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We provide a new extension of general relativity (GR) which has the remarkable property of being more
constrained than GR plus a cosmological constant, having one less free parameter. This is implemented by
allowing the cosmological constant to have a consistent space-time variation, through coding its dynamics
in the torsion tensor. We demonstrate this mechanism by adding a “quasitopological” term to the Einstein
action, which naturally realizes a dynamical torsion with an automatic satisfaction of the Bianchi identities.
Moreover, variation of the action with respect to this dynamical Λ fixes it in terms of other variables, thus
providing a scenario with less freedom than general relativity with a cosmological constant. Once matter is
introduced, at least in the homogeneous and isotropic reduction, Λ is uniquely determined by the field
content of the model. We make an explicit construction using the Palatini formulation of GR and describe
the striking properties of this new theory. We also highlight some possible extensions to the theory.
A companion paper [S. Alexander, M. Cortês, A. R. Liddle, J. Magueijo, R. Sims, and L. Smolin, following
paper, Cosmology of minimal varying Lambda theories, Phys. Rev. D 100, 083507 (2019)] explores the
Friedmann-Robertson-Walker reduction for cosmology, and future work will study Solar System tests of
the theory.

DOI: 10.1103/PhysRevD.100.083506

I. INTRODUCTION

Given the number of unresolved problems facing the
standard model of cosmology (coincidence, graceful exit,
dark matter, etc.), researchers have constructed many
extensions of the standard model that are equipped with
new parameters or functions. With the proliferation of
such candidate parameters, we are often faced with both
observational degeneracies and an increased need to fine-
tune parameters. A challenge is to instead enhance the
standard model while decreasing the number of free
parameters. In this paper we introduce a theory of gravity
which has no free parameters apart from the gravitational
constant, and hence is more constrained than general
relativity (GR) with a cosmological constant.
The new theory of gravity we describe has remarkable

properties. Motivated by a new principle of quasitopolog-
ical dynamics, together with an approximate duality
symmetry, we add a uniquely determined term to the
gravitational action. This additional term permits the
cosmological “constant” Λ to become a variable without
violating the consistency conditions based on the Bianchi
identities, and without the need to insert a kinetic term.

Varying the action with respect to this dynamical Λ then
fixes it in terms of the other fields, while still allowing it to
vary with space-time position.
This is not what is done in general relativity. There, by

taking the covariant divergence of the Einstein equations,
one sees that the Bianchi identities force Λ to be constant.
Additionally, one cannot vary the action with respect to Λ,
as this yields only physically useless solutions where the
space-time volume

ffiffiffiffiffiffi−gp
is forced to be zero.1 Hence in GR

one is required to leave Λ as a free parameter that can be
fixed only via observation. Generating dark energy dynam-
ics within GR requires, at its simplest, the introduction of
new “quintessence” degrees of freedom (d.o.f.).
This introduces new parameters and fields, which

normally supply an abundance of additional free parame-
ters [4,5]. While the cosmological constant continues to

1By contrast, it appears one can self-consistently choose to
vary with respect to the other constant in the Einstein–Hilbert
action, the gravitational coupling strength, as recently proposed
by Lombriser [1]. This procedure also gives a scenario substan-
tially different from GR, that bears some resemblance to the
“sequestering” scenarios [2,3].
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give an excellent account of all reliable data, there is a sense
of dissatisfaction unless some attempt is made to compare
with alternatives. Unfortunately, these alternatives are
essentially all motivated solely by the desire to have some
alternative to compare with the pure cosmological constant
model. In doing so, they introduce numerous possible new
functional d.o.f., at best tenuously linked to other ideas in
fundamental physics.
Within general relativity we cannot give Λ an explicit

space-time dependence because that violates the Bianchi
identity, though phenomenological variations are still
sometimes written in by hand [6]. Quintessence scenarios
avoid this by making Λ a function of a field ϕ and giving
that field dynamics by introducing a kinetic term, unmo-
tivated by anything other than matching observations
and additionally making the equations second order. So
quintessence requires three additions: (i) a new variable, ϕ,
(ii) a kinetic term associated with it, and (iii) a free function
which is the potential for that variable. And this is the
simplest conventional route to dark energy dynamics; many
proposals, for example the Horndeski theories [7,8] of
modified gravity, offer several free functions that can only
be constrained via observations.
The contrast with our highly economical proposal could

not be sharper. The theory we introduce here is more
determined even than GR, having one less parameter asΛ is
turned into a dynamical field in a way that introduces no
additional parameters. Not only dowe reduce the amount of
freedom as compared to GR, but we do so by exploiting
ideas which originate in a literature that originally has
nothing to do with explaining cosmic acceleration. Rather,
the principles which motivate our theory come from
developments in quantum gravity. None have any direct
connection to seeking explanations of cosmic acceleration,
which is normally the sole motivation given for extending
the gravitational action and which ends up either ad hoc or
instead too general to ever be meaningfully constrained. We
hope to alert the community to the possibility of an
explanation for dynamics of Λ with a deeper theoretical
grounding than the usual proposals.
Our main focus in this article is on the simplest “vanilla”

form of this theory. As will become apparent, the theory
offers a number of routes for extensions, being one example
of a small class of theories we have constructed to realize
the principle of quasitopological dynamics. These may also
be of considerable phenomenological interest, starting out
as they do from a framework substantially differing from
the usual GR one. Some of these introduce a single new
parameter, bringing the number of parameters back up to
the two of general relativity. In the penultimate section we
survey the other theories in this class, some of which will be
the subject of papers now in progress.
We note that it is possible that the minimal theory we

describe here, while consistent, is too constrained to
describe Nature and that one of its variants, having slightly

more freedom, may be “just right.” But for now our
attention is on the most conceptually elegant scenario.
For one thing it is the starting point for the whole class.
Also it is a consistent diffeomorphism invariant 3þ 1
dimensional field theory, simpler than GR but still with
local d.o.f., and hence an object of some interest in its
own right.
This article focuses on the structural and foundational

aspects of the theory. Companion papers will develop the
cosmology of the model [9–11], explore its near cousins,
and make a detailed investigation of their viability against
Solar System and gravitational wave tests. Some of the
implications for the quantum theory have already been
discussed in Refs. [12,13].

II. MELTING THE COSMOLOGICAL
CONSTANT

The work described here resulted from the convergence of
several ideas which, when merged together, allowed for the
discovery of a natural method for giving dynamics to the
cosmological constant in a theory which is more constrained
than general relativity. We enumerate these ideas here. They
come from both cosmology and quantum gravity.
Cosmologists are interested in studying modified gravity

theories in the infrared in the hope of understanding dark
energy and, perhaps, dark matter. But most candidates
require new fields and new parameters. These reduce their
testability and explanatory power. It would therefore be
extremely interesting to know if there is a principle which
modifies gravity in a way that gives dynamics to the dark
energy, but has no new parameters or fields. We will shortly
present such a principle.
Meanwhile, quantum gravity theorists have learned that

general relativity and quantum gravity are in important
ways close to topological field theories [14–16]. There are
senses in which the low-energy limit of quantum gravity is
dominated by a topological quantum field theory (TQFT).
One of these describes the gravitational field as arising
from defects in a TQFT [17,18]. Another involves a close
connection between the dynamics of the gravitational field
and Chern–Simons theories [19–22]. The cosmological
constant Λ plays an important role in these insights [16].
For that reason de Sitter space-time and associated quantum
states are seen in a new light from the perspective of a
constrained or broken TQFT [22].
This suggests that any infrared modification of gravity

that could have cosmological implications should be
closely tied to topological field theories. We propose one
way to do that, which contemplates that a modified gravity
theory would involve the addition of a term Snew to the
action governed by the following principle:

Quasitopological principle: Introduce only new terms in
Λ that are topological when Λ is constant. Thus, Λ gets
its dynamics from disrupting a topological invariance.
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There are two classes of theories which realize this prin-
ciple, stemming from each of the two topological invariants
available in 3þ 1 dimensions which can be formed from a
connection alone. These are the even-parity Gauss–Bonnet
invariant and the odd-parity Pontryagin invariant. This paper
mainly uses the Gauss–Bonnet invariant, with discussion of
Pontryagin deferred until Sec. VII B. The basic idea is to add
a Gauss-Bonnet term multiplied by a prefactor which is a
function of Λ, which thus becomes purely topological
whenever Λ is constant. As we will see, the possible forms
of this function can be strongly restricted, and in the most
elegant version of our theory the function, both in form and
in normalization, is uniquely determined.

A. General relativity in first-order form

In order to establish both notation and the direction of
our ideas, we begin by revisiting general relativity within
the form-based first-order Palatini formalism, as described
for instance by Wald [23]. As is well known, for GR the
Palatini formalism yields the same physical theory as the
traditional metric-based second-order formalism, but this is
not necessarily true for more complex gravitational actions,
fðRÞ theories being an example where the theories are
physically distinct.
The importance of this formulation is that the action

appears in first-order form, as a function of both the
co-tetrad (frame-field) eaμ and the spin connection ωab

μ ,
which henceforth will both be expressed as one-forms, ea

and ωab. The Latin indices live in the internal Lorentzian
space-time and the Greek indices in coordinate space-time.
Because we use form notation, we ordinarily suppress
space-time indices. We now consider the Palatini action,
exploring the obstruction to having a variable cosmological
constant Λ. The action is

SGR½ea;ωab;ψ � ¼ 1

8πG

Z
M

ϵabcd

�
ea ∧ eb ∧ RcdðωÞ

−
Λ
6
ea ∧ eb ∧ ec ∧ ed

�
þ Smatter½ea;ψ �;

ð1Þ
where ψ corresponds to matter fields.2 Here Rcd is the
curvature two-form, which in this first-order formalism is
defined by

Rcd½ω� ¼ dωcd þ ηabω
ac ∧ ωbd; ð2Þ

where ηbc ≡ diagð−1; 1; 1; 1Þ is the flat metric with respect
to the frame fields. Note that Rcd has two suppressed
indices, so in total there are four indices. The antisymmetric

tensor ϵabcd in Eq. (2) contracts the indices so as to extract
the curvature scalar as in the usual Einstein-Hilbert action.
Note that the forms are already densities so there is no
volume term,

ffiffiffiffiffiffi−gp
, in the gravitational action.

Our theory can be expressed in other first-order for-
mulations, such as Plebański [14], Jacobson-Samuel-
Smolin [24,25], and the Holst action [26]. But a first-order
formulation in which the space-time connection starts off
independent of the metric is necessary, because we will
require a field equation for the connection. Different aspects
of the theory may be more accessible from the points of view
of various formulations. We use Palatini here as it is most
familiar to cosmologists, who are our main audience.
Since we are in first-order form, we begin with the

connection equations of motion. The torsion two-form Ta,
is given by the covariant curl of the frame one-form as

Ta ≡Dea; ð3Þ
where the covariant derivative is defined as

Dea ≡ dea þ ωa
c ∧ ec; ð4Þ

where d is the exterior derivative. Variation of the action
with respect to the connection then yields an equation for
the torsion:

0 ¼ δSGR

δωab
⇒ Dðea ∧ ebÞ ¼ 2T ½a ∧ eb� ¼ 0; ð5Þ

where, as usual, square brackets indicate antisymmetriza-
tion on indices.
Equation (5) is sufficient to ensure that the torsion Ta

identically vanishes; this three-form equation comprises a
total of 24 constraints (4 form indices times 6 antisymme-
trized “ab” combinations) on the 24 components of the
torsion two-form (6 form indices times 4 “a” values). The
absence of torsion in GR means that the spin connection is
the (torsion-free) Levi-Civita connection, whose coordinate
representation as Christoffel symbols ensures that the
Palatini action is physically equivalent to the second-order
formulation. The usual metric can be obtained from the
frame fields via gμν ¼ ηabeaμebν , where this time we explic-
itly displayed the form indices.
We look next at the frame-field equation of motion,

which yields the Einstein equation3

0 ¼ δSGR

δea
⇒ ϵabcdeb ∧

�
Rcd −

Λ
3
ec ∧ ed

�
¼ −16πGτa;

ð6Þ

2For simplicity we assume in this article that the matter action
depends explicitly only on the frame fields, not the connection,
though the generalization (necessary to include spinors) should
pose no new technical issues.

3In this formalism there are 16 Einstein equations, as this is a
three-form equation with one additional index, rather than the
usual 10. This is because use of frame fields adds an extra
redundancy where different frame fields can correspond to the
same metric.
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where the energy-momentum three-form, τa, is given by

τa ≡ 1

2

δSmatter

δea
: ð7Þ

It is related to the energy-momentum tensor

T̃μν ¼ δSmatter

δgμν
; ð8Þ

by

T̃μν ¼ 1

6
ϵαβγðμeνÞa τaαβγ: ð9Þ

We note that T̃μν is symmetric by definition (because gμν
is), and is a density of weight one. For ease of notation we
also defined the self-dual current

J cd ≡ Rcd −
Λ
3
ec ∧ ed; ð10Þ

so the Einstein equations can be written

ϵabcdeb ∧ J cd ¼ −16πGτa: ð11Þ

To gain some insight about how to consistently imple-
ment a dynamical cosmological constant, we allow Λ to
vary and consider the covariant curl of Eq. (6). Here, the
covariant derivative acting on the curvature two-form Rab

contains the full connection. Upon an application of the
Bianchi identities DRab ¼ 0,4 we arrive at

ϵabcd

�
eb ∧

�
dΛ
3

∧ ec ∧ ed þ 2Λ
3

Tc ∧ ed
�
þ Tb ∧ Jcd

�

þDτa ¼ 0: ð12Þ

For now, let us assume that the energy-momentum tensor is
covariantly conserved, Dτa ¼ 0, an issue we will return to
later in this paper. Since we already showed above that the
torsion vanishes in GR, thereby eliminating the second and
third terms of Eq. (12), we arrive at the final result that the
Bianchi identities imply that

dΛ ¼ 0; ð13Þ

hence recovering the known implication that GR only has
solutions when Λ is a constant.
This is the point where our work begins: we will seek

actions in which the GR equations of motion are unmodi-
fied, but despite that admit solutions in which Λðx; tÞ is

allowed to vary, while at the same time satisfying the
consistency condition in Eq. (12).
In order to start on this goal we review the properties of

self-dual vacuum solutions, as these will motivate the
construction that follows. The de Sitter space-time is the
unique solution with Λ > 0 that has the maximal number
of symmetries, or Killing vector fields, but may also be
characterized as the unique space-time with Lorentzian
signature which satisfies the self-dual condition

Rab½ω� ¼ Λ
3
ea ∧ eb; ð14Þ

meaning that the self-dual current J ab identically vanishes
for de Sitter solutions. Differentiating Eq. (10) also shows
that in vacuum (τa ¼ 0) the covariant derivative of the self-
dual current vanishes in GR even if the solution itself is not
self-dual.
Equation (14) defines self-dual solutions with nonvan-

ishing Λ. The form of the Einstein equations (6) suggess a
special role for solutions of this form, which we see
automatically satisfy the vacuum Einstein equations. An
important feature is that the self-dual condition implies that
the Weyl curvature Cabcd vanishes.
Note that we wrote Eq. (14) using the spin connection ω,

which is different from the metric-compatible torsion-free
connection.5 In GR they are the same, ω ¼ ω̃½e�, but in
what follows we will be interested in solutions with torsion,
so the distinction here is very relevant.

B. Dynamical Λ from torsion

Now we can notice something new. In order to allow for
a Bianchi identity consistent varying Λðx; tÞ we can look at
Eq. (12) and note that, if restricted to the self-dual vacuum
solutions, J cd ¼ 0, and in the presence of torsion, it is
solved if

dΛ
3

∧ ea þ 2Λ
3

Ta ¼ 0: ð15Þ

This is strongly suggesting to us to seek a torsion of the
form

Ta ¼ −
dΛ
2Λ

∧ ea; ð16Þ

which will be Bianchi abiding and at the same time allows
for a nonconstant Λ to be included in the Einstein
equations. The torsion Eq. (16) actually ensures that the
Bianchi identities (12) are automatically satisfied whatever
space-time dependence Λðx; tÞ has, provided the solution is
self-dual.

4Because our covariant derivative is with respect to the spin
connection, it encodes the effects of both curvature and torsion in
the Bianchi identities.

5Written in terms of the torsion-free connection, ω̃½e�, Eq. (14)
becomes second order, since ω̃ and e are now not independent.
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So the effect of this torsion is to generate a new infinite
set of solutions to the first-order Einstein equations, with
the inclusion of torsion in the first-order formalism,
given by

Rab½ω� ¼ Λðx; tÞ
3

ea ∧ eb;

Ta ¼ −
dΛ
2Λ

∧ ea: ð17Þ

We note that these are distinct from the usual de Sitter
solution. The torsion Ta is a tensor, so these new solutions
are not related to de Sitter space-time by diffeomorphisms
and are physically different. We also emphasize that Λðx; tÞ
remains fully unconstrained at this point, and Eqs. (17) are
satisfied by what ever form we choose for Λ.
In summary, we have found here a new class of solutions

which allow for fully space-time varying Λ and satisfy the
Bianchi Identities. However they cannot be solutions to GR
as it does nto support torsion. Now our goal is to find the
corresponding theory that does yield such solutions.

III. FINDING THE CONSISTENT
ACTION FOR DYNAMICAL Λ

The new solutions found in Eqs. (17), with varying Λ,
are not solutions of GR and are valid only in a theory for
which the torsion has the proposed form. In this section we
will derive the form of the action which yields these
solutions.
A careful inspection of the action in Eq. (2) can reveal

that, in the absence of matter, it can be made symmetric
when exchanging the quantities ea ∧ eb and Rcd if we add a
new term of the form ϵabcdRab ∧ Rcd. Then in this new
form, the action in Eq. (2) acquires a duality symmetry, and
will go back to itself under the swap operation,

Rab ↔
Λ
3
ea ∧ eb: ð18Þ

The new full gravitational action now becomes

SGRþnew ¼ 1

8πG

Z
M

ϵabcd

�
ea ∧ eb ∧ RcdðωÞ

−
Λ
6
ea ∧ eb ∧ ec ∧ ed −

3

2Λ
RabðωÞ ∧ RcdðωÞ

�
;

ð19Þ
and it is now invariant under the duality symmetry given by
Eq. (18). Note that the same symmetry also fixes the exact
form of the coefficient of the new R ∧ R term to be −3=2Λ.
By construction this leaves the self-dual condition (14)
unchanged.
Remarkably, we will show that this form of the action is

also the form which yields the torsion self-dual solutions
Eq. (17) that we are looking for.

Additionally we note that the term newly added to the
action has the recognizable form of a term well known in
the literature, the Gauss-Bonnet term,6

IGB ¼ −
Z
M

ϵabcdRab ∧ Rcd → −
Z
M

3

2Λ
ϵabcdRab ∧ Rcd:

ð20Þ

The Gauss-Bonnet term in the first expression in Eq. (20) is
a topological invariant and hence has no effect in the
equations of motion of the corresponding action. However,
in the second expression we have disrupted this term by the
inclusion of the coefficient−3=2Λ, which is required by the
duality symmetry of Eq. (18). We call the resulting term
quasitopological Gauss-Bonnet. These couplings are analo-
gous to axion couplings to topological invariants in Yang-
Mills theory [27,28].
The Gauss-Bonnet term was featured prominently in

both the gravitational and cosmological literatures. The
consequences of adding a Gauss-Bonnet term to the action,
but with constant coefficients, have been explored in
Ref. [29]. There may be also a relationship to the extended
Chern-Simons theory of Ref. [30], with the arbitrary one-
form field va taken as proportional to dΛ. There is an
enormous cosmological literature exploiting the Gauss-
Bonnet term in various guises, to which Ref. [5] provides
an entry point. Typically this involves adding a function of
it to the Einstein-Hilbert action, e.g., Ref. [31], or using a
string-inspired coupling to a scalar field, as in Ref. [32].
Actions with a function of a scalar field multiplying the
Gauss-Bonnet term are known to lie within the Horndeski
class of theories [8,33]; this is certainly not obvious at first
sight, but nor is it of direct relevance to us as Horndeski
theories are typically analyzed in the physically inequiva-
lent second-order form. For exceptions that do use the first-
order form, though not with our action, see Refs. [34,35],
the latter analyzing a teleparallel version of Horndeski
with torsion. An extremely general action, encompassing
ours as a special case, was explored in first-order form in
the different context of cosmological signature change
in Ref. [36].
Notice also that our action Eq. (20), but with constant Λ,

is reminiscent of the MacDowell-Mansouri formulation of
GR [37–40], which is based on a broken five-dimensional
Gauss-Bonnet term with a 2=3Λ prefactor. A 4þ 1 split
of the space-time then yields three terms of the same form
as our action.7 This also connects it to the quadratic

6Readers may be more familiar with the traditional tensor
representation of the Gauss-Bonnet term

IGB ¼ −
Z
M

ffiffiffiffiffiffi
−g

p ðR2 − 4RμνRμν þ RμνρσRμνρσÞ:
7We thank Latham Boyle for pointing out this connection

to us.
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Lovelock-Unique-Vacuum theories (e.g., Ref. [41]) where
again only constant Λ has previously been considered.
The Einstein equation, the equation of motion for the

frame-field ea given by Eq. (6), is unchanged by the
addition of the quasitopological term, but the connection
equation of motion in Eq. (5) is now

0 ¼ δSGRþnew

δωab
→ Sab ≡ T ½a ∧ eb� ¼ −

3

2Λ2
dΛ ∧ Rab:

ð21Þ

By the same counting argument we used for GR, Sab

encodes the same information as the torsion tensor itself.
Inverting this via a calculation lets us find the torsion
tensor:

Ta
μν ¼

3

2
ϵαβμνeσb∂αðlnΛÞRab

βσ : ð22Þ

We see that the torsion becomes a function of the
curvature two-form which will necessarily lead to a
modified Einstein equation that is nonlinear in the full
connection. Indeed Eq. (22) is a quadratic equation for the
components of Ta

μν, because the full curvature Rab
βσðωÞ is

itself a quadratic function of the components of torsion.
It is important to note that this nonlinear character of the

connection field equation, which determines the torsion
tensor, still ensures the consistency of the Einstein equa-
tion, through the vanishing of its covariant curl, Eq. (12).8

We note for future applications that when gravity is coupled
to fermions the issue of covariant conservation will be more
subtle. The fermionic energy-momentum tensor is con-
nection dependent and will carry antisymmetric compo-
nents of energy-momentum, yielding extra sources of spin
currents. These have been considered by many authors,
e.g., Refs. [43,44]. We will investigate our theory in the
context of spin-currents and fermionic matter in a forth-
coming paper.
Our system is analytically tractable if we restrict to the

self-dual sector. Under the duality operation in Eq. (18), the
connection equation in Eq. (21) can be rewritten as

Sab ¼ T ½a ∧ eb� ¼ −
dΛ
2Λ

∧ ea ∧ eb: ð23Þ

This confirms that within the self-dual sector our action
generates the desired torsion, and hence allows the sol-
utions with arbitrary space-time variation of Λðx; tÞ dis-
played in Eq. (17).

IV. THE Λ EQUATION OF MOTION

At this point we have defined a new set of vacuum
solutions, given by Eq. (17), to the modified action
Eq. (20), which allow for variation of Λ via the inclusion
of torsion while satisfying the Bianchi Identities. With
an eye towards moving beyond the self-dual category, we
introduce a further novel step which is to obtain an
additional equation of motion by varying the action with
respect to Λ.9 As we noted in the Introduction, such a
variation cannot be carried out in GR as it yields physically
useless results, so there Λ is left as a parameter to be
determined from observations. But now, having observed
that Λ can be a function of location, it is appropriate to also
include its variation in the action. This gives the new
equation

0 ¼ δSGRþnew

δΛ
⇒

Λ2

9
¼ ϵabcdRab ∧ Rcd

e4
; ð24Þ

where e4 ≡ ϵabcdðea ∧ eb ∧ ec ∧ edÞ is the volume four-
form. This equation provides an algebraic equation for Λ.
We first note that within the self-dual sector this equation

is automatically satisfied, simply statingΛ2 ¼ Λ2. This was
inevitable; as we have already shown that under the self-
dual condition an arbitrary function Λðx; tÞ is a solution, it
cannot be subject to any additional constraint equation.
Beyond self-duality, however, the implications of

Eq. (24) are dramatic and two-fold:
(i) The equation of motion for Λðx; tÞ in Eq. (24) comes

at no extra cost. We have not had the need to
introduce extra d.o.f., such as scalar fields or kinetic
terms, to obtain it.

(ii) Equation (24) fixes the value of Λðx; tÞ to the Gauss-
Bonnet density, so Λ is now determined within the
theory, rather than being a free quantity that has to be
measured. This implies that we have just reduced, by
one, the number of free parameters in our theory,
compared to number of d.o.f. in GRþ Λ.

These are the key points of this work, which distinguish it
from existing literature.

V. SOLUTIONS WITHOUT SELF-DUALITY

While the self-dual solutions have played a central role in
motivating the construction of our theory, to be physically
interesting it must be able to describe general situations
where the self-dual assumption is lifted. In particular loss of
self-duality is inevitable once matter is included, as well as
in the vacuum case if there is Weyl curvature as for instance
in the Schwarzschild solution.

8The issues of covariant conservation and the consistency of
the Einstein equations in the presence of torsion are discussed in
Refs. [42–44].

9A different proposal for allowing Λ to be varied in the action,
based on quantum partition functions, has been made by Barrow
and Shaw [45], though in their case Λ remains a space-time
constant.
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Since our theory is defined by an action principle, we
should expect its equations of motion to be consistent. It
appears to have local d.o.f. and so is not a topological field
theory. But, at the same time, it is also clear that it is not
general relativity. The new theory has a variable Λ, which
satisfies its own field equation, which is unlike anything in
general relativity. As we saw, like general relativity in first-
order form, the connection and in particular the torsion are
determined by a nonlinear extension of the connection field
equations.
In particular, we have to answer the important question

of whether there are solutions beyond the self-dual sector to
the full theory defined by Eq. (20), both in the absence or
presence of matter. This is the subject of several lines of
ongoing investigation. Here is what is known at present:

(i) There are nontrivial solutions, with matter, in the
reduction to homogeneous and isotropic solutions.
These generalized FRW solutions are of some inter-
est, as ΛðtÞ becomes locked to the matter density in a
manner reminiscent of quintessence scaling solutions,
and are the subject of separate papers [9,10].

(ii) In the homogeneous and isotropic case, without
matter, all solutions satisfy the self-dual condition
with arbitrary Λ, as shown also in Ref. [9].

(iii) There is an argument, based on the Plebański
formulation that in the Euclidean vacuum case, all
solutions are in the self-dual sector [46]. In the
Lorentzian case, this argument fails to show all
solutions are self-dual, and in fact suggests a strategy
to construct more solutions, which have nonvanish-
ing but null Weyl tensor [47]

C2 ¼ CabcdCabcd ¼ 0: ð25Þ

VI. OPTIONS FOR VARYING Λ

Here we pause to reflect on what it means for Λ to be
variable in our context. Essentially there are two possibil-
ities; either the action is extremized under variations
with respect to Λ, as in our proposal, or it is not, as in
GR. As the variation imposes extra dynamical restrictions
on the model, it yields a more predictive framework, with
potentially fewer parameters than GRþ Λ.
We have found that this variation gives three possible

scenarios, depending on the physical circumstance, and
examples of each are presently under investigation.
(A) The Λ equations of motion are redundant, and so

impose no new constraints. The choice of the function
ΛðxμÞ is then free and unconstrained. We saw this
occur here in the self-dual sector.

(B) The new equation of motion is a constraint which ties
Λ to be a fixed function of the matter density and/or
Weyl curvature. We expect this to be the generic
situation in physically realistic scenarios of our vanilla

theory. A cosmological example of this behavior is
described in Ref. [9].

(C) The other equations of motion induce a kinetic energy
term for Λ, giving it dynamics similar to a conven-
tional field. An example of this is described in
Sec. VII C below. The implications for cosmology
are developed in Ref. [11].

We note an alternative possible outcome of variation
with respect to Λ, not realized in our theory, is for Λ to be a
single number resulting from extremizing some functional
over all of space-time, as in the sequestering scenario
of Ref. [2].
Were we instead to choose not to vary the action with

respect to Λ, we would have considerable additional
freedom to specify it. For instance, it could be a given
function of space-time, set ultimately by deeper consid-
erations coming from cosmology or quantum theory, but
arbitrary at this level. Alternatively it could be constant on
some dynamically preferred three-slicing of space-time,
making it a function of a time parameter that labels the
slices, as described in Ref. [13].

VII. EXTENSIONS TO THE VANILLA THEORY

We have so far kept the focus on the simplest form of the
theory, due to its conceptual elegance and novel properties.
In particular, the additional quasi-Gauss-Bonnet term in the
action is precisely specified adding no new parameter or
functional degrees to the action, and indeed potentially
removing them by permitting self-consistent variation of
the action with respect to Λ. However the theory is also of
interest as a different starting point from GR to make
extensions to the gravitational theory, as might be guided
by current and future observational constraints. In this short
section we outline several such extensions, for more
detailed exploration in future work.

A. Generalising the quasitopological term

The simplest possible extension to our theory is to let the
new quasi-Gauss-Bonnet term be controlled by a constant
multiplier θ, while retaining its functional dependence on
1=Λ. The action now reads

Sθ ¼ 1

8πG

Z
M

ϵabcd

�
ea ∧ eb ∧ RcdðωÞ

−
Λ
6
ea ∧ eb ∧ ec ∧ ed −

3θ

2Λ
RabðωÞ ∧ RcdðωÞ

�

þ Smatter; ð26Þ

where θ ¼ 0 returns us to GR (provided we make a simul-
taneous decision not to vary the action with respect to Λ),
and θ ¼ 1 is the special theory we have been discussing
thus far. The Einstein equation remains unchanged, while
the Λ equation of motion now reads
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0 ¼ δSθ

δΛ
→

Λ2

9
¼ θϵabcdRab ∧ Rcd

e4
; ð27Þ

and the connection equation Eq. (21) also acquires a θ
multiplier on its right-hand side.
Introducing the θ parameter takes away some of the

elegance of the original construction, which is why we have
mostly focussed on the vanilla theory in this article. In
particular self-dual solutions no longer exist, since the
equation of motion immediately implies Λ2 ¼ θΛ2 in that
case. In a sense, θ − 1 measures the extent to which the
duality symmetry is broken. However, our use of self-dual
solutions is primarily motivational, since anyway cases of
physical interest will not obey that condition. As in the
θ ¼ 1 case, Eq. (27) will fix Λ in terms of the other
variables describing a chosen situation.
There is the further disadvantage of introducing an extra

free parameter, but even then this is only returning us to the
level of freedom of GRþ Λ, by swapping in θ in place ofΛ
as an undetermined parameter. Since the theory remains
radically different from GR it surely merits careful study as
to its self-consistency and observational viability. This
additional freedom does increase the opportunity to match
observations, particularly in the construction of viable
cosmological models which we study in Refs. [9,10].

B. Using the Pontryagin invariant

An alternative to our Gauss-Bonnet theory would be to
add, in the place of Eq. (20), a similarly modified term
involving the Pontryagin invariant [12,13]:

Snew−Pont ¼ −
1

8πG

Z
M

3

2Λ
Rab ∧ Rab: ð28Þ

This modification breaks parity, and connects with a class
of parity-odd modifications of GR studied in Ref. [48]. It
leads to interesting new complex solutions, which may play
a role in path-integral approaches to the quantum theory.
It does inspire a very interesting hypothesis about a

physical link between the (dynamical) cosmological con-
stant and a gravitational chiral anomaly [13]. The latter is
related to the difference between left- and right-handed
particle creation rates [49]:

DμJ
μ
5 ¼

3

16π2
Rab ∧ Rab: ð29Þ

We can use the Λ equation of motion to obtain

Λ2

9
¼ 16π2

3

DμJ
μ
5ffiffiffiffiffiffi−gp ; ð30Þ

which posits a relationship between Λ and a particle (mass)
scale, given by the empirical relation

GΛ ≈ ðΔmνÞ4; ð31Þ

where Δmν ≈ 3 × 10−3 eV. This reminds us of the often-
remarked coincidence of the observed neutrino and dark
energy mass scales.

C. Giving Λ a kinetic energy from
torsion-squared terms

In the original theory, Λ is dynamical in the sense that
its value is determined by a field equation which results
from varying it in the action. But since there are no
derivatives in that field equation, there is no propagating
mode. The result, as we show in detail in the generalized
FRW case [9], is that the dark energy is locked to the matter
density. This has interesting implications for cosmology, as
we discuss there.
We can instead give the cosmological constant a propa-

gating mode by adding a term to the action proportional to
the square of the torsion, such as

ST
2 ¼ α

Z ffiffiffiffiffiffi
−g

p
gμνTμα

αTνβ
β: ð32Þ

As the torsion is a tensor this is consistent with diffeo-
morphism invariance. If we add this term by hand, the cost
is a single new dimensionless parameter, α, which brings
the number of parameters back up to the two of general
relativity. But there are good reasons to expect that such a
term is anyway induced by quantum corrections. Another
mechanism that will induce such a term would be a fermion
condensate, of the kind described in Ref. [50].
Either way, adding the term in Eq. (32) to the action

gives us a standard kinetic energy for lnΛ. Now Λ has a
field equation that does not restrict vacuum solutions to the
self-dual sector.
If the self-dual conditions in Eq. (14) are satisfied, then a

calculation shows that Eq. (16) gives

ST
2 ¼ 3α

4

Z ffiffiffiffiffiffi
−g

p
gαβ∂α lnΛ∂β lnΛ: ð33Þ

The result is then that Λ has a propagating mode. This has
important implications, which will be the subject of another
paper [51].

VIII. CONCLUSION

In this paper we have introduced a class of modifications
of general relativity, which feature a varying cosmological
constant. These are consequences of a new dynamical prin-
ciple we introduce, called the quasitopological principle.
The principle can be applied to two topological invariants,
the Gauss-Bonnet and the Pontryagin invariants, giving rise
to two parallel sets of theories. In this paper we focused
mostly on the Gauss-Bonnet extension, and have seen how
torsion can enable a consistent space-time variation of Λ.
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Because the cosmological constant becomes variable
and dynamic in the sense that a new field equation arises
from its variation, no new parameter emerges. However
these new field equations are algebraic and do not allow the
emergence of a propagating mode associated with the
variations of Λ. Instead, Λ molds itself to the matter dis-
tribution. In companion articles we present in detail the
implications for cosmology [9,10]. There are also possible
implications for dark matter through the expected enhance-
ment of Λ in the vicinity of normal matter. In the Gauss-
Bonnet case, the theory shows potential to explain the
coincidence problem, as a consequence of the molding ofΛ
to the matter density. However, we anticipate challenges to
fit the whole history of our Universe, particularly during the
radiation-dominated regime.
The theory has various generalizations. One is to move

the coefficient of the quasitopological term away from the
magical 3=2Λ value, motivated by the duality symmetry, to
the more general 3θ=2Λ. Our preliminary studies show that
the theory predicts very different behavior depending
whether θ is set equal to unity or not. Alternatively, using
the Pontryagin invariant in place of Gauss-Bonnet gives
rise to a precise relationship between Λ and a left-right
asymmetry in particle production rates, mediated by a
gravitational anomaly [13]. There are two natural exten-
sions of these models, in which a kinetic energy term
naturally arises for the logarithm of Λ, giving the dark
energy a more conventional dynamics via the emergence of

propagating modes. This dynamics is also studied in the
FRW case in a forthcoming paper [11]. Finally, we can
simply add a torsion-squared term to the action to induce a
kinetic energy term for Λ. Each of these theories has
interesting implications for cosmology.
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