ, the master equation (2.2)
reads d2p=dφ2 ¼ 0, the solution of which is p ¼ aφþ b.
The constants a and b are to be determined by the boundary
conditions (2.3). Suppose ∂Ω� ¼ fϕ ¼ ϕ�g ¼ fφ ¼ φ�g.
Then,

p�ðφÞ ¼ � φ − φ∓
φþ − φ−

: ð3:10Þ

For finite φ�, this is a continuous solution. But for φþ ¼ ∞,
which is the case for unbounded Ω, we have pþ ¼ 0 and
p− ¼ 1, which are discontinuous at the boundaries. We can
express this in terms of the original variable ϕ as follows: if
the boundaries are separated by infinite distance under the
metric (3.2) (that is,

R ϕþ
ϕ−

e−1=vdϕ ¼ ∞), then the inflaton
almost always ends up on the boundary, which is a finite
distance away from its starting point. This establishes the
assertion of vðϕÞ criticality for D ¼ 1.4

When D ¼ 2, the assignment ω ¼ 2=ðD − 2Þv breaks
down, and we no longer have harmonic functions on a
curved manifold. Nevertheless, we can proceed by proving

that the space of solutions to the master equation (2.2) is
invariant under conformal transformations on the complex
plane. Let z ¼ ϕ1 þ iϕ2 and z0 ¼ ϕ0

1 þ iϕ0
2 such that z0ðzÞ

is a holomorphic function of z. Define the metric

ds2 ¼ dϕ2
1 þ dϕ2

2 ¼
���� ∂z∂z0

����
2

ðdϕ02
1 þ dϕ02

2Þ: ð3:11Þ

The quantity

∇2pþ gij∂i
1

v
∂jp ð3:12Þ

is an invariant, the value in the primed and unprimed
coordinates of which is

���� ∂z
0

∂z
����
2
�
∂ 0
i∂ 0

ipþ ∂ 0
i
1

v
∂ 0
ip

�
¼ ∂i∂ipþ ∂i

1

v
∂ip: ð3:13Þ

[The assumption of z0ðzÞ being a conformal transformation
assures that the derivative ∂z0=∂z is nonzero.] So, if pðzÞ is
a solution of Eq. (2.2), then so is p0ðz0Þ ¼ pðzðz0ÞÞ. Note
that the region Ω as well as its boundary ∂Ω in the z plane
get mapped to Ω0 and ∂Ω0 in the z0 plane. So, we have two
solutions to the master equation with two different boun-
dary conditions. We will later use this fact in Sec. IVA to
construct new solutions starting from a known one. But for
now, let us use it to pursue our proof of nonexistence of
proper solutions for D ¼ 2.
Take a point z0 ∈ intð∂Ω−Þ outside the unbounded

domain Ω (see Fig. 3). The map z0 ¼ 1=ðz − z0Þ is holo-
morphic over Ω, and maps it to the domain Ω0 bounded by
the outer boundary ∂Ω0þ (which is the image of ∂Ω−) with
effectively no inner boundary (∂Ω0

− ¼ f0g). If a proper
solution for p− exists on the original unbounded domainΩ,
then the map z0ðzÞ yields a proper solution p0þ on the new
bounded domain Ω0. Note that, since we have p−ð∞Þ ¼ 0
in the original problem, the new solution must have
p0þð0Þ ¼ 0. But this is an overspecification because the
elliptic differential equation (2.2) with Dirichlet boundary
condition p0þ ¼ 1 on its sole boundary ∂Ω0þ already uni-
quely fixes the function p0þ at all z0 ∈ Ω0 including z0 ¼ 0.
In fact, the latter is a trivial problem of which the solution is

FIG. 2. Schematic plot of p−ðϕÞ in the limit of unbounded domain, for a discontinuous solution (left) and a continuous solution (right).
In both cases, the maximum value on the ϕ axis (i.e., the infinite boundary ∂Ωþ) is placed at a finite distance from the origin.

4It is important to note that, even in D ≠ 1, the boundary
conditions may render the D-dimensional problem to an effec-
tively one-dimensional one [for example, when ∂Ω� and vðϕÞ
depend only on one of the fields]. In those cases, too (which we
do not regard as genuine D-dimensional problems), we have
pþ ¼ 0 when the boundaries are infinitely apart.
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the constant function p0ðz0Þ ¼ 1. This is in contradiction to
p0ð0Þ ¼ 0, so we conclude that a proper solution does not
exist for D ¼ 2.
Put together, the results of this subsection show that, in

contrast to D > 2, there is no proper continuous solution
of the master equation (2.2) on an unbounded one- or two-
dimensional domain. Thus, the only possible solution for
D ≤ 2 is the discontinuous solution (2.5). This completes
our proof of the vðϕÞ criticality and establishes D ¼ 2 as
the critical dimension for general potentials.

IV. BOUNDARY-CROSSING PROBABILITY
IN D= 2

We have already seen in Sec. III B that the two-
dimensional problem can be dealt with by methods of
complex analysis. In this section, we offer two methods for
computing the boundary-crossing probability of a two-field
inflationary model [of course, on bounded domains, for
which the solution is not trivially given by the discontinu-
ous solution (2.5)]. We also provide some examples.

A. Conformal transformation

Our first method is based on the fact proved in Sec. III B:
The space of solutions to the master equation is invariant
under conformal transformations. It enables us to take a
vðrÞ potential on the annulus Ω ¼ fϕjr− ≤ r ≤ rþg, for
which we know the solution p from Eq. (2.4); pick an
arbitrary conformal transformation z0 ¼ fðzÞ; and construct
the new potential v0, domain Ω0, and solution p0 as

v0ðz0Þ ¼ vðf−1ðz0ÞÞ; Ω0 ¼ fðΩÞ;
p0ðz0Þ ¼ pðf−1ðz0ÞÞ; ð4:1Þ

where

p�ðzÞ ¼ �
R jzj
r∓ e−

1
vðrÞ dr

rR
rþ
r−

e−
1

vðrÞ dr
r

: ð4:2Þ

We also need to show that slow rolling on the potential v
implies slow rolling on v0, since our starting point in
deriving the master equation (2.2) was the slow-roll appro-
ximation. It is sufficient to show that the derivative of v0 in
an arbitrary direction is proportional to the derivative of v,
since the latter is proportional to

ffiffiffi
ϵ

p
v. Noting that v0ðz0Þ ¼

vðzÞ and that z0 is only a function of z and not of z�, we can
write the chain rule

dv0ðz0Þ
dz0

¼ ∂z
∂z0

dvðzÞ
dz

; ð4:3Þ

which immediately implies the desired result.
The celebrated Riemann mapping theorem of complex

analysis assures that any pair of simply connected domains
can be conformally mapped to each other [62]. This is not
true for the doubly connected domains we study. So, in
general, this method is not guaranteed to work, and when it
does, it may not be easy to find the conformal trans-
formation z0ðzÞ. In fact, since contours of constant v and
constant p coincide, such a conformal transformation can
only generate harmonic potentials, which by definition
have this property [49]. Below, we demonstrate the method
by two examples.

1. Example: Möbius transformation

The Möbius transformation

fðzÞ ¼ azþ b
czþ d

; ad − bc ≠ 0 ð4:4Þ

is a combination of translation, rotation, scaling, and
inversion off the unit circle. It maps circles to circles
(straight lines are regarded circles of infinite radius).
Let us apply fðzÞ ¼ 1=ðz − aÞ (with real a) to the vðrÞ

potential vðjzjÞ. The contours of constant v (circles cen-
tered at the origin in the z plane) get mapped to contours of
constant v0 in the z0 plane. These are depicted in Fig. 4. We
can write

FIG. 3. The holomorphic map z0ðzÞ ¼ 1=ðz − z0Þ mapping the region Ω in the z plane (left) to the region Ω0 in the z0 plane (right).
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jzj2 ¼
���� 1z0 þ a

����
2

¼ a2 þ 1þ 2aϕ0
1

ϕ02
1 þ ϕ02

2

: ð4:5Þ

The solution p0ðz0Þ to the boundary-crossing probability is
Eq. (4.2) with jzj written as Eq. (4.5) in terms of ϕ0

1 and ϕ
0
2.

This shows that we know the exact solution for any
potential v0ðϕ0

1;ϕ
0
2Þ which is a function only of the combi-

nation ð1þ k · ϕ0Þ=jϕ0j2, where k is any constant vector in
the field space.
There is a subtlety in the choice of the� signs. If both of

the circles in the z plane have radius smaller than a (like the
red and blue circles of Fig. 4), then p0

�ðz0Þ ¼ p�ðzÞ. But if
both have radius greater than a (like the magenta and black
circles of Fig. 4), then p0

�ðz0Þ ¼ p∓ðzÞ because the inner
and outer boundaries are interchanged under the trans-
formation. Finally, if the smaller circle has radius smaller
than a and the larger one has radius greater than a (like the
blue and black circles of Fig. 4), then this method is not
applicable, since the transformation is not holomorphic
throughout the annulus Ω.

2. Example: Joukowski transformation

The Joukowski transformation

fðzÞ ¼ aþ b
2

z
R
þ a − b

2

R
z

ð4:6Þ

maps the circle jzj ¼ R to the ellipse with semiaxes a and b.

Every other circle jzj ¼ r > Rc ¼
ffiffiffiffiffiffiffiffi
ja−bj
aþb

q
R is also mapped

to an ellipse. These ellipses fill the entire plane, with the
limiting ellipse jzj ¼ Rc mapped to a line segment of length
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2 − b2j

p
(horizontal if a > b and vertical if a < b).

The family of circles jzj ¼ r < Rc also gets mapped to
ellipses that fill the entire plane, with limiting ellipse
jzj ¼ 0 mapped to infinity. Thus, each ellipse corresponds

to two circles with reciprocal radii. Figure 5 depicts the
transformation for a ¼ Rþ 1=R and b ¼ R − 1=R > 0.
Let us see the effect of the Joukowski transformation on

the two-dimensional problem of inflation in the vðrÞ
potential vðjzjÞ. For 2z0=a ¼ zþ 1=z, we can express jzj
in terms of the primed fields using

az ¼ z0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 − a2

p
: ð4:7Þ

The solution p0ðz0Þ to the boundary-crossing probability
is Eq. (4.2) with jzj written using Eq. (4.7) in terms of ϕ0

1

and ϕ0
2. This shows that we know the exact solution for any

potential v0ðϕ0
1;ϕ

0
2Þ which is a function only of the

combination jz0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 − a2

p
j, where a is any real number.

In the face of it, this is not a simple class of potentials; it is
artificially cooked to map to an exact solution. But the fact
that the contours of constant v0 are ellipses makes it a bit
more appreciable; i.e., we have managed to solve the
problem of boundary-crossing probability on any potential
of which the equipotential contours are of the form of the
ellipses described above.

B. Electrostatics analogy

We saw earlier in Sec. III A that the master equation (2.2)
can be written as

∂iðe1=v∂ipÞ ¼ 0: ð4:8Þ

This is the statement of the vanishing of the divergence
∇ ·E of the two-dimensional vector field E ¼ e1=v∇p.
However, this is not enough information to determine E
(although it is enough to determine p for a given v). So, we
may demand an extra equation ∇ × E ¼ 0 and hope that a
consistent solution exists. The pair of constraints ∇ · E ¼
∇ ×E ¼ 0 is enough (together with appropriate boundary

FIG. 4. The Möbius transformation z ↦ z0 ¼ 1=ðz − 1Þmapping concentric circles with radii n=3 (n ¼ 1;…; 5) in the z plane (left) to
their images in the z0 plane (right).
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conditions on E) to determine E on Ω. This reduces the
problem of finding the boundary-crossing probability to an
electrostatics problem in empty space.
It is easy to see that if fðzÞ ¼ Uðϕ1;ϕ2Þ þ iVðϕ1;ϕ2Þ is

a holomorphic function on the domain Ω then the Cauchy-
Riemann equations imply that E ¼ ðU;−VÞ has vanishing
divergence and curl. In addition, the electrostatic potential
Φ corresponding to the electric field E is found to be

ΦðzÞ ¼ −
Z

z

z0

E · dl ¼ −Re
Z

z

z0

fðz0Þdz0; ð4:9Þ

where the integration is along any path that connects the
reference point z0 to z.
The requirement ∇ ×E ¼ 0 implies that ∇v × ∇p ¼ 0.

Together with E ¼ −∇Φ, this means that ∇vk∇Φk∇p.
In other words, the level contours of the three functions v,
Φ, and p coincide. Therefore, both v and p can be regarded
as functions of Φ alone. So, we may write −∇Φ ¼ e1=v∇p
as −dΦ ¼ e1=vðΦÞdp, which has the solution

p ¼ −
Z

e−1=vðΦÞdΦ: ð4:10Þ

These results suggest the following strategy to generate/
obtain a solution for the master equation. Given v, find an
electrostatic potential Φ (satisfying ∇2Φ ¼ 0) of which the
equipotential contours coincide with those of v. Then,
express v as a function vðΦÞ, and plug it into Eq. (4.10) to
obtain the boundary-crossing probability p. Since we have
the freedom of rescaling on Φ and since we also have the
constant of integration in Eq. (4.10) at our disposal, we can
arrange for p ¼ 0 and p ¼ 1 to occur on any of the level
contours that we wish.

For a generic vðϕÞ, an electrostatic potential Φ with
identical equipotential contours may not exist. If it does,
then there must exist a function μ such that ∇Φ ¼ eμ∇v.
Taking the curl, we find that∇μ and∇Φ are parallel. Taking
the divergence and noting that Φ is harmonic, we find that

∇μ ¼ � ∇2v
k∇vk2 ∇v: ð4:11Þ

Since v and p, and now μ, are each a function of Φ alone,
the above equation implies that the coefficient

g ¼ ∇2v
k∇vk2 ð4:12Þ

must be a function of v alone. This is precisely the
definition of harmonic potentials presented in Ref. [49]
(beware that a harmonic potential is not a harmonic
function). Indeed, it should have been obvious that this
method applies only to harmonic potentials, since they
are the ones for which p is constant on level contours
of v. Once gðvÞ is calculated, we can readily find μ ¼
� R

gðvÞdv and obtain Φ from dΦ ¼ eμðvÞdv.

1. Example: vðrÞ potentials
As an example, the whole class of vðrÞ potentials can be

derived from the holomorphic function f ¼ c=z, which
corresponds to Φ ¼ −c logðr=r0Þ, i.e., a point charge
located at the origin. To do so, we need to choose the
lower limit of integration for pþ in Eq. (4.10) to be r− and
choose the constant c to be equal to 1=

R
rþ
r−

e−1=v dr
r . Then,

we recover Eq. (4.2). This is very interesting and gives us a
unifying picture for all vðrÞ potentials in terms of the
electrostatics of a single point charge.

FIG. 5. The Joukowski transformation z ↦ z0 ¼ zþ 1=z mapping concentric circles with radii n=3 (n ¼ 1;…; 5) in the z plane (left)
to their images in the z0 plane (right).

MAHDIYAR NOORBALA and HASSAN FIROUZJAHI PHYS. REV. D 100, 083510 (2019)

083510-8



2. Example: Double-well potential

For a second example, consider the double-well potential

v ¼ v0jz − zþj2jz − z−j2: ð4:13Þ

The equipotential contours of v resemble those of two point
charges at z� (see Fig. 6). This suggests the electrostatic
potential

Φ ¼ −q log jz − zþj − q log jz − z−j þΦ0

¼ −
q
2
log

v
v0

þΦ0: ð4:14Þ

The fact that Φ is a function of v indicates that v is a
harmonic potential (equivalently, the function eμ ¼ −q=2v
exists such that dΦ ¼ eμdv). We can now use (4.10) to
obtain

pðvÞ ¼ q
2

Z
v

v̄
e−1=v

0 dv0

v0
: ð4:15Þ

The two constants v̄ and q must be chosen to satisfy the
boundary conditions.
The double-well potential is peculiar in that it requires

three boundaries. Two of the boundaries, which we con-
tinue to call ∂Ω�, are the reheating surfaces v ¼ v�
surrounding the minima z�. The third boundary, which
we call ∂ΩX, corresponds to a high-energy cutoff v ¼ vX
beyond which we do not trust our theory. The appro-
priate boundary conditions for p� are just Eq. (2.3) and
p�ð∂ΩXÞ ¼ 0. On the other hand, the boundary conditions
for pX are pXð∂Ω�Þ ¼ 0 and pXð∂ΩXÞ ¼ 1. Unfortunately,
we can use this method to compute only pX and not p�.
The reason is that the solution pðvÞ we find by this method
is a function of v alone, but ∂Ω� both have the same v,
while pþð∂ΩþÞ ¼ 1 ≠ 0 ¼ pþð∂Ω−Þ. For the same rea-
son, we may calculate pX only if the potential has the same
value on ∂Ω�.
To calculate pX, we can simply choose the constant v̄ to

be equal to vþ ¼ v− (the common value of the potential on
∂Ω�), so that the boundary conditions on ∂Ω� are satisfied.
The other constant, q, is then set to make the normalization
right; thus,

pXðvÞ ¼
R
v
vþ

e−1=v
0 dv0
v0R

vX
vþ

e−1=v
0 dv0
v0
; ð4:16Þ

where vX is the value of the potential on ∂ΩX. Because
of the exponential dependence of the integrand on the
potential, we can approximate it as

pXðvÞ ≈
v
vX

exp

�
1

vX
−
1

v

�
: ð4:17Þ

Evidently pX, the probability to escape reheating in the
valleys, decays exponentially as the starting point of the
inflaton moves away from ∂ΩX.

3. Example: Multiwell potential

The preceding result is applicable to a multiwell
potential,

v ¼ v0
Y
i

jz − zij2; ð4:18Þ

like Fig. 7 if, as before, we choose the boundaries ∂iΩ
around each valley to be at a common value vi for all i. The
electrostatic potential will be

FIG. 6. Schematic shape of the p ¼ const contours of the double-well potential, for the boundary-crossing probabilities pX (left) and
pþ (right). In the left panel, the equipotential contours v ¼ const coincide with the p ¼ const contours. The equipotential contours of
the right panel are the same as the left panel but are not shown.

FIG. 7. The equipotential contours v ¼ const of a potential with
five minima.
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Φ ¼ −q
X
i

log jz − zij þΦ0 ¼ −
q
2
log

v
v0

þΦ0; ð4:19Þ

so we continue to have

pXðvÞ ¼
R
v
vi
e−1=v

0 dv0
v0R

vX
vi

e−1=v
0 dv0
v0
: ð4:20Þ

Interestingly, the probability pX of escaping reheating is
independent of the number of the minima in a landscape
described by the multiwell potential (4.18).

C. Other electromagnetic analogies

In Sec. IV B, we identified e1=v∇p as the electric field E
and demanded a supplementary equation ∇ ×E ¼ 0 in
addition to the master equation ∇ ·E ¼ 0. Although this
proved fruitful in obtaining a new solution, we saw that the
supplementary constraint restricts the solvable problems to
harmonic potentials. We can make other less restrictive
analogies that work in more general situations, although
they are not as fruitful as the previous one.

1. Magnetostatic analogy

Since the master equation (2.2) asserts that the diver-
gence of e1=v∇p is zero, we can identify it as the magnetic
field

B ¼ e1=v∇p: ð4:21Þ
Its curl may then be specified by a current density J,

∇ × B ¼ J: ð4:22Þ
All of the previous examples in Sec. IV B can be translated
by replacing electric point charges with magnetic point
charges and setting J ¼ 0. More general situations corre-
spond to nonzero electric current J ≠ 0. Nonetheless, this
is not a very helpful analogy, since the magnetic field
lines of a current are closed loops. The contours of constant
p, which are perpendicular to ∇pkB, therefore resemble
rays emanating from a point. However, as we saw in the
physically interesting cases, we have contours of p ¼ const
that are closed loops.

2. Dielectric medium analogy

Let us regard Φ ¼ −p as the electrostatic potential, so
that E ¼ ∇p, and identify

D ¼ e1=v∇p ð4:23Þ
as the displacement current. Comparing with D ¼ ϵE, it is
clear that in this analogy e1=v > 1 plays the role of the
permittivity ϵ and is variable across the dielectric medium
(note that ϵ0 ¼ 1 in our convention). According to the
master equation (2.2), ∇ ·D ¼ 0, which means that there is

no free charge density, ρf ¼ 0. Of course, the total charge
density is nonzero and is given by ρ ¼ ∇ ·E ¼ −∇ 1

v · ∇p,
but it is comprised entirely of the bound charges induced in
the dielectric medium.
With this analogy, every boundary-crossing problem for

an arbitrary potential v on an arbitrary boundary ∂Ω can be
cast into a well-defined electrostatic problem: the electro-
static potentialΦ is specified on the conducting surfaces ∂Ω
in a medium with inhomogeneous permittivity ϵ ¼ e1=v;
findΦ everywhere in the medium. In principle, the problem
of finding p� in the double-well potential, which was
impossible to solve with the method of Sec. IV B, can be
expressed as a problem in such a dielectric medium. Of
course, in general, such problems are hard to solve analyti-
cally, as we do not know the total charge distribution in
advance. But all numerical methods of classical electrostat-
ics may be applied to our problems.

V. CONCLUSIONS

In the first part of this paper,wegeneralized the proof of the
criticality ofD ¼ 2 to arbitrary shapes of potentials, a result
we dubbed “vðϕÞ criticality” to distinguish from the pre-
viously known result [49], “vðrÞ criticality,” which was
proven only for vðrÞ potentials. The new statement is that
the probability for the inflaton to escape to infinitely far
regions in the field space is identically zero in D ≤ 2
dimensions. This is in line with Pólya’s famous recurrence
theorem [63],which states that randomwalks are recurrent on
D ¼ 1, 2-dimensional lattices (i.e., thewalkerwill eventually
return to its starting point with probability 1).5 Of course,
there are distinctions: our setup is on a continuous space,
while Pólya’s theorem is about discrete lattices; and we talk
about the probability of avoiding escape to infinity, rather
than returning to the exact initial position.Nevertheless, there
is considerable similarity between the two results.
In the second part, we developed several methods for

calculating the boundary-crossing probability in two dimen-
sions. We used conformal transformations to generate prob-
lems forwhichwe can find an analytic solution, e.g., problems
with elliptical equipotential contours.Wealsodrewananalogy
with electrostatics problems, and as a result, we were able to
obtain the probability of escaping reheating for a double-well
inflaton potential in D ¼ 2 dimensions. We observed the
exponential decay characteristic of such situations. Most
notably, we did the same for a multiwell potential, and we
showed that the probability of escaping reheating is indepen-
dent of the number of wells. This is relevant for considering
inflation on a landscape and studying when and with what
probability inflation will end. The remarkable fact that this
probability is independent of the number of minima may be a

5Or as the saying goes, “A drunk man will find his way home,
but a drunk bird may get lost forever.”
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peculiar feature of the multiwell potential we used, but it
interesting on its own and deserves further consideration.
Finally, note that, except for the conformal transforma-

tion method, the other methods of Sec. IV are actually
applicable to higher dimensions as well. Nevertheless, we
concentrated only on examples in D ¼ 2.
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APPENDIX A: HARMONIC FUNCTIONS ON
ANNULAR REGIONS

In this Appendix, we solve Laplace’s equation on an
annular region Ω ¼ fϕjr− ≤ r ≤ rþg of the flat space in
the limit that rþ goes to infinity. The point is to illustrate the
different behavior of D > 2 and D ≤ 2, specifically, that
the latter does not admit a proper solution when boundary
conditions are specified on both ∂Ω− and ∂Ωþ.
Let us consider D > 2 first. In RD and in polar coordi-

nates, the metric reads ds2 ¼ dr2 þ r2dΩ2, where dΩ2 is
the metric on the unit sphere SD−1. Let us denote the com-
ponents of the metric by grr ¼ 1 and gθiθi ¼ r2γii, where γii
depends only on the angular coordinates θi of SD−1 but not
on r. The metric determinant is g ¼ r2ðD−1Þγ. Therefore,

∇2p ¼ 1ffiffiffi
g

p ∂að
ffiffiffi
g

p
gab∂bpÞ

¼ ∂2
rpþD − 1

r
∂rpþ

XD−1

i¼1

1

r2
ffiffiffi
γ

p ∂ið
ffiffiffi
γ

p
γii∂ipÞ: ðA1Þ

We can now use separation of variables and write
pðr; θÞ ¼ RðrÞΘðθÞ. Then,
∇2p
p

¼ R00

R
þD − 1

r
R0

R
þ 1

r2
XD−1

i¼1

1ffiffiffi
γ

p Θ
∂ið

ffiffiffi
γ

p
γii∂iΘÞ: ðA2Þ

It follows immediately that Θ must be an eigenfunction of
the Laplacian on SD−1,

XD−1

i¼1

1ffiffiffi
γ

p ∂ið ffiffiffi
γ

p
γii∂iΘÞ ¼ kΘ; ðA3Þ

and R ¼ rs, where sðsþD − 2Þ ¼ −k. It is known that the
eigenvalues k of the Laplacian are of the form k ¼ −l1ðl1 þ
D − 2Þ where l1 ≥ 0 is an integer, in order for the cor-
responding eigenfunctions Θ ¼ Yl1;…;lD−1

ðθÞ to be regular
(these are a generalization of the classical spherical har-
monics; the D − 2 integer indices are akin to the m in Ylm
and satisfy l1 ≥ l2 ≥ … ≥ lD−2 ≥ jlD−1j). The Yl1;…;lD−1

’s

form a complete basis for the functions on SD−1, and the
final answer is

pðr; θÞ
¼

X
l1;…;lD−1

ðal1;…;lD−1
rl1 þ bl1;…;lD−1

r−l1−Dþ2ÞYl1;…;lD−1
ðθÞ;

ðA4Þ
where a and b are constants to be determined by boundary
conditions.
A similar approach works for D ¼ 2, except that when

l1 ¼ 0 the second solution is not r−l1 but rather log r. Then,
we have, instead of Eq. (A4),

pðr; θÞ ¼ a0 þ b0 log rþ
X∞
l¼1

ðalrl þ blr−lÞ cosðlθÞ: ðA5Þ

Finally, the case of D ¼ 1 is trivial, giving

pðrÞ ¼ a0 þ b0r: ðA6Þ
The purpose of deriving Eqs. (A4), (A6), and (A5) is to

illustrate the role of D in the existence of solutions on
unbounded domain (domains that extend to r ¼ ∞). For
concreteness, we consider the domain r− ≤ r ≤ rþ in the
limit rþ → ∞. Let us first consider D > 2. As r → ∞, the
second term in (A4) vanishes no matter what l1 or b’s are.
To have a finite value for pðrþÞ, the first term must vanish
for all l1 > 0, i.e., al1;…;lD−1

¼ 0 unless l1 ¼ 0. Noting that
Yl1;…;lD−1

is a constant for l1 ¼ 0, we conclude that the only
possible bounded solutions on an unbounded domain are
those that approach a constant at r ¼ ∞. On the other hand,

pðr−Þ¼ða0;…þb0;…ÞY0;…þ
X
l1>0

bl1;…;lD−1
r−l1−Dþ2
− Yl1;…;lD−1

;

ðA7Þ
which can have arbitrary θ dependence. So, for example, in
D ¼ 3, there is no solution of Laplace’s equation that
approaches the nonuniform profile Y11 as r → ∞, whereas
it is perfectly possible for p to approach Y11 as r → r−. It is
important to notice that a0;… is not determined from pðr−Þ
through Eq. (A7), so the value of pðrþ ¼ ∞Þ can be
specified as an arbitrary constant (which is 0 or 1 for p− and
pþ, respectively), independent of pðr−Þ.
Now, consider D ¼ 2. The corresponding problem on

the domain r− ≤ r ≤ rþ with bounded solution must have
al ¼ 0 for all l > 0. But since log r is unbounded, b0 must
vanish, too. Therefore,

pðr−Þ ¼ a0 þ
X∞
l¼1

ðalrl þ blr−lÞ cosðlθÞ: ðA8Þ

We see that again p can have an arbitrary θ-dependent
profile on ∂Ω−, but it must approach a uniform θ-
independent value a0 as r → ∞. The crucial difference
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with D > 2 is that b0 is absent. Thus, the value of a0 (the
boundary condition at infinity) is fixed by the boundary
condition pðr−Þ at ∂Ω−. So, once pðr−Þ is specified, no
further boundary condition can be specified for the r ¼ ∞
boundary. The same thing happens for D ¼ 1, precisely
because r (just like log r) is an unbounded function.

APPENDIX B: IMAGE CHARGES
IN D= 2 AND D= 3

In this Appendix, we demonstrate the distinction
between the D ¼ 2 and D ¼ 3 cases on unbounded
domains using the technique of image charges.
Let us begin by D ¼ 3. For the sake of simplicity, we

choose a constant potential v over the domain Ω ¼
fϕjr > r−g. Since this is a vðrÞ potential, we can use
Eq. (2.4) with rþ ¼ ∞:

p−ðϕÞ ¼
R
∞
r r0−2e−

1
vdr0R∞

r−
r0−2e−1

vdr0
¼ 1=r

1=r−
¼ r−

r
: ðB1Þ

Let us see how this comes about using image charges.
According to Sec. III A, p−ðϕÞ is the image charge inside
the sphere, due to a negative unit point charge at ϕ. We can
thus apply the well-known result [61] that the image
charge, due to a point charge q at a distance r away from

the center of a grounded sphere of radius r−, is given
by q0 ¼ −qr−=r. Setting q ¼ −1, we readily recover the
result above.
Now, consider D ¼ 2, again with constant v and on the

domain Ω ¼ fϕjr > r−g. Once again, we can use Eq. (2.4)
with rþ ¼ ∞:

p−ðϕÞ¼ lim
rþ→∞

R
rþ
r r0−1e−1

vdr0R
rþ
r−

r0−1e−
1
vdr0

¼ lim
rþ→∞

logðrþ=rÞ
logðrþ=r−Þ

¼1: ðB2Þ

This time the problem corresponds to a line of charge
(along the z axis in three dimensions) lying outside a
grounded cylinder with parallel axis. The image charge will
be another line of charge inside the cylinder, with an
opposite but equal linear charge density [61]. Thus, p−ðϕÞ,
being the ratio of the image charge to the original charge, is
equal to 1, regardless of the distance of the original charge
from the cylinder.
It is important to contrast the two cases. In D ¼ 3, p−

decays like 1=r, while inD ¼ 2, p− is constant. The crucial
difference is that, as the original charge moves away from
the grounded surface, its potential on the surface decreases
for D ¼ 3, but not for D ¼ 2. Therefore, the interior image
charge p− required to compensate for this potential
decreases in D ¼ 3 but remains constant in D ¼ 2.
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