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Kinetic Sunyaev Zel’dovich (kSZ) tomography provides a powerful probe of the radial velocity field of
matter in the Universe. By cross-correlating a high resolution cosmic microwave background (CMB)
experiment like CMB-S4 and a galaxy survey like Dark Energy Spectroscopic Instrument (DESI) or Large
Synoptic Survey Telescope (LSST), one can measure the radial velocity field with a very high signal-to-
noise ratio over a large volume of the universe. In this paper we show how this measurement can be used to
improve constraints on primordial non-Gaussianities of the local type. The velocity field provides a
measurement of the unbiased matter perturbations on large scales, which can be cross-correlated with the
biased large-scale galaxy density field. This results in sample variance cancellation for a measurement
of scale-dependent bias due to a nonzero fNL. Using this method we forecast that CMB-S4 and LSST
combined reach a sensitivity σfNL

∼ 0.5, which is a factor of 3 improvement over the sensitivity using LSST
alone (without internal sample variance cancellation). We take into account critical systematics like
photometric redshifts, the kSZ optical depth degeneracy, and systematics affecting the shape of the galaxy
auto-power spectrum and find that these have negligible impact, thus making kSZ tomography a robust
probe for primordial non-Gaussianities. We also forecast the impact of mass binning on our constraints.
The techniques proposed in this paper could be an important component of achieving the theoretically
important threshold of σfNL

≲ 1 with future surveys.

DOI: 10.1103/PhysRevD.100.083508

I. INTRODUCTION

Detecting or tightly constraining primordial non-
Gaussianity is one of the main goals of many upcoming
large-scale structure surveys and cosmic microwave back-
ground (CMB) experiments. A detection would provide
invaluable information about interactions in the inflationary
universe, probing physics at ultrahigh energy scales that are
not otherwise accessible to experiments. Primordial non-
Gaussianities have been classified extensively according
to production mechanisms, symmetries and field content.
A particularly simple and important class are so-called
local type non-Gaussianities, which are produced generi-
cally in the presence of more than one light degree of
freedom during inflation (multifield inflation). A well-
known threshold is that multifield inflation predicts
fNL ≳ 1 (see e.g., [1]). For comparison, the current best
bound is fNL ¼ 2.5� 5.7, coming from the latest Planck
satellite CMB analysis [2]. Unfortunately the constraint
from the primary CMB is already close to being saturated,
as a large fraction of the available modes in temperature and
polarization have been measured.

To reach the multifield threshold, a three-dimensional
probe of the universe is needed, which contains many
more modes than the two-dimensional CMB sky. Non-
Gaussianities can in principle be measured with large-scale
structure surveys by measuring the bispectrum of the
galaxy distribution. Unfortunately, nonlinear evolution
by gravity induces large bispectra which are hard to
disentangle from those expected from primordial physics.
However in the case of local non-Gaussianities, it is
possible to obtain excellent constraints from the power
spectrum alone, through a measurement of the scale
dependence of galaxy bias [3]. On large scales, the
presence of fNL ≠ 0 induces a bias relating the matter
and galaxy distribution which scales as 1=k2, providing a
rather unique signal that is not mimicked by changes of the
standard cosmological parameters. This signal is the main
path through which upcoming galaxy surveys hope to
improve constraints on fNL. Reaching the multifield thresh-
old fNL ¼ 1 from galaxy surveys remains difficult, due to
the limited number of large-scale modes within the survey
volume, i.e., due to cosmic variance. However, if one can
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measure tracers of different bias (or biased and unbiased
tracers), these can be compared to determine the scale-
dependent bias induced by non-Gaussianities, without
cosmic variance [4]. This idea, known as sample variance
cancellation, can be achieved either by measuring different
sets of galaxies, or by cross-correlating the galaxy distri-
bution with an independent probe of large-scale structure
not based on galaxies. In particular, recently Schmittful and
Seljak proposed to use the CMB lensing potential as a
probe of the unbiased matter distribution and to cross-
correlate it with a galaxy survey to measure fNL through
sample variance cancellation [5]. Decisive for the power of
sample variance cancellation is the correlation coefficient
between the biased and unbiased modes, which is chal-
lenging in the case of CMB lensing because of the very
broad lensing kernel.
Here we present a new method to improve fNL mea-

surements by using kinetic Sunyaev Zel’dovich (kSZ)
tomography [6–16] to measure the radial velocity field
of matter in the universe. The kSZ effect [17] is a secondary
CMB temperature anisotropy induced by the scattering of
CMB photons from the bulk motion of free electrons in the
post-reionization universe. This effect is the dominant
blackbody contribution to the CMB on small scales (at
l≳ 4000), and will be measured at high significance by
future experiments. The direct cross-correlation of a high-
resolution CMB map with a galaxy survey can be used to
reconstruct the radial velocity field in a three-dimensional
volume, thus providing an additional probe of large-scale
structure [14,16,18]. Because the radial velocity field is an
unbiased tracer, it can be combined with a galaxy survey to
realize the idea of sample variance cancellation. In our
approach, sample variance cancellation is particularly
powerful, due to a very good correlation coefficient of
the reconstructed velocity field and the galaxy distribution.
This is possible due to the very low noise in the large-scale
velocity field reconstruction.
We forecast the improvement of σfNL

due to the inclusion
of kSZ tomography data for two baseline experimental
configurations, “baseline 1” corresponding to DESI [19] þ
a CMB experiment similar to Simons Observatory, and
“baseline 2” corresponding to LSST [20] þ CMB-S4 [21].
Our forecast is based on the kSZ tomography bispectrum
formalism developed in [22], which allows us to make
realistic forecasts including photo-z errors, kSZ optical
depth degeneracy and redshift space distortions. We find,
depending on the redshift range included in the analysis,
that improvement factors on σfNL

in the range ∼2–10 are
possible by including kSZ tomography. If sample variance
cancellation can be realized within the galaxy sample itself,
e.g., by considering populations with different halo mass
[23], improvement factors are more modest for measurable
halo masses, but can still be a factor of 2. Because future
surveys are only just on the cusp of attaining σfNL

¼ 1, an
improvement factor of a few could yield a significant

detection or provide a constraint that significantly trims the
allowed regions of model space, for example severely
constraining [1] curvaton scenarios [24–27].
The paper is organized as follows. In Sec. II we recall

scale-dependent bias and explain how kSZ tomography
can be used for sample variance cancellation. In Sec. III
we describe the experimental parameters in our forecast.
The Fisher forecast setup is described in Sec. IV and its
results are discussed in Sec. V. We summarize our results
in Sec. VI.

II. MEASURING f NL WITH KSZ TOMOGRAPHY

To explain in detail how kSZ tomography can be used to
constrain local non-Gaussianities, we first recall the stan-
dard results on scale-dependent bias and then illustrate why
kSZ tomography is very well suited for measuring fNL
using sample variance cancellation.

A. Scale-dependent bias

In the presence of primordial non-Gaussianity, a biased
tracer acquires a scale-dependent bias proportional to fNL.
In particular, on large scales, the matter-halo and halo-halo
power spectra can be written as [3]

Pmhðk; zÞ ¼
�
bh þ fNL

βf
αðk; zÞ

�
Pmmðk; zÞ; ð1Þ

Phhðk; zÞ ¼
�
bh þ fNL

βf
αðk; zÞ

�
2

Pmmðk; zÞ: ð2Þ

Here we have defined (see for example [28])

αðk; zÞ ¼ 2k2TðkÞ
3ΩmH2

0

DðzÞ ð3Þ

so that the matter overdensity δmðk; zÞ is related to the
primordial potential ΦðkÞ through the Poisson equation as

δmðk; zÞ ¼ αðk; zÞΦðkÞ: ð4Þ

The linear growth function DðzÞ is normalized so that
DðzÞ ¼ 1=ð1þ zÞ during matter domination and TðkÞ is
the transfer function normalized to 1 at low k. The quantity
bh is the Eulerian halo bias and depends on the halo
mass. The non-Gaussian bias parameter βf is well approxi-
mated by

βf ¼ 2δcðbh − 1Þ: ð5Þ

We will take δc ¼ 1.42, as appropriate for the Sheth-
Tormen halo mass function.
Here and below we write large-scale halo power spectra,

which involve the halo bias, with a subscript h, while we
write small-scale galaxy power spectra that appear in kSZ
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tomography with a subscript g. In the forecast we will
however assume abundance matching for the large-scale
halo power spectra, i.e., each halo is assumed to be popu-
lated by a single galaxy in its center. This facilitates
forecasting with experimental galaxy number densities
and does not strongly affect the results. Under this
assumption the words halo and galaxy can be used
interchangeably. On the other hand the small-scale galaxy
power spectra will be calculated within the halo model
including the halo occupation distribution (HOD) [29,30]
and therefore satellite galaxies. The calculation of halo
model power spectra is reviewed in the Appendix.
As shown in [18,22], the noise on the kSZ tomography

reconstruction of the radial velocity field is given by

Nrec
vv ðkL; μÞ ¼ μ−2

2πχ2�
K2�

�Z
dkSkS

�
PgeðkSÞ2

Ptot
gg ðkSÞCtot

l

�
l¼kSχ�

�−1

ð6Þ

where we approximated the observed part of the universe
by a box at distance χ�. The details of this box approxi-
mation are explained in [22]. Here and below the star suffix
indicates the center of the box. Pge is the small-scale
galaxy-electron cross-power spectrum and Pgg is the small-
scale galaxy auto-power spectrum, which are both domi-
nated by the 1-halo term on the scales of interest [22]. The
kSZ radial weight functionK� at the corresponding redshift
z� is given byKðzÞ ¼ −TCMBσTne;0xee−τðzÞð1þ zÞ2, where
σT is the Thomson cross section, ne;0 is the comoving
electron density, xeðzÞ is the ionized fraction and τ is the
optical depth. The momentum integral in Eq. (6) is
dominated by the small scales kS where most of the
detectable kSZ signal comes from. On the other hand,
the reconstructed velocities have significant signal-to-noise
only at large scales, indicated by the momentum kL. The
total power spectrum Ptot

gg is the galaxy power spectrum plus
the shot noise, and Ctot

l is the total CMB power spectrum
including noise.
The noise depends on the angle of the mode with

respect to the line of sight, i.e., μ ¼ k̂ · n, but crucially
is independent of the magnitude of kL. The reconstructed
velocity field can be related to a reconstruction of the
density perturbations δm using linear theory. The recon-
struction noise on the density field is thus given by

Nrec
mmðkL; μÞ ¼

k2L
ðfaHÞ2�

Nrec
vv ðkL; μÞ: ð7Þ

where H is the Hubble constant, f ¼ ∂ðlogDÞ=∂ðlogaÞ is
the derivative of the growth factor D, and a is the
cosmological-scale factor, all evaluated at the redshift of
the box z�. Crucially, the noise is proportional to k2L,
implying that the reconstruction noise on the density field is
lowest on the largest scales. This implies, for typical

upcoming galaxy surveys and CMB experiments, that
the density field can be reconstructed at a higher fidelity
using kSZ tomography than with direct density measure-
ments from a galaxy survey. This is illustrated for an
example experimental configuration in Fig. 1, where we
have also shown the added large-scale power on the galaxy
power spectrum due to fNL.
We note that on the very largest scales one must account

for additional contributions to the kSZ effect beyond the
peculiar velocity [14–16,18]. Taking these into account, kSZ
tomography can be used to reconstruct the dipole field, the
CMB dipole observed at each point in spacetime. This will
modify the noise in Eq. (7) at very small kL, somewhat
increasing the attainable velocity reconstruction noise. This
effect will be most important for the deepest galaxy surveys,
and we defer further exploration of this point to future work.

III. POWER SPECTRA AND EXPERIMENTS

The input data for our forecast are galaxy number
densities, biases and the effective beam and noise in an
overlapping CMB survey, as well as the small-scale power
spectra which determine the velocity reconstruction noise.
In this section we describe these parameters in detail.

A. Consistent small-scale power spectra
from the halo model

The kSZ velocity reconstruction noise in Eq. (6) depends

on the ratio of small-scale power spectra ð PgeðkSÞ2
Ptot
gg ðkSÞCtot

l
Þ, where

for l > 4000 the CMB power spectrumCl is dominated by

FIG. 1. Galaxy power spectra and noise power spectra for an
experimental configuration corresponding to the DESI experi-
ment (with galaxy density and CMB noise according to our
baseline 1 defined in Table I). At large scales, where the fNL
signal is strongest, we get a much lower noise using kSZ
tomography than with galaxies alone, due to the k2 scaling of
the kSZ reconstruction noise. The chosen fNL value of 5 is near
the 1σ sensitivity for this configuration. All power spectra are
shown at z ¼ 1 and for mu jμj ¼ 1 (radial modes), and the galaxy
power spectra include the redshift-space distortions term.
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the kSZ effect, which depends on PeeðkSÞ, the auto-power
spectrum of the electron distribution. There is some
uncertainty in the shape and amplitude of these three
power spectra. However, all three of them can be calculated
in the halo model and are dominated by the 1-halo term at
the relevant kS. We review the halo model calculation of
these power spectra in the Appendix, and more details can
be found in [22]. A key property is that they depend on the
satellite galaxy profile in the halo usðkjm; zÞ (assumed
Navarro-Frenk-White, tracing the dark matter) and the
electron profile ueðkjm; zÞ. We therefore make a consistent
forecast by using a halo model calculation for all three
power spectra.
To calculate galaxy power spectra in the halo model, one

needs to specify the halo occupation distribution (HOD).
Details about the HOD [29,30] which we use can be found
in [22]. To connect the HOD with different experiments,
we are using the following prescription. In the HOD, the
galaxy sample is specified by imposing a threshold stellar
mass mthresh⋆ of observable galaxies. At a fixed halo mass, it
assumes a log-normal distribution for the stellar mass.
There are also three further parameters in the HOD, which
define the central and satellite galaxy numbers for each
mass. These parameters depend on mthresh⋆ , and have
been calibrated with data in [29]. We match the para-
meter mthresh⋆ so that the total predicted galaxy number
(centralsþ satellites) matches the number density expected
for a given experiment (e.g., LSST, DESI). An example of
this matching is shown in the next section.

B. Experiments

We make forecasts for two next generation large-scale
structure experiments, LSST and DESI. LSST is an
example of a high number density experiment with photo-
metric redshifts. DESI is an example for a lower number
density experiment but with precise spectroscopic redshifts.
For the CMB experiment we consider a CMB-S4 configu-
ration [21], as well as a configuration similar to that of

Simons Observatory (SO). We do not include atmospheric
noise or noise from foregrounds such as thermal Sunyaev-
Zel’dovich or cosmic infrared background in this work.
A more realistic forecast that includes these contributions
for SO can be found in [31]. Our detailed redshift binned
forecast will be for LSST+CMB-S4, which is the most
promising configuration for fNL, while for DESIþ SO we
only provide a simplified forecast to illustrate the perfor-
mance of a lower number density without photo-z errors.

1. Large-scale structure experiments

Our forecast for the Large Synoptic Survey Telescope
(LSST) is based on the LSST gold sample as defined in the
LSST science book [32], which is used in the clustering
forecasts. For this dataset, the galaxy number density n per
arcmin2 is described by

nðzÞ ¼ ngal
1

2z0

�
z
z0

�
2

expð−z=z0Þ ð8Þ

with z0 ¼ 0.3 and ngal ¼ 40 arcmin−2. The predicted
photo-z error is

σz ¼ 0.03ð1þ zÞ: ð9Þ

For the same sample the LSST group also provides the bias

bðzÞ ¼ 0.95=DðzÞ ð10Þ

with the growth factor normalized as Dðz ¼ 0Þ ¼ 1. The
bias with this prescription is plotted in Fig. 2, for five large
redshift bins defined below. For comparison, we also show
the halo model bias prescription, obtained by adjusting
the mass threshold of the HOD to match the number
densities provided by LSST. The agreement between the
two methods of bias determination is not perfect but within
the spread of what is expected for the uncertainty of the bias
of a galaxy sample. Below we use the LSST bias in our

FIG. 2. Left: redshift binning and bias as a function of z for the LSST forecast. Right: HOD stellar mass thresholdmthresh⋆ as a function
of z matched so that the galaxy number predicted by the halo model matches Eq. (8), extracted from the LSST science book.
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LSST forecast, to facilitate comparison with other studies.
We use the matched mass threshold of the HOD, shown
in the right panel of Fig. 2, to compute the small-scale
power spectra Pgg and Pge that appear in the velocity
reconstruction noise. It should be noted that the bias is a
significant uncertainty in the fNL forecast that can influ-
ence results up to a factor of 2. This uncertainty dominates
over the uncertainty in Nvv from different small-scale
power spectra, because the fNL forecast is dominated by
the galaxy shot noise.
For the Dark Energy Spectroscopic Instrument (DESI)

[19], we make a simplified forecast ignoring redshift
evolution. Our assumption will be a galaxy density ngal ¼
10−4 Mpc−3 with a bias b ¼ 1.6 at central redshift z⋆ ¼ 1,
roughly in line with the DESI white paper [19], with perfect
redshifts.

2. CMB experiments

Our baseline CMB survey is oriented on the planned
CMB-S4 experiment. We consider here an experiment with
an effective beam full width at half-maximum (FWHM) of
1.5 arcmin and an effective white noise level of 1.0 μK-
arcmin, values that do not take into account foreground
cleaning.1 We do not include atmospheric 1=f noise as it is
expected to be subdominant to instrument and kSZ con-
tributions at the relevant high multipoles of l > 4000. The
total CMB noise that enters Eq. (6) is then

Ctot
l ¼ CTT

l þ CkSZ-reionization
l þ CkSZ-late-time

l þ Nl ð11Þ

where CTT
l is the lensed CMB temperature power spectrum,

CkSZ-reionization
l is the reionization contribution to kSZ,

CkSZ-late-time
l is the late-time (low-redshift) contribution to

kSZ and Nl is the beam-deconvolved noise spectrum of
the foreground-cleaned CMB map,

NðlÞ ¼ s2w exp

�
lðlþ 1Þθ2FWHM

8 ln 2

�
: ð12Þ

While we focus on CMB-S4, we will also forecast a
configuration with noise and beam oriented on the Simons
Observatory, with a beam FWHM of 1.5 arcmin and an
effective white noise level of 5.0 μK-arcmin, again not
taking into account foreground cleaning.

IV. FISHER FORECAST SETUP

We now describe our Fisher forecast setup, including
the relevant systematics. We first discuss the simpler case
without mass binning of galaxies or halos, then make some
analytic approximations, and finally generalize to a mass
binned tracer.

A. Methodology

Our measured data are the modes ðvk; δhkÞ, where the vk
are the modes coming from the kSZ velocity field
reconstruction and δhk are the modes of the galaxy survey
(assuming a single galaxy per halo). The signal and noise
covariance matrices are thus

Sðk; μ; zÞ ¼
�
Pvv Pvh

Pvh Phh

�
; Nðk; μ; zÞ ¼

�
Nvv 0

0 Nhh

�
;

ð13Þ
where the noise covariance matrix is diagonal. The total
covariance is

Cðk; μ; zÞ ¼ Sðk; μ; zÞ þNðk; μ; zÞ: ð14Þ
The Fisher matrix for a single redshift bin at z� is

Fab ¼
V
2

Z
d3k
ð2πÞ3 Tr½CðkÞ;aCðkÞ

−1CðkÞ;bCðkÞ−1� ð15Þ

¼ V
2

Z
kmax

kmin

Z
1

−1

2πk2dkdμ
ð2πÞ3

× Tr½Cðk; μÞ;aCðk; μÞ−1Cðk; μÞ;bCðk; μÞ−1�; ð16Þ
where we have taken into account the μ angle dependence
induced by the kSZ reconstruction. An important character-
istic of the kSZ velocity reconstruction is the presence of
the kSZ optical depth degeneracy. This is the fact that
the overall normalization of the electron profile in a halo
is not known very precisely, and leads to an unknown
overall normalization of the measured velocity field.
Mathematically, in the kSZ bispectrum formalism [22], a
constant factor can be moved between Pge and Pgv in the
squeezed limit bispectrum without changing its shape.
We take this into account by marginalizing over a free
normalization parameter of the velocity reconstruction bv,
in addition to marginalizing over the halo bias. The relevant
power spectra become

Phhðk; z; μÞ ¼
�
bh þ fNL

βf
αðk; zÞ þ fμ2

�
2

Pmmðk; zÞ;

ð17Þ

Pvhðk; z; μÞ ¼
�
bvfaH

k

��
bh þ fNL

βf
αðk; zÞ þ fμ2

�

× Pmmðk; zÞ; ð18Þ

1This level of noise will not be achieved with CMB-S4 when
including realistic foreground contamination. Foreground
cleaned ILC noise curves for CMB-S4 are closer to 5.0 μK-
arcmin [33]. Forecasts with our method with official experimental
noise curves can be found in the CMB-S4 white paper [33], and
similarily for Simons Observatory in [31]. These are not very
different from the forecasts presented here as our method, for
these experiments, is limited mostly by the galaxy density and not
CMB noise.
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Pvvðk; zÞ ¼
�
bvfaH

k

�
2

Pmmðk; zÞ; ð19Þ

where we have also included redshift space distortions.
The noise power spectra are given for the velocity
reconstruction in Eq. (6) and for halos by the shot noise
Nhh ¼ 1

nh
with halo density nh.

We also consider photo-z errors. These can be imple-
mented for halos by a convolution of the halo density field
with a Gaussian kernel in radial direction. The halo noise
power is then

Nhhðk; μÞ ¼
1

W2ðk; μÞnh
ð20Þ

where

W2ðk; μÞ ¼ e−k
2μ2σ2ðzÞ=H2ðzÞ ð21Þ

with redshift scattering σðzÞ. The noise in the kSZ velocity
reconstruction due to photo-z errors is discussed in detail in
[22] and is also included in this forecast. We further assume
that the volume V limits the available largest modes in the
Fisher forecast as kmin ¼ π

V1=3. In our fNL forecast, we
marginalize over bh and bv. We have also experimented
with marginalizing over cosmological parameters, but
found that these do not significantly change the sensitivity,
as the fNL distortion of the power spectrum is orthogonal to
changes induced by cosmological parameters.

B. Analytic approximation of the Fisher matrix

To gain some analytic insight into the expected behavior
of the signal-to-noise ratui, we analyze the diagonal fNL
term of the Fisher matrix, based on the analysis for the
lensing-galaxy cross-correlation in [5]. To simplify the
notation we work with modes δrecm ðkÞ ¼ k

faH vðkÞ, and drop
the Kaiser redshift distortion term. The Fisher matrix from a
single k mode is

FfNLfNL
ðk; μÞ ¼ 1

2

X
abcd∈fm;gg

Cab
;fNL

ðk; μÞðC−1Þbcðk; μÞ

× Ccd
;fNL

ðk; μÞðC−1Þdaðk; μÞ: ð22Þ

Inserting the covariance matrix Eq. (14), one finds [5] that

FfNLfNL
ðk; μÞ ¼ 1

2ð1 − r2Þ2
��

Chh
;fNL

Chh − 2r2
Cmh
;fNL

Cmh

�2

þ 2r2ð1 − r2Þ
�
Cmh
;fNL

Cmh

�2�
ð23Þ

where we defined the correlation coefficient

rðk; μÞ ¼ CmhðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmmðk; μÞChhðkÞ

p : ð24Þ

From Eq. (17), for fiducial fNL ¼ 0, we have

Chh
;fNL

Chh ðkÞ ¼ 2bh
βf
α Pmm

b2hPmm þ Nhh
;

Cmh
;fNL

Cmh ðkÞ ¼ βf
bhα

: ð25Þ

In the limit Phh ≫ Nhh we find

FfNLfNL
ðk; μÞ ¼ 2 − r2

1 − r2

�
βf
bhα

�
2

ð26Þ

which for r → 1 scales as ð1 − r2Þ−1 (as found for sample
variance cancellation in [4]), leading to a large decrease in
uncertainty on fNL as r approaches 1. Knowing rðk; μÞ we
can estimate the Fisher matrix as

FfNLfNL
¼ V

2

Z
kmax

kmin

Z
1

−1

k2dkdμ
ð2πÞ2 FfNLfNL

ðk; μÞ: ð27Þ

In the case of a configuration with strong sample variance
cancellation (i.e., almost all information comes from the
cross-correlation), this approximation is almost exact. This
is the case for the baseline 2 experiment to be defined
below, while for the baseline 1 experiment with less sample
variance cancellation the estimate is about 15% too large
compared to the full answer given below.
To understand the behavior of the cross correlation

coefficient better, we can write it for bh ∼ 1 as

r ∼
��

1þ Nrec
mm

Pmm

��
1þ Nhh

Phh

��
−1=2

: ð28Þ

We see that even in the limit N
rec
mm

Pmm
→ 0, the best our method

could possibly achieve, the correlation coefficient and thus
the sensitivity to fNL is limited by the halo shot noise. We
will plot the correlation coefficient below for different
experimental configurations, finding very encouraging
results. The importance of the correlation coefficient for
sample variance cancellation strongly suggests the power of
our method for fNL determination.

C. Mass binned forecast (multitracers)

Where observationally feasible, sample variance cancel-
lation can also be achieved by mass binning galaxies (or
more precisely their host halos). This is because the halo
bias is a function of halo mass, and therefore by measuring
the same k-modes with different masses/biases one can
again cancel the stochastic mode amplitude. To explore the
influence of this effect, we provide a forecast assuming that
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this highly nontrivial procedure can be done perfectly.
The measured data is now the set of modes ðvk;1;…; vk;N;
δhk;1;…; δhk;NÞ, i.e., we measure a kSZ velocity recon-
struction and a halo distribution in each mass bin. In each
bin i the mean (number weighted) bias is given by

bh;i ¼
R
M∈bini dM

dn
dM bhðMÞR

M∈bini dM
dn
dM

: ð29Þ

In addition each mass bin has its own free velocity
normalization bv;i, which corresponds to the kSZ optical
depth degeneracy discussed above. The signal covariance
matrix is now

Sðk; μ; zÞ ¼
�
Pvv Pvh

Pvh Phh

�
ð30Þ

with

Phh;ijðk; z; μÞ ¼
�
bh;i þ fNL

βf
αðk; zÞ þ fμ2

�

×

�
bh;j þ fNL

βf
αðk; zÞ þ fμ2

�
Pmmðk; zÞ;

ð31Þ

Pvh;ijðk; z; μÞ ¼
�
bv;ifaH

k

��
bh;j þ fNL

βf
αðk; zÞ þ fμ2

�

× Pmmðk; zÞ; ð32Þ

Pvv;ijðk; zÞ ¼
�
bv;ifaH

k

��
bv;jfaH

k

�
Pmmðk; zÞ: ð33Þ

The noise power is

Nðk; μ; zÞ ¼
�
Nvv 0

0 Nhh

�
: ð34Þ

Here Nhh is given by the halo shot noise

Nhh;ij ¼
1

W2

δij
nh;i

: ð35Þ

This Poisson term is the dominant halo noise term and the
only one we considered here (see [28] for a discussion of
corrections including off diagonal noise between mass
bins). The velocity reconstruction noise Nvv;ijðk; μÞ is
given as follows. First we define:

Aij ¼
Z

dkSkS

�
Pge;iðkSÞPge;jðkSÞPtot

gg;ijðkSÞ
Ptot
gg;iiðkSÞPtot

gg;jjðkSÞCtot
l

�
l¼kSχ�

ð36Þ

where we have introduced the notation Ptot
gg;ij ¼ Pgg;ij þ

Ngg;ij for the total (clusteringþ Poisson) galaxy power

spectrum, and Pge;i for the electron-galaxy cross spectrum.
Then,

Nvv;ijðk; μÞ ¼ μ−2
2πχ2�
K2�

Aij

AiiAjj
: ð37Þ

As a sanity check, for an auto-power spectrum (i ¼ j), the
result is the same as before in Eq. (6).

V. FISHER FORECAST RESULTS

In this section we provide Fisher forecasts for different
experimental setups. In the first part, we analyze two
realistic baseline configurations for a single redshift bin
and without mass binning in detail. We then add redshift
binning, to obtain a realistic forecast for LSST. Finally we
investigate the influence of mass binning halos, where
sample variance cancellation already appears at the level of
galaxies alone, and the improvement factor is thus reduced.

A. Baseline forecast: Single 3d snapshot box,
no mass binning

To explore the parameter dependencies of our forecast,
we start with the two baseline experiments specified in
Table I. These baseline values were chosen to resemble
the experimental configuration of DESI and an SO-like
CMB experiment (baseline 1) and of LSST and CMB-S4
(baseline 2). For simplicity here we have used a single
three-dimensional box in our kSZ box formalism, where
the box has the size of the survey volume. Therefore the
forecast in this section ignores the time evolution of power
spectra and biases on the light cone, but retains the
unbinned red shift (or distance) information of the galaxies.
In the next section, we approximate light cone evolution by

TABLE I. Baseline configuration of LSS and CMB experi-
ments. The values for baseline 1 are similar to those expected for
DESI and Simons Observatory. The values for baseline 2 are
similar to LSST and CMB-S4. Bias and survey volume were kept
identical for both baselines to stress the dependence on galaxy
density and photo-z errors. Here we only consider one 3-
dimensional redshift box. For the full redshift range of LSST,
including the whole survey volume with sky overlap with CMB-
S4, see below.

Baseline 1 Baseline 2

Survey volume V 100 Gpc3 100 Gpc3

Central redshift z 1.0 1.0
Galaxy density ng 2 × 10−4 Mpc−3 10−2 Mpc−3

Halo bias bh 1.6 1.6
Photo-z error σz � � � 0.06
CMB sensitivity 5 μK-arcmin 1 μK-arcmin
CMB resolution 1.5’ 1.5’
σgalfNL

6.0 5.3

σkSZþgal
fNL

3.3 0.7

σgalfNL
=σkSZþgal

fNL
1.8 7.8
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using a sequence of boxes of the appropriate volume for a
series of redshift bins along the light cone. A precise
treatment of light cone evolution would require using
spherical coordinates and is postponed to future work.
For the baseline 1 experiments, we forecast a combined

constraint σkSZþgal
fNL

¼3.3, an improvement factor of 1.8 with
respect to the galaxy value σgalfNL

¼ 6.0. For the baseline 2

experiments we find σkSZþgal
fNL

¼ 0.7 and σgalfNL
¼ 5.3 with an

improvement factor of 7.8. Note that this large improve-
ment factor is reduced when considering all redshifts or
considering mass binning below. For comparison, without
photo-z errors, for baseline 2, we find σkSZþgal

fNL
¼ 0.6. The

forecasts shows that the kSZ method benefits strongly from
a high number density, and is not very sensitive to photo-z
errors.
To explore which scales contribute most to the signal,

we plot σfNL
as a function of kmin in Fig. 3 (left). The plot

shows where the effect of kSZ sample variance cancellation
kicks in, around k ¼ 0.01 Mpc−1. We also plot the corre-
lation coefficient for radial modes in Fig. 3 (right). As we
have seen, the improvement factor due to sample variance
cancellation depends on the correlation coefficient as
ð1 − Corr2Þ−1=2. For example, for modes where Corr ¼
0.999 this gives an improvement factor of 22 for these
modes. This explains the high gain due to kSZ in the
baseline 2 configuration. We further examine the depend-
ence of σfNL

on the galaxy density in Fig. 4 and on the CMB
experimental data in Fig. 5. For these plots we have used
baseline 2 as our starting configuration, and then varied
only the one parameter on the x axis, keeping all other
parameters constant. It is clear that the most critical
parameter is the galaxy density. For galaxies alone we
quickly enter the cosmic variance limit, so the fNL signal
levels off with respect to galaxy density (Fig. 4). This
would be different if we were to mass bin galaxies and get

FIG. 3. Left: sensitivity σfNL
as a function of kmin for baseline 2. On the lower end, k is cut off by the size of the volume. The plot

illustrates which scales contribute most to the signal. Right: correlation coefficient of velocity and galaxy modes for μ ¼ 1 modes, for
both baseline configurations. The influence of photo-z errors in baseline 2 is clearly visible at high k.

FIG. 4. Left: sensitivity σfNL
as a function of galaxy density ngal for baseline 2. Galaxy density is a critical parameter for our method, in

particular because increasing it improves the shot noise of the galaxy mode for sample variance cancellation. For clarity in this plot we
have kept the bias constant; however, of course highly biased galaxies are limited in number. Right: velocity reconstruction noise Nvv as
a function of galaxy density ngal for baseline 2. This illustrates that for baseline 2 the galaxy density is so large that with CMB-S4 noise
levels we are close to signal-to-noise saturation of the velocity reconstruction as a function of ngal.
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sample variance cancellation from galaxies alone, as we
show below in Sec. V C.
We also quantified how much information on fNL can be

obtained without the galaxy auto correlation function. This
is important because calibration errors can make the galaxy
auto correlation function unreliable on large scales. To
implement this, we marginalize over an additional term of
form γ=k2 in the galaxy auto power, where γ is a free
parameter, which completely removes any information on
fNL from the galaxy auto power in the forecast. For
baseline 1 the forecasted σfNL

increases by only 0.5 percent,
and for baseline 2 even by only 0.1 percent. This may seem
surprising, especially for baseline 1 where the improvement
factor due to sample variance cancellation is moderate,
because the galaxy auto power spectrum also includes
transverse modes which are not measurable with kSZ
tomography. However, due to the extremely low noise in
the kSZ velocity field, only a small subset of modes is so
transverse that the kSZ velocity noise term ∝ μ−2 is near
or above the galaxy shot noise. In summary, our method
allows one to obtain excellent fNL constraints without
using the galaxy auto correlation function.

B. Redshift evolution for LSST

We now extend the forecast to cover the entire redshift
range of LSST, combined with the CMB-S4 mission.
Number densities, biases and photo-z errors are as specified
in Sec. III B for LSST. The bin volumes are chosen so that
they include the expected sky overlap of LSST and CMB-
S4 (fsky ¼ 0.3). To take into account redshift dependen-
cies, we have divided the available redshift range 0 < z < 3
in five bins, each of which we treat as a three-dimensional
box with the corresponding cosmological volume. The
binning parameters are given in Table II.

FIG. 5. Top: sensitivity σfNL
(left) and velocity reconstruction noise Nvv (right) as a function of CMB noise for baseline 2. Bottom:

sensitivity σfNL
(left) and velocity reconstruction noise Nvv (right) as a function of CMB beam for baseline 2. For the fNL measurement

the CMB noise parameters are less critical than the galaxy density, as long as they suffice to get a velocity reconstruction from the CMB,
in which case the velocity reconstruction becomes quickly superior to the shot noise limited galaxy mode measurement.

TABLE II. Redshift binning and survey parameters for the
LSST forecast.

Bin zmin zmax Halo bias bh Galaxy density ng Volume V

1 0 0.4 1.05 0.05 Mpc−3 5.2 Gpc3

2 0.4 1.0 1.37 0.02 Mpc−3 43.6 Gpc3

3 1.0 1.6 1.79 0.006 Mpc−3 75.9 Gpc3

4 1.6 2.2 2.22 0.0015 Mpc−3 89.3 Gpc3

5 2.2 3.0 2.74 0.0003 Mpc−3 119.9 Gpc3
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The Fisher matrix is assumed to be a sum of independent
bins of form

Ftot ¼
X
i

FΔzi ð38Þ

where FΔzi is the Fisher matrix in each redshift bin and
each redshift bin is assumed to have an independent bias
bih and velocity normalization biv to take into account their
unknown redshift dependence. One may ask if the approxi-
mation of independent redshift bins is sufficient, as the largest
scales contribute significantly to the signal as illustrated in
Fig. 3. This is indeed the case. Schematically theFishermatrix
is the product of the volume and the k-integral, where the
volume also limits kmin. The scalingof thevolume isV ∝ k−3min
and outruns the scaling ∼k−1min (see Fig. 3) of the k-integral in
the Fisher matrix on large scales. For this reason, splitting
the cosmological volume in a few large independent redshift
bins, as we do here, is a reasonable approximation for the
total signal-to-noise ratio that can be achieved.
With this approximation we find the results shown in

Fig. 6. For galaxies, we find that the largest redshift gives the
largest signal, which is due to the fact that both the biases
and the volumes (for our sampling) grow with z, while
the falling number densities are not important because we
are in the sample variance limited regime. In the case of
galaxiesþ kSZ, there is a competition between the growing
biases and volumes and the falling number densities, which
are important for sample variance cancellation here. For the
total significance of all five bins together we find that for
galaxiesþ kSZ σfNL

¼ 0.45, an improvement of a factor of
3.0 with respect to galaxies alone. This results in a potential
two sigma exclusion of the multifield limit.

C. Mass binning (multitracer forecast)

As explained above, one can improve fNL measurements
by mass binning galaxies (if accurate masses are available)

and thus obtain sample variance cancellation from galaxies
alone. Here we forecast combined constraints when using
sample variance cancellation both from mass binning and
from kSZ. Here we assume abundance matching (one
galaxy in each halo) also for small-scale power spectra,
to avoid mass binning the HOD. This should not change the
results qualitatively.
Our fNL forecast results are shown in Fig. 7, where on

the x axis from the right to the left we continuously add
lower mass bins. The mass binning was chosen tight
enough so that further binning would not lead to better
constraints. For galaxies without kSZ we recover the
multitracer forecast results of [28]. In particular the sample
variance plateau is visible aroundMhalo

min ¼ 1013 M⊙, where
we are limited by cosmic variance but the number densities
are not yet large enough for effective sample variance
cancellation. For mass cuts in this range, adding kSZ
information provides about a factor of 2 improvement in
sensitivity. Interestingly, around Mhalo

min ¼ 1011 M⊙ the kSZ
method provides almost no extra information. This is
exactly the halo mass where the halo bias is 1. The reason
for the convergence of the two curves around b ¼ 1 can be
understood as follows. The kSZ velocity field provides a
very low noise measurement of each mode at b ¼ 1 for
sample variance cancellation. The fNL information comes
from “comparing” biased galaxy modes with this b ¼ 1
reference mode. Galaxy modes that contribute significantly
have a bias substantially higher than 1, with a much larger
shot noise than the reference mode. Getting the b ¼ 1
reference mode from either galaxies or kSZ does not
change the signal to noise by much as it is dominated
by the higher shot noise of the biased mode [compare the
crucial correlation coefficient in Eq. (28)]. Another inter-
esting behavior of the mass binned plot is that for halo
masses smaller than Mhalo

min ¼ 1011 M⊙, the kSZ velocity
field starts to add information again and scales more
favorably than the galaxies alone with respect to Mhalo

min .

FIG. 6. Constraints σfNL
(left) and improvement factor (right) as a function of redshift bin (per bin, not cumulative). The total

combined sensitivity for kSZþ galaxies is σfNL
¼ 0.45, an improvement by a factor of 3.00 with respect to the galaxies alone with

σfNL
¼ 1.35. The plot includes LSST gold sample galaxy density, biases and photo-z’s, and CMB-S4 noise levels.
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The reason is again that the kSZ provides an almost noise
free measurement of the mode at b ¼ 1, with which the
b < 1 galaxy modes can be compared for sample variance
cancellation. Unfortunately this regime will be difficult to
exploit in practice, as such halo masses are well below the
power of upcoming experiments.

VI. CONCLUSIONS

Kinetic Sunyaev Zel’dovich tomography with its
reconstruction of large-scale velocities [18,22] is a power-
ful new probe for cosmology, that will be accessible with
the next generation of CMB and large-scale structure
experiments. In particular, cross-correlating the velocity
field with a galaxy survey leads to sample variance
cancellation in the measurement of the galaxy bias and
other quantities. In this paper we have worked out in detail
how this method can be used to improve constraints on
fNL. An application of the same method to constrain
additional sources of scale dependence in the galaxy bias
and growth rate from massive neutrinos, dark energy
perturbations or modified gravity is left for future work.
The statistical power of our method arises from the low

noise of the velocity reconstruction and thus the high
correlation coefficient r that can exceed 99% for a dense
survey like LSST. For LSST and CMB-S4 combined we
find that one can reach σfNL

∼ 0.5, a potential two sigma
exclusion of the multifield bound, and an improvement
factor of about a factor of 3 with respect to the galaxy
survey alone (assuming no internal sample variance can-
cellation of galaxies). This forecast includes marginaliza-
tion over all relevant parameters and realistic photo-z
errors, but neglects catastrophic redshift errors. If one
can mass bin galaxies, the improvement factor strongly
depends on the biases and densities of the mass binned
galaxies, but a simplified forecast using halos shows that a

factor of 2 improvement is still realistic in a relevant range
of halo masses. Our method is important, as we obtain
significant sensitivity improvements on the fNL parameter,
which come at no additional experimental costs, with
respect to constraints from the CMB and galaxy surveys
by themselves. Constraining local non-Gaussianities below
the multifield inflation threshold is one of the key science
motivations for upcoming large-scale galaxy surveys, and
kSZ tomography helps significantly to achieve this goal.
In this paper we have used a simplified 3-dimensional

box geometry, which was ideal to illustrate the power and
properties of the method without evaluating complicated
geometric projection integrals. A fully realistic treatment
requires spherical coordinates and will appear in [34], in a
combined analysis also including CMB lensing for addi-
tional sample variance cancellation from transverse modes
as in [5]. We will also investigate the contribution of the
primary CMB and ISW effects on the “effective velocity”
discussed in [16]. Another interesting direction would be
to include marginalization over parameters of the electron
profile entering in Pge, although we do not expect the fNL
forecast to depend on this significantly. Furthermore, a
straightforward extension of this work can provide con-
straints on higher-order non-Gaussianities such as the gNL
model [35]. Finally the simple quadratic estimator for kSZ
velocity reconstruction may suffer from shortcomings due to
the highly nonlinear matter field at small scales in a similar
way as the quadratic lensing potential estimator from the
CMB, which warrants further investigation. We believe that
kSZ tomography will be an important component to push
fNL constraints below the theoretical target of fNL ≃ 1.
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APPENDIX: HALO MODEL POWER SPECTRA

In this Appendix we collect the mass binned halo model
equations used in our forecast. The halo mass function
and HOD which we use are described in Appendix B
of [22]. The mass binned halo power spectra for mass bins
i and j are

Phh;ijðk; zÞ ¼ δijP1h
hh;iðk; zÞ þ P2h

hh;ijðk; zÞ; ðA1Þ

P1h
hh;iðk; zÞ ¼

1

nh;i
; ðA2Þ

P2h
hh;ijðk; zÞ ¼ bh;iðzÞbh;jðzÞPlinðk; zÞ; ðA3Þ

where the 1-halo term only arises for the diagonal case
i ¼ j (all mass bins are defined nonoverlapping). Here we
have defined the mean halo bias in the bin

bh;iðzÞ ¼
1

nh;i

Z
mi;max

mi;min

dmnðm; zÞbhðm; zÞ ðA4Þ

and the mass binned halo number density

nh;iðzÞ ¼
Z

mi;max

mi;min

dmnðm; zÞ: ðA5Þ

The mass binned power spectra for galaxies are

Pgg;ijðk; zÞ ¼ δijP1h
gg;iðk; zÞ þ P2h

gg;ijðk; zÞ þ
δij

ng;iðzÞ
; ðA6Þ

P1h
gg;iðk; zÞ ¼

Z
mi;max

mi;min

dm
nðm; zÞ
n2g;i

½2hNcðmÞNsðmÞijusðkjm; zÞj þ hNsðmÞðNsðmÞ − 1Þijusðkjm; zÞj2�; ðA7Þ

P2h
gg;ijðk; zÞ ¼ Plinðk; zÞ

�Z
mi;max

mi;min

dmnðm; zÞbhðm; zÞ hNcðmÞi þ hNsðmÞiusðkjm; zÞ
ng;i

�
ðA8Þ

×

�Z
mj;max

mj;min

dmnðm; zÞbhðm; zÞ hNcðmÞi þ hNsðmÞiusðkjm; zÞ
ng;j

�
; ðA9Þ

with galaxy density

ng;iðzÞ ¼
Z

mi;max

mi;min

dmnðm; zÞðhNcðmÞi þ hNsðmÞiÞ ðA10Þ

and galaxy bias

bg;iðzÞ ¼
1

ng;i

Z
mi;max

mi;min

dmnðm; zÞbhðm; zÞðhNcðmÞi þ hNsðmÞiÞ: ðA11Þ

For our fiducial model, we assume that the normalized fourier transform of the satellite galaxy profile usðkjm; zÞ is Navarro-
Frenk-White, tracing the dark matter. We also need the mass binned cross power of halos and galaxies with electrons to
calculate Nvv. For halos we obtain

Phe;iðk; zÞ ¼ P1h
he;iðk; zÞ þ P2h

he;iðk; zÞ; ðA12Þ

P1h
he;iðk; zÞ ¼

Z
mi;max

mi;min

dmnðm; zÞ
�
m
ρm

�
ueðkjm; zÞ 1

nh;i
; ðA13Þ
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P2h
he;iðk; zÞ ¼ PlinðkÞbh;iðzÞ

�Z
∞

−∞
dmnðm; zÞ

�
m
ρm

�
bhðm; zÞueðkjm; zÞ

�
: ðA14Þ

For the galaxy-electron cross power we get

Pge;iðk; zÞ ¼ P1h
ge;iðk; zÞ þ P2h

ge;iðk; zÞ; ðA15Þ

P1h
ge;iðk; zÞ ¼

Z
mi;max

mi;min

dmnðm; zÞ
�
m
ρm

�
ueðkjm; zÞ hNcðmÞi þ hNsðmÞiusðkjm; zÞ

ng;i
; ðA16Þ

P2h
ge;iðk; zÞ ¼ PlinðkÞ

�Z
mi;max

mi;min

dmnðm; zÞbhðm; zÞ hNcðmÞi þ hNsðmÞiusðkjm; zÞ
ng;i

�

×

�Z
∞

−∞
dmnðm; zÞ

�
m
ρm

�
bhðm; zÞueðkjm; zÞ

�
: ðA17Þ

The normalized fourier transform of the electron distribution in halos ueðkjm; zÞ is given by the “AGN” model of Ref. [22].

[1] M. Alvarez et al., arXiv:1412.4671.
[2] P. A. R. Ade et al. (Planck Collaboration), Astron. As-

trophys. 594, A17 (2016).
[3] N. Dalal, O. Dore, D. Huterer, and A. Shirokov, Phys. Rev.

D 77, 123514 (2008).
[4] U. Seljak, Phys. Rev. Lett. 102, 021302 (2009).
[5] M. Schmittfull and U. Seljak, Phys. Rev. D 97, 123540

(2018).
[6] S. Ho, S. Dedeo, and D. Spergel, arXiv:0903.2845.
[7] J. Shao, P. Zhang, W. Lin, Y. Jing, and J. Pan, Mon. Not. R.

Astron. Soc. 413, 628 (2011).
[8] P. Zhang and A. Stebbins, Phys. Rev. Lett. 107, 041301

(2011).
[9] P. Zhang and U.-L. Pen, Astrophys. J. 549, 18 (2001).

[10] D. Munshi, I. T. Iliev, K. L. Dixon, and P. Coles, Mon. Not.
R. Astron. Soc. 463, 2425 (2016).

[11] E. Schaan, S. Ferraro, M. Vargas-Magaña, K. M. Smith, S.
Ho, S. Aiola, N. Battaglia, J. R. Bond, F. De Bernardis, E.
Calabrese et al., Phys. Rev. D 93, 082002 (2016).

[12] S. Ferraro, J. C. Hill, N. Battaglia, J. Liu, and D. N. Spergel,
Phys. Rev. D 94, 123526 (2016).

[13] J. C. Hill, S. Ferraro, N. Battaglia, J. Liu, and D. N. Spergel,
Phys. Rev. Lett. 117, 051301 (2016).

[14] P. Zhang, Mon. Not. R. Astron. Soc. 407, L36 (2010).
[15] P. Zhang and M. C. Johnson, J. Cosmol. Astropart. Phys. 06

(2015) 046.
[16] A. Terrana, M.-J. Harris, and M. C. Johnson, J. Cosmol.

Astropart. Phys. 02 (2017) 040.
[17] R. A. Sunyaev and Y. B. Zeldovich, Mon. Not. R. Astron.

Soc. 190, 413 (1980).
[18] A.-S. Deutsch, E. Dimastrogiovanni, M. C. Johnson, M.

Munchmeyer, and A. Terrana, Phys. Rev. D 98, 123501
(2018).

[19] A. Aghamousa et al., arXiv:1611.00036.

[20] P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, J. R. P.
Angel, L. Armus, D. Arnett, S. J. Asztalos, T. S. Axelrod
et al. (LSST Science Collaboration), Science (LSST
Corporation, Tucson, AZ, 2009), p. 596; arXiv:0912.0201.

[21] K. N. Abazajian, P. Adshead, Z. Ahmed, S. W. Allen, D.
Alonso, K. S. Arnold, C. Baccigalupi, J. G. Bartlett, N.
Battaglia, B. A. Benson et al., arXiv:1610.02743.

[22] K. M. Smith, M. S. Madhavacheril, M. Mnchmeyer, S.
Ferraro, U. Giri, and M. C. Johnson, arXiv:1810.13423.

[23] N. Hamaus, U. Seljak, and V. Desjacques, Phys. Rev. D 84,
083509 (2011).

[24] A. D. Linde and V. F. Mukhanov, Phys. Rev. D 56, R535
(1997).

[25] K. Enqvist and M. S. Sloth, Nucl. Phys. B626, 395
(2002).

[26] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[27] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001);

539, 303(E) (2002).
[28] S. Ferraro and K.M. Smith, Phys. Rev. D 91, 043506

(2015).
[29] A. Leauthaud, J. Tinker, K. Bundy, P. S. Behroozi, R.

Massey, J. Rhodes, M. R. George, J.-P. Kneib, A. Benson,
R. H. Wechsler et al., Astrophys. J. 744, 159 (2012).

[30] A. Leauthaud, J. Tinker, P. S. Behroozi, M. T. Busha, and R.
Wechsler, Astrophys. J. 738, 45 (2011).

[31] Simons Observatory Collaboration, J. Cosmol. Astropart.
Phys. 02 (2019) 056.

[32] P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, J. R. P.
Angel, L. Armus, D. Arnett, S. J. Asztalos, T. S. Axelrod
et al. (LSST Science Collaboration), arXiv:0912.0201.

[33] K. Abazajian et al., arXiv:1907.04473.
[34] I. Holst et al. (to be published).
[35] K. M. Smith, S. Ferraro, and M. LoVerde, J. Cosmol.

Astropart. Phys. 03 (2012) 032.

CONSTRAINING LOCAL NON-GAUSSIANITIES WITH … PHYS. REV. D 100, 083508 (2019)

083508-13

https://arXiv.org/abs/1412.4671
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevLett.102.021302
https://doi.org/10.1103/PhysRevD.97.123540
https://doi.org/10.1103/PhysRevD.97.123540
https://arXiv.org/abs/0903.2845
https://doi.org/10.1111/j.1365-2966.2011.18166.x
https://doi.org/10.1111/j.1365-2966.2011.18166.x
https://doi.org/10.1103/PhysRevLett.107.041301
https://doi.org/10.1103/PhysRevLett.107.041301
https://doi.org/10.1086/319067
https://doi.org/10.1093/mnras/stw2067
https://doi.org/10.1093/mnras/stw2067
https://doi.org/10.1103/PhysRevD.93.082002
https://doi.org/10.1103/PhysRevD.94.123526
https://doi.org/10.1103/PhysRevLett.117.051301
https://doi.org/10.1111/j.1745-3933.2010.00899.x
https://doi.org/10.1088/1475-7516/2015/06/046
https://doi.org/10.1088/1475-7516/2015/06/046
https://doi.org/10.1088/1475-7516/2017/02/040
https://doi.org/10.1088/1475-7516/2017/02/040
https://doi.org/10.1093/mnras/190.3.413
https://doi.org/10.1093/mnras/190.3.413
https://doi.org/10.1103/PhysRevD.98.123501
https://doi.org/10.1103/PhysRevD.98.123501
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/1610.02743
https://arXiv.org/abs/1810.13423
https://doi.org/10.1103/PhysRevD.84.083509
https://doi.org/10.1103/PhysRevD.84.083509
https://doi.org/10.1103/PhysRevD.56.R535
https://doi.org/10.1103/PhysRevD.56.R535
https://doi.org/10.1016/S0550-3213(02)00043-3
https://doi.org/10.1016/S0550-3213(02)00043-3
https://doi.org/10.1016/S0370-2693(01)01366-1
https://doi.org/10.1016/S0370-2693(01)01295-3
https://doi.org/10.1016/S0370-2693(02)02070-1
https://doi.org/10.1103/PhysRevD.91.043506
https://doi.org/10.1103/PhysRevD.91.043506
https://doi.org/10.1088/0004-637X/744/2/159
https://doi.org/10.1088/0004-637X/738/1/45
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1088/1475-7516/2019/02/056
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/1907.04473
https://doi.org/10.1088/1475-7516/2012/03/032
https://doi.org/10.1088/1475-7516/2012/03/032

