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Inserting a varying Lambda in Einstein’s field equations can be made consistent with the Bianchi
identities by allowing for torsion, without the need to add scalar field degrees of freedom. In the minimal
such theory, Lambda is totally free and undetermined by the field equations in the absence of matter.
Inclusion of matter ties Lambda algebraically to it, at least when homogeneity and isotropy are assumed,
i.e., when there is no Weyl curvature. We show that Lambda is proportional to the matter density, with a
proportionality constant depending on the equation of state. Unfortunately, the proportionality constant
becomes infinite for pure radiation, ruling out the minimal theory prima facie despite of its novel internal
consistency. It is possible to generalize the theory still without the addition of kinetic terms, leading to a
new algebraically enforced proportionality between Lambda and the matter density. Lambda and radiation
may now coexist in a form consistent with big bang nucleosynthesis, though this places strict constraints on
the single free parameter of the theory, θ. In the matter epoch, Lambda behaves just like a dark matter
component. Its density is proportional to the baryonic and/or dark matter, and its presence and gravitational
effects would need to be included in accounting for the necessary dark matter in our Universe. This is a
companion paper to Alexander et al. [Phys. Rev. D 100, 083506 (2019)] where the underlying gravitational
theory is developed in detail.
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I. INTRODUCTION

Allowing for variability of the supposed “constants” of
Nature is not without its pitfalls. Having assumed their
constancy at a foundational level, the formalism often
molds itself to these parameters in ways that lead to
contradictions should we try to promote them to dynamical
variables. An example is the cosmological “constant,”
which first appeared as a new term in Einstein’s equations
motivated by the wish for a static Universe:

Gμν þ Λgμν ¼ κτμν: ð1Þ
The Bianchi identities (∇μGμ

ν ¼ 0) and metricity condition
(∇αgμν ¼ 0) imply that in vacuum Lambda must be a
constant (and more generally so, if energy–momentum
conservation, ∇μτ

μ
ν ¼ 0, is required).

In a companion paper [1] we noted that a variable
Lambda may be elegantly accommodated by Einstein’s
equations should torsion be present. This is most simply
implemented in the first-order formalism, either of the
Palatini [2] or Plebański persuasions [3,4]. We first illus-
trate the construction of this theory with the assumptions of

no matter and vanishing Weyl tensor. Then the Einstein
equations reduce to the self-dual (SD) condition1:

Rab ¼ ΛðxÞ
3

ea ∧ eb; ð2Þ

where ea are the tetrad fields and Rab is the curvature
2-form of the SOð3; 1Þ connection 1-formωab. The Bianchi
identities now take the form DRab ¼ 0, where D is the
covariant derivative with respect to ωab. If there is no
torsion, defined by Ta ≡Dea, then the Bianchi identities in
this context imply dΛ ¼ 0, in agreement with the argument
above. In contrast, torsion liberates Lambda from forced
constancy in the face of Bianchi identities. Specifically, in
the context of this illustration (no Weyl, no matter), we
would then need

Ta ¼ −
1

2Λ
dΛ ∧ ea: ð3Þ

1This is best seen in the Plebański formalism [4], where the
Einstein equations take the form of the SD condition, plus terms
representing the Weyl curvature and the matter content.
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By construction, Lambda would then be left totally unde-
fined in the absence of matter (or Weyl curvature), and
should be determined by other means. This is not necessarily
a drawback, in particular if we have in hand a quantum
theory of Lambda predicting its time evolution on purely
quantum grounds, and wish to evaluate its implications on
classical degrees of freedom via the Einstein equations.
An action formulation of a theory satisfying these

requirements was presented in Ref. [1], where it was found
that a Gauss–Bonnet (GB) term multiplied by a very
specific function of Lambda (and thus no longer a topo-
logical term) provided just the required torsion, Eq. (3), in
the absence of Weyl and matter. We can then use this theory
to find that in more general situations Lambda, rather than
being totally free and unspecified, is algebraically related to
the matter energy–momentum and the Weyl curvature. The
torsion is forced by the theory to take whatever values
render the consequent variations in Lambda consistent with
the Bianchi identities (and a form of matter energy-
momentum conservation). In general its value is different
from Eq. (3).
In this paper we examine in detail this theory in the

presence of matter, assuming spatial homogeneity and
isotropy. We thus preclude a nonvanishing Weyl tensor,
an issue that should be borne in mind when extrapolating
our conclusions to more general settings. Even with
vanishing Weyl curvature we should be aware that the
SD condition Eq. (2) has to be abandoned in the presence of
matter, because it is inconsistent with the Einstein equa-
tions (we revisit the motivating setup of no-matter and no-
Weyl in Sec. IV). We find that whereas without matter
Lambda is totally undetermined, in its presence Lambda
becomes tied to the matter, which evolves independently of
Lambda, but subjects Lambda to an algebraic constraint
involving both the matter energy density and pressure. If
there is no guiding matter, Lambda is completely unde-
termined, and can be specified arbitrarily. Thus, in this
theory Lambda is similar to the cuscuton field [5], which
“preys” on matter dynamics, but lacks a dynamics of its
own. Unfortunately we find that close to a radiation-
dominated epoch, although Lambda would redshift like
radiation, it would strongly dominate radiation, leading to a
cold Universe. At face value, the theory is therefore ruled
out. We examine possible loopholes to this conclusion,
none very promising.
We can relax the condition on the function multiplying

the GB term, and leading to torsion given by Eq. (3) in the
absence of Weyl and matter, since this argument is merely
motivational. In this paper we allow for this in Sec. VI by
multiplying the special function of the minimal model by a
constant factor θ. Then, entirely new behavior is found for
our Friedmann-Robertson-Walker (FRW) reduction.
Solutions without matter force Lambda to vanish, instead
of allowing it total freedom. Lambda is still tied to matter
(should there be matter), but now it cannot exist without

matter. In the presence of matter its algebraic dependence
on matter density and pressure is different, and dependent
on θ, allowing for radiation to coexist with Lambda (with
ΩΛ fixed). Big bang nucleosynthesis places strict con-
straints upon θ, derived here in what should be seen as a
preliminary calculation.
In Sec. VII we discuss further the implications of our

findings.

II. THE BASIC THEORY

Let us consider the gravity theory introduced in Ref. [1],
with matter added on to it. For simplicity we assume that
the matter action depends only on the matter fields
(generically denoted by Φ) and the frame fields. We defer
to future work the study of matter forms coupled directly to
the connection (e.g., spinorial matter [6,7]). Hence here
matter does not directly generate torsion. However, as we
shall see, it still does so indirectly.
Then, the total action is

S ¼ 1

2κ
Sgravðe;ω;ΛÞ þ SMðΦ; eÞ; ð4Þ

where κ ¼ 8πG and

Sgrav ¼
Z
M

ϵabcd

�
ea ∧ eb ∧ RcdðωÞ−Λ

6
ea ∧ eb ∧ ec ∧ ed

−
3

2Λ
Rab ∧ Rcd

�
ð5Þ

in which ea, ωab, Λ, and Φ are all functions of xμ. Varying
with respect to ωab, ea, and Λ generates the equations:

Sab ≡ T ½a ∧ eb� ¼ −
3

2Λ2
dΛ ∧ Rab; ð6Þ

ϵabcd

�
eb ∧ Rcd −

1

3
Λeb ∧ ec ∧ ed

�
¼ −2κτa; ð7Þ

ϵabcd

�
Rab ∧ Rcd −

1

9
Λ2ea ∧ eb ∧ ec ∧ ed

�
¼ 0; ð8Þ

where

τa ¼
1

2

δSM

δea
ð9Þ

is the stress-energy 3-form. Note that from the point of view
of the Einstein’s equations, Eq. (7), the Lambda term may
be seen as a matter component with

τΛa ¼ −
Λ
6κ

ϵabcdeb ∧ ec ∧ ed: ð10Þ

As explained in the Introduction and in Ref. [1], if
τa ¼ 0 and the Weyl tensor is zero, these equations are
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solved by the self-dual condition Eq. (2). Inspection of
Eq. (7) shows that the SD condition always solves the
Einstein equations in the absence of matter (although these
are not the most general solutions). Then, Lambda is left
totally undefined, since the Lambda equation (8) produces
the tautology Λ2 ¼ Λ2. For any (arbitrary) choice of Λ,
Eq. (6) forces the torsion to be Eq. (3), as required by the
Bianchi identities applied to the SD condition. We prove
below that for a FRW reduction without matter the SD
solutions are indeed the most general ones.
The SD condition is no longer a solution to these

equations should there be matter and/or Weyl curvature.
Specifically, if τa ≠ 0, then the Einstein Eqs. (7) are no
longer solved by the SD condition. We will find the
solutions below, assuming FRW symmetry.
Notice that under torsion the stress-energy tensor does

not need to be conserved. Applying D to the Einstein’s
equation (7), we find that neither the right- or left-hand side
have to be zero, with

Dτa ¼ −
1

2κ
ϵabcd

�
Tb ∧ Rcd − ΛTb ∧ ec ∧ ed

−
dΛ
3

∧ eb ∧ ec ∧ ed
�
: ð11Þ

This is an identity between two 4-forms, so it cannot be
contracted with ea.
However, the following turns out to be true [2]. Let us

break the connection into a torsion-free part, ω̃ab related to
the Christoffel connection of ea, and a term encoding the
torsion:

ωab ¼ ω̃abðeÞ þ Kab: ð12Þ

Kab is called the contorsion and is related to the torsion by

Ta ≡Dea ¼ Ka
b ∧ eb: ð13Þ

Then, defining D̃ from ω̃, under some circumstances [2] we
have that

D̃τa ¼ 0; ð14Þ

where τa are any of the matter contents derived from SM.
This can be proved using Noether’s theorem (in combina-
tion with the Lie derivative) directly from SM, under certain
assumptions (such as that the stress-energy tensor derived
from τa is symmetric; see below). In other words, matter is
covariantly conserved with regards to the torsion-free
connection.
This statement does not apply to Lambda reinterpreted as

a matter field, as in Eq. (10) as we shall see below (and can
be seen from the derivation directly by noting that the
Lambda term, should Lambda be variable, is not invariant
under the relevant Lie derivatives). Indeed the apparent

violation of energy conservation due to torsion implied by
Eq. (11) is there just to cover up for the apparent violations
of energy conservation implied by a varying Lambda.

III. A FRW REDUCTION

We now assume homogeneity and isotropy. For sim-
plicity we also assume a spatially flat Universe, but it would
be interesting to introduce spatial curvature and investigate
the implications for the flatness problem.

A. The geometry

The FRW ansatz (resulting from homogeneity, parity
invariance, and isotropy) is equivalent to the frame fields:

e0 ¼ dt; ei ¼ adxi; ð15Þ

where aðtÞ is the expansion factor, t is proper cosmological
time and xi are comoving coordinates. A general ansatz for
the torsion resulting from the symmetries is2

T0 ¼ 0; ð16Þ

Ti ¼ −TðtÞe0 ∧ ei: ð17Þ

Then, Ta ≡Dea ¼ dea þ ωa
b ∧ eb implies:

ωi
0 ¼ gðtÞei ¼

�
_a
a
þ T

�
ei; ð18Þ

ωi
j ¼ 0; ð19Þ

and we see that the Hubble parameter in these theories is
replaced by

g ¼ _a
a
þ T: ð20Þ

Wewill see in Sec.V that typically g is negative for expanding
universe solutions. Therefore,Rab ≡ dωab þ ωa

c ∧ ωcb has
components:

R0i ¼ 1

a
ðagðtÞÞ:e0 ∧ ei ¼ 1

a
ð _aþ TaÞ:e0 ∧ ei; ð21Þ

Rij ¼ g2ðtÞei ∧ ej ¼
�
_a
a
þ T

�
2

ei ∧ ej; ð22Þ

wherewe can recognize the counterparts to the left-hand side
of the Raychaudhuri and Friedmann equations. It is easy to
check directly that DR ¼ 0 for any function TðtÞ, meaning
Bianchi’s identities are satisfied.

2If we allow odd-parity configurations of torsion there is an
additional term in the ansatz Ti ¼ WðtÞϵijkej ∧ ek. The phe-
nomenology of this will be developed elsewhere [8].
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B. The matter content

In general, the stress-energy 3-forms can be related to the
tetrad components of the stress-energy tensor, τab, via

τa ¼
1

6
τa

bϵbcdfec ∧ ed ∧ ef: ð23Þ

Note that the stress–energy tensor τab need not be sym-
metric if there is torsion [2]. However, our symmetries limit
the scope of the novelties allowed. As is well known only a
perfect fluid is allowed under homogeneity and isotropy,
with

τ0 ¼ −
1

6
ρðtÞϵijkei ∧ ej ∧ ek; ð24Þ

τi ¼
1

6
pðtÞϵijke0 ∧ ej ∧ ek: ð25Þ

Hence, τab must be symmetric (and indeed diagonal),
satisfying the conditions leading to Eq. (14). As one can
see, the cosmological constant reinterpreted as a matter
content [cf. Eq. (10)] leads to ρ ¼ −p ¼ Λ=κ. Thus, its
variation would naively seem to imply violations of energy
conservation. This is where torsion comes in, as we shall
see below.

C. The field equations

Inserting these expressions into the field equations
produces

T ¼ 3 _Λ
2Λ2

g2; ð26Þ

g2 ¼
�
_a
a
þ T

�
2

¼ Λþ κρ

3
; ð27Þ

g2 þ 2
ðagÞ:
a

¼ −κpþ Λ; ð28Þ

g2
1

a
ðagÞ: ¼ Λ2

9
; ð29Þ

for Eqs. (6) and (7) with index a ¼ 0 and a ¼ i, and
Eq. (8), respectively.
These can be rearranged as

T ¼
_Λ
2Λ

�
1þ κρ

Λ

�
; ð30Þ

g2 ¼
�
_a
a
þ

_Λ
2Λ

�
1þ κρ

Λ

��2

¼ Λþ κρ

3
; ð31Þ

ðagÞ:
a

¼ 1

a

�
_aþ

_Λ
2Λ

a

�
1þ κρ

Λ

��:

¼Λ
3
−
κ

6
ðρþ3pÞ; ð32Þ

ðΛþ κρÞ
�
Λ −

κ

2
ðρþ 3pÞ

�
¼ Λ2: ð33Þ

Indeed by combining Eqs. (26) and (27) we can obtain an
explicit expression for the torsion, as in Eq. (30), and this
inserted back into Eq. (27) produces a version of the
Friedman equation. Also, the Friedman equation (27) can
be combined with Eq. (28) to produce our version of the
Raychaudhuri equation, Eq. (32). Finally the Friedman and
Raychaudhuri equations can be inserted into Eq. (29) to
write the Lambda equation as an algebraic constraint,
Eq. (33).
These are the central equations of this theory.

D. The conservation equation

Finally, in lieu of the Raychaudhuri equation it may be
useful to use the conservation equation for matter. In view
of the comments leading to Eq. (14) we know that it must
be the case that

_ρþ 3
_a
a
ðρþ pÞ ¼ 0: ð34Þ

This is a really interesting result. As we see, matter is
covariantly conserved with respect to the torsion-free
connection. The torsion is present only to account for
the nonconservation of the Lambda energy-momentum. To
see this fact, it is interesting to carry out some strictly
speaking unnecessary algebra, to see how Eq. (34) emerges
in the face of the apparent violations of energy conservation
due to torsion [cf. Eq. (11)].
Let us specialize the nonconservation equation (11) for

the FRW case, leading to

_ρþ 3
_a
a
ðρþ pÞ þ 3Tp ¼ 1

κ
ð−3g2T þ 3ΛT − _ΛÞ: ð35Þ

Alternatively we could have obtained this expression by
multiplying Eq. (27) by a2 and dotting it, and comparing
with Eq. (32), resulting in

_ρþ 3
_a
a
ðρþ pÞ ¼ −Tðρþ 3pÞ þ 2ΛT − _Λ

κ
: ð36Þ

Using Eq. (27) we can see that the two expressions are
equivalent.
Upon substituting the expression for T [i.e., Eq. (30)]

and using Eq. (33) we do get Eq. (34). Why this mysterious
cancellation? Equations (27) and (32) can be written in a
neat and suggestive way as

g2 ¼ κρ̄

3
; ð37Þ

ðagÞ:
a

¼ −
κ

6
ðρ̄þ 3p̄Þ; ð38Þ

where we have repackaged Lambda and matter as a two-
component fluid:
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ρ̄ ¼ ρþ ρΛ; ð39Þ

p̄ ¼ pþ pΛ; ð40Þ

with pΛ ¼ −ρΛ ¼ −Λ=κ. Multiplying the first (Friedmann)
equation by a2 and only then dotting, and using the second
equation, then leads to

_̄ρþ 3
_a
a
ðρ̄þ p̄Þ ¼ −Tðρ̄þ 3p̄Þ: ð41Þ

This is equivalent to

_ρþ 3
_a
a
ðρþ pÞ ¼ 0; ð42Þ

_ρΛ þ 3
_a
a
ðρΛ þ pΛÞ ¼

_Λ
κ
¼ −Tðρ̄þ 3p̄Þ; ð43Þ

since the last equation is just another way to state the right-
hand side of Eq. (36) is zero, as we have checked.
Physically it means that the apparent violations of energy
conservation implied by Eq. (41) all go towards covering
up the apparent violations of energy conservation implied
by a varying Λ in the face of Eq. (43).

IV. DE SITTER-LIKE SOLUTIONS

We now examine FRW solutions with Lambda but no
matter. We already know that the SD condition solves the
equations; here we prove that they are the most general
solutions with FRW symmetry. Setting ρ ¼ p ¼ 0 in
Eqs. (30)–(33), gives

TðtÞ ¼
_Λ
2Λ

; ð44Þ

g2 ¼
�
_a
a
þ

_Λ
2Λ

�2

¼ Λ
3
; ð45Þ

ðagÞ:
a

¼ 1

a

�
_aþ

_Λ
2Λ

a

�:

¼ Λ
3
; ð46Þ

Λ2 ¼ Λ2: ð47Þ

Considering Eqs. (21) and (22), we see that Eqs. (45) and
(46) are nothing but the SD condition Eq. (2), which
therefore is the most general FRW solution without matter.
Concomitantly, Eq. (44) is just an expression of Eq. (3) for
FRW, while Eq. (47) is the tautology already highlighted
after Eq. (2). Due to this tautology Λ is left undetermined.
It is easy to see that dotting Eq. (45) gives Eq. (46). This

might provide a simple solution to the tension between
Friedman and Raychaudhuri equations often found in
causal set arguments for a randomly evolving Lambda.

If Λ is a constant this reduces to the usual equations with
zero torsion and constant Lambda.
The general solution of the theory is therefore an

arbitrarily chosen ΛðtÞ, for which the torsion is obtained
via Eq. (44). Setting b ¼ ffiffiffiffi

Λ
p

a in Eq. (45) leads to

�
_b
b

�2

¼ Λ
3
; ð48Þ

which can be integrated, leading to expansion factor:

a ¼ a0
e
R

ΛðtÞ
3
dtffiffiffiffiffiffiffiffiffi

ΛðtÞp : ð49Þ

These expressions represent generalizations of the cosmo-
logical patch of de Sitter space-time, allowing for arbitrary
time-varying Lambda. It would be interesting to obtain the
full manifold. Also, there might be SD solutions beyond
these ones, i.e., SD solutions which do not have a FRW
representation.

V. FRW SOLUTIONS WITH MATTER

Replacing Eq. (32) by Eq. (34), one obtains the follow-
ing useful complete set of equations for this theory in the
presence of matter:�

_a
a
þ T

�
2

¼ Λþ κρ

3
; ð50Þ

T ¼
_Λ
2Λ

�
1þ κρ

Λ

�
; ð51Þ

_ρþ 3
_a
a
ðρþ pÞ ¼ 0; ð52Þ

ðΛþ κρÞ
�
Λ −

κ

2
ðρþ 3pÞ

�
¼ Λ2: ð53Þ

They are composed, respectively, of the Friedman equation
including torsion, the torsion equation, the matter equation
and the Lambda equation. Examining the Lambda equation
we see that, whereasΛ is left undefined if there is no matter,
in contrast, should there be matter, Lambda is forced to
track it as an algebraic constraint. Indeed, Eq. (53) implies:

Λ ¼ κρ
1þ 3w
1 − 3w

; ð54Þ

or

ΩΛ ≡ ρΛ
ρþ ρΛ

¼ 1þ 3w
2

ð55Þ

(with ρΛ ¼ Λ=κ). We note the singular cases:
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(i) For radiation, w ¼ 1=3, we are forced by the
constraint to have ρ ¼ 0, so the only solutions are
those of Sec. IV.

(ii) For w > 1=3, Λ < 0 and jΛj > ρ, so there are no
solutions [the right-hand side of Eq. (50) must be
positive].

(iii) For w ¼ −1=3 we haveΛρ ¼ 0, so in addition to the
solutions of Sec. IV we can set Λ ¼ 0 and have
Milne (a ∝ t).

In the other cases we have solutions for which Λ ∝ ρ, with
Λ > 0 for −1=3 < w < 1=3, and Λ < 0 for w < −1=3. If w
is constant, Eqs. (54) and (53) imply

Λ ∝ ρ ∝
1

a3ð1þwÞ ; ð56Þ

or equivalently

_Λ
Λ
¼ _ρ

ρ
¼ −3ð1þ wÞ _a

a
: ð57Þ

Hence, the torsion is proportional to the Hubble parameter,
with

T ¼
_Λ
Λ

1

1þ 3w
¼ −3

1þ w
1þ 3w

_a
a
; ð58Þ

where we have used Eqs. (51) and (54) for the first identity.
The effect of torsion and Lambda upon the Friedman
equation (50) is therefore simply to renormalize the
gravitational constant. Indeed, Eq. (50) can be written as�

_a
a

�
2

¼ κ̄ρ

3
; ð59Þ

κ̄ ¼ κ

2

ð1þ 3wÞ2
1 − 3w

: ð60Þ

As usual

a ∝ t2=½3ð1þwÞ�; ð61Þ

but now the relation between the Hubble parameter and the
density feels a renormalized gravitational constant, with the
following implications.

A. Matter and radiation epochs

Specifically, for matter (w ¼ 0) we have the standard

a ∝ t2=3; ð62Þ

Λ ∝ ρ ∝ 1=a3; ð63Þ

but now torsion and Lambda work to renormalize G by a
factor of 1=2. Therefore, this has the opposite effect of

“Lambda as dark matter.” This is a bit counterintuitive,
since the constraint forces Λ ¼ κρ, so one might think that
Lambda would increase G. However the torsion in the left-
hand side of the Friedman equation acts to reduce the effect
upon the Hubble parameter.
Radiation is a singular case, as we have seen, but even if

we were to look at radiation as an w → 1=3− limit, this
would be disastrous. Although Lambda would then track
radiation, with

Λ ∝ ρ ∝ 1=a4; ð64Þ

a ∝ t1=2; ð65Þ

the point is that the proportionality constant between
Hubble and the temperature would be infinite. This would
conflict seriously with big bang nucleosynthesis (BBN). It
would have the same effect as a very large number of
relativistic degrees of freedom g⋆, or a very large G as in
Brans-Dicke theories.

B. A matter and radiation fluid

Adding the subdominant matter to the radiation does not
help to solve the situation in the radiation epoch. Let

ρ ¼ ρr þ ρm; ð66Þ

p ¼ pr ¼
1

3
ρr; ð67Þ

and examine the ρr ≫ ρm regime. Then, Eq. (53) implies

Λ ¼ κ
2ρ2r þ ρ2m þ 3ρmρr

ρm

≈ 2κρr
ρr
ρm

∝
1

a5
; ð68Þ

with Λ ≫ ρr. Hence

T ≈
_Λ
2Λ

≈ −
5

2

_a
a
; ð69Þ

from which we infer

9

4

�
_a
a

�
2

≈
Λ
3
∝

1

a5
: ð70Þ

The joint system in the “radiation” epoch therefore behaves
like a fluid with w ¼ 2=3 and has

a ∝ t2=5: ð71Þ
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C. Accelerating solutions

Our theory cannot use Lambda to generate the current
acceleration of the Universe. As a curiosity we investigate
how Lambda behaves in this theory if some other source
(quintessence [9] or an inflaton field) causes accelerated
expansion. We find that in our theory Lambda would still
“track” a matter source with w ¼ −1, thereby behaving like
a conventional Lambda in that case. The constraints derived
above translate into

Λ ¼ −
κρ

2
; ð72Þ

κ̄ ¼ κ

2
; ð73Þ

that is, Lambda would acquire the opposite sign of what is
causing the acceleration, reducing its effective Hubble
constant.

VI. MORE GENERAL THEORIES

Among the many arguments leading to the action Eq. (5)
was the motivation of allowing a varying Lambda in the
specific case of no matter and noWeyl curvature, in the face
of Bianchi identities, as explained in the Introduction. This
fixes the very specific form of the prefactor, h, of the Gauss-
Bonnet term:

h ¼ −
3

2Λ
: ð74Þ

This choice leads to the above homogeneous and isotropic
cosmology, where Lambda is totally free without matter,
but otherwise must track matter algebraically. Torsion,
rather than being given by Eq. (3), is generally of the
form Eq. (30).
We may, however, consider more general functions h,

such as

h ¼ −
3θ

2Λ
; ð75Þ

with θ a constant. This would generalize our model even
without the addition of kinetic terms (which would bring it
close to a more conventional quintessence model [9]).
Then, the Lambda equation (8) would become

ϵabcd

�
Rab ∧ Rcd −

1

6h0
ea ∧ eb ∧ ec ∧ ed

�

¼ ϵabcd

�
Rab ∧ Rcd −

Λ2

9θ
ea ∧ eb ∧ ec ∧ ed

�
¼ 0: ð76Þ

The Einstein equation (7) is unmodified, but the torsion
equation (6) now reads

Sab ≡ T ½a ∧ eb� ¼ −h0dΛ ∧ Rab

¼ −
3θ

2Λ2
dΛ ∧ Rab: ð77Þ

Following the calculations described above for the FRW
reduction we can obtain the set of equations:�

_a
a
þ T

�
2

¼ Λþ κρ

3
; ð78Þ

T ¼ θ _Λ
2Λ

�
1þ κρ

Λ

�
; ð79Þ

_ρþ 3
_a
a
ðρþ pÞ ¼ 0; ð80Þ

θðΛþ κρÞ
�
Λ −

κ

2
ðρþ 3pÞ

�
¼ Λ2: ð81Þ

As before, matter is covariantly conserved with respect to
the torsion-free connection. This can be checked directly
(with some tedious algebra) mimicking the calculation of
Sec. III D, or by appealing to the general argument
following Eq. (14) in Sec. II.
In contrast with the choice Eq. (74), there cannot be any

FRW solutions without matter and Λ ≠ 0, if θ ≠ 1. Setting
ρ ¼ p ¼ 0 in Eq. (81) we obtain:

Λ2 ¼ θΛ2; ð82Þ
so that either θ ¼ 1 and we have the situation described in
Sec. IV (Lambda is undetermined), or θ ≠ 1, in which case
the only solution is Λ ¼ 0 (i.e., Minkowski space-time).
If there is matter, on the other hand, we can start by

solving Eq. (81), with solutions:

r¼ κρ

Λ
¼ 1

2

�
1−3w
1þ3w

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−3w
1þ3w

�
2

þ 8ðθ−1Þ
θð1þ3wÞ

s �
: ð83Þ

The θ ¼ 1 results are recovered by taking the positive root
for w ≥ −1=3 and the negative one for w < −1=3. We find
that provided θ > 1, radiation (w ¼ 1=3) may now coexist
with Lambda, bypassing what seems a strong no-go
situation for the minimal model (θ ¼ 1). We can follow
through the equivalent of the calculations in Sec. V to find
that the radiation epoch proceeds in the same way as in the
standard hot big bang cosmology, but with a renormalized
gravitational constant:

κ̄ ¼ κ
1þ

ffiffiffiffiffiffi
θ

θ−1

q
h
1 − 2θ

�
1þ

ffiffiffiffiffiffi
θ−1
θ

q �i
2
: ð84Þ

We see that the effective gravitational constant is
unchanged if and only if θ takes on the special value
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9=8. In this case, each side of Eq. (78) is enhanced by a
factor 4, due to the torsion on the left-hand side (which
again dominates, flipping the sign of the expansion term)
and to the presence of Λ (which acts as dark radiation with
three times the normal radiation density) on the right-
hand side.
Any other value of θ leads to a renormalization of G

during the radiation era, which is strongly constrained
by nucleosynthesis. The usual BBN constraint [10,11] is
given by

−0.10 <
ΔG
G

< 0.13; ð85Þ

and translates into a range of width only 0.015 about the
special value of θ ¼ 9=8, i.e.,

1.11 < θ < 1.14: ð86Þ
Note that, unlike in Sec. V B, given that the radiation
solution has a nonvanishing ratio κρ=Λ, the presence of a
subdominant dust component in the radiation epoch has
negligible effect.
We stress that the renormalization of G encoded in

Eq. (84) is an algebraic relation with respect to the G
measured in a Cavendish balance experiment.3 It is not a
cumulative change to be tracked throughout the history of
the Universe (as in Brans–Dicke theories), so we do not
need to incorporate the matter and late-time accelerating
epoch renormalizations into the BBN constraint.
On the other hand observations made in the matter and

late-time acceleration epochs should take into account that
the Universe behaves as usual in these theories, but also
with a renormalized G, given by

κ̄ ¼ κ
1þ 1=r

½1 − 3θ
2
ð1þ wÞð1þ rÞ�2 ð87Þ

[with r given by Eq. (83)]. This formula generalizes
Eq. (84), and should be used to compute the renormalized
G when w ¼ 0 and w ≈ −1. Once θ is fixed (e.g., by the
BBN) there is no further leverage in the predictions for the
matter and accelerating epochs. For the matter era with
θ ¼ 9=8 the gravitational constant G is reduced by a factor
of about 4; the Λ density is 0.84 of the matter density but
the torsion increases the effective ð _a=aÞ2 on the left-hand
side of Friedmann in Eq. (78) by a factor of 7:

_g
g
¼ −2.69

_a
a
: ð88Þ

Lambda may be seen as a dark matter component, but
notice that due to the effects of torsion its gravitational

effect is different from what would have been expected
from the energy density in Lambda alone.
In Eq. (83) we picked the root that continuously goes to

the result obtained for θ ¼ 1, but this is not a watertight
argument. Both roots solve the equations and each should
be assessed for physical relevance. One might also ask
whether the system could or should switch roots when the
combined fluid content evolves across w ¼ −1=3, as is
likely to be required of a viable cosmological model. Such
investigations are beyond the scope of the present paper.

VII. CONCLUSIONS

It is undoubtedly disappointing that a theory with fewer
parameters than general relativity (as argued in Ref. [1])
should be felled at the most undemanding first obstacle.
The adage “one should never let observations get in the way
of a good idea” might be invoked here, were it not for the
nonexistence of a radiation epoch presenting such a damn-
ing verdict on any theory claiming even a remote con-
nection with reality. We have tried—and failed—to find a
way around this result. This does not mean that it does not
exist. In the absence of a solution to such a glaring
contradiction with reality we have to content ourselves
with cataloguing this theory as a “good idea on paper, that
did not fulfil its promise in the face of reality.”4 Unless, of
course, we have got it all wrong with basic big bang
cosmology.
The introduction of a new parameter, θ, places the theory

on the same footing as general relativity regarding the
number of free parameters. With this addition the theory
does not crash out at the first hurdle, but that does not mean
it will lead to a viable cosmology. If it does, that would be
by itself a remarkable result. We stress that beside θ there
are no further free parameters in the theory, unlike in
models designed to fit reality at any cost [9]. In Sec. VI we
have done some preliminary work on the constraints BBN
places upon θ. If θ is indeed a constant this fixes the
predictions made for all other observational tests we have to
satisfy.
We find that in the narrow band allowed by BBN for θ, in

the matter epoch Lambda behaves like a dark matter
component with a gravitational effect equivalent to reduc-
ing by roughly 4 times that of the baryonic and other dark
matter components. This factor is different from what
would have been inferred solely from Lambda’s energy
density because in this theory Lambda induces torsion, and
this has a gravitational effect upon expansion of its own.
The above is true at zeroth order, i.e., ignoring cosmologi-
cal perturbations, and how they feed into some of the
constraints. The calculation of all observational fits should
be redone in the context of a perturbed Universe, for
the self-consistency of our matter epoch constraints. The

3With the proviso that the counterpart to the Schwarzchild
solution in this theory does not force a further renormalization of
a truly bare G in the vicinity of the Sun.

4We remark that the steady-state Universe, whether a good idea
or not, suffers from very similar observational problems.
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presence of Lambda and its gravitational effects will have
to be included in the inventory of the necessary dark matter
in our Universe.
Obviously we would still have to explain the current

acceleration of our Universe by other means. Whatever they
might be, Lambda would play a role and interact with them,
as we have already described in Sec. V C. The hope
remains that an adaptation of our theory would not only
keep Lambda at bay throughout the life of the Universe, but
explain the late-time acceleration we appear to have
observed. In this respect one should not forget that the
classical model proposed in Ref. [1] had its roots in
considerations on the quantum nature of the cosmological
constant [12,13]. Perhaps this radical step is unavoidable
for a proper understanding of the cosmological constant
and the current acceleration of the Universe.
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